151
|
In vitro prediction of organ toxicity: the challenges of scaling and secondary mechanisms of toxicity. Arch Toxicol 2020; 94:353-356. [PMID: 32067068 PMCID: PMC8211595 DOI: 10.1007/s00204-020-02669-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
|
152
|
Baudy AR, Otieno MA, Hewitt P, Gan J, Roth A, Keller D, Sura R, Van Vleet TR, Proctor WR. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. LAB ON A CHIP 2020; 20:215-225. [PMID: 31799979 DOI: 10.1039/c9lc00768g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Spring House, PA, USA
| | | | - Jinping Gan
- Bristol-Myers Squibb, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
153
|
Goracci L, Valeri A, Sciabola S, Aleo MD, Moritz W, Lichtenberg J, Cruciani G. A Novel Lipidomics-Based Approach to Evaluating the Risk of Clinical Hepatotoxicity Potential of Drugs in 3D Human Microtissues. Chem Res Toxicol 2019; 33:258-270. [PMID: 31820940 DOI: 10.1021/acs.chemrestox.9b00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis is expected to grow substantially due to recent failures in detecting severe toxicity issues of new chemical entities during preclinical/clinical development. Traditionally, safety risk assessment studies for humans have been conducted in animals during advanced preclinical or clinical phase of drug development. However, potential drug toxicity in humans now needs to be detected in the drug discovery process as soon as possible without reliance on animal studies. The "omics", such as genomics, proteomics, and metabolomics, have recently entered pharmaceutical research in both drug discovery and drug development, but to the best of our knowledge, no applications in high-throughput safety risk assessment have been attempted so far. This paper reports an innovative method to anticipate adverse drug effects in an early discovery phase based on lipid fingerprints using human three-dimensional microtissues. The risk of clinical hepatotoxicity potential was evaluated for a data set of 22 drugs belonging to five different therapeutic chemical classes and with various drug-induced liver injury effect. The treatment of microtissues with repeated doses of each drug allowed collecting lipid fingerprints for five time points (2, 4, 7, 9, and 11 days), and multivariate statistical analysis was applied to search for correlations with the hepatotoxic effect. The method allowed clustering of the drugs based on their hepatotoxic effect, and the observed lipid impairments for a number of drugs was confirmed by literature sources. Compared to traditional screening methods, here multiple interconnected variables (lipids) are measured simultaneously, providing a snapshot of the cellular status from the lipid perspective at a molecular level. Applied here to hepatotoxicity, the proposed workflow can be applied to several tissues, being tridimensional microtissues from various origins.
Collapse
Affiliation(s)
- Laura Goracci
- Department of Chemistry, Biology, and Biotechnology , University of Perugia , Perugia 06123 , Italy
| | | | - Simone Sciabola
- Medicinal Chemistry , Biogen , 115 Broadway Street , Cambridge , Massachusetts 02139 , United States
| | - Michael D Aleo
- Drug Safety R&D , Pfizer Worldwide Research and Development , Groton , Connecticut 06340 , United States
| | | | | | - Gabriele Cruciani
- Department of Chemistry, Biology, and Biotechnology , University of Perugia , Perugia 06123 , Italy
| |
Collapse
|
154
|
Abstract
Drug attrition related to kidney toxicity remains a challenge in drug discovery and development. In vitro models established over the past 2 decades to supplement in vivo studies have improved the throughput capacity of toxicity evaluation, but usually suffer from low predictive value. To achieve a paradigm shift in the prediction of drug-induced kidney toxicity, two aspects are fundamental: increased physiological relevance of the kidney model, and use of appropriate toxicity end points. Recent studies have suggested that increasing the physiological relevance of kidney models can improve their sensitivity to drug-induced damage. Here, we discuss how advanced culture models, including modified cell lines, induced pluripotent stem cells, kidney organoid cultures, and microfluidic devices enhance in vivo similarity. To this end, culture models aim to increase the proximal tubule epithelial phenotype, reconstitute multiple tissue compartments and extracellular matrix, allow exposure to fluid shear stress, and enable interaction between multiple cell types. Applying computation-aided end points and novel biomarkers to advanced culture models will further improve sensitivity and clinical relevance of in vitro drug-induced toxicity prediction. Implemented at the right stage of drug discovery and development and coupled to high-content evaluation techniques, these models have the potential to reduce attrition and aid the selection of candidate drugs with an appropriate safety profile.
Collapse
Affiliation(s)
- Tom T G Nieskens
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna-Karin Sjögren
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
155
|
Ide I, Nagao E, Kajiyama S, Mizoguchi N. A novel evaluation method for determining drug-induced hepatotoxicity using 3D bio-printed human liver tissue. Toxicol Mech Methods 2019; 30:189-196. [PMID: 31736396 DOI: 10.1080/15376516.2019.1686795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Predicting drug-induced liver injury is important in early stage drug discovery; however, an accurate prediction with existing hepatotoxicity evaluation tools is difficult. Conventional monolayer (2D) cultures have short viabilities and are therefore inappropriate for performing long-term toxicity tests. Conventionally used 200-μm spheroids also have toxicity detection limits. The goal of this study was to develop a humanized liver tissue capable of evaluating long-term toxicity with high sensitivity. Spheroids consisting of co-cultured cryopreserved primary human hepatocytes and human hepatic stellate cells were developed using a 3D bio-printer. The "3D bio-printed liver tissue", of ∼1 mm, was then used for long-term viability assessments (over 25 days) based on ATP, albumin, and urea levels. Hepatotoxicity evaluation was performed by analyzing the expression of genes involved in drug metabolism and transport over a 2-week drug exposure period. The 3D bio-printed liver tissue showed improved viability and enhanced gene expression of enzymes related to drug metabolism and transport, as compared to the controls. Additionally, the 3D bio-printed liver tissue demonstrated a high sensitivity for hepatotoxicity evaluation when combined with pathological evaluation and measurements for ATP production, and secretion of albumin and urea. In conclusion, the 3D bio-printed liver tissue was able to detect the toxicity of compounds that was, otherwise, undetected by 2D culture and conventionally used spheroids. These findings demonstrate a 3D bio-printed liver tissue with increased accuracy of hepatotoxicity prediction in the early stages of drug discovery, as compared to currently available methods.
Collapse
Affiliation(s)
- Izumi Ide
- Department of Drug Discovery Platform, Cyfuse Biomedical K.K., University of Tokyo, Tokyo, Japan
| | - Eri Nagao
- Department of Drug Discovery Platform, Cyfuse Biomedical K.K., University of Tokyo, Tokyo, Japan
| | - Sakura Kajiyama
- Department of Drug Discovery Platform, Cyfuse Biomedical K.K., University of Tokyo, Tokyo, Japan
| | - Natsumi Mizoguchi
- Department of Drug Discovery Platform, Cyfuse Biomedical K.K., University of Tokyo, Tokyo, Japan
| |
Collapse
|
156
|
Matsui T, Miyamoto K, Yamanaka K, Okai Y, Kaushik EP, Harada K, Wagoner M, Shinozawa T. Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2019; 383:114761. [DOI: 10.1016/j.taap.2019.114761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
|
157
|
The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro. Arch Toxicol 2019; 93:3067-3098. [PMID: 31586243 DOI: 10.1007/s00204-019-02585-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.
Collapse
|
158
|
Williams DP, Lazic SE, Foster AJ, Semenova E, Morgan P. Predicting Drug-Induced Liver Injury with Bayesian Machine Learning. Chem Res Toxicol 2019; 33:239-248. [PMID: 31535850 DOI: 10.1021/acs.chemrestox.9b00264] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug induced liver injury (DILI) can require significant risk management in drug development and on occasion can cause morbidity or mortality, leading to drug attrition. Optimizing candidates preclinically can minimize hepatotoxicity risk, but it is difficult to predict due to multiple etiologies encompassing DILI, often with multifactorial and overlapping mechanisms. In addition to epidemiological risk factors, physicochemical properties, dose, disposition, lipophilicity, and hepatic metabolic function are also relevant for DILI risk. Better human-relevant, predictive models are required to improve hepatotoxicity risk assessment in drug discovery. Our hypothesis is that integrating mechanistically relevant hepatic safety assays with Bayesian machine learning will improve hepatic safety risk prediction. We present a quantitative and mechanistic risk assessment for candidate nomination using data from in vitro assays (hepatic spheroids, BSEP, mitochondrial toxicity, and bioactivation), together with physicochemical (cLogP) and exposure (Cmaxtotal) variables from a chemically diverse compound set (33 no/low-, 40 medium-, and 23 high-severity DILI compounds). The Bayesian model predicts the continuous underlying DILI severity and uses a data-driven prior distribution over the parameters to prevent overfitting. The model quantifies the probability that a compound falls into either no/low-, medium-, or high-severity categories, with a balanced accuracy of 63% on held-out samples, and a continuous prediction of DILI severity along with uncertainty in the prediction. For a binary yes/no DILI prediction, the model has a balanced accuracy of 86%, a sensitivity of 87%, a specificity of 85%, a positive predictive value of 92%, and a negative predictive value of 78%. Combining physiologically relevant assays, improved alignment with FDA recommendations, and optimal statistical integration of assay data leads to improved DILI risk prediction.
Collapse
|
159
|
Shen JX, Youhanna S, Zandi Shafagh R, Kele J, Lauschke VM. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity. Chem Res Toxicol 2019; 33:38-60. [DOI: 10.1021/acs.chemrestox.9b00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joanne X. Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
160
|
Zhou Y, Shen JX, Lauschke VM. Comprehensive Evaluation of Organotypic and Microphysiological Liver Models for Prediction of Drug-Induced Liver Injury. Front Pharmacol 2019; 10:1093. [PMID: 31616302 PMCID: PMC6769037 DOI: 10.3389/fphar.2019.01093] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major concern for the pharmaceutical industry and constitutes one of the most important reasons for the termination of promising drug development projects. Reliable prediction of DILI liability in preclinical stages is difficult, as current experimental model systems do not accurately reflect the molecular phenotype and functionality of the human liver. As a result, multiple drugs that passed preclinical safety evaluations failed due to liver toxicity in clinical trials or postmarketing stages in recent years. To improve the selection of molecules that are taken forward into the clinics, the development of more predictive in vitro systems that enable high-throughput screening of hepatotoxic liabilities and allow for investigative studies into DILI mechanisms has gained growing interest. Specifically, it became increasingly clear that the choice of cell types and culture method both constitute important parameters that affect the predictive power of test systems. In this review, we present current 3D culture paradigms for hepatotoxicity tests and critically evaluate their utility and performance for DILI prediction. In addition, we highlight possibilities of these emerging platforms for mechanistic evaluations of selected drug candidates and present current research directions towards the further improvement of preclinical liver safety tests. We conclude that organotypic and microphysiological liver systems have provided an important step towards more reliable DILI prediction. Furthermore, we expect that the increasing availability of comprehensive benchmarking studies will facilitate model dissemination that might eventually result in their regulatory acceptance.
Collapse
Affiliation(s)
| | | | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
161
|
Aleo MD, Shah F, Allen S, Barton HA, Costales C, Lazzaro S, Leung L, Nilson A, Obach RS, Rodrigues AD, Will Y. Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting Relative Risk Potential. Chem Res Toxicol 2019; 33:223-238. [DOI: 10.1021/acs.chemrestox.9b00262] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Scott Allen
- Drug Safety Research and Development, Investigative Toxicology, Pfizer Worldwide Research & Development, One Burtt Road, Andover, Massachusetts 01810, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Future perspectives of DILI prediction in vitro. Arch Toxicol 2019; 93:2705-2706. [DOI: 10.1007/s00204-019-02530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022]
|
163
|
High-throughput confocal imaging of differentiated 3D liver-like spheroid cellular stress response reporters for identification of drug-induced liver injury liability. Arch Toxicol 2019; 93:2895-2911. [DOI: 10.1007/s00204-019-02552-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/22/2019] [Indexed: 12/27/2022]
|
164
|
Hendriks DFG, Hurrell T, Riede J, van der Horst M, Tuovinen S, Ingelman-Sundberg M. Mechanisms of Chronic Fialuridine Hepatotoxicity as Revealed in Primary Human Hepatocyte Spheroids. Toxicol Sci 2019; 171:385-395. [PMID: 31505000 DOI: 10.1093/toxsci/kfz195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
AbstractDrug hepatotoxicity is often delayed in onset. An exemplar case is the chronic nature of fialuridine hepatotoxicity, which resulted in the deaths of several patients in clinical trials as preclinical studies failed to identify this human-specific hepatotoxicity. Conventional preclinical in vitro models are mainly designed to evaluate the risk of acute drug toxicity. Here, we evaluated the utility of 3D spheroid cultures of primary human hepatocytes (PHHs) to assess chronic drug hepatotoxicity events using fialuridine as an example. Fialuridine toxicity was only detectable after 7 days of repeated exposure. Clinical manifestations, including reactive oxygen species formation, lipid accumulation, and induction of apoptosis, were readily identified. Silencing the expression or activity of the human equilibrative nucleoside transporter 1 (ENT1), implicated in the mitochondrial transport of fialuridine, modestly protected PHH spheroids from fialuridine toxicity. Interference with the phosphorylation of fialuridine into the active triphosphate metabolites by silencing of thymidine kinase 2 (TK2) provided substantial protection, whereas simultaneous silencing of ENT1 and TK2 provided near-complete protection. Fialuridine-induced mitochondrial dysfunction was suggested by a decrease in the expression of mtDNA-encoded genes, which correlated with the onset of toxicity and was prevented under the simultaneous silencing of ENT1 and TK2. Furthermore, interference with the expression or activity of ribonucleotide reductase (RNR), which is critical to deoxyribonucleoside triphosphate (dNTP) pool homeostasis, resulted in selective potentiation of fialuridine toxicity. Our findings demonstrate the translational applicability of the PHH 3D spheroid model for assessing drug hepatotoxicity events which manifest only under chronic exposure conditions.
Collapse
Affiliation(s)
- Delilah F G Hendriks
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Tracey Hurrell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Julia Riede
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Muriëlle van der Horst
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Sarianna Tuovinen
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
165
|
Kakiuchi-Kiyota S, Schutten MM, Zhong Y, Crawford JJ, Dey A. Safety Considerations in the Development of Hippo Pathway Inhibitors in Cancers. Front Cell Dev Biol 2019; 7:156. [PMID: 31475147 PMCID: PMC6707765 DOI: 10.3389/fcell.2019.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023] Open
Abstract
The Hippo pathway is a critical regulator of cell and organ growth and has emerged as a target for therapeutic intervention in cancers. Its signaling is thought to play an important role in various physiological processes including homeostasis and tissue regeneration. To date there has been limited information about potential pharmacology-related (on-target) safety liabilities of Hippo pathway inhibitors in the context of cancer indications. Herein, we review data from human genetic disorders and genetically engineered rodent models to gain insight into safety liabilities that may emerge from the inhibition of Hippo pathway. Germline systemic deletion of murine Hippo pathway effectors (Yap, Taz, and Teads) resulted in embryonic lethality or developmental phenotypes. Mouse models with tissue-specific deletion (or mutant overexpression) of the key effectors in Hippo pathways have indicated that, at least in some tissues, Hippo signaling may be dispensable for physiological homeostasis; and appears to be critical for regeneration upon tissue damage, indicating that patients with underlying comorbidities and/or insults caused by therapeutic agents and/or comedications may have a higher risk. Caution should be taken in interpreting phenotypes from tissue-specific transgenic animal models since some tissue-specific promoters are turned on during development. In addition, therapeutic agents may result in systemic effects not well-predicted by animal models with tissue-specific gene deletion. Therefore, the development of models that allows for systemic deletion of Yap and/or Taz in adult animals will be key in evaluating the potential safety liabilities of Hippo pathway modulation. In this review, we focus on potential challenges and strategies for targeting the Hippo pathway in cancers.
Collapse
Affiliation(s)
- Satoko Kakiuchi-Kiyota
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, United States
| | - Melissa M Schutten
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, United States
| | - Yu Zhong
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, United States
| | - James J Crawford
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA, United States
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
166
|
Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol 2019; 93:1609-1637. [PMID: 31250071 DOI: 10.1007/s00204-019-02492-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.
Collapse
|
167
|
Baze A, Parmentier C, Hendriks DFG, Hurrell T, Heyd B, Bachellier P, Schuster C, Ingelman-Sundberg M, Richert L. Three-Dimensional Spheroid Primary Human Hepatocytes in Monoculture and Coculture with Nonparenchymal Cells. Tissue Eng Part C Methods 2019; 24:534-545. [PMID: 30101670 DOI: 10.1089/ten.tec.2018.0134] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent advances in the development of various culture platforms are promising for achieving more physiologically relevant in vitro hepatic models using primary human hepatocytes (PHHs). Previous studies have shown the value of PHHs three-dimensional (3D) spheroid models, cultured in low cell number (1330-2000 cells/3D spheroid), to study long-term liver function as well as pharmacological drug effects and toxicity. In this study, we report that only plateable PHHs aggregate and form compact 3D spheroids with a success rate of 79%, and 96% reproducibility. Out of 3D spheroid forming PHH lots, 65% were considered stable (<50% ATP decrease) over the subsequent 14 days of culture, with reproducibility of a given PHH lot being 82%. We also report successful coculturing of PHHs with human liver nonparenchymal cells (NPCs). Crude P1c-NPC fractions were obtained by low centrifugation of the PHH supernatant fraction followed by a few days of culture before harvesting and cryopreservation. At aggregation of PHHs/P1c-NPCs (2:1 ratio 3D spheroids), liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells were successfully integrated and remained present throughout the subsequent 14-day culture period as revealed by mRNA expression markers and immunostaining. Increased mRNA expression of albumin (ALB), apolipoprotein B (APOB), cytochrome P450 3A4 (CYP3A4), and increased albumin secretion compared to PHH 3D spheroid monocultures highlighted that in a 3D spheroid coculture, configuration with NPCs, PHH functionality is increased. We thus achieved the development of a more integrated coculture model system requiring low cell numbers, of particular interest due to the scarcity of human liver NPCs.
Collapse
Affiliation(s)
- Audrey Baze
- 1 KaLy-Cell, Plobsheim , France .,2 Université de Strasbourg , Strasbourg, France
| | | | - Delilah F G Hendriks
- 3 Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Tracey Hurrell
- 3 Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Bruno Heyd
- 4 Hôpital Jean Minjoz , Besançon, France .,5 Université de Bourgogne Franche-Comté , Besançon, France
| | - Philippe Bachellier
- 2 Université de Strasbourg , Strasbourg, France .,6 Hôpital de Hautepierre , Strasbourg, France
| | - Catherine Schuster
- 2 Université de Strasbourg , Strasbourg, France .,7 INSERM, UMR_S1110, Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg, France
| | - Magnus Ingelman-Sundberg
- 3 Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Lysiane Richert
- 1 KaLy-Cell, Plobsheim , France .,5 Université de Bourgogne Franche-Comté , Besançon, France
| |
Collapse
|
168
|
Johansson J, Larsson MH, Hornberg JJ. Predictive in vitro toxicology screening to guide chemical design in drug discovery. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
169
|
Steier A, Muñiz A, Neale D, Lahann J. Emerging Trends in Information-Driven Engineering of Complex Biological Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806898. [PMID: 30957921 DOI: 10.1002/adma.201806898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Synthetic biological systems are used for a myriad of applications, including tissue engineered constructs for in vivo use and microengineered devices for in vitro testing. Recent advances in engineering complex biological systems have been fueled by opportunities arising from the combination of bioinspired materials with biological and computational tools. Driven by the availability of large datasets in the "omics" era of biology, the design of the next generation of tissue equivalents will have to integrate information from single-cell behavior to whole organ architecture. Herein, recent trends in combining multiscale processes to enable the design of the next generation of biomaterials are discussed. Any successful microprocessing pipeline must be able to integrate hierarchical sets of information to capture key aspects of functional tissue equivalents. Micro- and biofabrication techniques that facilitate hierarchical control as well as emerging polymer candidates used in these technologies are also reviewed.
Collapse
Affiliation(s)
- Anke Steier
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ayşe Muñiz
- Biointerfaces Institute and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dylan Neale
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, Departments of Chemical Engineering, Materials Science and Engineering, and Biomedical Engineering and the, Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
170
|
Chua ACY, Ananthanarayanan A, Ong JJY, Wong JY, Yip A, Singh NH, Qu Y, Dembele L, McMillian M, Ubalee R, Davidson S, Tungtaeng A, Imerbsin R, Gupta K, Andolina C, Lee F, S-W Tan K, Nosten F, Russell B, Lange A, Diagana TT, Rénia L, Yeung BKS, Yu H, Bifani P. Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials 2019; 216:119221. [PMID: 31195301 DOI: 10.1016/j.biomaterials.2019.05.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/19/2019] [Indexed: 12/27/2022]
Abstract
Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi. Our understanding of hypnozoite biology remains limited due to the technical challenge of requiring the use of primary hepatocytes and the lack of robust and predictive in vitro models. In this study, we developed a malaria liver stage model using 3D spheroid-cultured primary hepatocytes. The infection of primary hepatocytes in suspension led to increased infectivity of both P. cynomolgi and P. vivax infections. We demonstrated that this hepatic spheroid model was capable of maintaining long term viability, hepatocyte specific functions and cell polarity which enhanced permissiveness and thus, permitting for the complete development of both P. cynomolgi and P. vivax liver stage parasites in the infected spheroids. The model described here was able to capture the full liver stage cycle starting with sporozoites and ending in the release of hepatic merozoites capable of invading simian erythrocytes in vitro. Finally, we showed that this system can be used for compound screening to discriminate between causal prophylactic and cidal antimalarials activity in vitro for relapsing malaria.
Collapse
Affiliation(s)
- Adeline C Y Chua
- Novartis Institute for Tropical Diseases, 138670, Singapore; Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand; Singapore Immunology Network (SIgN), A*STAR, 138648, Singapore
| | | | - Jessica Jie Ying Ong
- Novartis Institute for Tropical Diseases, 138670, Singapore; Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | | | - Andy Yip
- Novartis Institute for Tropical Diseases, 138670, Singapore
| | | | | | - Laurent Dembele
- Novartis Institute for Tropical Diseases, 138670, Singapore; Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); MRTC - DEAP - Faculty of Pharmacy, Bamako, Mali
| | - Michael McMillian
- Invitrocue Pte Ltd. 138667, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, 117597, Singapore
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Anchalee Tungtaeng
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Rawiwan Imerbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Kapish Gupta
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Chiara Andolina
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, A*STAR, 138669, Singapore
| | - Kevin S-W Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - François Nosten
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Amber Lange
- Laboratory Animal Services, Scientific Operations, Novartis Institutes for Biomedical Research, East Hanover, NJ, 07936-1080, USA
| | | | - Laurent Rénia
- Singapore Immunology Network (SIgN), A*STAR, 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | | | - Hanry Yu
- Invitrocue Pte Ltd. 138667, Singapore; Mechanobiology Institute, National University of Singapore, 117411, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, 138669, Singapore
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, 138670, Singapore; Singapore Immunology Network (SIgN), A*STAR, 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore.
| |
Collapse
|
171
|
Lauschke VM, Shafagh RZ, Hendriks DFG, Ingelman-Sundberg M. 3D Primary Hepatocyte Culture Systems for Analyses of Liver Diseases, Drug Metabolism, and Toxicity: Emerging Culture Paradigms and Applications. Biotechnol J 2019; 14:e1800347. [PMID: 30957976 DOI: 10.1002/biot.201800347] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Recent research has shown that the maintenance of relevant liver functions ex vivo requires models in which the cells exhibit an in vivo-like phenotype, often achieved by reconstitution of appropriate cellular interactions. Multiple different models have been presented that differ in the cells utilized, media, and culture conditions. Furthermore, several technologically different approaches have been presented including bioreactors, chips, and plate-based systems in fluidic or static media constituting of chemically diverse materials. Using such models, the ability to predict drug metabolism, drug toxicity, and liver functionality have increased tremendously as compared to conventional in vitro models in which cells are cultured as 2D monolayers. Here, the authors highlight important considerations for microphysiological systems for primary hepatocyte culture, review current culture paradigms, and discuss their opportunities for studies of drug metabolism, hepatotoxicity, liver biology, and disease.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Reza Z Shafagh
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Micro and Nanosystems, School of Electrical Engineering, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Delilah F G Hendriks
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Present address: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
172
|
Ackerson T, Amberg A, Atzrodt J, Arabeyre C, Defossa E, Dorau M, Dudda A, Dwyer J, Holla W, Kissner T, Kohlmann M, Kürzel U, Pánczél J, Rajanna S, Riedel J, Schmidt F, Wäse K, Weitz D, Derdau V. Mechanistic investigations of the liver toxicity of the free fatty acid receptor 1 agonist fasiglifam (TAK875) and its primary metabolites. J Biochem Mol Toxicol 2019; 33:e22345. [DOI: 10.1002/jbt.22345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/23/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Jens Atzrodt
- Integrated Drug Discovery, Sanofi Frankfurt Germany
| | | | | | | | - Angela Dudda
- Global Project Management Unit, DCV, Sanofi Frankfurt Germany
| | | | | | | | - Markus Kohlmann
- Global Project Management Unit, DCV, Sanofi Frankfurt Germany
| | - Ulrich Kürzel
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | - József Pánczél
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | | - Jens Riedel
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | | | | - Dietmar Weitz
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | |
Collapse
|
173
|
Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. ADVANCED BIOSYSTEMS 2019; 3:e1900018. [PMID: 32627410 PMCID: PMC7610576 DOI: 10.1002/adbi.201900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.
Collapse
Affiliation(s)
- Kasper Renggli
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
174
|
Williams DP. Application of hepatocyte-like cells to enhance hepatic safety risk assessment in drug discovery. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0228. [PMID: 29786562 DOI: 10.1098/rstb.2017.0228] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatic stress and injury from drugs continues to be a major concern within the pharmaceutical industry, leading to preclinical and clinical attrition precautionary warnings and post-market withdrawal of drugs. There is a requirement for more predictive and mechanistically accurate models to aid risk assessment. Primary human hepatocytes, subject to isolation stress, cryopreservation, donor-to-donor variation and a relatively short period of functional capability in two-dimensional cultures, are not suitable for high-throughput screening procedures. There are two areas within the drug discovery pipeline that the generation of a stable, metabolically functional hepatocyte-like cell with unlimited supply would have major impact. First, in routine, cell health risk-assessment assays where hepatic cell lines are typically deployed. Second, at later stages of the drug discovery pipeline approaching candidate nomination where bespoke/investigational studies refining and understanding the risk to patients use patient-derived induced pluripotent stem cell (iPSC) hepatocytes retaining characteristics from the patient, e.g. HLA susceptibility alleles, iPSC hepatocytes with defined disease phenotypes or genetic characteristics that have the potential to make the hepatocyte more sensitive to a particular stress mechanism. Functionality of patient-centric hepatocyte-like cells is likely to be enhanced when coupled with emerging culture systems, such as three-dimensional spheroids or microphysiological systems. Ultimately, the aspiration to confidently use human-relevant in vitro models to predict human-specific hepatic toxicity depends on the integration of promising emerging technologies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Dominic P Williams
- AstraZeneca, Innovative Medicines and Early Development, Drug Safety and Metabolism, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, UK
| |
Collapse
|
175
|
Brown GE, Khetani SR. Microfabrication of liver and heart tissues for drug development. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0225. [PMID: 29786560 DOI: 10.1098/rstb.2017.0225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver- and cardiotoxicity remain among the leading causes of preclinical and clinical drug attrition, marketplace drug withdrawals and black-box warnings on marketed drugs. Unfortunately, animal testing has proven to be insufficient for accurately predicting drug-induced liver- and cardiotoxicity across many drug classes, likely due to significant differences in tissue functions across species. Thus, the field of in vitro human tissue engineering has gained increasing importance over the last 10 years. Technologies such as protein micropatterning, microfluidics, three-dimensional scaffolds and bioprinting have revolutionized in vitro platforms as well as increased the long-term phenotypic stability of both primary cells and stem cell-derived differentiated cells. Here, we discuss advances in engineering approaches for constructing in vitro human liver and heart models with utility for drug development. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues. Overall, bioengineered liver and heart models have significantly advanced our understanding of organ function and injury, which will prove useful for mitigating the risk of drug-induced organ toxicity to human patients, reducing animal usage for preclinical drug testing, aiding in the discovery of novel therapeutics against human diseases, and ultimately for applications in regenerative medicine.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Grace E Brown
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
176
|
Vorrink SU, Zhou Y, Ingelman-Sundberg M, Lauschke VM. Prediction of Drug-Induced Hepatotoxicity Using Long-Term Stable Primary Hepatic 3D Spheroid Cultures in Chemically Defined Conditions. Toxicol Sci 2019; 163:655-665. [PMID: 29590495 PMCID: PMC5974779 DOI: 10.1093/toxsci/kfy058] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High failure rates of drug candidates in the clinics, restricted-use warnings as well as withdrawals of drugs in postmarketing stages are of substantial concern for the pharmaceutical industry and drug-induced liver injury (DILI) constitutes one of the most frequent reasons for such safety failures. Importantly, as DILI cannot be accurately predicted using animal models, animal safety tests are commonly complemented with assessments in human in vitro systems. 3D spheroid cultures of primary human hepatocytes in chemically defined conditions, hereafter termed CD-spheroids, have recently emerged as a microphysiological model system in which hepatocytes retain their molecular phenotypes and hepatic functions for multiple weeks in culture. However, their predictive power for the detection of hepatotoxic liabilities has not been systematically assessed. Therefore, we here evaluated the hepatotoxicity of 123 drugs with or without direct implication in clinical DILI events. Importantly, using ATP quantifications as the single endpoint, the model accurately distinguished between hepatotoxic and nontoxic structural analogues and exceeded both sensitivity and specificity of all previously published in vitro assays at substantially lower exposure levels, successfully detecting 69% of all hepatotoxic compounds without producing any false positive results (100% specificity). Furthermore, the platform supports the culture of spheroids of primary hepatocytes from preclinical animal models, thereby allowing the identification of animal-specific toxicity events. We anticipate that CD-spheroids represent a powerful and versatile tool in drug discovery and preclinical drug development that can reliably flag hepatotoxic drug candidates and provide guidance for the selection of the most suitable animal models.
Collapse
Affiliation(s)
- Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Yitian Zhou
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
177
|
McKerrall SJ, Nguyen T, Lai KW, Bergeron P, Deng L, DiPasquale A, Chang JH, Chen J, Chernov-Rogan T, Hackos DH, Maher J, Ortwine DF, Pang J, Payandeh J, Proctor WR, Shields SD, Vogt J, Ji P, Liu W, Ballini E, Schumann L, Tarozzo G, Bankar G, Chowdhury S, Hasan A, Johnson JP, Khakh K, Lin S, Cohen CJ, Dehnhardt CM, Safina BS, Sutherlin DP. Structure- and Ligand-Based Discovery of Chromane Arylsulfonamide Nav1.7 Inhibitors for the Treatment of Chronic Pain. J Med Chem 2019; 62:4091-4109. [DOI: 10.1021/acs.jmedchem.9b00141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven J. McKerrall
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Teresa Nguyen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kwong Wah Lai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Philippe Bergeron
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lunbin Deng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Antonio DiPasquale
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tania Chernov-Rogan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H. Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel F. Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jian Payandeh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William R. Proctor
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shannon D. Shields
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jennifer Vogt
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pengfei Ji
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Wenfeng Liu
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | | | | | | | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Abid Hasan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - J. P. Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Christoph M. Dehnhardt
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Brian S. Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
178
|
Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch Toxicol 2019; 93:1021-1037. [DOI: 10.1007/s00204-019-02427-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
|
179
|
Docci L, Parrott N, Krähenbühl S, Fowler S. Application of New Cellular and Microphysiological Systems to Drug Metabolism Optimization and Their Positioning Respective to In Silico Tools. SLAS DISCOVERY 2019; 24:523-536. [PMID: 30817893 DOI: 10.1177/2472555219831407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New cellular model systems for drug metabolism applications, such as advanced 2D liver co-cultures, spheroids, and microphysiological systems (MPSs), offer exciting opportunities to reproduce human biology more closely in vitro with the aim of improving predictions of pharmacokinetics, drug-drug interactions, and efficacy. These advanced cellular systems have quickly become established for human intrinsic clearance determination and have been validated for several other absorption, distribution, metabolism, and excretion (ADME) applications. Adoption will be driven through the demonstration of clear added value, for instance, by more accurate and precise clearance predictions and by more reliable extrapolation of drug interaction potential leading to faster progression to pivotal proof-of-concept studies. New experimental systems are attractive when they can (1) increase experimental capacity, removing optimization bottlenecks; (2) improve measurement quality of ADME properties that impact pharmacokinetics; and (3) enable measurements to be made that were not previously possible, reducing risk in ADME prediction and candidate selection. As new systems become established, they will find their place in the repository of tools used at different stages of the research and development process, depending on the balance of value, throughput, and cost. In this article, we give a perspective on the integration of these new methodologies into ADME optimization during drug discovery, and the likely applications and impacts on drug development.
Collapse
Affiliation(s)
- Luca Docci
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland.,2 Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Neil Parrott
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | | | - Stephen Fowler
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| |
Collapse
|
180
|
Peel S, Corrigan AM, Ehrhardt B, Jang KJ, Caetano-Pinto P, Boeckeler M, Rubins JE, Kodella K, Petropolis DB, Ronxhi J, Kulkarni G, Foster AJ, Williams D, Hamilton GA, Ewart L. Introducing an automated high content confocal imaging approach for Organs-on-Chips. LAB ON A CHIP 2019; 19:410-421. [PMID: 30663729 DOI: 10.1039/c8lc00829a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Organ-Chips are micro-engineered systems that aim to recapitulate the organ microenvironment. Implementation of Organ-Chips within the pharmaceutical industry aims to improve the probability of success of drugs reaching late stage clinical trial by generating models for drug discovery that are of human origin and have disease relevance. We are adopting the use of Organ-Chips for enhancing pre-clinical efficacy and toxicity evaluation and prediction. Whilst capturing cellular phenotype via imaging in response to drug exposure is a useful readout in these models, application has been limited due to difficulties in imaging the chips at scale. Here we created an end-to-end, automated workflow to capture and analyse confocal images of multicellular Organ-Chips to assess detailed cellular phenotype across large batches of chips. By automating this process, we not only reduced acquisition time, but we also minimised process variability and user bias. This enabled us to establish, for the first time, a framework of statistical best practice for Organ-Chip imaging, creating the capability of using Organ-Chips and imaging for routine testing in drug discovery applications that rely on quantitative image data for decision making. We tested our approach using benzbromarone, whose mechanism of toxicity has been linked to mitochondrial damage with subsequent induction of apoptosis and necrosis, and staurosporine, a tool inducer of apoptosis. We also applied this workflow to assess the hepatotoxic effect of an active AstraZeneca drug candidate illustrating its applicability in drug safety assessment beyond testing tool compounds. Finally, we have demonstrated that this approach could be adapted to Organ-Chips of different shapes and sizes through application to a Kidney-Chip.
Collapse
Affiliation(s)
- Samantha Peel
- AstraZeneca IMED Biotech Unit, Discovery Sciences, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Archibald K, Tsaioun K, Kenna JG, Pound P. Better science for safer medicines: the human imperative. J R Soc Med 2018; 111:433-438. [PMID: 30439294 PMCID: PMC6295948 DOI: 10.1177/0141076818812783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration, John Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
182
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
183
|
Li AP, Ho MCD, Amaral K, Loretz C. A Novel In Vitro Experimental System for the Evaluation of Drug Metabolism: Cofactor-Supplemented Permeabilized Cryopreserved Human Hepatocytes (MetMax Cryopreserved Human Hepatocytes). Drug Metab Dispos 2018; 46:1608-1616. [PMID: 29363498 DOI: 10.1124/dmd.117.079657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
We report here a novel experimental system, cryopreserved MetMax human hepatocytes (MMHHs), for in vitro drug metabolism studies. MMHHs consist of cofactor-supplemented permeabilized cryopreserved human hepatocytes. The use procedures for MMHHs are significantly simplified from that for conventional cryopreserved human hepatocytes (CCHHs): 1) storage at -80°C instead of in liquid nitrogen and 2) usage directly after thawing without centrifugation and microscopic evaluation of cell density and viability and cell density adjustment. In this study, we compared MMHHs and CCHHs in CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP2J2, monoamine oxidase A, aldehyde oxidase, flavin-containing monooxygenase, UDP-glucuronyl transferase, SULT, N-acetyltransferase 1, and acetaminophen glutathione (GSH) conjugation activities based on liquid chromatography-tandem mass spectrometry quantification of substrate metabolism. MMHHs were prepared from CCHHs consisting of hepatocytes pooled from 10 individual donors. The drug metabolizing enzyme activities of both CCHHs and MMHHs were cell concentration and time dependent, with specific activities of MMHHs ranging from 27.2% (carboxylesterase 2) to 234.2% (acetaminophen GSH conjugation) of that for CCHHs. As observed in CCHHs, sequential oxidation and conjugation was observed in MMHHs for coumarin, 7-ethoxycoumarin, and acetaminophen. 7-Hydroxycoumarin conjugation results showed that metabolic pathways in MMHHs could be selected via the choice of cofactors, with glucuronidation but not sulfation observed in the presence of UDP-glucuronic acid and not 3-phosphoadenosine-5-phosphosulfate, and vice versa. Results with noncytotoxic and cytotoxic concentrations of acetaminophen showed that drug metabolism was compromised in CCHHs but not in MMHHs. Our results suggest that the MMHHs system represents a convenient and robust in vitro experimental system for the evaluation of drug metabolism.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L., C.L.) and In Vitro ADMET Laboratories Inc., Malden, Massachusetts (M.-C.D.H., K.A.)
| | - Ming-Chih David Ho
- In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L., C.L.) and In Vitro ADMET Laboratories Inc., Malden, Massachusetts (M.-C.D.H., K.A.)
| | - Kirsten Amaral
- In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L., C.L.) and In Vitro ADMET Laboratories Inc., Malden, Massachusetts (M.-C.D.H., K.A.)
| | - Carol Loretz
- In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L., C.L.) and In Vitro ADMET Laboratories Inc., Malden, Massachusetts (M.-C.D.H., K.A.)
| |
Collapse
|
184
|
Kenna JG, Uetrecht J. Do In Vitro Assays Predict Drug Candidate Idiosyncratic Drug-Induced Liver Injury Risk? Drug Metab Dispos 2018; 46:1658-1669. [PMID: 30021844 DOI: 10.1124/dmd.118.082719] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
In vitro assays are commonly used during drug discovery to try to decrease the risk of idiosyncratic drug-induced liver injury (iDILI). But how effective are they at predicting risk? One of the most widely used methods evaluates cell cytotoxicity. Cytotoxicity assays that used cell lines that are very different from normal hepatocytes, and high concentrations of drug, were not very accurate at predicting idiosyncratic drug reaction risk. Even cytotoxicity assays that use more biologically normal cells resulted in many false-positive and false-negative results. Assays that quantify reactive metabolite formation, mitochondrial injury, and bile salt export pump (BSEP) inhibition have also been described. Although evidence suggests that reactive metabolite formation and BSEP inhibition can play a role in the mechanism of iDILI, these assays are not very accurate at predicting risk. In contrast, inhibition of the mitochondrial electron transport chain appears not to play an important role in the mechanism of iDILI, although other types of mitochondrial injury may do so. It is likely that there are many additional mechanisms by which drugs can cause iDILI. However, simply measuring more parameters is unlikely to provide better predictive assays unless those parameters are actually involved in the mechanism of iDILI. Hence, a better mechanistic understanding of iDILI is required; however, mechanistic studies of iDILI are very difficult. There is substantive evidence that most iDILI is immune mediated; therefore, the most accurate assays may involve those that determine immune responses to drugs. New methods to manipulate immune tolerance may greatly facilitate development of more suitable methods.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| | - Jack Uetrecht
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| |
Collapse
|
185
|
Relevance of the incubation period in cytotoxicity testing with primary human hepatocytes. Arch Toxicol 2018; 92:3505-3515. [DOI: 10.1007/s00204-018-2302-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022]
|
186
|
Vinken M, Hengstler JG. Characterization of hepatocyte-based in vitro systems for reliable toxicity testing. Arch Toxicol 2018; 92:2981-2986. [PMID: 30141065 DOI: 10.1007/s00204-018-2297-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
A plethora of human hepatocyte-based in vitro systems for toxicity testing has been developed over the past few years. These systems are either directly derived from liver tissue or have been generated through stem cell technology. A wide variety of parameters is currently used to demonstrate the acquisition of in vivo-like hepatocellular physiology and toxicity in such novel in vitro systems. This frequently leads to flawed claims regarding applicability and may impede comparison between in vitro systems. A possible solution lies in defining a set of consensus criteria for proper benchmarking. A proposal for characterization of hepatocyte-based in vitro systems for toxicity screening is made in this paper and consists of testing critical features of viability, morphology, functionality and toxicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
187
|
Tenogenic Properties of Mesenchymal Progenitor Cells Are Compromised in an Inflammatory Environment. Int J Mol Sci 2018; 19:ijms19092549. [PMID: 30154348 PMCID: PMC6163784 DOI: 10.3390/ijms19092549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/26/2023] Open
Abstract
Transplantation of multipotent mesenchymal progenitor cells is a valuable option for treating tendon disease. Tenogenic differentiation leading to cell replacement and subsequent matrix modulation may contribute to the regenerative effects of these cells, but it is unclear whether this occurs in the inflammatory environment of acute tendon disease. Equine adipose-derived stromal cells (ASC) were cultured as monolayers or on decellularized tendon scaffolds in static or dynamic conditions, the latter represented by cyclic stretching. The impact of different inflammatory conditions, as represented by supplementation with interleukin-1β and/or tumor necrosis factor-α or by co-culture with allogeneic peripheral blood leukocytes, on ASC functional properties was investigated. High cytokine concentrations increased ASC proliferation and osteogenic differentiation, but decreased chondrogenic differentiation and ASC viability in scaffold culture, as well as tendon scaffold repopulation, and strongly influenced musculoskeletal gene expression. Effects regarding the latter differed between the monolayer and scaffold cultures. Leukocytes rather decreased ASC proliferation, but had similar effects on viability and musculoskeletal gene expression. This included decreased expression of the tenogenic transcription factor scleraxis by an inflammatory environment throughout culture conditions. The data demonstrate that ASC tenogenic properties are compromised in an inflammatory environment, with relevance to their possible mechanisms of action in acute tendon disease.
Collapse
|
188
|
Liu J, Li R, Xue R, Li T, Leng L, Wang Y, Wang J, Ma J, Yan J, Yan F, Zhang Y, Wang Y. Liver Extracellular Matrices Bioactivated Hepatic Spheroids as a Model System for Drug Hepatotoxicity Evaluations. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juan Liu
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Ruihong Li
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Key Laboratory of Neuropsychopharmacology; Institute of Pharmacology and Toxicology; Beijing 100850 China
| | - Tingting Li
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Ling Leng
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Yi Wang
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Jie Wang
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Jie Ma
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences (Beijing); Beijing Institute of Life Omics; Beijing 102206 China
| | - Jiexin Yan
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Fang Yan
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| | - Youzhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Key Laboratory of Neuropsychopharmacology; Institute of Pharmacology and Toxicology; Beijing 100850 China
| | - Yunfang Wang
- Tissue Engineering Lab; Institute of Health Service and Transfusion Medicine; Beijing 100850 China
| |
Collapse
|
189
|
Kelm JM, Lal-Nag M, Sittampalam GS, Ferrer M. Translational in vitro research: integrating 3D drug discovery and development processes into the drug development pipeline. Drug Discov Today 2018; 24:26-30. [PMID: 30071313 DOI: 10.1016/j.drudis.2018.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
As we witness steady progress towards the development of robust, scalable, and reproducible 3D tissue models for preclinical drug testing, there is a need for systematic physiological and pharmacological validation and benchmarking. Ongoing and future studies should generate evidence as to whether 3D tissue models are more predictive, help reduce the risk of failure rate, and can be used for decision making in the drug discovery and development pipeline. Here, we discuss the importance of harmonizing the validation of these models based on throughput capacity and physiological complexity as a requirement to establish their true translational capacity. We also outline our strategy for a novel 3D-tailored holistic drug discovery concept rather than piecemeal integration of 3D models into the current process.
Collapse
Affiliation(s)
- Jens M Kelm
- PreComb Therapeutics AG, Wädenswil, Switzerland.
| | | | | | | |
Collapse
|
190
|
Boutin ME, Voss TC, Titus SA, Cruz-Gutierrez K, Michael S, Ferrer M. A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Sci Rep 2018; 8:11135. [PMID: 30042482 PMCID: PMC6057966 DOI: 10.1038/s41598-018-29169-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
Imaging and subsequent segmentation analysis in three-dimensional (3D) culture models are complicated by the light scattering that occurs when collecting fluorescent signal through multiple cell and extracellular matrix layers. For 3D cell culture models to be usable for drug discovery, effective and efficient imaging and analysis protocols need to be developed that enable high-throughput data acquisition and quantitative analysis of fluorescent signal. Here we report the first high-throughput protocol for optical clearing of spheroids, fluorescent high-content confocal imaging, 3D nuclear segmentation, and post-segmentation analysis. We demonstrate nuclear segmentation in multiple cell types, with accurate identification of fluorescently-labeled subpopulations, and develop a metric to assess the ability of clearing to improve nuclear segmentation deep within the tissue. Ultimately this analysis pipeline allows for previously unattainable segmentation throughput of 3D culture models due to increased sample clarity and optimized batch-processing analysis.
Collapse
Affiliation(s)
- Molly E Boutin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Building B, Rockville, Maryland, 20850, USA.
| | - Ty C Voss
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Building B, Rockville, Maryland, 20850, USA
| | - Steven A Titus
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Building B, Rockville, Maryland, 20850, USA
| | - Kennie Cruz-Gutierrez
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Building B, Rockville, Maryland, 20850, USA
| | - Sam Michael
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Building B, Rockville, Maryland, 20850, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Building B, Rockville, Maryland, 20850, USA
| |
Collapse
|
191
|
Saini N, Bakshi S, Sharma S. In-silico approach for drug induced liver injury prediction: Recent advances. Toxicol Lett 2018; 295:288-295. [PMID: 29981923 DOI: 10.1016/j.toxlet.2018.06.1216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Drug induced liver injury (DILI) is the prime cause of liver disfunction which may lead to mild non-specific symptoms to more severe signs like hepatitis, cholestasis, cirrhosis and jaundice. Not only the prescription medications, but the consumption of herbs and health supplements have also been reported to cause these adverse reactions resulting into high mortality rates and post marketing withdrawal of drugs. Due to the continuously increasing DILI incidences in recent years, robust prediction methods with high accuracy, specificity and sensitivity are of priority. Bioinformatics is the emerging field of science that has been used in the past few years to explore the mechanisms of DILI. The major emphasis of this review is the recent advances of in silico tools for the diagnostic and therapeutic interventions of DILI. These tools have been developed and widely used in the past few years for the prediction of pathways induced from both hepatotoxic as well as hepatoprotective Chinese drugs and for the identification of DILI specific biomarkers for prognostic purpose. In addition to this, advanced machine learning models have been developed for the classification of drugs into DILI causing and non-DILI causing. Moreover, development of 3 class models over 2 class offers better understanding of multi-class DILI risks and at the same time providing authentic prediction of toxicity during drug designing before clinical trials.
Collapse
Affiliation(s)
- Neha Saini
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shikha Bakshi
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
192
|
Petrov PD, Fernández-Murga ML, López-Riera M, Goméz-Lechón MJ, Castell JV, Jover R. Predicting drug-induced cholestasis: preclinical models. Expert Opin Drug Metab Toxicol 2018; 14:721-738. [PMID: 29888962 DOI: 10.1080/17425255.2018.1487399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Collapse
Affiliation(s)
- Petar D Petrov
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - M Leonor Fernández-Murga
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - Mireia López-Riera
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - M José Goméz-Lechón
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Jose V Castell
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| | - Ramiro Jover
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
193
|
Leeson PD. Impact of Physicochemical Properties on Dose and Hepatotoxicity of Oral Drugs. Chem Res Toxicol 2018; 31:494-505. [PMID: 29722540 DOI: 10.1021/acs.chemrestox.8b00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A database containing maximum daily doses of 1841 marketed oral drugs was used to examine the influence of physicochemical properties on dose and hepatotoxicity (drug induced liver injury, DILI). Drugs in the highest ∼20% dose range had significantly reduced mean lipophilicity and molecular weight, increased fractional surface area, increased % of acids, and decreased % of bases versus drugs in the lower ∼60% dose range. Drugs in the ∼20-40% dose range had intermediate mean properties, similar to the mean values for the full drug set. Drugs that are both large and highly lipophilic almost invariably do not have doses in the upper ∼20% range. The results show that oral druglike physicochemical properties are different according to these dose ranges, and this is consistent with maintenance of acceptable safety profiles as efficacious exposure increases. Verified DILI annotations from a compilation of >1000 approved drugs (Chen, M.; et al. Drug Discov. Today, 2016, 21, 648 ) were used. The drugs classified as "No DILI" ( n = 163) had significantly lower dose and lipophilicity, and higher Fsp3 (fraction of carbon atoms that are sp3 hybridized) versus the "Most DILI" ( n = 163) drugs. The percentages of acids were reduced and bases increased in the "No DILI" versus the "Most DILI" groups. Drugs classified as "Less DILI" or "Ambiguous DILI" had intermediate mean values of dose, lipophilicity, Fsp3, and % acids and bases. The impact of lipophilicity and Fsp3 on DILI increases in the upper 20% versus the lower 80% dose range, and a simple decision tree model predicted "No DILI" versus "Most DILI" outcomes with 82% accuracy. The model correctly classified 19 of 22 drugs (86%) that failed in development due to human hepatotoxicity. Because many oral drugs lacking DILI annotations are predicted to be "Most DILI", the model is best used preclinically in conjunction with experimental DILI mitigation.
Collapse
Affiliation(s)
- Paul D Leeson
- Paul Leeson Consulting Ltd , The Malt House, Main Street, Congerstone , Nuneaton, Warks CV13 6LZ , U.K
| |
Collapse
|
194
|
Orbach SM, Ehrich MF, Rajagopalan P. High-throughput toxicity testing of chemicals and mixtures in organotypic multi-cellular cultures of primary human hepatic cells. Toxicol In Vitro 2018; 51:83-94. [PMID: 29751030 DOI: 10.1016/j.tiv.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
High-throughput screening (HTS) of liver toxicants can bridge the gap in understanding adverse effects of chemicals on humans. Toxicity testing of mixtures is time consuming and expensive, since the number of possible combinations increases exponentially with the number of chemicals. The combination of organotypic culture models (OCMs) and HTS assays can lead to the rapidly evaluation of chemical toxicity in a cost and time-effective manner while prioritizing chemicals that warrant additional investigation. We describe the design, assembly and toxicant response of multi-cellular hepatic organotypic culture models comprised of primary human or rat cells assembled in 96-well plates (denoted as μOCMs). These models were assembled using automated procedures that did not affect hepatocyte function or viability, rendering them ideal for large-scale toxicity evaluations. Rat μOCMs were assembled to obtain insights into deviations from human toxicity. Four test chemicals (acetaminophen, ethanol, isoniazid, and perfluorooctanoic acid) were added to the μOCMs individually or in mixtures. HTS assays were utilized to measure cell death, apoptosis, glutathione depletion, mitochondrial membrane damage, and cytochrome P450 2E1 activity. The μOCMs exhibited increased toxicant sensitivity compared to hepatocyte sandwich cultures. Synergistic and non-synergistic interactions were observed when the toxicants were added as mixtures. Specifically, chemical interactions in the μOCMs were manifested by changes in apoptosis and decreased glutathione. The μOCMs accurately predicted hepatotoxicity for individual and mixtures of toxicants, demonstrating their potential for large-scale toxicity evaluations in the future.
Collapse
Affiliation(s)
- Sophia M Orbach
- Department of Chemical Engineering, Virginia Tech, Suite 245 Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA.
| | - Marion F Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, VA 24061, USA.
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Suite 245 Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; ICTAS Center for Systems Biology of Engineered Tissue, Virginia Tech, 333 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061, USA; School of Biomedical Engineering and Sciences, Virginia Tech, 333 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061, USA.
| |
Collapse
|
195
|
Chan R, Benet LZ. Evaluation of the Relevance of DILI Predictive Hypotheses in Early Drug Development: Review of In Vitro Methodologies vs BDDCS Classification. Toxicol Res (Camb) 2018; 7:358-370. [PMID: 29785262 DOI: 10.1039/c8tx00016f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major safety concern; it occurs frequently; it is idiosyncratic; it cannot be adequately predicted; and a multitude of underlying mechanisms has been postulated. A number of experimental approaches to predict human DILI have been proposed utilizing in vitro screening such as inhibition of mitochondrial function, hepatobiliary transporter inhibition, reactive metabolite formation with and without covalent binding, and cellular health, but they have achieved only minimal success. Several studies have shown total administered dose alone or in combination with drug lipophilicity to be correlated with a higher risk of DILI. However, it would be best to have a predictive DILI methodology early in drug development, long before the clinical dose is known. Here we discuss the extent to which Biopharmaceutics Drug Disposition Classification System (BDDCS) defining characteristics, independent of knowing actual drug pharmacokinetics/pharmacodynamics and dose, can be used to evaluate prior published predictive proposals. Our results show that BDDCS Class 2 drugs exhibit the highest DILI severity, and that all of the short-lived published methodologies evaluated here, except when daily dose is known, do not yield markedly better predictions than BDDCS. The assertion that extensively metabolized compounds are at higher risk of developing DILI is confirmed, but can be enhanced by differentiating BDDCS Class 2 from Class 1 drugs. CONCLUSION Our published analyses suggest that comparison of proposed DILI prediction methodologies with BDDCS classification is a useful tool to evaluate the potential reliability of newly proposed algorithms, although BDDCS classification itself is not sufficiently predictive. Almost all of the predictive DILI metrics do no better than just avoiding BDDCS Class 2 drugs, although some early data with microliver platforms enabling long-enduring metabolic competency show promising results.
Collapse
Affiliation(s)
- Rosa Chan
- Department of Bioengineering and Therapeutic Sciences Schools of Pharmacy and Medicine University of California, San Francisco
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences Schools of Pharmacy and Medicine University of California, San Francisco
| |
Collapse
|
196
|
Lutter AH, Scholka J, Richter H, Anderer U. Applying XTT, WST-1, and WST-8 to human chondrocytes: A comparison of membrane-impermeable tetrazolium salts in 2D and 3D cultures. Clin Hemorheol Microcirc 2018; 67:327-342. [PMID: 28869462 DOI: 10.3233/ch-179213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tetrazolium-based assays are optimized to assess proliferation/toxicity of monolayer or suspension cells in microtiter plates. With regard to tissue engineering and regenerative medicine the need for in vivo like 3D microtissues has an increasing relevance. Applying tetrazolium-based assays to 3D culture systems is technically more challenging. The composed microenvironment may influence the assay standards, e.g. equal distribution of tetrazolium. OBJECTIVE Evaluation of membrane-impermeable tetrazolium salt-based assays with regard to spheroid culture (3D) of human chondrocytes. METHODS Chondrocytes were isolated from human articular cartilage. XTT, WST-1, and WST-8 were applied to monolayer cells (2D, varying cell numbers) and spheroids (3D, different sizes) in 96well plates. Formazan formation was measured spectrophotometrically after different incubation periods. Evaluation was done using phase contrast microsopy (toxicity), analyzing the correlation of cell number and absorbance signals (Gompertz function), and document signal over background ratio. RESULTS In monolayer culture the assays showed a correlation between seeded cell numbers and absorption data. Spheroid sizes are directly related to the starting cell number. A correlation between size and absorbance was only detectable starting from 10,000 cells/aggregate. Phase contrast microscopy of monolayer cells revealed strong toxicity effects of the WST-1 (4 h) and XTT (8 h) assay and no signs of toxicity using WST-8. CONCLUSION The WST-8 assay is non-toxic and revealed the highest sensitivity in comparison to the XTT or WST-1 assay. There is evidence, that only cells of the outer rim of spheroids are able to convert membrane-impermeable tetrazolium salts to formazans.
Collapse
Affiliation(s)
- Anne-Helen Lutter
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jenny Scholka
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Heiko Richter
- Klinikum Niederlausitz GmbH, Department Trauma Surgery and Orthopedics, Senftenberg, Germany
| | - Ursula Anderer
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
197
|
Xing P, Feng Y, Niu Y, Li Q, Zhang Z, Dong L, Wang C. A Water-Soluble, Two-Photon Probe for Imaging Endogenous Hypochlorous Acid in Live Tissue. Chemistry 2018; 24:5748-5753. [DOI: 10.1002/chem.201800249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Panfei Xing
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Avenida da Universidade Macau SAR P. R. China
| | - Yanxian Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Avenida da Universidade Macau SAR P. R. China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Avenida da Universidade Macau SAR P. R. China
| | - Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Avenida da Universidade Macau SAR P. R. China
| | - Zhe Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Avenida da Universidade Macau SAR P. R. China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University Institution; Nanjing 210093 P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Avenida da Universidade Macau SAR P. R. China
| |
Collapse
|
198
|
Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, Valdez J, Cook CD, Parent T, Snyder S, Yu J, Suter E, Shockley M, Velazquez J, Velazquez JJ, Stockdale L, Papps JP, Lee I, Vann N, Gamboa M, LaBarge ME, Zhong Z, Wang X, Boyer LA, Lauffenburger DA, Carrier RL, Communal C, Tannenbaum SR, Stokes CL, Hughes DJ, Rohatgi G, Trumper DL, Cirit M, Griffith LG. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep 2018. [PMID: 29540740 PMCID: PMC5852083 DOI: 10.1038/s41598-018-22749-0] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs – “4-way”, “7-way”, and “10-way” – each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS “physiome-on-a-chip” approaches in drug discovery.
Collapse
Affiliation(s)
- Collin D Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Geishecker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy Kassis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis R Soenksen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brij M Bhushan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Christian Maass
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolaos Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christi D Cook
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Jiajie Yu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Suter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Shockley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeremy J Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linda Stockdale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia P Papps
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Iris Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas Vann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mario Gamboa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew E LaBarge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Zhong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Catherine Communal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - David L Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
199
|
Koyama S, Arakawa H, Itoh M, Masuda N, Yano K, Kojima H, Ogihara T. Evaluation of the metabolic capability of primary human hepatocytes in three-dimensional cultures on microstructural plates. Biopharm Drug Dispos 2018; 39:187-195. [PMID: 29469947 DOI: 10.1002/bdd.2125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/08/2023]
Abstract
The NanoCulture Plate (NCP) is a novel microstructural plate designed as a base for the three-dimensional culture of cells/tissues. This study examined whether or not the metabolic capability of human primary hepatocytes is well maintained during culture on NCPs. The hepatocytes formed aggregates after seeding and their ATP content was well maintained during culture for 21 days. Expression of CYP1A2, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 mRNAs was detected throughout the 21-day culture period. Addition of CYP substrate drugs (midazolam, diclofenac, lamotrigine and acetaminophen) resulted in the formation of multiple metabolites with a corresponding decrease in the amounts of the unchanged compounds. The inducers omeprazole, phenobarbital and rifampicin increased the levels of CYP1A2, 2B6 and 3A4 mRNAs by 110-fold, 12.5-fold and 5.4-fold, respectively, at day 2, compared with control human hepatocytes. CYP activities were also increased at 2 days after inducer treatment (CYP1A2, 2.2-fold; CYP2B6, 20.6-fold; CYP3A4, 3.3-fold). The results indicate that the hepatocyte spheroids on NCP have detectable and inducible metabolic abilities during the 7-day culture period.
Collapse
Affiliation(s)
- Satoshi Koyama
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Taksaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Manabu Itoh
- JSR Life Sciences, 25 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Norio Masuda
- JSR Life Sciences, 25 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Kentaro Yano
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Taksaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Hajime Kojima
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, 158-8501, Japan
| | - Takuo Ogihara
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Taksaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan.,Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| |
Collapse
|
200
|
Ware BR, Durham MJ, Monckton CP, Khetani SR. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells. Cell Mol Gastroenterol Hepatol 2018; 5:187-207. [PMID: 29379855 PMCID: PMC5782488 DOI: 10.1016/j.jcmgh.2017.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. METHODS Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. RESULTS LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. CONCLUSIONS PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.
Collapse
Key Words
- 3T3-J2 Fibroblasts
- CD31, cluster of differentiation 31
- CD54, cluster of differentiation 54
- CYP450, cytochrome P-450
- ECM, extracellular matrix
- F8, factor VIII
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HUVECs
- HUVECs, human umbilical vein endothelial cells
- LSECs
- LSECs, liver sinusoidal endothelial cells
- Micropatterned Cocultures
- NPCs, nonparenchymal cells
- PHHs, primary human hepatocytes
- SEM, scanning electron microscope
- Tricultures
- cDNA, complementary DNA
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Brenton R. Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Mitchell J. Durham
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado
| | - Chase P. Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R. Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|