151
|
Werrie PY, Deckers S, Fauconnier ML. Brief Insight into the Underestimated Role of Hop Amylases on Beer Aroma Profiles. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1937453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Pierre-Yves Werrie
- Laboratory of Chemistry of Natural Molecules (ULg), University of Liège, Belgium
| | - Sylvie Deckers
- Laboratory of Chemistry of Natural Molecules (ULg), University of Liège, Belgium
| | | |
Collapse
|
152
|
Lin CL, García-Caro RDLC, Zhang P, Carlin S, Gottlieb A, Petersen MA, Vrhovsek U, Bond U. Packing a punch: understanding how flavours are produced in lager fermentations. FEMS Yeast Res 2021; 21:6316108. [PMID: 34227660 PMCID: PMC8310685 DOI: 10.1093/femsyr/foab040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
Beer is one of the most popular beverages in the world and it has an irreplaceable place in culture. Although invented later than ale, lager beers dominate the current market. Many factors relating to the appearance (colour, clarity and foam stability) and sensory characters (flavour, taste and aroma) of beer, and other psychological determinants affect consumers' perception of the product and defines its drinkability. This review takes a wholistic approach to scrutinise flavour generation in the brewing process, focusing particularly on the contribution of the raw ingredients and the yeasts to the final flavour profiles of lager beers. In addition, we examine current developments to improve lager beer flavour profiles for the modern consumers.
Collapse
Affiliation(s)
- Claire Lin Lin
- Brewing 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens, Lyngby, Denmark.,Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | | | - Penghan Zhang
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Silvia Carlin
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Andrea Gottlieb
- Brewing 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens, Lyngby, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Urska Vrhovsek
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Ursula Bond
- School of Genetics and Microbiology, The Moyne Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
153
|
Effect of Immobilization Support and Fermentation Temperature on Beer and Fermented Milk Aroma Profiles. BEVERAGES 2021. [DOI: 10.3390/beverages7030047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The food industry increasingly produces wastes like coconut and peanut shells. In addition, low temperature fermentation is always a challenge. Therefore, in the present study, a sustainable exploitation of these by-products is proposed through the production of carriers for immobilized cells of yeast and bacteria. The immobilized cells, after thermally drying, were evaluated for their efficiency in beer and milk fermentations respectively, in various fermentation temperatures and storage for up to three months. The beers and fermented milks were evaluated for their aroma and the results showed products of high quality. Coconut shells resulted in better products with increased fruity ester content in fermented milks and reduced dimethyl sulfite and vicinal diketones and increased ratio of esters to alcohol in beers. These results reveal the possibilities of immobilized cells in coconut and peanut shells for application in food industry, however, more research is needed to evaluate their effect on sensory characteristics and possible prebiotic and probiotic potential especially in the case of fermented milks.
Collapse
|
154
|
Xu X, Niu C, Liu C, Wang J, Zheng F, Li Q. Screening lager yeast with higher ethyl-acetate production by adaptive laboratory evolution in high concentration of acetic acid. World J Microbiol Biotechnol 2021; 37:125. [PMID: 34173085 DOI: 10.1007/s11274-021-03082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Ethyl-acetate is important for the flavor and aroma of the alcoholic beverages, therefore, there have been extensive efforts toward increasing its production by engineering yeast strains. In this study, we reported a new approach to breed non-genetic modified producing yeast strain with higher ethyl-acetate production for beer brewing. First, we demonstrated the positive effect of higher acetic acid concentration on inducing the expression of acetyl-CoA synthetase (ACS). Then, we applied adaptive laboratory evolution method to evolve strain with higher expression level of ACS. As a result, we obtained several evolved strains with increased ACS expression level as well as ethyl-acetate production. In 3 L scale fermentation, the optimal strain EA60 synthesized more ethyl-acetate than M14 at the same time point. At the end of fermentation, the ethyl-acetate production in EA60 was 21.4% higher than M14, while the other flavor components except for acetic acid were changed in a moderate degree, indicating this strain had a bright prospect in industrial application. Moreover, this study also indicated that ACS1 played a more important role in increasing the acetic acid tolerance of yeast, while ACS2 contributed to the synthesis of cytosol acetyl-CoA, thereby facilitating the production of ethyl-acetate during fermentation.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
155
|
Sensory Profile of Kombucha Brewed with New Zealand Ingredients by Focus Group and Word Clouds. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kombucha is a yeast and bacterially fermented tea that is often described as having an acetic, fruity and sour flavour. There is a particular lack of sensory research around the use of Kombucha with additional ingredients such as those from the pepper family, or with hops. The goal of this project was to obtain a sensory profile of Kombucha beverages with a range of different ingredients, particularly of a novel Kombucha made with only Kawakawa (Piper excelsum) leaves. Other samples included hops and black pepper. Instrumental data were collected for all the Kombucha samples, and a sensory focus group of eight semi-trained panellists were set up to create a sensory profile of four products. Commercially available Kombucha, along with reference training samples were used to train the panel. Kawakawa Kombucha was found to be the sourest of the four samples and was described as having the bitterest aftertaste. The instrumental results showed that the Kawakawa Kombucha had the highest titratable acidity (1.55 vs. 1.21–1.42 mL) as well as the highest alcohol percentage (0.40 vs. 0.15–0.30%). The hops sample had the highest pH (3.72 vs. 3.49–3.54), with the lowest titratable acidity (1.21), and, from a basic poll, was the most liked of the samples. Each Kombucha had its own unique set of sensory descriptors with particular emphasis on the Kawakawa product, having unique mouthfeel descriptors as a result of some of the compounds found in Kawakawa. This research has led to a few areas that could be further studied, such as the characteristics of the Piperaceae family under fermentation and the different effects or the foaminess of the Kawakawa Kombucha, which is not fully explained.
Collapse
|
156
|
Abstract
This is a literature review of the most commonly available wine packaging categories. This includes glass bottles, polyethylene terephthalate bottles (PET), bag-in-box (BIB), aluminum cans, and Tetra Pak. This review includes a description and history of each category. In addition, the market share and environmental impacts of each category are discussed. Special attention is paid to the reported impact on packaged wine flavor and aroma for each packaging type. Finally, the potential impacts on consumer preference are discussed. While glass is still the dominant packaging material within the wine industry and by consumer demand, economic and environmental concerns are driving the industry and consumers to investigate and adopt alternative packaging materials.
Collapse
|
157
|
Physico-Chemical and Sensory Characterization of a Fruit Beer Obtained with the Addition of Cv. Lambrusco Grapes Must. BEVERAGES 2021. [DOI: 10.3390/beverages7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In 2015, Italian Grape Ale (IGA) beers have been included as a new provisional sub-category of special-type fruit beers by the Beer Judge Certification Program, including those products whose brewing process is carried out in presence of determined quantities of grape must. However, information on the effects of these additions on the composition of final beers are still scarce. This work is hence focused on the chromatic, volatile, phenolic and sensory characterization of IGA beers obtained with the addition of grape musts during brewing process. To this aim, different amounts of must (5, 10 and 20%) from cv. Lambrusco red grapes were added to a lager wort before primary fermentation. Beers were then characterized by HPLC-MS, GC-MS and sensory analysis in order to determine phenolic and aroma compounds along with their sensory attributes. Results confirmed the addition of must from cv. Lambrusco grapes capable to enrich beers in color, acids, phenolic (up to 7-folded increased) and volatile compounds, while giving complexity to beers. These results, which were confirmed by a trained sensory panel, are among the very first insights on the impact of red grape must in brewing, both from a compositional and sensory point of view.
Collapse
|
158
|
Chenot C, Thibault de Chanvalon E, Janssens P, Collin S. Modulation of the Sulfanylalkyl Acetate/Alcohol Ratio and Free Thiol Release from Cysteinylated and/or Glutathionylated Sulfanylalkyl Alcohols in Beer under Different Fermentation Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6005-6012. [PMID: 34018730 DOI: 10.1021/acs.jafc.1c01610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The occurrence of a substantial pool of cysteinylated and glutathionylated forms of polyfunctional thiols has been evidenced for several dual-purpose hop varieties, and so is the ability of Saccharomyces cerevisiae yeast to release free thiols from these forms through fermentation. The present work aimed to investigate the effect of temperature, wort density, maturation time, and strain on the efficiency of free thiol release by S. cerevisiae yeasts. Model media at 12, 15, or 17°P were spiked with three cysteinylated (Cys-) or three glutathionylated (G-) sulfanylalkyl alcohols (Cys- or G-3-sulfanylpentan-1-ol, 3-sulfanyl-4-methylpentan-1-ol, and 3-sulfanylhexan-1-ol), fermented for 7 days at 18, 24, and 28 °C, and kept at 4 °C for varying number of days. The released sulfanylalkyl alcohols and their corresponding acetates were extracted with a Ag-ion SPE cartridge and analyzed by gas chromatography-pulsed-flame photometric detection. The wort density and yeast strain greatly affected the acetate/alcohol ratio. This ratio varied from 1 to 80% according to the yeast strain and was at its highest at 17°P and 24 °C. Maturation appeared as the crucial step for free thiol excretion from yeast cells (no thiol was recovered in the fermented worts without maturation). Among the five yeasts tested, the yeast strain SafAle K-97 released the highest level of sulfanylalkyl alcohols into the medium (up to 0.45% of the added cysteinylated adducts and 0.08% of the glutathionylated adducts), whereas S-33 or S-04 should be preferred when release of esters is sought out (release efficiencies up to 0.35% from cysteinylated adducts and 0.02% from glutathionylated adducts are observed if both the alcohol and its acetate are considered).
Collapse
Affiliation(s)
- Cécile Chenot
- Unité de Brasserie et des Industries Alimentaires, LIBST Institute, Faculté des Bioingénieurs, Université catholique de Louvain. Croix du Sud, 2 box L7.05.07, 1348 Louvain-la-Neuve, Belgium
| | - Eloi Thibault de Chanvalon
- Unité de Brasserie et des Industries Alimentaires, LIBST Institute, Faculté des Bioingénieurs, Université catholique de Louvain. Croix du Sud, 2 box L7.05.07, 1348 Louvain-la-Neuve, Belgium
| | - Philippe Janssens
- Fermentis by Lesaffre, 137 Rue Gabriel Péri, 59170 Marcq-en-Barœul. France
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, LIBST Institute, Faculté des Bioingénieurs, Université catholique de Louvain. Croix du Sud, 2 box L7.05.07, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
159
|
Wauters R, Britton SJ, Verstrepen KJ. Old yeasts, young beer-The industrial relevance of yeast chronological life span. Yeast 2021; 38:339-351. [PMID: 33978982 PMCID: PMC8252602 DOI: 10.1002/yea.3650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Much like other living organisms, yeast cells have a limited life span, in terms of both the maximal length of time a cell can stay alive (chronological life span) and the maximal number of cell divisions it can undergo (replicative life span). Over the past years, intensive research revealed that the life span of yeast depends on both the genetic background of the cells and environmental factors. Specifically, the presence of stress factors, reactive oxygen species, and the availability of nutrients profoundly impact life span, and signaling cascades involved in the response to these factors, including the target of rapamycin (TOR) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways, play a central role. Interestingly, yeast life span also has direct implications for its use in industrial processes. In beer brewing, for example, the inoculation of finished beer with live yeast cells, a process called "bottle conditioning" helps improve the product's shelf life by clearing undesirable carbonyl compounds such as furfural and 2-methylpropanal that cause staling. However, this effect depends on the reductive metabolism of living cells and is thus inherently limited by the cells' chronological life span. Here, we review the mechanisms underlying chronological life span in yeast. We also discuss how this insight connects to industrial observations and ultimately opens new routes towards superior industrial yeasts that can help improve a product's shelf life and thus contribute to a more sustainable industry.
Collapse
Affiliation(s)
- Ruben Wauters
- Laboratory for Systems BiologyVIB Center for MicrobiologyLeuvenBelgium
- CMPG Laboratory of Genetics and Genomics, Department M2SKU LeuvenLeuvenBelgium
| | - Scott J. Britton
- Research and DevelopmentDuvel MoortgatPuurs‐Sint‐AmandsBelgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Kevin J. Verstrepen
- Laboratory for Systems BiologyVIB Center for MicrobiologyLeuvenBelgium
- CMPG Laboratory of Genetics and Genomics, Department M2SKU LeuvenLeuvenBelgium
| |
Collapse
|
160
|
Vahalová P, Červinková K, Cifra M. Biological autoluminescence for assessing oxidative processes in yeast cell cultures. Sci Rep 2021; 11:10852. [PMID: 34035342 PMCID: PMC8149683 DOI: 10.1038/s41598-021-89753-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/30/2021] [Indexed: 01/30/2023] Open
Abstract
Nowadays, modern medicine is looking for new, more gentle, and more efficient diagnostic methods. A pathological state of an organism is often closely connected with increased amount of reactive oxygen species. They can react with biomolecules and subsequent reactions can lead to very low endogenous light emission (biological autoluminescence—BAL). This phenomenon can be potentially used as a non-invasive and low-operational-cost tool for monitoring oxidative stress during diseases. To contribute to the understanding of the parameters affecting BAL, we analyzed the BAL from yeast Saccharomyces cerevisiae as a representative eukaryotic organism. The relationship between the BAL intensity and the amount of reactive oxygen species that originates as a result of the Fenton reaction as well as correlation between spontaneous BAL and selected physical and chemical parameters (pH, oxygen partial pressure, and cell concentration) during cell growth were established. Our results contribute to real-time non-invasive methodologies for monitoring oxidative processes in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
161
|
Drosou F, Anastasakou K, Tataridis P, Dourtoglou V, Oreopoulou V. Study of the Fermentation Kinetics and Secondary Metabolites of Torulaspora delbrueckii Yeasts from Different Substrates. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1915660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fotini Drosou
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Egaleo, Athens, Greece
| | - Katerina Anastasakou
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Panagiotis Tataridis
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Egaleo, Athens, Greece
| | - Vassilis Dourtoglou
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Egaleo, Athens, Greece
| | - Vassiliki Oreopoulou
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
162
|
Abstract
Nowadays, in the beer sector, there is a wide range of products, which differ for the technologies adopted, raw materials used, and microorganisms involved in the fermentation processes. The quality of beer is directly related to the fermentation activity of yeasts that, in addition to the production of alcohol, synthesize various compounds that contribute to the definition of the compositional and organoleptic characteristics. The microbrewing phenomenon (craft revolution) and the growing demand for innovative and specialty beers has stimulated researchers and brewers to select new yeast strains possessing particular technological and metabolic characteristics. Up until a few years ago, the selection of starter yeasts used in brewing was exclusively carried out on strains belonging to the genus Saccharomyces. However, some non-Saccharomyces yeasts have a specific enzymatic activity that can help to typify the taste and beer aroma. These yeasts, used as a single or mixed starter with Saccharomyces strains, represent a new biotechnological resource to produce beers with particular properties. This review describes the role of Saccharomyces and non-Saccharomyces yeasts in brewing, and some future biotechnological perspectives.
Collapse
|
163
|
GAT1 Gene, the GATA Transcription Activator, Regulates the Production of Higher Alcohol during Wheat Beer Fermentation by Saccharomyces cerevisiae. Bioengineering (Basel) 2021; 8:bioengineering8050061. [PMID: 34066902 PMCID: PMC8151594 DOI: 10.3390/bioengineering8050061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Uncoordinated carbon-nitrogen ratio in raw materials will lead to excessive contents of higher alcohols in alcoholic beverages. The effect of GAT1 gene, the GATA transcription activator, on higher alcohol biosynthesis was investigated to clarify the mechanism of Saccharomyces cerevisiae regulating higher alcohol metabolism under high concentrations of free amino nitrogen (FAN). The availability of FAN by strain SDT1K with a GAT1 double-copy deletion was 28.31% lower than that of parent strain S17, and the yield of higher alcohols was 33.91% lower. The transcript levels of the downstream target genes of GAT1 and higher alcohol production in the double-copy deletion mutant suggested that a part of the effect of GAT1 deletion on higher alcohol production was the downregulation of GAP1, ARO9, and ARO10. This study shows that GATA factors can effectively regulate the metabolism of higher alcohols in S. cerevisiae and provides valuable insights into higher alcohol biosynthesis, showing great significance for the wheat beer industry.
Collapse
|
164
|
Growth, survival, and metabolic activities of probiotics Lactobacillus rhamnosus GG and Saccharomyces cerevisiae var. boulardii CNCM-I745 in fermented coffee brews. Int J Food Microbiol 2021; 350:109229. [PMID: 34023682 DOI: 10.1016/j.ijfoodmicro.2021.109229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/10/2021] [Accepted: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Amidst rising demand for non-dairy probiotic foods, and growing interest in coffees with added functionalities, it would be opportune to ferment coffee brews with probiotics. However, challenges exist in maintaining probiotic viability in high-moisture food products. Here, we aimed to enhance the viability of the probiotic bacteria, Lactobacillus rhamnosus GG, in coffee brews by co-culturing with the probiotic yeast, Saccharomyces cerevisiae var. boulardii CNCM-I745. The yeast significantly enhanced the viability of L. rhamnosus GG, as bacterial populations beyond 7 Log CFU/mL were maintained throughout 14 weeks of storage at 4 and 25 °C. In contrast, the single culture of L. rhamnosus GG suffered viability losses below 6 Log CFU/mL within 10 weeks at 4 °C, and 3 weeks at 25 °C. Growth and survival of S. boulardii CNCM-I745 remained unaffected by the presence of L. rhamnosus GG. Volatile profiles of coffee brews were altered by probiotic metabolic activities, but co-culturing led to suppressed generation of diacetyl and ethanol compared to single cultures. Probiotic fermentation did not alter principal coffee bioactive compounds and antioxidant capacities; however, declines in peroxyl radical scavenging capacities were observed after ambient storage. Overall, we illustrate that yeasts are effective in enhancing probiotic bacterial viability in coffee brews, which may be useful in developing shelf stable probiotic food products.
Collapse
|
165
|
Liu B, Li Y, Cao Z, Wang C. Effect of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Torulopsis versatilis addition sequence on soy sauce fermentation. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
166
|
Lu Y, Wang Y, Zhao G, Yao Y. Identification of aroma compounds in Zhuhoujiang, a fermented soybean paste in Guangdong China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
167
|
Matraxia M, Alfonzo A, Prestianni R, Francesca N, Gaglio R, Todaro A, Alfeo V, Perretti G, Columba P, Settanni L, Moschetti G. Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiol 2021; 99:103806. [PMID: 34119099 DOI: 10.1016/j.fm.2021.103806] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
The increasing interest in novel beer productions focused on non-Saccharomyces yeasts in order to pursue their potential in generating groundbreaking sensory profiles. Traditional fermented beverages represent an important source of yeast strains which could express interesting features during brewing. A total of 404 yeasts were isolated from fermented honey by-products and identified as Saccharomyces cerevisiae, Wickerhamomyces anomalus, Zygosaccharomyces bailii, Zygosaccharomyces rouxii and Hanseniaspora uvarum. Five H. uvarum strains were screened for their brewing capability. Interestingly, Hanseniaspora uvarum strains showed growth in presence of ethanol and hop and a more rapid growth than the control strain S. cerevisiae US-05. Even though all strains showed a very low fermentation power, their concentrations ranged between 7 and 8 Log cycles during fermentation. The statistical analyses showed significant differences among the strains and underlined the ability of YGA2 and YGA34 to grow rapidly in presence of ethanol and hop. The strain YGA34 showed the best technological properties and was selected for beer production. Its presence in mixed- and sequential-culture fermentations with US-05 did not influence attenuation and ethanol concentration but had a significant impact on glycerol and acetic acid concentrations, with a higher sensory complexity and intensity, representing promising co-starters during craft beer production.
Collapse
Affiliation(s)
- Michele Matraxia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Antonio Alfonzo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Rosario Prestianni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Nicola Francesca
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy.
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Aldo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre, Department of Agricultural, Food and Environmental Science, University of Perugia, 06126, Perugia, Italy
| | - Giuseppe Perretti
- Italian Brewing Research Centre, Department of Agricultural, Food and Environmental Science, University of Perugia, 06126, Perugia, Italy
| | - Pietro Columba
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Giancarlo Moschetti
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| |
Collapse
|
168
|
Van den Mooter PR, Dedvukaj L, Vankelecom IFJ. Use of Ionic Liquids and Co-Solvents for Synthesis of Thin-Film Composite Membranes. MEMBRANES 2021; 11:membranes11040297. [PMID: 33923954 PMCID: PMC8073406 DOI: 10.3390/membranes11040297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
Polyamide (PA) thin-film composite (TFC) membranes are commonly applied in reversed osmosis (RO) and nanofiltration (NF) applications due to their thin, dense top-layer, and high selectivity. Recently, the conventional organic phase (i.e., hexane) during interfacial polymerization (IP) was replaced by less toxic ionic liquids (ILs) which led to excellent membrane performances. As the high price of most ILs limits their up-scaling, the potential use of inexpensive Aliquat was investigated in this study. The thin-film composite (TFC) membranes were optimized to remove flavor compounds, i.e., ethyl acetate (EA) and isoamyl acetate (IA), from a fermentation broth. A multi-parameter optimization was set-up involving type of support, reaction time for IP, water content of Aliquat, and concentration of both monomers m-phenylenediamine (MPD) and trimesoylchloride (TMC). The membranes prepared using Aliquat showed similar fluxes as those prepared from a reference IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C4mpyr][Tf2N]) but with better EA and IA retentions, even better than for a commercial RO membrane (GEA type AF). Finally, the recently introduced epoxide-curing of Bisphenol A diglycidyl ether (BADGE) with 1,6-hexanediamine (HDA) was investigated using Aliquat as organic phase. It is the first time this type of IP was performed in combination with an IL as organic phase. The resulting membrane was used in the filtration of a 35 µM Rose Bengal (RB) in 20 wt% dimethylformamide/ water (DMF/H2O) feed mixture. A well-crosslinked poly(β-alkanolamine) film was obtained with a > 97% retention.
Collapse
Affiliation(s)
| | | | - Ivo F. J. Vankelecom
- Correspondence: (P.-R.V.d.M.); (I.F.J.V.); Tel.: +32-1632-9207 (P.-R.V.d.M.); +32-1632-1594 (I.F.J.V.)
| |
Collapse
|
169
|
Choi K. Nitrogen‐Neutral Amino Acids Refinery: Deamination of Amino Acids for Bio‐Alcohol and Ammonia Production. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kwon‐Young Choi
- Ajou University Department of Environmental and Safety Engineering College of Engineering Suwon, Gyeonggi-do South Korea
| |
Collapse
|
170
|
Coulibaly WH, Bouatenin KMJP, Boli ZBIA, Camara F, Sanogo YM, Akissi DM, Kouame HK, Rigou P, Djameh C, Djè KM. Volatile compounds of traditional sorghum beer (tchapalo) produced in Côte d'Ivoire: comparison between wild yeasts and pure culture of Saccharomyces cerevisiae. World J Microbiol Biotechnol 2021; 37:75. [PMID: 33779846 DOI: 10.1007/s11274-021-03026-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/28/2021] [Indexed: 01/01/2023]
Abstract
In recent years, there had been growing demand for distinctive high quality beer. Fermentation management has a fundamental role in beer quality and the levels of aroma compounds. Use of non-conventional yeast has been proposed to enhance beer flavor. In this study, the bioflavor of traditional sorghum beer from Côte d'Ivoire was investigated. The flavor profile of two beers fermented with wild yeasts and with pure culture of Saccharomyces cerevisiae respectively were studied. The main flavor components of the beer fermented by pure culture of Saccharomyces cerevisiae were different from those of the beer fermented with wild yeasts. The total level of esters and higher alcohols were (173.51 and 128.85 mg/L) respectively in the beer fermented with wild yeasts. These levels were significantly higher than those in the beer fermented with pure culture of Saccharomyces cerevisiae which were 13.08 and 78.26 mg/L for higher alcohols and esters respectively. On the other hand, the beer fermented with pure culture of Saccharomyces cerevisiae had an acid content higher than beer fermented with wild yeasts, i.e. 9.3 mg/L and 7.53 mg/L respectively.
Collapse
Affiliation(s)
- Wahauwouélé Hermann Coulibaly
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast.
| | - Koffi Maïzan Jean-Paul Bouatenin
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast
| | - Zamble Bi Irié Abel Boli
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast
| | - Fatoumata Camara
- Laboratoire de Nutrition et Sécurité Alimentaire, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast
| | - Yahya Maïmouna Sanogo
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast
| | - Dogbo Marius Akissi
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast
| | - Hanzi Karen Kouame
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast
| | - Peggy Rigou
- Plateau d'Analyses des Composés Volatils (PTV), Institut des Hautes Études de la Vigne et du Vin, INRA-SUPAGRO Montpellier, 2 Place Pierre Viala, 34060, Montpellier CEDEX 02, France
| | - Clement Djameh
- Microbrewery Inland Beverages Ltd, Dansoman, P.O. Box DS1577, Accra, Ghana
| | - Koffi Marcellin Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Ivory Coast
| |
Collapse
|
171
|
Liu S, Ma D, Li Z, Sun H, Mao J, Shi Y, Han X, Zhou Z, Mao J. Assimilable nitrogen reduces the higher alcohols content of huangjiu. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
172
|
Liu S, Ma D, Li Z, Sun H, Mao J, Shi Y, Han X, Zhou Z, Mao J. Assimilable nitrogen reduces the higher alcohols content of huangjiu. Food Control 2021. [DOI: 10.766010.1016/j.foodcont.2020.107660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
173
|
Influence of Citrus Flavor Addition in Brewing Process: Characterization of the Volatile and Non-Volatile Profile to Prevent Frauds and Adulterations. SEPARATIONS 2021. [DOI: 10.3390/separations8020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the last few years, the flavored beer market has increased significantly. In particular, consumers showed a growing interest in citrus-flavored beers. Citrus fruits contain, among other class of compounds, terpenes and terpenoids and oxygenated heterocyclic compounds. The absence of a specific legislation concerning beer flavored production and ingredients reported on the labels makes these beers subject to possible adulterations. Solid phase micro extraction (SPME) followed by gas chromatographic–mass spectrometry (GC-MS) and gas chromatographic-flame ionization detector (GC-FID) analysis of the volatile profile together with the characterization of the oxygen heterocyclic compounds through high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) demonstrated to be a powerful analytical strategy for quality control. In this study, we combined the volatile and non-volatile profiles of “citrus flavored mainstream beers”, in order to evaluate the authenticity and determine markers to prevent food frauds. The changes in the aroma composition of the unflavored types after the addition of peel, or citrus essential oil were also evaluated. The linear retention index (LRI) system was used for both techniques; in particular, its application in liquid chromatography is still limited and represents a novelty. The coupling of the high sensitivity of the HPLC MS/MS method with the LRI system, it has made possible for the first time a reliable identification and an accurate quantification of furocoumarins in citrus-flavored beers.
Collapse
|
174
|
Comparison of Three Approaches to Assess the Flavour Characteristics of Scotch Whisky Spirit. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study compared the use of three sensory and analytical techniques: Quantitative Descriptive Analysis (QDA), Napping, and Gas Chromatography-Mass Spectrometry (GC-MS) for the assessment of flavour in nine unmatured whisky spirits produced using different yeasts. Hierarchical Multiple Factor Analysis (HMFA) showed a similar pattern of sample discrimination (RV scores: 0.895–0.927) across the techniques: spirits were mostly separated by their Alcohol by Volume (ABV). Low ABV spirits tended to have heavier flavour characteristics (feinty, cereal, sour, oily, sulphury) than high ABV spirits, which were lighter in character (fruity, sweet, floral, solventy, soapy). QDA differentiated best between low ABV spirits and GC-MS between high ABV spirits, with Napping having the lowest resolution. QDA was time-consuming but provided quantitative flavour profiles of each spirit that could be readily compared. Napping, although quicker, gave an overview of the flavour differences of the spirits, while GC-MS provided semi-quantitative ratios of 96 flavour compounds for differentiating between spirits. Ester, arenes and certain alcohols were found in higher concentrations in high ABV spirits and other alcohols and aldehydes in low ABV spirits. The most comprehensive insights on spirit flavour differences produced by different yeast strains are obtained through the application of a combination of approaches.
Collapse
|
175
|
Brewing with Unmalted Cereal Adjuncts: Sensory and Analytical Impacts on Beer Quality. BEVERAGES 2021. [DOI: 10.3390/beverages7010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brewing with unmalted cereal adjuncts can reduce the requirement for malting, thereby lowering costs and improving the overall sustainability of the brewing chain. However, substantial adjunct usage has technological challenges and the sensory characteristics of beers produced using high adjunct rates are still not fully understood. This study examined the impacts of brewing with unmalted barley, wheat, rice and maize at relatively high concentrations (0, 30% and 60% of grist) on the sensorial and analytical profiles of lager beer. Adjunct based beers and a 100% malt control were brewed at 25 L scale. A trained sensory panel (n = 8) developed a lexicon and determined the sensorial profile of beers. At 30% adjunct incorporation there was insignificant variation in the expected beer flavour profile. At 60% adjunct incorporation, there were some significant sensory differences between beers which were specific to particular adjunct materials. Furthermore, 60% adjunct inclusion (with correspondingly low wort FAN) impacted the fermentation volatile profile of the final beers which corresponded with findings observed in the sensory analysis. Developing an understanding of adjunct-induced flavour differences and determining strategies to minimise these differences will facilitate the implementation of cost-efficient and sustainable grist solutions.
Collapse
|
176
|
Performance of Wild Non-Conventional Yeasts in Fermentation of Wort Based on Different Malt Extracts to Select Novel Starters for Low-Alcohol Beers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nowadays, the increasing interest in new market demand for alcoholic beverages has stimulated the research on useful strategies to reduce the ethanol content in beer. In this context, the use of non-Saccharomyces yeasts to produce low-alcohol or alcohol-free beer may provide an innovative approach for the beer market. In our study, four wild non-Saccharomyces yeasts, belonging to Torulaspora delbrueckii, Candida zemplinina and Zygosaccharomyces bailii species, were tested in mixed fermentation with a wild selected Saccharomyces cerevisiae strain as starters for fermentation of different commercial substrates used for production of different beer styles (Pilsner, Weizen and Amber) to evaluate the influence of the fermentative medium on starter behaviour. The results obtained showed the influence of non-Saccharomyces strains on the ethanol content and organoleptic quality of the final beers and a significant wort–starter interaction. In particular, each starter showed a different sugar utilization rate in each substrate, in consequence of uptake efficiency correlated to the strain-specific metabolic pathway and substrate composition. The most suitable mixed starter was P4-CZ3 (S. cerevisiae–C. zemplinina), which is a promising starter for the production of low-alcohol beers with pleasant organoleptic characteristics in all the tested fermentation media.
Collapse
|
177
|
Huang G, Ren H, Wang A, Wan X, Wu Z, Zhong X. iTRAQ-based proteomic analysis reveals the molecule mechanism of reducing higher alcohols in Chinese rice wine by nitrogen compensation. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01611-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Higher alcohol is a by-product of the fermentation of wine, and its content is one of the most important parameters that affect and are used to appraise the final quality of Chinese rice wine. Ammonium compensation is an efficient and convenient method to reduce the content of higher alcohols, but the molecule mechanism is poorly understood. Therefore, an iTRAQ-based proteomic analysis was designed to reveal the proteomic changes of Saccharomyces cerevisiae to elucidate the molecular mechanism of ammonium compensation in reducing the content of higher alcohols.
Methods
The iTRAQ proteomic analysis method was used to analyze a blank group and an experimental group with an exogenous addition of 200 mg/L (NH4)2HPO4 during inoculation. The extracted intracellular proteins were processed by liquid chromatography-mass spectrometry and identified using bioinformatics tools. Real-time quantitative polymerase chain reaction was used to verify the gene expression of differentially expressed proteins.
Results
About 4062 proteins, including 123 upregulated and 88 downregulated proteins, were identified by iTRAQ-based proteomic analysis. GO and KEGG analysis uncovered that significant proteins were concentrated during carbohydrate metabolism, such as carbon metabolism, glyoxylate, and dicarboxylate metabolism, pyruvate metabolism, and the nitrogen metabolism, such as amino acid synthesis and catabolism pathway. In accordance with the trend of differential protein regulation in the central carbon metabolism pathway and the analysis of carbon metabolic flux, a possible regulatory model was proposed and verified, in which ammonium compensation facilitated glucose consumption, regulated metabolic flow direction into tricarboxylic acid, and further led to a decrease in higher alcohols. The results of RT-qPCR confirmed the authenticity of the proteomic analysis results at the level of gene.
Conclusion
Ammonium assimilation promoted by ammonium compensation regulated the intracellular carbon metabolism of S. cerevisiae and affected the distribution of metabolic flux. The carbon flow that should have gone to the synthesis pathway of higher alcohols was reversed to the TCA cycle, thereby decreasing the content of higher alcohols. These findings may contribute to an improved understanding of the molecular mechanism for the decrease in higher alcohol content through ammonium compensation.
Collapse
|
178
|
The diversity of commercially available ale and lager yeast strains and the impact of brewer's preferential yeast choice on the fermentative beer profiles. Food Res Int 2021; 141:110125. [PMID: 33641992 DOI: 10.1016/j.foodres.2021.110125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
Yeasts from the species Saccharomyces cerevisiae (ale yeast) and Saccharomyces pastorianus (lager yeast) are the main component of beer fermentation. It is known that different beer categories depend on the use of specific ale or lager strains, where the yeast imprints its distinctive fermentative profile to the beer. Despite this, there are no studies reporting how diverse, rich, and homogeneous the beer categories are in terms of commercially available brewing yeast strains. In this work, the diversity, richness, and evenness of different beer categories and commercial yeast strains available for brewing were evaluated by applying quantitative concepts of diversity analysis in a sample of 119,189 beer recipes. For this purpose, the frequency of ale or lager and dry or liquid yeast formulations usage was accessed and its correlation with the number of yeast strains, recipes, lowest and highest values of original and final gravity, international bitter units, and alcohol by volume were analyzed. A statistical framework was applied for comparing the lowest and highest fermentation temperature as well as the attenuation percentage for ale and lager yeasts strains in both dry and liquid formulations. Additionally, the brewer's preferential use of a specific brewing yeast strain in comparison to all different yeast strains reported for a beer category was estimated. The results indicated that many beer categories are preferentially fermented with dry yeast formulations instead of liquid yeasts, despite the high number of available liquid yeast formulations. Finally, the preferential use of specific yeast formulations drives the fermentative diversity of a beer category, showing that many yeast strains are potentially and industrially underexplored.
Collapse
|
179
|
Tan M, Caro Y, Shum-Cheong-Sing A, Robert L, François JM, Petit T. Evaluation of mixed-fermentation of Saccharomyces cerevisiae with Saprochaete suaveolens to produce natural fruity beer from industrial wort. Food Chem 2021; 346:128804. [PMID: 33418411 DOI: 10.1016/j.foodchem.2020.128804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Fruity beers can be promoted through production of flavoring compounds during fermentation by partial replacement of brewing yeast by non-conventional-yeasts with high aroma production abilities. We evaluated here the use of a wild Saprochaete suaveolens strain, producing atypical aroma compounds, to produce new natural fruity beer, while keeping classical production conditions used in brewing industry. S. suaveolens was inoculated as starter of culture during beer fermentation and the fermentation performance was evaluated through measurement of several physicochemical parameters. The aroma profile of the engineered beers was monitored using HS-SPME GC/MS. The results showed that high fruity aroma and low-ethanol content beers were obtained through single-fermentation using S. suaveolens. We also demonstrated that during mixed-fermentation, S. suaveolens maintained high metabolic activity and allowed production of beer enriched with fruity aroma. Production of high or low ethanol content fruity beer could be achieved by varying the composition of the starter of culture.
Collapse
Affiliation(s)
- Melissa Tan
- Université de la Réunion, Laboratoire de Chimie et Biotechnologies des Produits Naturels (ChemBioPro), Réunion, France; IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| | - Yanis Caro
- Université de la Réunion, Laboratoire de Chimie et Biotechnologies des Produits Naturels (ChemBioPro), Réunion, France; IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| | - Alain Shum-Cheong-Sing
- IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| | - Laurent Robert
- Société Réunionnaise de brasserie (SOREBRA), Saint-Louis, Réunion, France.
| | | | - Thomas Petit
- Université de la Réunion, Laboratoire de Chimie et Biotechnologies des Produits Naturels (ChemBioPro), Réunion, France; IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| |
Collapse
|
180
|
|
181
|
Karayel O, Michaelis AC, Mann M, Schulman BA, Langlois CR. DIA-based systems biology approach unveils E3 ubiquitin ligase-dependent responses to a metabolic shift. Proc Natl Acad Sci U S A 2020; 117:32806-32815. [PMID: 33288721 PMCID: PMC7768684 DOI: 10.1073/pnas.2020197117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a powerful model system for systems-wide biology screens and large-scale proteomics methods. Nearly complete proteomics coverage has been achieved owing to advances in mass spectrometry. However, it remains challenging to scale this technology for rapid and high-throughput analysis of the yeast proteome to investigate biological pathways on a global scale. Here we describe a systems biology workflow employing plate-based sample preparation and rapid, single-run, data-independent mass spectrometry analysis (DIA). Our approach is straightforward, easy to implement, and enables quantitative profiling and comparisons of hundreds of nearly complete yeast proteomes in only a few days. We evaluate its capability by characterizing changes in the yeast proteome in response to environmental perturbations, identifying distinct responses to each of them and providing a comprehensive resource of these responses. Apart from rapidly recapitulating previously observed responses, we characterized carbon source-dependent regulation of the GID E3 ligase, an important regulator of cellular metabolism during the switch between gluconeogenic and glycolytic growth conditions. This unveiled regulatory targets of the GID ligase during a metabolic switch. Our comprehensive yeast system readout pinpointed effects of a single deletion or point mutation in the GID complex on the global proteome, allowing the identification and validation of targets of the GID E3 ligase. Moreover, this approach allowed the identification of targets from multiple cellular pathways that display distinct patterns of regulation. Although developed in yeast, rapid whole-proteome-based readouts can serve as comprehensive systems-level assays in all cellular systems.
Collapse
Affiliation(s)
- Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - André C Michaelis
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Christine R Langlois
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
182
|
Silva Ferreira C, Collin S. Fate of Hop and Fermentation Odorants in Commercial Belgian Dry-Hopped Beers over 2 Years of Bottle Storage: Key-Role of Oxidation and Hop Esterases. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Carlos Silva Ferreira
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
183
|
Costa CP, Bezerra AR, Almeida A, Rocha SM. Candida Species (Volatile) Metabotyping through Advanced Comprehensive Two-Dimensional Gas Chromatography. Microorganisms 2020; 8:E1911. [PMID: 33266330 PMCID: PMC7760324 DOI: 10.3390/microorganisms8121911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Microbial metabolomics is a challenge strategy that allows a comprehensive analysis of metabolites within a microorganism and may support a new approach in microbial research, including the microbial diagnosis. Thus, the aim of this research was to in-depth explore a metabolomics strategy based on the use of an advanced multidimensional gas chromatography for the comprehensive mapping of cellular metabolites of C. albicans and non-C. albicans (C. glabrata and C. tropicalis) and therefore contributing for the development of a comprehensive platform for fungal detection management and for species distinction in early growth times (6 h). The volatile fraction comprises 126 putatively identified metabolites distributed over several chemical families: acids, alcohols, aldehydes, hydrocarbons, esters, ketones, monoterpenic and sesquiterpenic compounds, norisoprenoids, phenols and sulphur compounds. These metabolites may be related with different metabolic pathways, such as amino acid metabolism and biosynthesis, fatty acids metabolism, aromatic compounds degradation, mono and sesquiterpenoid synthesis and carotenoid cleavage. These results represent an enlargement of ca. 70% of metabolites not previously reported for C. albicans, 91% for C. glabrata and 90% for C. tropicalis. This study represents the most detailed study about Candida species exometabolome, allowing a metabolomic signature of each species, which signifies an improvement towards the construction of a Candida metabolomics platform whose application in clinical diagnostics can be crucial to guide therapeutic interventions.
Collapse
Affiliation(s)
- Carina Pedrosa Costa
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| | - Ana Rita Bezerra
- Health Sciences Department, Institute for Biomedicine—iBiMED, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Sílvia M. Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
184
|
Wang W, Fan G, Li X, Fu Z, Liang X, Sun B. Application of Wickerhamomyces anomalus in Simulated Solid-State Fermentation for Baijiu Production: Changes of Microbial Community Structure and Flavor Metabolism. Front Microbiol 2020; 11:598758. [PMID: 33329488 PMCID: PMC7728721 DOI: 10.3389/fmicb.2020.598758] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Wickerhamomyces anomalus is conducive to the synthesis of ester compounds in brewing the Chinese liquor Baijiu; esters are crucial for the quality of Baijiu. In this study, simulated solid-state fermentation for Baijiu production was used to explore whether artificial addition of W. anomalus could improve the flavor substance in Baijiu, and the underlying mechanisms. Two experimental groups were studied, in which W. anomalus Y3604 (Group A) and YF1503 (Group B) were added, respectively; in the control group (Group C), no W. anomalus was added. Adding strain Y3604 increased the content of esters in fermentation samples, especially ethyl acetate and ethyl caproate, and reduced the content of higher alcohols. Adding strain YF1503 had little effect on the ester content but decreased the content of higher alcohols. The diversity and abundance of prokaryotic genera in Group A and B samples were similar, but there were some differences compared with Group C. The correlations of genera in Group A or B samples were simple compared with group C. Although the predominant eukaryotic genera in the three groups were consistent, the abundance of each gene varied among groups. Based on our findings, bioaugmentation of Baijiu fermentation with W. anomalus will change the ethyl acetate content and cause changes in the levels of other flavor substances. We suggest that the changes in flavor substances caused by the addition of W. anomalus are mainly due to changes in the microbial community structure that result from the addition of W. anomalus.
Collapse
Affiliation(s)
- Wenhua Wang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Guangsen Fan
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhilei Fu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xin Liang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
185
|
Effect of the Deletion of Genes Related to Amino Acid Metabolism on the Production of Higher Alcohols by Saccharomyces cerevisiae. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6802512. [PMID: 33204707 PMCID: PMC7665916 DOI: 10.1155/2020/6802512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 11/17/2022]
Abstract
The higher alcohols produced by Saccharomyces cerevisiae exert remarkable influence on the taste and flavour of Chinese Baijiu. In order to study the regulation mechanism of amino acid metabolism genes on higher alcohol production, eight recombinant strains with amino acid metabolism gene deletion were constructed. The growth, fermentation performance, higher alcohol production, and expression level of genes in recombinant and original α5 strains were determined. Results displayed that the total higher alcohol concentration in α5ΔGDH1 strain decreased by 27.31% to 348.68 mg/L compared with that of α5. The total content of higher alcohols in α5ΔCAN1 and α5ΔGAT1 strains increased by 211.44% and 28.36% to 1493.96 and 615.73 mg/L, respectively, compared with that of α5. This study is the first to report that the CAN1 and GAT1 genes have great influence on the generation of higher alcohols. The results demonstrated that amino acid metabolism plays a substantial role in the metabolism of higher alcohols by S. cerevisiae. Interestingly, we also found that gene knockout downregulated the expression levels of the knocked out gene and other genes in the recombinant strain and thus affected the formation of higher alcohols by S. cerevisiae. This study provides worthy insights for comprehending the metabolic mechanism of higher alcohols in S. cerevisiae for Baijiu fermentation.
Collapse
|
186
|
Bourbon-Melo N, Palma M, Rocha MP, Ferreira A, Bronze MR, Elias H, Sá-Correia I. Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiol 2020; 95:103678. [PMID: 33397613 DOI: 10.1016/j.fm.2020.103678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Beer production is predominantly carried out by Saccharomyces species, such as S. cerevisiae and S. pastorianus. However, the introduction of non-Saccharomyces yeasts in the brewing process is now seen as a promising strategy to improve and differentiate the organoleptic profile of beer. In this study, 17 non-Saccharomyces strains of 12 distinct species were isolated and submitted to a preliminary sensory evaluation to determine their potential for beer bioflavouring. Hanseniaspora guilliermondii IST315 and H. opuntiae IST408 aroma profiles presented the highest acceptability and were described as having 'fruity' and 'toffee' notes, respectively. Their presence in mixed-culture fermentations with S. cerevisiae US-05 did not influence attenuation and ethanol concentration of beer but had a significant impact in its volatile composition. Notably, while both strains reduced the total amount of ethyl esters, H. guilliermondii IST315 greatly increased the concentration of acetate esters, especially when sequentially inoculated, leading to an 8.2-fold increase in phenylethyl acetate ('rose', 'honey' aroma) in the final beverage. These findings highlight the importance of non-Saccharomyces yeasts in shaping the aroma profile of beer and suggest a role for Hanseniaspora spp. in improving it.
Collapse
Affiliation(s)
- Nuno Bourbon-Melo
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Margarida Palma
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - Miguel Pinto Rocha
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - António Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; iMED, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-019, Lisboa, Portugal; ITQB, Instituto de Tecnologia Química e Biológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Hugo Elias
- D'Ourique Flavours - Cerveja Artesanal, Rua dos Cordeiros, S/N, 2640-401, Achada, Mafra, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
187
|
|
188
|
Aredes RS, Peixoto FC, Sphaier LA, Marques FFDC. Evaluation of craft beers through the direct determination of amino acids by capillary electrophoresis and principal component analysis. Food Chem 2020; 344:128572. [PMID: 33229160 DOI: 10.1016/j.foodchem.2020.128572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
The composition of beer wort in terms of amino acid (AA) content affects the final product quality, once it is related to the vitality of yeast during the initial exponential growth phase and throughout fermentation. The objective of this work was the use of a capillary zone electrophoresis method with UV-vis detection in association with Principal Component (Data) Analysis for craft beer classification. Cysteine, histidine, phenylalanine, lysine, tryptophan and arginine were the monitored AAs in wort and finished beer, which were extracted through cation exchange resin. Good differentiation among samples according to their production was obtained, showing a profile of AAs (<LQ-99 µg mL-1) for each wort, which can be used as indicator of the quality of a beer. One of the samples had the mashing step monitored, showing an increasing profile in the concentrations of AAs (6.5-55 µg mL-1), which can be explained by the protein cleavage.
Collapse
Affiliation(s)
- Rafaella Silva Aredes
- Department of Analytical Chemistry - Fundamental and Applied Analytical Chemistry Laboratory, Institute of Chemistry, Fluminense Federal University, 24020-141, Niterói, RJ, Brazil
| | - Fernando Cunha Peixoto
- Chemistry Section (SE5), Military Engineering Institute, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Leandro Alcoforado Sphaier
- Department of Mechanical Engineering TEM/PGMEC, Fluminense Federal University, 24210-240 Niterói, RJ, Brazil
| | - Flávia Ferreira de Carvalho Marques
- Department of Analytical Chemistry - Fundamental and Applied Analytical Chemistry Laboratory, Institute of Chemistry, Fluminense Federal University, 24020-141, Niterói, RJ, Brazil.
| |
Collapse
|
189
|
Larroque MN, Carrau F, Fariña L, Boido E, Dellacassa E, Medina K. Effect of Saccharomyces and non-Saccharomyces native yeasts on beer aroma compounds. Int J Food Microbiol 2020; 337:108953. [PMID: 33161347 DOI: 10.1016/j.ijfoodmicro.2020.108953] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023]
Abstract
Recently, the increase in microbreweries and the consequent production of craft beers have reached exponential growth. The interest in non-conventional yeasts for innovation and a unique selling feature in beer fermentation is increasing. This work studied the autochthonous Saccharomyces and non-Saccharomyces yeasts, isolated from various food sources, with the ability to modify and improve the fermentative and aromatic profiles during alcoholic fermentation. The ability to ferment maltose and produce desirable aroma compounds were considered as the key characters for the screening selection. A synthetic beer wort was developed for this purpose, to simulate beer wort composition. A total of forty-seven yeast strains belonging to different genera were analysed according to their fermentation profile, volatile compounds production and sensory analysis. Three native strains of Saccharomyces cerevisiae, Zygoascus meyerae and Pichia anomala were selected to evaluate their aromatic profile in single and mixed fermentations. The strains produced 4-vinylguaiacol, β-phenylethyl alcohol, and isoamyl alcohol at levels significantly above the sensory threshold, making them interesting for wheat and blond craft beer styles. The native Hanseniaspora vineae was also included in a co-fermentation treatment, resulting in a promising yeast to produce fruity beers.
Collapse
Affiliation(s)
- M N Larroque
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - F Carrau
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - L Fariña
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - E Boido
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - E Dellacassa
- Universidad de la República, Aroma Biotechnology Laboratory, Organic Chemistry Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - K Medina
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay.
| |
Collapse
|
190
|
Einfalt D. Barley-sorghum craft beer production with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe use of different yeast strains contributes to obtain insights into beer products with diverse sensory characteristics. In this study, three yeast species of different genera were selected to evaluate their fermentation performance and sensory profile for barley-sorghum beer production. Baley-sorghum wort was produced with 12.5°P and fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Differences were observed in terms of fermentation time and ability to ferment maltose. S. cerevisiae attenuated initial maltose concentration within 72 h, while M. pulcherrima and T. delbrueckii performed fermentation within 120 and 192 h, respectively. Both yeast strains simultaneously produced 11% and 23% lower ethanol concentrations, compared to S. cerevisiae with 37.9 g/L. Wort fermented with T. delbrueckii showed residual maltose concentration of 19.7 ± 4.1 g/L, resulting in significantly enhanced beer sweetness. S. cerevisiae produced significantly increased levels of higher alcohols, and obtained the highest scores for the sensory attribute body perception. Beer produced with T. delbrueckii contained significantly lower fermentative 2,3-butanediol and 2-methyl-1-butanol volatiles; this beer also showed reduced body perception. Beer conditioned with T. delbrueckii was significantly preferred over M. pulcherrima. Besides S. cerevisiae with high fermentative power, T. delbrueckii and M. pulcherrima were found to have reduced maltose fermenting abilities and provide significantly different sensory attributes to barley-sorghum beers.
Collapse
|
191
|
Generation of new hybrids by crossbreeding between bottom-fermenting yeast strains. J Biosci Bioeng 2020; 131:61-67. [PMID: 33190800 DOI: 10.1016/j.jbiosc.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022]
Abstract
The genetic diversity of bottom-fermenting yeast classified as Saccharomyces pastorianus is poor because strains are restricted to a few genetically distinct groups. Crossbreeding is an effective approach to construct novel yeast strains, but it is difficult because of inefficiency to obtain mating-competent cells (MCCs) of bottom-fermenting yeast. By using mating pheromone-supersensitive mutants, we previously isolated several mating-competent meiotic segregants from two bottom-fermenting yeast strains: high isoamyl acetate-producing KY1247, and low diacetyl-producing KY2645. Here, we constructed novel non-GM hybrids carrying preferable characteristics from both parents by crossbreeding these bottom-fermenting strains for the first time. Sixteen a/a-type meiotic segregants from KY2645 and 12 α/α-type meiotic segregants from KY1247 were mixed, and cells resembling zygotes were isolated via micromanipulation. In total, 149 hybrids were obtained and verified by examining known single-nucleotide polymorphisms (SNPs) between the parental strains. A sporulation test showed that some of the hybrids were able to sporulate. Moreover, fermentation tests on a test-tube and pilot-plant scale identified two hybrids with production levels of isoamyl acetate and diacetyl that were almost the same as KY1247 and KY2645, respectively. Both of these hybrids produced satisfactory beer in terms of taste, flavor, and overall quality, comparable to that produced by the parental strains. Collectively, our results suggest that crossbreeding between bottom-fermenting yeast strains has the potential to increase the diversity of yeast strains available for brewing, and our method of isolating MCCs provides a huge advance for crossbreeding of bottom-fermenting yeast without using DNA recombination techniques.
Collapse
|
192
|
Xu D, Zhang H, Xi J, Jin Y, Chen Y, Guo L, Jin Z, Xu X. Improving bread aroma using low-temperature sourdough fermentation. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
193
|
Piornos J, Balagiannis DP, Methven L, Koussissi E, Brouwer E, Parker JK. Elucidating the Odor-Active Aroma Compounds in Alcohol-Free Beer and Their Contribution to the Worty Flavor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10088-10096. [PMID: 32799537 PMCID: PMC7499417 DOI: 10.1021/acs.jafc.0c03902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Alcohol-free beers (AFBs) brewed by cold-contact fermentation exhibit a flavor reminiscent of wort which affects consumer acceptability. The aims of this study were to identify the odor-active compounds in AFB and elucidate the contribution of these to the overall aroma and worty character of the beer. Using a sensomics approach, 27 odor-active aroma compounds were identified and quantitated using gas chromatography-mass spectrometry. The most odor-active compound was methional (boiled potato-like aroma), followed by 3-methylbutanal (cocoa-like), (E)-β-damascenone (apple, jam-like), 5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone (curry, spicy-like), and phenylacetaldehyde (floral, honey-like). The important contribution of these flavor compounds to the worty and honey aroma of AFB was determined by sensory assessment of the recombinate in a beer-like matrix with omission tests. The role of 5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone in AFB aroma was reported for the first time. The outcomes from this study are of relevance for the brewing industry to design strategies for the reduction of the wortiness of AFB.
Collapse
Affiliation(s)
- José
A. Piornos
- Department
of Food and Nutritional Sciences, University
of Reading, Reading RG6 6AP, U.K.
| | | | - Lisa Methven
- Department
of Food and Nutritional Sciences, University
of Reading, Reading RG6 6AP, U.K.
| | - Elisabeth Koussissi
- Global
Innovation & Research, Heineken Supply
Chain BV, Burgemeester Smeetsweg, 1, Zoeterwoude 2382 PH, The Netherlands
| | - Eric Brouwer
- Global
Innovation & Research, Heineken Supply
Chain BV, Burgemeester Smeetsweg, 1, Zoeterwoude 2382 PH, The Netherlands
| | - Jane K. Parker
- Department
of Food and Nutritional Sciences, University
of Reading, Reading RG6 6AP, U.K.
| |
Collapse
|
194
|
Noba S, Kikuchi K, Kato T, Kusunoki K, Toyota S, Kobayashi M, Uemura K, Nishiyama M. Elucidation of the Formation Mechanism of 2-Mercapto-3-Methyl-1-Butanol in Beer. Part II: Identification of the Key Enzymes in Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1812993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shigekuni Noba
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya-shi, Japan
| | - Kaori Kikuchi
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya-shi, Japan
| | - Taku Kato
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya-shi, Japan
| | - Keizo Kusunoki
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya-shi, Japan
| | - Saki Toyota
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya-shi, Japan
| | - Minoru Kobayashi
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya-shi, Japan
| | - Kazuhiko Uemura
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya-shi, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
195
|
Enlarging Knowledge on Lager Beer Volatile Metabolites Using Multidimensional Gas Chromatography. Foods 2020; 9:foods9091276. [PMID: 32932861 PMCID: PMC7554861 DOI: 10.3390/foods9091276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Foodomics, emergent field of metabolomics, has been applied to study food system processes, and it may be useful to understand sensorial food properties, among others, through foods metabolites profiling. Thus, as beer volatile components represent the major contributors for beer overall and peculiar aroma properties, this work intends to perform an in-depth profiling of lager beer volatile metabolites and to generate new data that may contribute for molecules’ identification, by using multidimensional gas chromatography. A set of lager beers were used as case-study, and 329 volatile metabolites were determined, distributed over 8 chemical families: acids, alcohols, esters, monoterpenic compounds, norisoprenoids, sesquiterpenic compounds, sulfur compounds, and volatile phenols. From these, 96 compounds are reported for the first time in the lager beer volatile composition. Around half of them were common to all beers under study. Clustering analysis allowed a beer typing according to production system: macro- and microbrewer beers. Monoterpenic and sesquiterpenic compounds were the chemical families that showed wide range of chemical structures, which may contribute for the samples’ peculiar aroma characteristics. In summary, as far as we know, this study presents the most in-depth lager beer volatile composition, which may be further used in several approaches, namely, in beer quality control, monitoring brewing steps, raw materials composition, among others.
Collapse
|
196
|
Abstract
Bottle conditioning refers to a method of adding fermenting wort or yeast suspension in sugar solution into beer in its final package. Additionally denoted as bottle refermentation, this technique has been originally developed to assure beer carbonation, and has further significance related to formation of distinctive sensory attributes and enhancement of sensory stability, which are the phenomena associated with ongoing yeast metabolic activities in the final package. This review covers historical development of the method, describes metabolic pathways applied during refermentation, and explains practical aspects of the refermentation process management. Furthermore, an overview of the traditional and novel approaches of bottle conditioning with mixed yeast bacterial cultures and its impact on the properties of final beer is provided.
Collapse
|
197
|
Effect of pretreatment on the ethanol and fusel alcohol production during fermentation of sugarcane press-mud. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
198
|
Bianchi F, Spitaler U, Robatscher P, Vogel RF, Schmidt S, Eisenstecken D. Comparative Lipidomics of Different Yeast Species Associated to Drosophila suzukii. Metabolites 2020; 10:E352. [PMID: 32872268 PMCID: PMC7569767 DOI: 10.3390/metabo10090352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Yeasts constitute a dietary source for the spotted wing drosophila (SWD) and produce compounds that attract these flies. The study of the chemical composition of the yeast communities associated with SWD should therefore help to understand the relationship between the biology of the insect and the yeast's metabolism. In the present study, the lipidome of five yeast species isolated from grapes infested by SWD (three Hanseniaspora uvarum strains, Candida sp., Issatchenkia terricola, Metschnikowia pulcherrima and Saccharomycopsis vini) and a laboratory strain of Saccharomyces cerevisiae was explored using an untargeted approach. Additionally, the lipid profile of two species, S. cerevisiae and H. uvarum, which were reported to elicit different responses on SWD flies based on feeding and behavioral trials, was compared with a chemical enrichment approach. Overall, 171 lipids were annotated. The yeast species could be distinguished from each other based on their lipid profile, except for the three strains of H. uvarum, which were very similar to each other. The chemical enrichment analysis emphasized diversities between S. cerevisiae and H. uvarum, that could not be detected based on their global lipid profile. The information concerning differences between species in their lipidome may be of interest to future entomological studies concerning the yeast-insect interaction and could help to explain the responses of SWD to diverse yeast species.
Collapse
Affiliation(s)
- Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
| | - Rudi F. Vogel
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
| | - Daniela Eisenstecken
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| |
Collapse
|
199
|
Johansson L, Nikulin J, Juvonen R, Krogerus K, Magalhães F, Mikkelson A, Nuppunen-Puputti M, Sohlberg E, de Francesco G, Perretti G, Gibson B. Sourdough cultures as reservoirs of maltose-negative yeasts for low-alcohol beer brewing. Food Microbiol 2020; 94:103629. [PMID: 33279061 DOI: 10.1016/j.fm.2020.103629] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
De novo sourdough cultures were here assessed for their potential as sources of yeast strains for low-alcohol beer brewing. NGS analysis revealed an abundance of ascomycete yeasts, with some influence of grain type on fungal community composition. Ten different ascomycete yeast species were isolated from different sourdough types (including wheat, rye, and barley) and seven of these were screened for a number of brewing-relevant phenotypes. All seven were maltose-negative and produced less than 1% (v/v) alcohol from a 12 °Plato wort in initial fermentation trials. Strains were further screened for their bioflavouring potential (production of volatile aromas and phenolic notes, reduction of wort aldehydes), stress tolerance (temperature extremes, osmotic stress and ethanol tolerance) and flocculence. Based on these criteria, two species (Kazachstania servazzii and Pichia fermentans) were selected for 10 L-scale fermentation trials and sensory analysis of beers. The latter species was considered particularly suitable for production of low-alcohol wheat beers due to its production of the spice/clove aroma 4-vinylguaiacol, while the former showed potential for lager-style beers due to its clean flavour profile and tolerance to low temperature conditions.
Collapse
Affiliation(s)
- Linnea Johansson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland; Metropolia University of Applied Sciences, Biotechnology and Food Engineering, P.O. Box 4000, FI-00079, Metropolia, Finland
| | - Jarkko Nikulin
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland; Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 8000, FI-90014, Oulun, Yliopisto, Finland
| | - Riikka Juvonen
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Kristoffer Krogerus
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Atte Mikkelson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Maija Nuppunen-Puputti
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Elina Sohlberg
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Giovanni de Francesco
- Italian Brewing Research Centre, University of Perugia, Via San Costanzo, 06126, Perugia, Italy
| | - Giuseppe Perretti
- Italian Brewing Research Centre, University of Perugia, Via San Costanzo, 06126, Perugia, Italy
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland.
| |
Collapse
|
200
|
Brendel S, Hofmann T, Granvogl M. Dry-Hopping to Modify the Aroma of Alcohol-Free Beer on a Molecular Level-Loss and Transfer of Odor-Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8602-8612. [PMID: 32657584 DOI: 10.1021/acs.jafc.0c01907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are mainly two options for the dealcoholization of beer: evaporation of ethanol by heat treatment, whereby desired aroma-active compounds are also removed, and stopped fermentation that leads to beers still containing high amounts of unfermented sugar in parallel with lower amounts of aroma-active fermentation products. Thus, dry-hopping could be an opportunity to compensate for these aroma deficiencies. Therefore, following the sensomics approach, odorants were characterized in dry-hopped (Hallertauer Mandarina Bavaria, Hallertauer Cascade, or Hallertauer Mittelfrüh) top- and bottom-fermented alcohol-free beers either after thermal dealcoholization or stopped fermentation. Twenty-three odorants were quantitated via stable isotope dilution analysis, and odor activity values (OAVs; ratio of concentration to odor threshold) were calculated. Thermally dealcoholized samples showed high losses (up to 100%) of key odorants like 3-methyl-1-butanol or 3-methylbutyl acetate. During stopped fermentation, aroma compounds like ethyl butanoate or 2-phenylethanol were formed in relevant concentrations, leading to OAVs ≥ 1, but the amounts were significantly lower compared to beers with normal alcohol contents. For hop-derived odorants (linalool, geraniol, myrcene, and esters), transfer rates between 20 and 90% were found, leading to OAVs ≥ 1 in beer. Furthermore, hop addition apparently induced the formation of ethyl esters of hop-derived monocarboxylic acids.
Collapse
Affiliation(s)
- Sabrina Brendel
- Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lise-Meitner-Straße 34, D-85354 Freising, Germany
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Michael Granvogl
- Institut für Lebensmittelchemie, Fachgebiet Lebensmittelchemie und Analytische Chemie (170a), Fakultät Naturwissenschaften, Universität Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| |
Collapse
|