151
|
Guo W, Wang P, Liu Z, Yang P, Ye P. The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells. BMC Oral Health 2015; 15:133. [PMID: 26511096 PMCID: PMC4625523 DOI: 10.1186/s12903-015-0115-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/10/2015] [Indexed: 01/15/2023] Open
Abstract
Background Gingival epithelial cells are the major population of the gingival tissue, acting as the front-line defense against microbial intrusion and regulating the homeostasis of the periodontal tissue in health and disease via NLR family pyrin domain-containing-3 (NLRP3) inflammasome, which recognizes pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). The aim of this study was to determine whether the activation of NLRP3 inflammasome depends on infection with the periodontal pathogen Porphyromonas gingivalis (P. gingivalis), or stimulation with P. gingivalis lipopolysaccharide (LPS), and/or extracellular adenosine triphosphate (ATP). Methods An oral epithelial cell line was treated with P. gingivalis, P. gingivalis LPS and ATP. The gene and protein expression of NLRP3 inflammasome components were quantified by real time RT-PCR and immunoblots. Production of IL-1β and IL-18 was measured by ELISA. Results There was no increase in NLRP3 inflammasome gene expression after P. gingivalis infection unless pre-stimulated by ATP. Obvious increases of NLRP3 inflammasome gene expression was observed after P. gingivalis LPS stimulation, even pre-stimulated by ATP at 2 h. Conclusions The findings indicate that the activation of NLRP3 inflammasome does not rely on P. gingivalis infection, unless stimulated by P. gingivalis LPS and/or extracellular ATP, suggesting diverse signaling pathways are involved in the host immune response.
Collapse
Affiliation(s)
- Wei Guo
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China. .,Department of Endodontics, Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Peng Wang
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Zhonghao Liu
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Pishan Yang
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Ping Ye
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead Hospital, Westmead, Australia.
| |
Collapse
|
152
|
Kiczak L, Wałecka-Zacharska E, Bania J, Sambor I, Stefaniak T, Dzięgiel P, Zacharski M, Tomaszek A, Rybińska I, Pasławska U. Anti-inflammatory properties and expression in selected organs of canine interleukin-1β splice variant 1. Vet Immunol Immunopathol 2015; 167:91-5. [PMID: 26239893 DOI: 10.1016/j.vetimm.2015.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
The IL-1β gene can be also be spliced with the intron 4 retention; the result is a IL-1β splice variant 1 (IL-1βsv1), which was significantly up-regulated in failing myocardium of dogs suffering from chronic degenerative valvular disease (CDVD). Expression of IL-1βsv1 was assessed, at both RNA and protein levels, in organs affected by heart failure, namely, kidneys, liver, and lungs from 35 dogs suffering chronic degenerative valvular disease (CDVD) and in 20 disease free control dogs. IL-1βsv1 RNA was detected in the dogs from both groups. In the CDVD group, the highest RNA and protein IL-1βsv1 levels were observed in lungs, followed, in that order, by the liver and kidneys. IL-1βsv1 protein was found in the cytoplasm of hepatocytes and IL-1βsv1-overexpressing DH82 cells. In lungs, IL-1βsv1 was localized in the cytoplasm and in the nuclei of bronchiolar epithelial and smooth-muscle cells. Cytoplasmic and nuclear IL-1βsv1 expression was observed in macrophages, and a strong nuclear signal was detected in epithelial cells of the alveolar sacs. Following lipopolysaccharide (LPS) stimulation, overexpression of IL-1βsv1 in DH82 cells decreased the pro-inflammatory response. Our results indicate that IL-1βsv1 is constitutively expressed in both normal tissues and in tissues from cases of heart failure. The presence of IL-1βsv1 in tissues exposed to invading agents and its anti-inflammatory activity in DH82 cells may point to its immunomodulatory role in vivo.
Collapse
Affiliation(s)
- L Kiczak
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - E Wałecka-Zacharska
- Department of Food Hygiene and Consumer Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - J Bania
- Department of Food Hygiene and Consumer Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - I Sambor
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - T Stefaniak
- Department of Immunology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - P Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - M Zacharski
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - A Tomaszek
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Department of Internal Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - I Rybińska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - U Pasławska
- Department of Internal Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
153
|
Heymann MC, Rabe S, Ruß S, Kapplusch F, Schulze F, Stein R, Winkler S, Hedrich CM, Rösen-Wolff A, Hofmann SR. Fluorescent tags influence the enzymatic activity and subcellular localization of procaspase-1. Clin Immunol 2015; 160:172-9. [PMID: 26025004 DOI: 10.1016/j.clim.2015.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 01/22/2023]
Abstract
Subcellular localization studies and life cell imaging approaches usually benefit from fusion-reporter proteins, such as enhanced green fluorescent protein (EGFP) and mCherry to the proteins of interest. However, such manipulations have several risks, including protein misfolding, altered protein shuttling, or functional impairment when compared to the wild-type proteins. Here, we demonstrate altered subcellular distribution and function of the pro-inflammatory enzyme procaspase-1 as a result of fusion with the reporter protein mCherry. Our observations are of central importance to further investigations of subcellular behavior and possible protein-protein interactions of naturally occurring genetic variants of human procaspase-1 which have recently been linked to autoinflammatory disorders.
Collapse
Affiliation(s)
- Michael C Heymann
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sabrina Rabe
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Ruß
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Franz Kapplusch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Schulze
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Stein
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian M Hedrich
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sigrun R Hofmann
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
154
|
Nagyőszi P, Nyúl-Tóth Á, Fazakas C, Wilhelm I, Kozma M, Molnár J, Haskó J, Krizbai IA. Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells. J Neurochem 2015; 135:551-64. [DOI: 10.1111/jnc.13197] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Péter Nagyőszi
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Csilla Fazakas
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Imola Wilhelm
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Mihály Kozma
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Judit Molnár
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - János Haskó
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - István A. Krizbai
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| |
Collapse
|
155
|
Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochem J 2015; 471:323-33. [PMID: 26272943 DOI: 10.1042/bj20150617] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is an age-related movement disorder characterized by a progressive degeneration of dopaminergic neurons in the midbrain. Although the presence of amyloid deposits of α-synuclein (α-syn) is the main pathological feature, PD brains also present a severe permanent inflammation, which largely contributes to neuropathology. Although α-syn has recently been implicated in this process, the molecular mechanisms underlying neuroinflammation remain unknown. In the present study, we investigated the ability of different α-syn aggregates to trigger inflammatory responses. We showed that α-syn induced inflammation through activation of Toll-like receptor 2 (TLR2) and the nucleotide oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome only when folded as amyloid fibrils. Oligomeric species, thought to be the primary species responsible for the disease, were surprisingly unable to trigger the same cascades. As neuroinflammation is a key player in PD pathology, these results put fibrils back to the fore and rekindles discussions about the primary toxic species contributing to the disease. Our data also suggest that the inflammatory properties of α-syn fibrils are linked to their intrinsic structure, most probably to their cross-β structure. Since fibrils of other amyloids induce similar immunological responses, we propose that the canonical fibril-specific cross-β structure represents a new generic motif recognized by the innate immune system.
Collapse
|
156
|
Yakoub AM, Shukla D. Basal Autophagy Is Required for Herpes simplex Virus-2 Infection. Sci Rep 2015; 5:12985. [PMID: 26248741 PMCID: PMC4528227 DOI: 10.1038/srep12985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a conserved catabolic process of the cell, which plays an important role in regulating plethora of infections. The role of autophagy in Herpes simplex virus-2 (HSV-2) infection is unknown. Here, we found that HSV-2 does not allow induction of an autophagic response to infection, but maintains basal autophagy levels mostly unchanged during productive infection. Thus, we investigated the importance of basal autophagy for HSV-2 infection, using pharmacological autophagy suppression or cells genetically deficient in an autophagy-essential gene (ATG5). Interference with basal autophagy flux in cells significantly reduced viral replication and diminished the infection. These results indicate that basal autophagy plays an indispensable role required for a productive infection. Importantly, this study draws a sharp distinction between induced and basal autophagy, where the former acts as a viral clearance mechanism abrogating infection, while the latter supports infection.
Collapse
Affiliation(s)
- Abraam M Yakoub
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago, IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL USA, 60612
| | - Deepak Shukla
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago, IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL USA, 60612
| |
Collapse
|
157
|
Fedeli C, Segat D, Tavano R, De Franceschi G, de Laureto PP, Lubian E, Selvestrel F, Mancin F, Papini E. Variations of the corona HDL:albumin ratio determine distinct effects of amorphous SiO2 nanoparticles on monocytes and macrophages in serum. Nanomedicine (Lond) 2015; 9:2481-97. [PMID: 24661258 DOI: 10.2217/nnm.14.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIM We investigated monocyte and macrophage death and cytokine production induced by amorphous silica nanoparticles (SiO2-NPs) to clarify the role of defined serum corona proteins. MATERIALS & METHODS The cytotoxic proinflammatory effects of SiO2-NPs on human monocytes and macrophages were characterized in no serum, in fetal calf serum and in the presence of purified corona proteins. RESULTS In no serum and in fetal calf serum above approximately 75 µg/ml, SiO2-NPs lysed monocytes and macrophages by plasma membrane damage (necrosis). In fetal calf serum below approximately 75 µg/ml, SiO2-NPs triggered an endolysosomal acidification and caspase-1-dependent monocyte death (pyroptosis). The corona high-density lipoproteins:albumin ratio accounted for the features of the SiO2-NPs in serum. DISCUSSION Corona high-density lipoproteins are a major determinant of the differential cytotoxic action of SiO2-NPs on monocytes and macrophages.
Collapse
Affiliation(s)
- Chiara Fedeli
- Interdepartmental Research Center for Innovative Biotechnologies, Università di Padova, via U Bassi 58/B, I-35131, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Relja B, Horstmann JP, Kontradowitz K, Jurida K, Schaible A, Neunaber C, Oppermann E, Marzi I. Nlrp1 inflammasome is downregulated in trauma patients. J Mol Med (Berl) 2015; 93:1391-400. [PMID: 26232934 DOI: 10.1007/s00109-015-1320-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/09/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED After a major trauma, IL-1β-producing capacity of monocytes is reduced. Generation of IL-1β is important for appropriate immune response after trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Altered IL-1β-processing due to deregulated NLRP inflammasomes assembly is associated with several inflammatory diseases. However, the precise role of NLRP1 inflammasome in monocytes after trauma is unknown. Here, we investigated if NLRP1 inflammasome components are responsible for depressed monocyte function after trauma. We found in ex vivo in vitro assays that LPS-stimulation of CD14(+)-isolated monocytes from healthy volunteers (HV) results in remarkably higher capacity of the IL-1β-release compared to trauma patients (TP). During the 10-day time course, this monocyte depression was highest immediately after admission. Inflammasome activation correlating with this inflammatory response was demonstrated by enhanced protein production of cleaved IL-1β and caspase-1. Furthermore, we found that the gene expression of IL-1β, caspase-1, and ASC was comparable in TP and HV after LPS-stimulation during the 10-day course, while NLRP1 was markedly reduced in TP. We demonstrated that transfected monocytes from TP, which expressed the lacking components, were recovered in their LPS-induced IL-1β-release and that lacking of NLRP1 is responsible for the suppressed monocyte activity after trauma. The restoration of NLRP1 inflammasome suggests new mechanistic target for the recovery of dysbalanced immune reaction after trauma. KEY MESSAGE Suppression in monocyte function occurs early after a major trauma or surgery. Reduced gene expression abrogates NLRP1 inflammasome assembly after trauma. Limited availability of inflammasome components may cause reduced host defense. Restoring NLRP1 in immune-suppressed monocytes recovers NLPR1 activity after trauma. Recovered inflammasome activity may improve the immune response to PAMPs/DAMPs.
Collapse
Affiliation(s)
- B Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany.
| | - J P Horstmann
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - K Kontradowitz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - K Jurida
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - A Schaible
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - C Neunaber
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - E Oppermann
- Department of General and Visceral Surgery, Goethe University, Frankfurt, Germany
| | - I Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
159
|
Lavieri R, Rubartelli A, Carta S. Redox stress unbalances the inflammatory cytokine network: role in autoinflammatory patients and healthy subjects. J Leukoc Biol 2015. [PMID: 26199031 DOI: 10.1189/jlb.3mr0415-159r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cell stress and redox responses are increasingly acknowledged as factors contributing to the generation and development of the inflammatory response. Several inflammation-inducing stressors have been identified, inside and outside of the cell. Furthermore, many hereditary diseases associate with inflammation and oxidative stress, suggesting a role for mutated proteins as stressors. The nucleotide-binding oligomerization domain, leucine-rich repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome is an important node at the crossroad between redox response and inflammation. Remarkably, monocytes from patients with mutations in the NLRP3 gene undergo oxidative stress after stimulation with minute amounts of TLR agonists, resulting in unbalanced production of IL-1β and regulatory cytokines. Similar alterations in cytokine production are found in healthy monocytes upon TLR overstimulation. This mini-review summarizes recent progress in this field, discusses the molecular mechanisms underlying the loss of control of the cytokine network following oxidative stress, and proposes new therapeutic opportunities.
Collapse
Affiliation(s)
- Rosa Lavieri
- Cell Biology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Anna Rubartelli
- Cell Biology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Sonia Carta
- Cell Biology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| |
Collapse
|
160
|
Gómez López M, Domínguez López A, Abarca Rojano E, Rojas Hernández S, Martínez Godínez MDLA, Miliar García A, Campos Rodríguez R. 17β-Estradiol transcriptionally modulates Nlrp1 and Nlrp3 inflammasomes in gonadectomized rats with inflammation. Immunopharmacol Immunotoxicol 2015; 37:343-50. [DOI: 10.3109/08923973.2015.1059439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
161
|
Wang J, Wen Y, Lv LL, Liu H, Tang RN, Ma KL, Liu BC. Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol Sin 2015; 36:821-30. [PMID: 26005910 DOI: 10.1038/aps.2015.21] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
Abstract
AIM NLRP3 inflammasome plays an important role in renal injury and may be a therapeutic target in the treatment of patients with progressive chronic kidney disease. In this study we investigated whether angiotensin II (Ang II)-induced NLRP3 inflammasome activation was linked to endoplasmic reticulum stress (ERS) in human renal proximal tubular cells in vitro. METHODS Human kidney proximal epithelial cells (HK-2) were pretreated with telmisartan or 4-PBA, and then treated with Ang II. The expression levels of mRNAs and proteins related to NLRP3 inflammasomes and ERS was examined by real-time PCR, Western blot and immunofluorescence. RESULTS Treatment with Ang II (10, 100, and 1000 nmol/L) increased the expression of the inflammasome markers NLRP3 and ASC, as well as caspase-1, IL-1β, and IL-18 in dose- and time-dependent manners with peak levels detected at 100 nmol/L and 12 h. Ang II-induced increases in the expression of NLRP3, ASC, caspase-1, IL-1β, and IL-18 were significantly reduced by pretreatment with telmisartan (1 μmol/L). Immunofluorescence studies showed that Ang II increased the expression of NLRP3 and ASC, which was inhibited by telmisartan. Furthermore, Ang II treatment increased the expression of ERS markers GRP78 and p-eIF2α in dose- and time-dependent manners, which was significantly reduced by telmisartan. Moreover, Ang II-induced increases in the expression of NLRP3, ASC, caspase-1, IL-1β, and IL-18 were significantly inhibited by pretreatment with the ERS inhibitor 4-PBA (5 mmol/L). CONCLUSION Ang II treatment induces NLRP3 inflammasome activation in HK-2 cells in vitro and ER stress is involved in this process, which may represent a new mechanism for the renal rennin-angiotensin system to induce tubulointerstitial inflammation.
Collapse
|
162
|
Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R. Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 2015; 6:7360. [PMID: 26059659 PMCID: PMC4490404 DOI: 10.1038/ncomms8360] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/30/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammasome activation has been implicated in various inflammatory diseases including post-ischaemic inflammation after stroke. Inflammasomes mediate activation of caspase-1, which subsequently induces secretion of pro-inflammatory cytokines such as IL-1β and IL-18, as well as a form of cell death called pyroptosis. In this study, we report that Bruton's tyrosine kinase (BTK) is an essential component of the NLRP3 inflammasome, in which BTK physically interacts with ASC and NLRP3. Inhibition of BTK by pharmacological or genetic means severely impairs activation of the NLRP3 inflammasome. The FDA-approved BTK inhibitor ibrutinib (PCI-32765) efficiently suppresses infarct volume growth and neurological damage in a brain ischaemia/reperfusion model in mice. Ibrutinib inhibits maturation of IL-1β by suppressing caspase-1 activation in infiltrating macrophages and neutrophils in the infarcted area of ischaemic brain. Our study indicates that BTK is essential for NLRP3 inflammasome activation and could be a potent therapeutic target in ischaemic stroke. Activation of inflammasome contributes to several pathologies. Here, the authors show that Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation, and that blocking it with the FDA-approved inhibitor ibrutinib limits tissue damage in a mouse model of ischaemic stroke.
Collapse
Affiliation(s)
- Minako Ito
- 1] Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Takashi Shichita
- 1] Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan [3] PRESTO (Precursory Research for Embryonic Science and Technology), Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masahiro Okada
- 1] Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Ritsuko Komine
- 1] Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshiko Noguchi
- 1] Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Akihiko Yoshimura
- 1] Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Rimpei Morita
- 1] Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
163
|
Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis 2015; 9:188-97. [PMID: 26012351 DOI: 10.1177/1753465815586335] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory diseases and lung injuries are one of the leading causes of death in the world. One critical component of these diseases is exaggerated inflammatory response. The recently discovered inflammasome is believed to play a key role in inflammation. The inflammasome is an oligomer of intracellular proteins that, once activated by an insult or damage signal, produces mature cytokines from the interleukin-1 family that mediate an inflammatory response. Previous research has provided evidence that suggests the role of the inflammasome in the pathogenesis of many chronic respiratory diseases and acute lung injuries, such as transfusion-related acute lung injury, ventilator-induced lung injury, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. This article summarizes recent research on the inflammasome and reviews proposed molecular models of the role of the inflammasome in several prominent lung diseases and injuries.
Collapse
Affiliation(s)
- Nima Hosseinian
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Young Cho
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 19, Tampa, FL 33612, USA
| |
Collapse
|
164
|
Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 2015; 22:1111-29. [PMID: 25330206 PMCID: PMC4403231 DOI: 10.1089/ars.2014.5994] [Citation(s) in RCA: 700] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Inflammasomes are multiprotein complexes localized within the cytoplasm of the cell that are responsible for the maturation of proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18, and the activation of a highly inflammatory form of cell death, pyroptosis. In response to infection or cellular stress, inflammasomes are assembled, activated, and involved in host defense and pathophysiology of diseases. Clarification of the molecular mechanisms leading to the activation of this intracellular inflammatory machinery may provide new insights into the concept of inflammation as the root of and route to human diseases. RECENT ADVANCES The activation of inflammasomes, specifically the most fully characterized inflammasome-the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome, is now emerging as a critical molecular mechanism for many degenerative diseases. Several models have been developed to describe how NLRP3 inflammasomes are activated, including K(+) efflux, lysosome function, endoplasmic reticulum (ER) stress, intracellular calcium, ubiquitination, microRNAs, and, in particular, reactive oxygen species (ROS). CRITICAL ISSUES ROS may serve as a "kindling" or triggering factor to activate NLRP3 inflammasomes as well as "bonfire" or "effector" molecules, resulting in pathological processes. Increasing evidence seeks to understand how this spatiotemporal action of ROS occurs during NLRP3 inflammasome activation, which will be a major focus of this review. FUTURE DIRECTIONS It is imperative to know how this dual action of ROS works during NLRP3 inflammation activation on different stimuli and what relevance such spatiotemporal redox regulation of NLRP3 inflammasomes has in cell or organ functions and possible human diseases.
Collapse
Affiliation(s)
- Justine M Abais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University , Richmond, Virginia
| | | | | | | | | |
Collapse
|
165
|
Murine Gammaherpesvirus 68 Pathogenesis Is Independent of Caspase-1 and Caspase-11 in Mice and Impairs Interleukin-1β Production upon Extrinsic Stimulation in Culture. J Virol 2015; 89:6562-74. [PMID: 25855746 DOI: 10.1128/jvi.00658-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish lifelong infections that are associated with the development of cancer. These viruses subvert many aspects of the innate and adaptive immune response of the host. The inflammasome, a macromolecular protein complex that controls inflammatory responses to intracellular danger signals generated by pathogens, is both activated and subverted during human gammaherpesvirus infection in culture. The impact of the inflammasome response on gammaherpesvirus replication and latency in vivo is not known. Caspase-1 is the inflammasome effector protease that cleaves the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. We infected caspase-1-deficient mice with murine gammaherpesvirus 68 (MHV68) and observed no impact on acute replication in the lung or latency and reactivation from latency in the spleen. This led us to examine the effect of viral infection on inflammasome responses in bone marrow-derived macrophages. We determined that infection of macrophages with MHV68 led to a robust interferon response but failed to activate caspase-1 or induce the secretion of IL-1β. In addition, MHV68 infection led to a reduction in IL-1β production after extrinsic lipopolysaccharide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium. Interestingly, this impairment occurred at the proIL-1β transcript level and was independent of the RTA, the viral lytic replication and transcription activator. Taken together, MHV68 impairs the inflammasome response by inhibiting IL-1β production during the initial stages of infection. IMPORTANCE Gammaherpesviruses persist for the lifetime of the host. To accomplish this, they must evade recognition and clearance by the immune system. The inflammasome consists of proteins that detect foreign molecules in the cell and respond by secreting proinflammatory signaling proteins that recruit immune cells to clear the infection. Unexpectedly, we found that murine gammaherpesvirus pathogenesis was not enhanced in mice lacking caspase-1, a critical inflammasome component. This led us to investigate whether the virus actively impairs the inflammasome response. We found that the inflammasome was not activated upon macrophage cell infection with murine gammaherpesvirus 68. Infection also prevented the host cell inflammasome response to other pathogen-associated molecular patterns, indicated by reduced production of the proinflammatory cytokine IL-1β upon bacterial coinfection. Taken together, murine gammaherpesvirus impairment of the inflammatory cytokine IL-1β in macrophages identifies one mechanism by which the virus may inhibit caspase-1-dependent immune responses in the infected animal.
Collapse
|
166
|
Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 2015; 160:62-73. [PMID: 25594175 DOI: 10.1016/j.cell.2014.11.047] [Citation(s) in RCA: 794] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/21/2014] [Accepted: 11/18/2014] [Indexed: 01/11/2023]
Abstract
Inflammasomes are involved in diverse inflammatory diseases, so the activation of inflammasomes needs to be tightly controlled to prevent excessive inflammation. However, the endogenous regulatory mechanisms of inflammasome activation are still unclear. Here, we report that the neurotransmitter dopamine (DA) inhibits NLRP3 inflammasome activation via dopamine D1 receptor (DRD1). DRD1 signaling negatively regulates NLRP3 inflammasome via a second messenger cyclic adenosine monophosphate (cAMP), which binds to NLRP3 and promotes its ubiquitination and degradation via the E3 ubiquitin ligase MARCH7. Importantly, in vivo data show that DA and DRD1 signaling prevent NLRP3 inflammasome-dependent inflammation, including neurotoxin-induced neuroinflammation, LPS-induced systemic inflammation, and monosodium urate crystal (MSU)-induced peritoneal inflammation. Taken together, our results reveal an endogenous mechanism of inflammasome regulation and suggest DRD1 as a potential target for the treatment of NLRP3 inflammasome-driven diseases.
Collapse
Affiliation(s)
- Yiqing Yan
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Wei Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Lei Liu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Xiaqiong Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Chen Ding
- Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China; Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China.
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China; Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China.
| |
Collapse
|
167
|
Ye W, Lei Y, Yu M, Xu Y, Cao M, Yu L, Zhang L, Li P, Bai W, Xu Z, Zhang F. NLRP3 inflammasome is responsible for Hantavirus inducing interleukin-1β in THP-1 cells. Int J Mol Med 2015; 35:1633-40. [PMID: 25847326 DOI: 10.3892/ijmm.2015.2162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/18/2015] [Indexed: 11/05/2022] Open
Abstract
Persistent high fever is one typical clinical symptom of hemorrhagic fever with renal syndrome (HFRS) and circulating interleukin-1β (IL-1β) is elevated throughout HFRS. The mechanisms responsible for viral induction of IL-1β secretion are unknown. In the present study, Hantaan virus (HTNV) induced the secretion of IL-1β in the human monocytic cell line THP-1. Induction of IL-1β by HTNV relies on the activation of caspase-1. Small hairpin RNA knockdown in HTNV-infected THP-1 cells indicated that nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) recruits the adaptor apoptosis-associated speck-like protein and caspase-1 to form an NLRP3 inflammasome complex, crucial for the induction of IL-1β. In HTNV-infected THP-1 cells, reactive oxygen species release, but not extracellular adenosine triphosphate, was crucial for IL-1β production. In conclusion, Hantavirus induces the formation of the NLRP3 inflammasome in THP-1 cells and this may be responsible for the elevated IL-1β levels in HFRS patients.
Collapse
Affiliation(s)
- Wei Ye
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yingfeng Lei
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mengmeng Yu
- Health Drug and Instrument Control, General Logistics Department of the Ministry, Beijing 100071, P.R. China
| | - Yongni Xu
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mengyuan Cao
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lan Yu
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Puyuan Li
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wentao Bai
- Department of Minimally Invasive Surgery, General Surgery Center, General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| | - Zhikai Xu
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
168
|
Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A, El-Remessy AB, Fagan SC. Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 2015; 51:766-78. [PMID: 24939693 PMCID: PMC4730955 DOI: 10.1007/s12035-014-8766-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022]
Abstract
Redox imbalance in the brain significantly contributes to ischemic stroke pathogenesis, but antioxidant therapies have failed in clinical trials. Activation of endogenous defense mechanisms may provide better protection against stroke-induced oxidative injury. TXNIP (thioredoxin-interacting protein) is an endogenous inhibitor of thioredoxin (TRX), a key antioxidant system. We hypothesize that TXNIP inhibition attenuates redox imbalance and inflammation and provides protection against a clinically relevant model of embolic stroke. Male TXNIP-knockout (TKO), wild-type (WT), and WT mice treated with a pharmacological inhibitor of TXNIP, resveratrol (RES; 5 mg/kg body weight), were subjected to embolic middle cerebral artery occlusion (eMCAO). Behavior outcomes were monitored using neurological deficits score and grip strength meter at 24 h after eMCAO. Expression of oxidative, inflammatory, and apoptotic markers was analyzed by Western blot, immunohistochemistry, and slot blot at 24 h post-eMCAO. Our result showed that ischemic injury increases TXNIP in WT mice and that RES inhibits TXNIP expression and protects the brain against ischemic damage. TKO and RES-treated mice exhibited a 39.26 and 41.11 % decrease in infarct size and improved neurological score and grip strength compared to WT mice after eMCAO. Furthermore, the levels of TRX, nitrotyrosine, NOD-like receptor protein (NLRP3), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and activations of caspase-1, caspase-3, and poly-ADP-ribose polymerase (PARP) were significantly (P < 0.05) attenuated in TKO and RES-treated mice. The present study suggests that TXNIP is contributing to acute ischemic stroke through redox imbalance and inflammasome activation and inhibition of TXNIP may provide a new target for therapeutic interventions. This study also affirms the importance of the antioxidant effect of RES on the TRX/TXNIP system.
Collapse
|
169
|
The sterile inflammation in the exacerbation of HBV-associated liver injury. Mediators Inflamm 2015; 2015:508681. [PMID: 25892853 PMCID: PMC4393905 DOI: 10.1155/2015/508681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Exacerbation of hepatitis B virus-associated liver injury is characterized by abnormal immune response which not only mobilizes specific antiviral effects but also poses a potentially lethal nonspecific sterile inflammation to the host. How nonspecific sterile inflammation is triggered after the preexisting injury caused by specific immune injury remains elusive. In the setting of sterile inflammation, endogenous damage-associated molecular patterns are released by stressed and dying hepatocytes, which alarm the immune system through their potential pattern recognition receptors and related signaling pathways, orchestrate the influx of diverse cytokines, and ultimately amplify liver destruction. This review highlights current knowledge about the sterile hepatic inflammation in the exacerbation of chronic hepatitis B.
Collapse
|
170
|
Barrientos RM, Kitt MM, Watkins LR, Maier SF. Neuroinflammation in the normal aging hippocampus. Neuroscience 2015; 309:84-99. [PMID: 25772789 DOI: 10.1016/j.neuroscience.2015.03.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 02/01/2023]
Abstract
A consequence of normal aging is a greater susceptibility to memory impairments following an immune challenge such as infection, surgery, or traumatic brain injury. The neuroinflammatory response, produced by these challenges results in increased and prolonged production of pro-inflammatory cytokines in the otherwise healthy aged brain. Here we discuss the mechanisms by which long-lasting elevations in pro-inflammatory cytokines in the hippocampus produce memory impairments. Sensitized microglia are a primary source of this exaggerated neuroinflammatory response and appear to be a hallmark of the normal aging brain. We review the current understanding of the causes and effects of normal aging-induced microglial sensitization, including dysregulations of the neuroendocrine system, potentiation of neuroinflammatory responses following an immune challenge, and the impairment of memories. We end with a discussion of therapeutic approaches to prevent these deleterious effects.
Collapse
Affiliation(s)
- R M Barrientos
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - M M Kitt
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - L R Watkins
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - S F Maier
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
171
|
Boaru SG, Borkham-Kamphorst E, Van de Leur E, Lehnen E, Liedtke C, Weiskirchen R. NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes. Biochem Biophys Res Commun 2015; 458:700-706. [DOI: 10.1016/j.bbrc.2015.02.029] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
|
172
|
Sun Y, Zhao Y, Yao J, Zhao L, Wu Z, Wang Y, Pan D, Miao H, Guo Q, Lu N. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB and NLRP3 inflammasome activation. Biochem Pharmacol 2015; 94:142-54. [PMID: 25677765 DOI: 10.1016/j.bcp.2015.02.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 02/09/2023]
Abstract
Previous studies have demonstrated that wogonoside, the glucuronide metabolite of wogonin, has anti-inflammatory, anti-angiogenic and anticancer effects. However, the anti-inflammatory mechanism of wogonoside has not been fully elucidated. Recently, NLRP3 inflammasome has been reported to be correlated with inflammatory bowel disease for its ability to induce IL-1β release. Nevertheless, there are few drug candidates targeting NLRP3 inflammasome for this disease. In this study, we investigated the anti-inflammatory effect of wogonoside in dextran sulfate sodium (DSS)-induced murine colitis and further revealed the underlying mechanisms by targeting NF-κB and NLRP3 inflammasome. Wogonoside treatment dose-dependently attenuated DSS-induced body weight loss and colon length shortening. Moreover, wogonoside prevented DSS-induced colonic pathological damage, remarkably inhibited inflammatory cells infiltration and significantly decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. The production of pro-inflammatory mediators in serum and colon was also significantly reduced by wogonoside. The underlying mechanisms for the protective effect of wogonoside in DSS-induced colitis may be attributed to its inhibition on NF-κB and NLRP3 inflammasome activation in colons. Furthermore, wogonoside markedly decreased production of IL-1β, TNF-α and IL-6 and suppressed mRNA expression of pro-IL-1β and NLRP3 in phorbol myristate acetate (PMA)-differentiated monocytic THP-1 cells via inhibiting the activation of NF-κB and NLRP3 inflammasome. In conclusion, our study demonstrated that wogonoside may exert its anti-inflammatory effect via dual inhibition of NF-κB and NLRP3 inflammasome, suggesting that wogonoside might be a potential effective drug for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhaoqiu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Di Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Hanchi Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
173
|
Abderrazak A, Couchie D, Mahmood DFD, Elhage R, Vindis C, Laffargue M, Matéo V, Büchele B, Ayala MR, El Gaafary M, Syrovets T, Slimane MN, Friguet B, Fulop T, Simmet T, El Hadri K, Rouis M. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 2015; 131:1061-70. [PMID: 25613820 DOI: 10.1161/circulationaha.114.013730] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study was designed to evaluate the effect of arglabin on the NLRP3 inflammasome inhibition and atherosclerotic lesion in ApoE2Ki mice fed a high-fat Western-type diet. METHODS AND RESULTS Arglabin was purified, and its chemical identity was confirmed by mass spectrometry. It inhibited, in a concentration-dependent manner, interleukin (IL)-1β and IL-18, but not IL-6 and IL-12, production in lipopolysaccharide and cholesterol crystal-activated cultured mouse peritoneal macrophages, with a maximum effect at ≈50 nmol/L and EC50 values for both cytokines of ≈ 10 nmol/L. Lipopolysaccharide and cholesterol crystals did not induce IL-1β and IL-18 production in Nlrp3(-/-) macrophages. In addition, arglabin activated autophagy as evidenced by the increase in LC3-II protein. Intraperitoneal injection of arglabin (2.5 ng/g body weight twice daily for 13 weeks) into female ApoE2.Ki mice fed a high-fat diet resulted in a decreased IL-1β plasma level compared with vehicle-treated mice (5.2±1.0 versus 11.7±1.1 pg/mL). Surprisingly, arglabin also reduced plasma levels of total cholesterol and triglycerides to 41% and 42%, respectively. Moreover, arglabin oriented the proinflammatory M1 macrophages into the anti-inflammatory M2 phenotype in spleen and arterial lesions. Finally, arglabin treatment markedly reduced the median lesion areas in the sinus and whole aorta to 54% (P=0.02) and 41% (P=0.02), respectively. CONCLUSIONS Arglabin reduces inflammation and plasma lipids, increases autophagy, and orients tissue macrophages into an anti-inflammatory phenotype in ApoE2.Ki mice fed a high-fat diet. Consequently, a marked reduction in atherosclerotic lesions was observed. Thus, arglabin may represent a promising new drug to treat inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Amna Abderrazak
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Dominique Couchie
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Dler Faieeq Darweesh Mahmood
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Rima Elhage
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Cécile Vindis
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Muriel Laffargue
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Véronique Matéo
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Berthold Büchele
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Monica Rubio Ayala
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Menna El Gaafary
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Tatiana Syrovets
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Mohamed-Naceur Slimane
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Bertrand Friguet
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Tamas Fulop
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Thomas Simmet
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Khadija El Hadri
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.)
| | - Mustapha Rouis
- From Sorbonne Universités, UPMC Université Paris 06, Biological Adaptation and Ageing-IBPS, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); CNRS-UMR 8256, Paris, France (A.A., D.C., D.F.D.M., R.E.H., F.B., K.E.H., M.R.); Inserm U1164, Paris, France (A.A., D.C., D.F.D.M., R.E.H., B.F., K.E.H., M.R.); INSERM-UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (C.V., M.L.); Centre de Recherche d'Immunologie et Maladies Infectieuses, CIMI-Paris UPMC UMRS CR7, INSERM U-1135, CNRS ERL 8255, Hôpital Pitié-Salpêtrière, Paris, France (V.M.); Ulm University, Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm, Germany (B.B., M.R.A., M.E.G., T.S., T.S.); Biochemistry Laboratory, Faculty of Medicine, TN-Monastir, Tunisia (M.-N.S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada (T.F.).
| |
Collapse
|
174
|
Varghese GP, Uporova L, Halfvarson J, Sirsjö A, Fransén K. Polymorphism in the NLRP3 inflammasome-associated EIF2AK2 gene and inflammatory bowel disease. Mol Med Rep 2015; 11:4579-84. [PMID: 25607115 DOI: 10.3892/mmr.2015.3236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
Inflammatory bowel disease (IBD) is the common name for numerous relapsing inflammatory conditions, and is the collective name for Crohn's disease (CD) and ulcerative colitis (UC). The activation of the inflammasome in the pathogenesis of IBD has recently been identified, however the underlying mechanisms remain unclear. An activator of the inflammasome is double-stranded RNA-dependent protein kinase R, also termed EIF2AK2. A genetic alteration in the EIF2AK2 gene has previously been shown to be associated with Alzheimer's disease. The present study genotyped samples from a Swedish cohort of patients with IBD and healthy controls for an EIF2AK2 polymorphism. The rs2254958 polymorphism in the 5'‑untranslated region of the EIF2AK2 gene was genotyped by TaqMan® single nucleotide polymorphism genotyping, followed by allelic discrimination. However, no significant association was determined between the rs2254958 polymorphism and the development of IBD, or clinical outcome. In conclusion, the results of the present study suggest that the rs2254958 polymorphism has a limited effect on the onset or progression of IBD.
Collapse
Affiliation(s)
- Geena Paramel Varghese
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro SE‑70182, Sweden
| | - Ludmila Uporova
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro SE‑70182, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro SE‑70182, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro SE‑70182, Sweden
| | - Karin Fransén
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro SE‑70182, Sweden
| |
Collapse
|
175
|
Lin YC, Huang DY, Wang JS, Lin YL, Hsieh SL, Huang KC, Lin WW. Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization. J Leukoc Biol 2015; 97:825-835. [PMID: 25605870 DOI: 10.1189/jlb.3hi0814-371rr] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/03/2014] [Accepted: 11/30/2014] [Indexed: 12/27/2022] Open
Abstract
NLRP3 is the most crucial member of the NLR family, as it detects the existence of pathogen invasion and self-derived molecules associated with cellular damage. Several studies have reported that excessive NLRP3 inflammasome-mediated caspase-1 activation is a key factor in the development of diseases. Recent studies have reported that Syk is involved in pathogen-induced NLRP3 inflammasome activation; however, the detailed mechanism linking Syk to NLRP3 inflammasome remains unclear. In this study, we showed that Syk mediates NLRP3 stimuli-induced processing of procaspase-1 and the consequent activation of caspase-1. Moreover, the kinase activity of Syk is required to potentiate caspase-1 activation in a reconstituted NLRP3 inflammasome system in HEK293T cells. The adaptor protein ASC bridges NLRP3 with the effector protein caspase-1. Herein, we find that Syk can associate directly with ASC and NLRP3 by its kinase domain but interact indirectly with procaspase-1. Syk can phosphorylate ASC at Y146 and Y187 residues, and the phosphorylation of both residues is critical to enhance ASC oligomerization and the recruitment of procaspase-1. Together, our results reveal a new molecular pathway through which Syk promotes NLRP3 inflammasome formation, resulting from the phosphorylation of ASC. Thus, the control of Syk activity might be effective to modulate NLRP3 inflammasome activation and treat NLRP3-related immune diseases.
Collapse
Affiliation(s)
- Ying-Cing Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Duen-Yi Huang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Shiun Wang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shie-Liang Hsieh
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Chin Huang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Wan Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
176
|
Abstract
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616
| | - Edward Y. Skolnik
- Division of Nephrology, New York University School of Medicine, New York, NY 10016
- Department of Molecular Pathogenesis, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
177
|
Schneider SL, Ross AL, Grichnik JM. Do inflammatory pathways drive melanomagenesis? Exp Dermatol 2014; 24:86-90. [PMID: 25041143 DOI: 10.1111/exd.12502] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2014] [Indexed: 12/12/2022]
Abstract
Inflammatory pathways serve to protect the host and promote tissue healing/repair; however, over-activation or dysregulation can be pathological with unintended consequences including malignant progression. A correlation between inflammation and cancer has been well established, and anti-inflammatory medications have been shown to be chemopreventive in certain malignancies. Data are now becoming available that outline an inflammatory pathway that may have a critical role in melanomagenesis. ATP-regulated membrane channels/receptors P2X7 and PANX1 have been directly implicated in melanoma tumor growth. Among other potential effects, opening of the P2X7/PANX1 channel results in activation of the NALP3 inflammasome, which in turn leads to caspase-1 activation and increased levels of activated IL-1β. Elevated levels of caspase-1 and IL-1β have been correlated with melanoma progression, and inhibitors of the inflammasome, caspase and IL-1β activity have all been shown to inhibit melanoma growth. Among many other potential actions, IL-1β increases cyclooxygenase-2 expression leading to local increases in inflammatory mediators such as prostaglandin E2 (PGE2). Anti-inflammatory medications targeting the end of this pathway have had positive results for certain cancers but overall remain mixed for melanoma. A better understanding of the pathways and appropriate intervention points may help direct future therapies. In this viewpoint, we will review data and attempt to model an inflammatory pathway that may be critical for melanomagenesis and propose future directions for exploration.
Collapse
Affiliation(s)
- Samantha L Schneider
- Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
178
|
Bordt EA, Polster BM. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med 2014; 76:34-46. [PMID: 25091898 PMCID: PMC4252610 DOI: 10.1016/j.freeradbiomed.2014.07.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022]
Abstract
Microglia are the resident immune cells of the brain and play major roles in central nervous system development, maintenance, and disease. Brain insults cause microglia to proliferate, migrate, and transform into one or more activated states. Classical M1 activation triggers the production of proinflammatory factors such as tumor necrosis factor-α, interleukin-1β (IL-1β), nitric oxide, and reactive oxygen species (ROS), which, in excess, can exacerbate brain injury. The mechanisms underlying microglial activation are not fully understood, yet reactive oxygen species are increasingly implicated as mediators of microglial activation. In this review, we highlight studies linking reactive oxygen species, in particular hydrogen peroxide derived from NADPH oxidase-generated superoxide, to the classical activation of microglia. In addition, we critically evaluate controversial evidence suggesting a specific role for mitochondrial reactive oxygen species in the activation of the NLRP3 inflammasome, a multiprotein complex that mediates the production of IL-1β and IL-18. Finally, the limitations of common techniques used to implicate mitochondrial ROS in microglial and inflammasome activation, such as the use of the mitochondrially targeted ROS indicator MitoSOX and the mitochondrially targeted antioxidant MitoTEMPO, are also discussed.
Collapse
Affiliation(s)
- Evan A Bordt
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian M Polster
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
179
|
Klein R, Templeton DM, Schwenk M. Applications of immunochemistry in human health: advances in vaccinology and antibody design (IUPAC Technical Report). PURE APPL CHEM 2014. [DOI: 10.1515/pac-2013-1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This report discusses the history and mechanisms of vaccination of humans as well as the engineering of therapeutic antibodies. Deeper understanding of the molecular interactions involved in both acquired and innate immunity is allowing sophistication in design of modified and even synthetic vaccines. Recombinant DNA technologies are facilitating development of DNA-based vaccines, for example, with the recognition that unmethylated CpG sequences in plasmid DNA will target Toll-like receptors on antigen-presenting cells. Formulations of DNA vaccines with increased immunogenicity include engineering into plasmids with “genetic adjuvant” capability, incorporation into polymeric or magnetic nanoparticles, and formulation with cationic polymers and other polymeric and non-polymeric coatings. Newer methods of delivery, such as particle bombardment, DNA tattooing, electroporation, and magnetic delivery, are also improving the effectiveness of DNA vaccines. RNA-based vaccines and reverse vaccinology based on gene sequencing and bioinformatic approaches are also considered. Structural vaccinology is an approach in which the detailed molecular structure of viral epitopes is used to design synthetic antigenic peptides. Virus-like particles are being designed for vaccine deliveries that are based on structures of viral capsid proteins and other synthetic lipopeptide building blocks. A new generation of adjuvants is being developed to further enhance immunogenicity, based on squalene and other oil–water emulsions, saponins, muramyl dipeptide, immunostimulatory oligonucleotides, Toll-like receptor ligands, and lymphotoxins. Finally, current trends in engineering of therapeutic antibodies including improvements of antigen-binding properties, pharmacokinetic and pharmaceutical properties, and reduction of immunogenicity are discussed. Taken together, understanding the chemistry of vaccine design, delivery and immunostimulation, and knowledge of the techniques of antibody design are allowing targeted development for the treatment of chronic disorders characterized by continuing activation of the immune system, such as autoimmune disorders, cancer, or allergies that have long been refractory to conventional approaches.
Collapse
|
180
|
Farooq A, Hoque R, Ouyang X, Farooq A, Ghani A, Ahsan K, Guerra M, Mehal WZ. Activation of N-methyl-d-aspartate receptor downregulates inflammasome activity and liver inflammation via a β-arrestin-2 pathway. Am J Physiol Gastrointest Liver Physiol 2014; 307:G732-40. [PMID: 25104498 PMCID: PMC4187065 DOI: 10.1152/ajpgi.00073.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of the cytosolic inflammasome machinery is responsible for acute and chronic liver inflammation, but little is known about its regulation. The N-methyl-d-aspartate (NMDA) receptor families are heterotetrameric ligand-gated ion channels that are activated by a range of metabolites, including aspartate, glutamate, and polyunsaturated fatty acids. In the brain NMDA receptors are present on neuronal and nonneuronal cells and regulate a diverse range of functions. We tested the role of the NMDA receptor and aspartate in inflammasome regulation in vitro and in models of acute hepatitis and pancreatitis. We demonstrate that the NMDA receptor is present on Kupffer cells, and their activation on primary mouse and human cells limits inflammasome activation by downregulating NOD-like receptor family, pyrin domain containing 3 and procaspase-1. The NMDA receptor pathway is active in vivo, limits injury in acute hepatitis, and can be therapeutically further activated by aspartate providing protection in acute inflammatory liver injury. Downregulation of inflammasome activation by NMDA occurs via a β-arrestin-2 NF-kβ and JNK pathway and not via Ca(2+) mobilization. We have identified the NMDA receptor as a regulator of inflammasome activity in vitro and in vivo. This has identified a new area of immune regulation associated by metabolites that may be relevant in a diverse range of conditions, including nonalcoholic steatohepatitis and total parenteral nutrition-induced immune suppression.
Collapse
Affiliation(s)
- Ahmad Farooq
- 1Section of Digestive Diseases, Yale University, New Haven, Connecticut; ,3Section of Internal Medicine, Catholic Health System, University at Buffalo, Buffalo, New York
| | - Rafaz Hoque
- 1Section of Digestive Diseases, Yale University, New Haven, Connecticut;
| | - Xinshou Ouyang
- 1Section of Digestive Diseases, Yale University, New Haven, Connecticut;
| | - Ahsan Farooq
- 1Section of Digestive Diseases, Yale University, New Haven, Connecticut;
| | - Ayaz Ghani
- 1Section of Digestive Diseases, Yale University, New Haven, Connecticut;
| | - Kaimul Ahsan
- 1Section of Digestive Diseases, Yale University, New Haven, Connecticut;
| | - Mateus Guerra
- 1Section of Digestive Diseases, Yale University, New Haven, Connecticut;
| | - Wajahat Zafar Mehal
- Section of Digestive Diseases, Yale University, New Haven, Connecticut; Section of Digestive Diseases, Department of Veterans Affairs Connecticut Healthcare, West Haven, Connecticut; and
| |
Collapse
|
181
|
Csak T, Pillai A, Ganz M, Lippai D, Petrasek J, Park JK, Kodys K, Dolganiuc A, Kurt-Jones EA, Szabo G. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int 2014; 34:1402-13. [PMID: 24650018 PMCID: PMC4169310 DOI: 10.1111/liv.12537] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/16/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inflammation promotes the progression of non-alcoholic steatohepatitis (NASH). Toll-like receptor 4 (TLR4) and TLR9 activation through myeloid differentiation primary response gene 88 (MyD88) and production of mature interleukin-1β (IL-1β) via inflammasome activation contribute to steatohepatitis. Here, we investigated the inter-relationship between TLR signalling and inflammasome activation in dietary steatohepatitis. METHODS Wild type (WT), TLR4- and MyD88-deficient (KO) mice received methionine-choline-deficient (MCD) or -supplemented (MCS) diets for 5 weeks and a subset was challenged with TLR9 ligand CpG-DNA. RESULTS TLR4, TLR9, AIM2 (absent in melanoma 2) and NLRP3 (NLR family pyrin domain containing 3) inflammasome mRNA, and mature IL-1β protein levels were increased in MCD diet-induced steatohepatitis compared to MCS controls. TLR9 stimulation resulted in greater up-regulation of the DNA-sensing AIM2 expression and IL-1β production in livers of MCD compared to MCS diet-fed mice. High mobility group box 1 (HMGB1), a TLR9-activating danger molecule and phospho-HMGB1 protein levels were also increased in livers of MCD diet-fed mice. MyD88- but not TLR4-deficiency prevented up-regulation of AIM2, NLRP3 mRNA and IL-1β protein production in dietary steatohepatitis. Selective MyD88 deficiency either in bone marrow (BM)-derived or non-BM-derived cells attenuated hepatic up-regulation of inflammasome mRNA, caspase-1 activation and IL-1β protein production, but only BM-derived cell-specific MyD88-deficiency attenuated liver injury. CONCLUSIONS Our data demonstrate that both bone marrow-derived and non-BM-derived cells contribute to inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. We show that AIM2 inflammasome expression and activation are further augmented by TLR9 ligands in dietary steatohepatitis.
Collapse
Affiliation(s)
- Timea Csak
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Arun Pillai
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Michal Ganz
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Dora Lippai
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Jan Petrasek
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Jin-Kyu Park
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Karen Kodys
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Angela Dolganiuc
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Evelyn A. Kurt-Jones
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Gyongyi Szabo
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| |
Collapse
|
182
|
Salzer S, Kresse S, Hirai Y, Koglin S, Reinholz M, Ruzicka T, Schauber J. Cathelicidin peptide LL-37 increases UVB-triggered inflammasome activation: possible implications for rosacea. J Dermatol Sci 2014; 76:173-9. [PMID: 25306296 DOI: 10.1016/j.jdermsci.2014.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/22/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND In patients with rosacea, environmental stressors, especially UVB radiation, trigger disease flares that are characterized by inflammation and vascular hyperactivity. An altered innate immune detection and response system, modulated to a large extent by the aberrant production and processing of human cathelicidin LL-37, is thought to play a central role in disease pathogenesis. OBJECTIVE To investigate whether the proinflammatory and proangiogenic effects of UV radiation are enhanced in the presence of cathelicidin LL-37. METHODS Human skin ex vivo and epidermal keratinocytes in vitro were exposed to UVB irradiation. The proinflammatory effects of UVB exposure in the presence and absence of LL-37 were characterized using immunoblot, transfection, qPCR, and a cell-based second messenger assay. ELISA was used to assess cytokine release and the angiogenic potential of endothelial cells was evaluated using an in vitro angiogenesis assay. RESULTS UVB irradiation triggered the inflammasome-mediated processing and release of IL-1β. LL-37 augmented this UV-induced IL-1β secretion by acting on the P2X7 receptor on keratinocytes. P2X7 receptor activation by UVB and LL-37 resulted in an increase in intracellular calcium concentrations, which enhances inflammasome activation and subsequent IL-1β release. Furthermore, IL-1β and LL-37 worked synergistically to increase the angiogenic potential of endothelial cells. CONCLUSION Cathelicidin LL-37 modulates the proinflammatory and proangiogenic effects of UV radiation and thereby contributes to enhanced sensitivity to sun exposure in rosacea.
Collapse
Affiliation(s)
- Suzanna Salzer
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Frauenlobstr. 9-11, Munich 80337, Germany
| | - Sonja Kresse
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Frauenlobstr. 9-11, Munich 80337, Germany
| | - Yoji Hirai
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Frauenlobstr. 9-11, Munich 80337, Germany
| | - Sarah Koglin
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Frauenlobstr. 9-11, Munich 80337, Germany
| | - Markus Reinholz
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Frauenlobstr. 9-11, Munich 80337, Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Frauenlobstr. 9-11, Munich 80337, Germany
| | - Jürgen Schauber
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Frauenlobstr. 9-11, Munich 80337, Germany.
| |
Collapse
|
183
|
Rada B, Park JJ, Sil P, Geiszt M, Leto TL. NLRP3 inflammasome activation and interleukin-1β release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm Res 2014; 63:821-30. [PMID: 25048991 DOI: 10.1007/s00011-014-0756-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/18/2014] [Accepted: 07/02/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE AND DESIGN We studied the involvement of calcium and calcium-activated NADPH oxidases in NLRP3 inflammasome activation and IL-1β release to better understand inflammasome signaling in macrophages. MATERIAL OR SUBJECTS Human volunteer blood donors were recruited to isolate monocytes to differentiate them into macrophages. Wild-type or DUOX1-deficient C57/B6 mice were used to prepare bone marrow-derived macrophages. TREATMENT Murine or human macrophages were treated in vitro with NLRP3 inflammasome agonists (ATP, silica crystals) or calcium agonists (thapsigargin, ionomycin) in calcium-containing or calcium-free medium. METHODS Intracellular calcium changes were followed by measuring FURA2-based fluorescence. Gene expression changes were measured by quantitative real-time PCR. Protein expression was assessed by western blotting. Enzymatic activity was measured by fluorescence caspase-1 activity assay. IL-1β release was determined by ELISA. ELISA data were analyzed by ANOVA and Tukey's post hoc test. RESULTS Our data show that calcium is essential for IL-1β release in human macrophages. Increases in cytosolic calcium alone lead to IL-1β secretion. Calcium removal blocks caspase-1 activation. Human macrophages express Duox1, a calcium-regulated NADPH oxidase that produces reactive oxygen species. However, Duox1-deficient murine macrophages show normal IL-1β release. CONCLUSIONS Human macrophage inflammasome activation and IL-1β secretion requires calcium but does not involve NADPH oxidases.
Collapse
Affiliation(s)
- Balázs Rada
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA,
| | | | | | | | | |
Collapse
|
184
|
Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC, Eyre S, Churchman SM, Wilson AG, Isaacs JD, Hyrich K, Barton A, Plant D, Savic S, Cook GP, Sarzi-Puttini P, Emery P, Barrett JH, Morgan AW, McDermott MF. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis 2014; 73:1202-10. [PMID: 23687262 DOI: 10.1136/annrheumdis-2013-203276] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The NLRP3-inflammasome, implicated in the pathogenesis of several inflammatory disorders, has been analysed in rheumatoid arthritis (RA). METHODS Relative gene expression of NLRP3-inflammasome components was characterised in PBMCs of 29 patients receiving infliximab. A total of 1278 Caucasian patients with RA from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS) cohort receiving tumour necrosis factor (TNF) antagonists (infliximab, adalimumab and etanercept) were genotyped for 34 single nucleotide polymorphisms (SNPs), spanning the genes NLRP3, MEFV and CARD8. Regression analyses were performed to test for association between genotype and susceptibility and treatment response (disease activity score across 28 joints (DAS28) and EULAR improvement criteria) at 6 months, with secondary expression quantitative trait loci (eQTL) analyses. RESULTS At baseline, gene expression of ASC, MEFV, NLRP3-FL, NLRP3-SL and CASP1 were significantly higher compared with controls whereas CARD8 was lower in the patients. Caspase-1 and interleukin-18 levels were significantly raised in patients with RA. SNPs in NLRP3 showed association with RA susceptibility and EULAR response to anti-TNF in the BRAGGSS cohort, and in monocytes but not B cells, in eQTL analysis of 283 healthy controls. CARD8 SNPs were associated with RA susceptibility and DAS28 improvement in response to anti-TNF and eQTL effects in monocytes and B cells. CONCLUSIONS This study found evidence of modulation of the NLRP3-inflammasome in patients with RA prior to receiving infliximab and some evidence of association for SNPs at NLRP3 and CARD8 loci with RA susceptibility and response to anti-TNF. The SNPs associated with susceptibility/response are not the main eQTL variants for either locus, and the associations with treatment response require replication in an independent cohort.
Collapse
Affiliation(s)
- Rebeccah J Mathews
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, Chapel Allerton Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Oxidative stress and inflammation underpin most diseases; their mechanisms are inextricably linked. Chronic inflammation is associated with oxidation, anti-inflammatory cascades are linked to decreased oxidation, increased oxidative stress triggers inflammation, and redox balance inhibits the inflammatory cellular response. Whether or not oxidative stress and inflammation represent the cause or consequence of cellular pathology, they contribute significantly to the pathogenesis of noncommunicable diseases (NCD). The incidence of obesity and other related metabolic disturbances are increasing, as are age-related diseases due to a progressively aging population. Relationships between oxidative stress, inflammatory signaling, and metabolism are, in the broad sense of energy transformation, being increasingly recognized as part of the problem in NCD. In this chapter, we summarize the pathologic consequences of an imbalance between circulating and cellular paraoxonases, the system for scavenging excessive reactive oxygen species and circulating chemokines. They act as inducers of migration and infiltration of immune cells in target tissues as well as in the pathogenesis of disease that perturbs normal metabolic function. This disruption involves pathways controlling lipid and glucose homeostasis as well as metabolically driven chronic inflammatory states that encompass several response pathways. Dysfunction in the endoplasmic reticulum and/or mitochondria represents an important feature of chronic disease linked to oxidation and inflammation seen as self-reinforcing in NCD. Therefore, correct management requires a thorough understanding of these relationships and precise interpretation of laboratory test results.
Collapse
|
186
|
The complex role of inflammasomes in the pathogenesis of Inflammatory Bowel Diseases - lessons learned from experimental models. Cytokine Growth Factor Rev 2014; 25:715-30. [PMID: 24803013 DOI: 10.1016/j.cytogfr.2014.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 02/08/2023]
Abstract
Inflammasomes are a large family of multiprotein complexes recognizing pathogen-associated molecular pattern molecules (PAMPs) and damage-associated molecular patterns (DAMPs). This leads to caspase-1 activation, promoting the secretion of mature IL-1β, IL-18 and under certain conditions even induce pyroptosis. Inflammatory Bowel Diseases (IBD) is associated with alterations in microbiota composition, inappropriate immune responses and genetic predisposition associated to bacterial sensing and autophagy. Besides their acknowledged role in mounting microbial induced host responses, a crucial role in maintenance of intestinal homeostasis was revealed in inflammasome deficient mice. Further, abnormal activation of these functions appears to contribute to the pathology of intestinal inflammation including IBD and colitis-associated cancer. Herein, the current literature implicating the inflammasomes, microbiota and IBD is comprehensively reviewed.
Collapse
|
187
|
Bachove I, Chang C. Anakinra and related drugs targeting interleukin-1 in the treatment of cryopyrin-associated periodic syndromes. Open Access Rheumatol 2014; 6:15-25. [PMID: 27790031 PMCID: PMC5045113 DOI: 10.2147/oarrr.s46017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anakinra is an interleukin (IL) receptor antagonist that works by blocking the biological activity of IL-1 by competitively inhibiting binding of IL-1 to the type 1 interleukin receptor. IL-1 production is induced in response to inflammatory stimuli and mediates various physiological mechanisms, including inflammation and immunological reactions. Patients with neonatal onset multisystem inflammatory disease (NOMID) produce excess IL-1β, a major proinflammatory cytokine that regulates innate immune responses. Anakinra binds competitively and this results in a rapid reduction in disease severity. NOMID, also known as chronic infantile neurologic, cutaneous, articular syndrome, is the most severe clinical phenotype in the spectrum of cryopyrin-associated periodic syndromes. It is characterized by cutaneous symptoms, arthropathy, and central nervous system involvement. Extensive studies in patients with NOMID have led to advances in characterizing the extent of organ-specific involvement and damage that occurs with chronic overproduction of IL-1β. NOMID is caused predominantly by mutations in the NLRP3/CIAS1 gene that encodes for the protein cryopyrin, leading to activation of the “NLRP3 inflammasome complex”. This in turn regulates the maturation and secretion of the inflammatory cytokine, IL-1β. The clinical value of IL-1β has been demonstrated by the positive response of patients after treatment with anakinra, with rapid improvement in clinical symptoms, markers of inflammation, and a significant decrease in major organ manifestations.
Collapse
Affiliation(s)
- Inessa Bachove
- Cooper University Hospital, Children's Regional Hospital, Camden, NJ, USA
| | - Christopher Chang
- Division of Allergy and Immunology, Thomas Jefferson University, Wilmington, DE, USA
| |
Collapse
|
188
|
Berri F, Lê VB, Jandrot-Perrus M, Lina B, Riteau B. Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits. Cell Mol Life Sci 2014; 71:885-98. [PMID: 24091817 PMCID: PMC11114008 DOI: 10.1007/s00018-013-1479-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 01/27/2023]
Abstract
Influenza viruses cause acute respiratory infections, which are highly contagious and occur as seasonal epidemic and sporadic pandemic outbreaks. Innate immune response is activated shortly after infection with influenza A viruses (IAV), affording effective protection of the host. However, this response should be tightly regulated, as insufficient inflammation may result in virus escape from immunosurveillance. In contrast, excessive inflammation may result in bystander lung tissue damage, loss of respiratory capacity, and deterioration of the clinical outcome of IAV infections. In this review, we give a comprehensive overview of the innate immune response to IAV infection and summarize the most important findings on how the host can inappropriately respond to influenza.
Collapse
Affiliation(s)
- Fatma Berri
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Vuong Ba Lê
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Martine Jandrot-Perrus
- Inserm, U698, Paris, France
- Université Paris 7, Paris, France
- AP-HP, Hôpital Xavier Bichat, Paris, France
| | - Bruno Lina
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Béatrice Riteau
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- INRA, Nouzilly, France
| |
Collapse
|
189
|
Smirnova NP, Webb BT, McGill JL, Schaut RG, Bielefeldt-Ohmann H, Van Campen H, Sacco RE, Hansen TR. Induction of interferon-gamma and downstream pathways during establishment of fetal persistent infection with bovine viral diarrhea virus. Virus Res 2014; 183:95-106. [PMID: 24530541 DOI: 10.1016/j.virusres.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 01/06/2023]
Abstract
Development of transplacental infection depends on the ability of the virus to cross the placenta and replicate within the fetus while counteracting maternal and fetal immune responses. Unfortunately, little is known about this complex process. Non-cytopathic (ncp) strains of bovine viral diarrhea virus (BVDV), a pestivirus in the Flaviviridae family, cause persistent infection in early gestational fetuses (<150 days; persistently infected, PI), but are cleared by immunocompetent animals and late gestational fetuses (>150 days; transiently infected, TI). Evasion of innate immune response and development of immunotolerance to ncp BVDV have been suggested as possible mechanisms for the establishment of the persistent infection. Previously we have observed a robust temporal induction of interferon (IFN) type I (innate immune response) and upregulation of IFN stimulated genes (ISGs) in BVDV TI fetuses. Modest chronic upregulation of ISGs in PI fetuses and calves reflects a stimulated innate immune response during persistent BVDV infection. We hypothesized that establishing persistent fetal BVDV infection is also accompanied by the induction of IFN-gamma (IFN-γ). The aims of the present study were to determine IFN-γ concentration in blood and amniotic fluid from control, TI and PI fetuses during BVDV infection and analyze induction of the IFN-γ downstream pathways in fetal lymphoid tissues. Two experiments with in vivo BVDV infections were completed. In Experiment 1, pregnant heifers were infected with ncp BVDV type 2 on day 75 or 175 of gestation or kept naïve to generate PI, TI and control fetuses, respectively. Fetuses were collected by Cesarean section on day 190. In Experiment 2, fetuses were collected on days 82, 89, 97, 192 and 245 following infection of pregnant heifers on day 75 of gestation. The results were consistent with the hypothesis that ncp BVDV infection induces IFN-γ secretion during acute infection in both TI and PI fetuses and that lymphoid tissues such as spleen, liver and thymus, serve both as possible sources of IFN-γ and target organs for its effects. Notably, induction of IFN-γ coincides with a decrease in BVDV RNA concentrations in PI fetal blood and tissues. This is the first report indicating the possible presence of an adaptive immune response in persistent BVDV infections, which may be contributing to the observed reduction of viremia in PI fetuses.
Collapse
Affiliation(s)
- Natalia P Smirnova
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1683 Campus Delivery, Fort Collins, CO 80523-1683, USA.
| | - Brett T Webb
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1683 Campus Delivery, Fort Collins, CO 80523-1683, USA; Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523-1619, USA.
| | - Jodi L McGill
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA/ARS, Ames, IA 50010, USA.
| | - Robert G Schaut
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA/ARS, Ames, IA 50010, USA.
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Qld 4067, Australia; School of Veterinary Science, University of Queensland, Gatton Campus, Qld 4343, Australia.
| | - Hana Van Campen
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523-1619, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA/ARS, Ames, IA 50010, USA.
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1683 Campus Delivery, Fort Collins, CO 80523-1683, USA.
| |
Collapse
|
190
|
Omenetti A, Carta S, Delfino L, Martini A, Gattorno M, Rubartelli A. Increased NLRP3-dependent interleukin 1β secretion in patients with familial Mediterranean fever: correlation with MEFV genotype. Ann Rheum Dis 2014; 73:462-9. [PMID: 23505242 DOI: 10.1136/annrheumdis-2012-202774] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To define in patients affected by familial Mediterranean fever (FMF) whether or not interleukin (IL)-1β secretion (1) is enhanced, (2) correlates with the type of MEFV mutation and (3) is mediated by NLRP3. METHODS Freshly isolated monocytes from 21 patients with FMF (12 homozygous and 9 heterozygous), 14 MEFV healthy carriers and 30 healthy donors (HDs), unstimulated or after lipopolysaccharide (LPS)-induced activation, were analysed for redox state (production of reactive oxygen species (ROS) and antioxidant responses) and IL-1β and IL-1 receptor antagonist (IL-1Ra) secretion. NLRP3 down-modulation was induced by in vitro silencing of the NLRP3 gene. RESULTS LPS-stimulated monocytes from patients with FMF displayed enhanced IL-1β secretion, which correlated with number and penetrance of MEFV mutations. Silencing of NLRP3 consistently inhibited IL-1β secretion. As in other autoinflammatory diseases, FMF monocytes produced more ROS than genetically negative cells from HDs. Unlike in cryopyrin-associated periodic fever syndromes (CAPS), however, they were characterised by a conserved and sustained antioxidant response. Consistent with this finding, activated MEFV-mutated monocytes did not exhibit the functional indicators of oxidative stress observed in CAPS, including accelerated IL-1β secretion and deficient production of IL-1Ra. CONCLUSIONS MEFV-mutated monocytes display enhanced IL-1β secretion, which correlates with number of high-penetrance mutations and level of endogenous ROS. Unlike NLRP3-mutated cells, monocytes carrying MEFV mutations withstand oxidative stress and preserve IL-1Ra production, thereby limiting inflammation. Finally, in contrast with that found in the animal model, the increased secretion of IL-1β by LPS-stimulated FMF monocytes is NLRP3-dependent.
Collapse
Affiliation(s)
- Alessia Omenetti
- Pediatrics II Unit, G Gaslini IRCCS and University of Genoa, , Genoa, Italy
| | | | | | | | | | | |
Collapse
|
191
|
Lee HT, Kim SK, Kim SH, Kim K, Lim CH, Park J, Roh TY, Kim N, Chai YG. Transcription-related element gene expression pattern differs between microglia and macrophages during inflammation. Inflamm Res 2014; 63:389-97. [PMID: 24468891 DOI: 10.1007/s00011-014-0711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE AND DESIGN Microglia and macrophages play an important role in the innate and adaptive immune systems. Although the resident location of these cells is different, their functions during the polarization response due to various stimuli are very similar. The present study aimed to analyze differences in microglial and macrophage gene expression during inflammation. METHODS Mouse microglial BV-2 cells were exposed to LPS (10 ng/ml). The levels of gene expression were measured using real-time RT-PCR and whole transcriptome shotgun sequencing. RESULTS The level of Jmjd3 gene expression in activated microglia showed a similar pattern to that of macrophages. In both cell types, genes associated with the inflammation response were generally increased whereas genes associated with metabolic and biosynthetic processes were decreased. However, the expression of transcription-related elements other than genes encoding histone modification enzymes showed a significantly different pattern between microglia and macrophages. CONCLUSION Although the function and the gene expression levels of histone modification enzymes showed a similar pattern in microglia and macrophages during inflammation, the expression of transcription-related elements in both cell types showed a completely different pattern.
Collapse
Affiliation(s)
- Hyung Tae Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Kolb R, Liu GH, Janowski AM, Sutterwala FS, Zhang W. Inflammasomes in cancer: a double-edged sword. Protein Cell 2014; 5:12-20. [PMID: 24474192 PMCID: PMC3938856 DOI: 10.1007/s13238-013-0001-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory responses have long been observed to be associated with various types of cancer and play decisive roles at different stages of cancer development. Inflammasomes, which are potent inducers of interleukin (IL)-1β and IL-18 during inflammation, are large protein complexes typically consisting of a Nod-like receptor (NLR), the adapter protein ASC, and Caspase-1. During malignant transformation or cancer therapy, the inflammasomes are postulated to become activated in response to danger signals arising from the tumors or from therapy-induced damage to the tumor or healthy tissue. The activation of inflammasomes plays diverse and sometimes contrasting roles in cancer promotion and therapy depending on the specific context. Here we summarize the role of different inflammasome complexes in cancer progression and therapy. Inflammasome components and pathways may provide novel targets to treat certain types of cancer; however, using such agents should be cautiously evaluated due to the complex roles that inflammasomes and pro-inflammatory cytokines play in immunity.
Collapse
Affiliation(s)
- Ryan Kolb
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | |
Collapse
|
193
|
Lappas M. Activation of inflammasomes in adipose tissue of women with gestational diabetes. Mol Cell Endocrinol 2014; 382:74-83. [PMID: 24055273 DOI: 10.1016/j.mce.2013.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022]
Abstract
Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance, increased inflammation, and increasing levels of circulating free fatty acids (FFAs) and advanced glycation endproducts (AGEs). Caspase-1 is a key component of the inflammasome, which is activated upon cellular infection or stress to trigger the maturation IL-1β, a pro-inflammatory cytokine that mediated insulin resistance. The aim of this study was to determine whether the inflammasome is activated in adipose tissue from women with gestational diabetes mellitus (GDM) and if it interferes with the insulin signalling pathway leading to the insulin resistance that is evident in GDM. Protein expression of active caspase-1 and mature IL-1β secretion was increased in adipose tissue of women with GDM. Treatment of adipose tissue with IL-1β decreased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. Low-grade inflammation (induced by LPS), the FFA palmitate and AGE conjugated to BSA (AGE-BSA), induced IL-1β secretion via inflammasome activation. In conclusion, the present findings describe an important role for adipose tissue inflammasome activation in the development of insulin resistance associated in pregnancies complicated by GDM.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
194
|
Yamazaki T, Ichinohe T. Inflammasomes in antiviral immunity: clues for influenza vaccine development. Clin Exp Vaccine Res 2013; 3:5-11. [PMID: 24427758 PMCID: PMC3890450 DOI: 10.7774/cevr.2014.3.1.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that sense microbial motifs or cellular stress and stimulate caspase-1-dependent cytokine secretion and cell death. Recently, it has become increasingly evident that both DNA and RNA viruses activate inflammasomes, which control innate and adaptive immune responses against viral infections. In addition, recent studies suggest that certain microbiota induce inflammasomes-dependent adaptive immunity against influenza virus infections. Here, we review recent advances in research into the role of inflammasomes in antiviral immunity.
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
195
|
Han H, Yi F. New insights into TRP channels: Interaction with pattern recognition receptors. Channels (Austin) 2013; 8:13-9. [PMID: 24299922 DOI: 10.4161/chan.27178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have implicated that the activation of innate immune system and inflammatory mechanisms are of importance in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms in response to pathogens or tissue injury, which is performed via germ-line encoded pattern-recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) or dangers-associated molecular patterns (DAMPs). Intracellular pathways linking immune and inflammatory response to ion channel expression and function have been recently identified. Among ion channels, transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge about classifications, functions, and interactions of TRP channels and PRRs, which may provide new insights into their roles in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Huirong Han
- Department of Pharmacology; Shandong University School of Medicine; Jinan, PR China; Department of Pharmacology; Weifang Medical University; Weifang, PR China
| | - Fan Yi
- Department of Pharmacology; Shandong University School of Medicine; Jinan, PR China
| |
Collapse
|
196
|
Abstract
Human beings are constantly exposed to pathogens. The innate immune system is the first line of defense against microbes. It has evolved to recognize conserved microbial motifs (PAMP or pathogen-associated molecular patterns) thanks to a limited array of receptors termed pattern recognition receptors (PRR). Upon activation, most PRR trigger a transcriptional response leading to neosynthesis of hundreds of genes. In contrast, engagement of various PRR in the recently identified inflammasome complexes lead to activation of a cysteine protease, caspase-1. This inflammatory caspase has a dual activity: it triggers the release of very potent proinflammatory cytokines IL-1β and IL-18 and, an hyperinflammatory cell death termed pyroptosis. In this review, we describe the inflammasome receptors and their ligands, the molecular mechanisms leading to the assembly of this innate immune platform and the role of the inflammasome during viral and bacterial infections.
Collapse
Affiliation(s)
- Yvan Jamilloux
- Service de médecine interne, centre hospitalo-universitaire de la Croix-Rousse, 103, Grande rue de la Croix Rousse, 69004 Lyon, France - Centre international de recherche en infectiologie (CIRI), université de Lyon, Lyon, France - Inserm U1111, 21, avenue Tony Garnier, 69007 Lyon, France - CNRS, UMR 5308, Lyon, France - École normale supérieure, Lyon, France
| | | |
Collapse
|
197
|
Trichothecene mycotoxins activate NLRP3 inflammasome through a P2X7 receptor and Src tyrosine kinase dependent pathway. Hum Immunol 2013; 75:134-40. [PMID: 24269698 DOI: 10.1016/j.humimm.2013.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 12/23/2022]
Abstract
Inflammasome is an intracellular molecular platform of the innate immunity that is a key mediator of inflammation. The inflammasome complex detects pathogens and different danger signals, and triggers cysteine protease caspase-1-dependent processing of pro-inflammatory cytokines IL-1β, and IL-18 in dendritic cells and macrophages. Previously, we have shown that water-damaged building associated trichothecene mycotoxins, including roridin A, trigger IL-1β and IL-18 secretion in human macrophages. However, the molecular basis as well as mechanism behind this trichothecene-induced cytokine secretion has remained uncharacterized. Here, we show that the trichothecene-induced IL-1β secretion is dependent on NLRP3 inflammasome in human primary macrophages. Pharmacological inhibition and small interfering RNA approach showed that the trichothecene-induced NLRP3 inflammasome activation is mediated through ATP-gated P2X7 receptor. Moreover, we show that trichothecene-triggered NLRP3 inflammasome activation is dependent on Src tyrosine kinase activity. In addition, gene silencing of c-Cbl, a negative autophagy-related regulator of c-Src, resulted in enhanced secretion of IL-1β and IL-18 in response to trichothecene mycotoxin stimulation in human macrophages. In conclusion, our results suggest that roridin A, a fungal trichothecene mycotoxin, acts as microbial danger signals that trigger activation of NLRP3 inflammasome through P2X7R and Src tyrosine kinase signaling dependent pathway in human primary macrophages.
Collapse
|
198
|
Abstract
Unlike most cytokines, IL-1β lacks a secretory signal sequence raising the question of how is this cytokine processed and delivered outside the producing cells. After the seminal observation that IL-1β is actively secreted by human monocytes through a route alternative to the classic endoplasmic reticulum-Golgi, several different pathways have been proposed for IL-1β secretion in different cell types and culture conditions, some of which are unique to macrophage cell lines. Here we describe the most credited of these pathways. In particular, we will focus on IL-1β secretion from primary human blood monocytes. In fact, although data from macrophages or macrophage cell lines are predominant, secretion of IL-1β by monocytes is the most clinically relevant.
Collapse
|
199
|
Yuk JM, Jo EK. Crosstalk between autophagy and inflammasomes. Mol Cells 2013; 36:393-9. [PMID: 24213677 PMCID: PMC3887939 DOI: 10.1007/s10059-013-0298-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
A variety of cellular stresses activate the autophagy pathway, which is fundamentally important in protection against injurious stimuli. Defects in the autophagy process are associated with a variety of human diseases, including inflammatory and metabolic diseases. The inflammasomes are emerging as key signaling platforms directing the maturation and secretion of interleukin-1 family cytokines in response to pathogenic and sterile stimuli. Recent studies have identified the critical role of inflammasome activation in host defense and inflammation. Delineation of the relationship between autophagy and inflammasome activation is now being greatly facilitated by the use of mice models of autophagy gene deficiency and clinical studies. We surveyed the recent research regarding the contribution of autophagy to the control of inflammation, in particular the association between autophagy and inflammasomes. Understanding the mechanisms by which autophagy balances inflammation might facilitate the development of autophagy-based therapeutic modalities for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| |
Collapse
|
200
|
FAN CHANGCHUN, ZHAO XUECHUN, GUO XIAOFAN, CAO XUECHENG, CAI JINFANG. P2X4 promotes interleukin-1β production in osteoarthritis via NLRP1. Mol Med Rep 2013; 9:340-4. [DOI: 10.3892/mmr.2013.1748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/16/2013] [Indexed: 11/06/2022] Open
|