151
|
68Ga-labelled NOTA-RGD-GE11 peptide for dual integrin and EGFR-targeted tumour imaging. Nucl Med Biol 2018; 68-69:22-30. [PMID: 30578136 DOI: 10.1016/j.nucmedbio.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Multiple peptide receptors are co-expressed in many types of cancers. Arg-Gly-Asp (RGD) and GE11 peptides specifically target integrin αVβ3 and EGFR, respectively. Recently, we designed and synthesized a heterodimer peptide NOTA-c(RGDyK)-GE11 (NOTA-RGD-GE11). The aim of this study was to investigate the characteristics of NOTA-RGD-GE11 for dual receptor imaging. METHODS NOTA-RGD-GE11 heterodimer was labelled with 68Ga. The dual receptor binding affinity was investigated by antibody competition binding assay. The in vitro and in vivo characteristics of [68Ga]Ga-NOTA-RGD-GE11 were investigated and compared with that of monomeric peptides [68Ga]Ga-NOTA-RGD and [68Ga]Ga-NOTA-GE11. RESULTS NOTA-RGD-GE11 had binding affinities with both integrin αVβ3 and EGFR. The dual receptor targeting property of [68Ga]Ga-NOTA-RGD-GE11 was validated by blocking studies in a NCI-H292 tumour model. [68Ga]Ga-NOTA-RGD-GE11 showed higher tumour uptake than [68Ga]Ga-NOTA-RGD and [68Ga]Ga-NOTA-GE11 in biodistribution and PET/CT imaging studies. CONCLUSION The dual receptor targeting and enhanced tumour uptake of [68Ga]Ga-NOTA-RGD-GE11 warrant its further investigation for dual integrin αVβ3 and EGFR-targeted tumour imaging.
Collapse
|
152
|
Rezazadeh F, Sadeghzadeh N. Tumor targeting with 99m Tc radiolabeled peptides: Clinical application and recent development. Chem Biol Drug Des 2018; 93:205-221. [PMID: 30299570 DOI: 10.1111/cbdd.13413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 09/23/2018] [Indexed: 01/16/2023]
Abstract
Targeting overexpressed receptors on the cancer cells with radiolabeled peptides has become very important in nuclear oncology in the recent years. Peptides are small and have easy preparation and easy radiolabeling protocol with no side-effect and toxicity. These properties made them a valuable tool for tumor targeting. Based on the successful imaging of neuroendocrine tumors with 111 In-octreotide, other receptor-targeting peptides such as bombesin (BBN), cholecystokinin/gastrin analogues, neurotensin analogues, glucagon-like peptide-1, and RGD peptides are currently under development or undergoing clinical trials. The most frequently used radionuclides for tumor imaging are 99m Tc and 111 In for single-photon emission computed tomography and 68 Ga and 18 F for positron emission tomography imaging. This review presents some of the 99m Tc-labeled peptides, with regard to their potential for radionuclide imaging of tumors in clinical and preclinical application.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
153
|
Hoque M, Ali S, Hoda M. Current status of G-protein coupled receptors as potential targets against type 2 diabetes mellitus. Int J Biol Macromol 2018; 118:2237-2244. [DOI: 10.1016/j.ijbiomac.2018.07.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/09/2018] [Accepted: 07/14/2018] [Indexed: 12/15/2022]
|
154
|
Chamberlain CE, German MS, Yang K, Wang J, VanBrocklin H, Regan M, Shokat KM, Ducker GS, Kim GE, Hann B, Donner DB, Warren RS, Venook AP, Bergsland EK, Lee D, Wang Y, Nakakura EK. A Patient-derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-resistant Tumors. Mol Cancer Ther 2018; 17:2702-2709. [PMID: 30254185 DOI: 10.1158/1535-7163.mct-17-1204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Patients with pancreatic neuroendocrine tumors (PNET) commonly develop advanced disease and require systemic therapy. However, treatment options remain limited, in part, because experimental models that reliably emulate PNET disease are lacking. We therefore developed a patient-derived xenograft model of PNET (PDX-PNET), which we then used to evaluate two mTOR inhibitor drugs: FDA-approved everolimus and the investigational new drug sapanisertib. PDX-PNETs maintained a PNET morphology and PNET-specific gene expression signature with serial passage. PDX-PNETs also harbored mutations in genes previously associated with PNETs (such as MEN1 and PTEN), displayed activation of the mTOR pathway, and could be detected by Gallium-68 DOTATATE PET-CT. Treatment of PDX-PNETs with either everolimus or sapanisertib strongly inhibited growth. As seen in patients, some PDX-PNETs developed resistance to everolimus. However, sapanisertib, a more potent inhibitor of the mTOR pathway, caused tumor shrinkage in most everolimus-resistant tumors. Our PDX-PNET model is the first available, validated PDX model for PNET, and preclinical data from the use of this model suggest that sapanisertib may be an effective new treatment option for patients with PNET or everolimus-resistant PNET.
Collapse
Affiliation(s)
- Chester E Chamberlain
- Center for Regeneration Medicine, University of California, San Francisco, California.
- Diabetes Center, University of California, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Michael S German
- Center for Regeneration Medicine, University of California, San Francisco, California
- Diabetes Center, University of California, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Katherine Yang
- Center for Regeneration Medicine, University of California, San Francisco, California
- Diabetes Center, University of California, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Jason Wang
- Center for Regeneration Medicine, University of California, San Francisco, California
- Diabetes Center, University of California, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Melanie Regan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kevan M Shokat
- Department of Cellular Molecular Pharmacology, University of California, San Francisco, California
| | - Gregory S Ducker
- Department of Cellular Molecular Pharmacology, University of California, San Francisco, California
| | - Grace E Kim
- Department of Pathology, University of California, San Francisco, California
| | - Byron Hann
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California
| | - David B Donner
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Surgery, University of California, San Francisco, California
| | - Robert S Warren
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Surgery, University of California, San Francisco, California
| | - Alan P Venook
- Department of Medicine, University of California, San Francisco, California
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California
| | - Emily K Bergsland
- Department of Medicine, University of California, San Francisco, California
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California
| | - Danny Lee
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Surgery, University of California, San Francisco, California
| | - Yucheng Wang
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Surgery, University of California, San Francisco, California
| | - Eric K Nakakura
- Helen Diller Family HDF Comprehensive Cancer Center, University of California, San Francisco, California.
- Department of Surgery, University of California, San Francisco, California
| |
Collapse
|
155
|
Section Editor's Notebook:68Ga- and177Lu-DOTATATE Theragnostics—Personalized Care and Improving Patient Outcomes. AJR Am J Roentgenol 2018; 211:244-245. [DOI: 10.2214/ajr.18.20279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
156
|
Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur J Nucl Med Mol Imaging 2018; 45:2318-2327. [DOI: 10.1007/s00259-018-4101-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
|
157
|
Vall-Sagarra A, Litau S, Decristoforo C, Wängler B, Schirrmacher R, Fricker G, Wängler C. Design, Synthesis, In Vitro, and Initial In Vivo Evaluation of Heterobivalent Peptidic Ligands Targeting Both NPY(Y₁)- and GRP-Receptors-An Improvement for Breast Cancer Imaging? Pharmaceuticals (Basel) 2018; 11:ph11030065. [PMID: 29973529 PMCID: PMC6161111 DOI: 10.3390/ph11030065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022] Open
Abstract
Heterobivalent peptidic ligands (HBPLs), designed to address two different receptors independently, are highly promising tumor imaging agents. For example, breast cancer has been shown to concomitantly and complementarily overexpress the neuropeptide Y receptor subtype 1 (NPY(Y1)R) as well as the gastrin-releasing peptide receptor (GRPR). Thus, radiolabeled HBPLs being able to bind these two receptors should exhibit an improved tumor targeting efficiency compared to monospecific ligands. We developed here such bispecific HBPLs and radiolabeled them with 68Ga, achieving high radiochemical yields, purities, and molar activities. We evaluated the HBPLs and their monospecific reference peptides in vitro regarding stability and uptake into different breast cancer cell lines and found that the 68Ga-HBPLs were efficiently taken up via the GRPR. We also performed in vivo PET/CT imaging and ex vivo biodistribution studies in T-47D tumor-bearing mice for the most promising 68Ga-HBPL and compared the results to those obtained for its scrambled analogs. The tumors could easily be visualized by the newly developed 68Ga-HBPL and considerably higher tumor uptakes and tumor-to-background ratios were obtained compared to the scrambled analogs in and ex vivo. These results demonstrate the general feasibility of the approach to use bispecific radioligands for in vivo imaging of breast cancer.
Collapse
Affiliation(s)
- Alicia Vall-Sagarra
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Clemens Decristoforo
- Department of Nuclear Medicine, University Hospital Innsbruck, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ralf Schirrmacher
- Department of Oncology, Division Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany.
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
158
|
Lindner S, Fiedler L, Wängler B, Bartenstein P, Schirrmacher R, Wängler C. Design, synthesis and in vitro evaluation of heterobivalent peptidic radioligands targeting both GRP- and VPAC1-Receptors concomitantly overexpressed on various malignancies – Is the concept feasible? Eur J Med Chem 2018; 155:84-95. [DOI: 10.1016/j.ejmech.2018.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
|
159
|
Vitale G, Dicitore A, Sciammarella C, Di Molfetta S, Rubino M, Faggiano A, Colao A. Pasireotide in the treatment of neuroendocrine tumors: a review of the literature. Endocr Relat Cancer 2018; 25:R351-R364. [PMID: 29643113 DOI: 10.1530/erc-18-0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
Abstract
Somatostatin analogs have an important role in the medical therapy of neuroendocrine tumors (NETs). Octreotide and lanreotide, both somatostatin analogs binding with high affinity for the somatostatin receptor (SSTR)2, can control symptoms in functional NETs. In addition, these compounds, because of their antiproliferative effects, can stabilize growth of well-differentiated NETs. Pasireotide is a novel multireceptor-targeted somatostatin analog with high affinity for SSTR1, 2, 3, and 5. This review provides an overview of the state of the art of pasireotide in the treatment of NETs, with the aim of addressing clinical relevance and future perspectives for this molecule in the management of NETs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Geriatric and Oncologic Neuroendocrinology ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Concetta Sciammarella
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico II, Naples, Italy
| | - Sergio Di Molfetta
- Department of Emergency and Organ TransplantationSection of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Manila Rubino
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine TumorsEuropean Institute of Oncology, IEO, Milan, Italy
| | - Antongiulio Faggiano
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico II, Naples, Italy
| |
Collapse
|
160
|
Raj N, Fazio N, Strosberg J. Biology and Systemic Treatment of Advanced Gastroenteropancreatic Neuroendocrine Tumors. Am Soc Clin Oncol Educ Book 2018; 38:292-299. [PMID: 30231344 DOI: 10.1200/edbk_200893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, there have been important scientific advances in the biologic characterization of neuroendocrine neoplasms and in their treatment. This review will describe these scientific advances, the evolving systemic treatment approaches, and important topics to be addressed in future research.
Collapse
Affiliation(s)
- Nitya Raj
- From the Division of Solid Tumor Oncology, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Milan, Italy; Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Nicola Fazio
- From the Division of Solid Tumor Oncology, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Milan, Italy; Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Jonathan Strosberg
- From the Division of Solid Tumor Oncology, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Milan, Italy; Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
161
|
Gallo M, Ruggeri RM, Muscogiuri G, Pizza G, Faggiano A, Colao A. Diabetes and pancreatic neuroendocrine tumours: Which interplays, if any? Cancer Treat Rev 2018; 67:1-9. [PMID: 29746922 DOI: 10.1016/j.ctrv.2018.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023]
Abstract
Pancreatic neuroendocrine tumours (PanNETs) represent an uncommon type of pancreatic neoplasm, whose incidence is increasing worldwide. As per exocrine pancreatic cancer, a relationship seems to exist between PanNETs and glycaemic alterations. Diabetes mellitus (DM) or impaired glucose tolerance often occurs in PanNET patients as a consequence of hormonal hypersecretion by the tumour, specifically affecting glucose metabolism, or due to tumour mass effects. On the other hand, pre-existing DM may represent a risk factor for developing PanNETs and is likely to worsen the prognosis of such patients. Moreover, the surgical and/or pharmacological treatment of the tumour itself may impair glucose tolerance, as well as antidiabetic therapies may impact tumour behaviour and patients outcome. Differently from exocrine pancreatic tumours, few data are available for PanNETs as yet on this issue. In the present review, the bidirectional association between glycaemic disorders and PanNETs has been extensively examined, since the co-existence of both diseases in the same individual represents a further challenge for the clinical management of PanNETs.
Collapse
Affiliation(s)
- Marco Gallo
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Messina, Italy
| | | | - Genoveffa Pizza
- Unit of Internal Medicine, Landolfi Hospital, Solofra, Avellino, Italy
| | - Antongiulio Faggiano
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| |
Collapse
|
162
|
Tan TH, Boey CY, Lee BN. Impact of 68Ga-DOTA-Peptide PET/CT on the Management of Gastrointestinal Neuroendocrine Tumour (GI-NET): Malaysian National Referral Centre Experience. Nucl Med Mol Imaging 2018; 52:119-124. [PMID: 29662560 DOI: 10.1007/s13139-017-0496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Purpose The National Cancer Institute is the only referral centre in Malaysia that provides 68Ga-DOTA-peptide imaging. The purpose of this study is to determine the impact of 68Ga-DOTA-peptide PET/CT on the management of gastrointestinal neuroendocrine tumours (GI-NET). Materials and Methods A cross-sectional study was performed to review the impact of 68Ga-DOTA-peptide (68Ga-DOTATATE or 68Ga-DOTATOC) PET/CT on patients with biopsy-proven GI-NET between January 2011 and December 2015. Suspected NET was excluded. Demographic data, tumoral characteristics, change of disease stage, pre-PET intended management and post-PET management were evaluated. Results Over a 5-year period, 82 studies of 68Ga-DOTA-peptide PET/CT were performed on 44 GI-NET patients. The most common primary site was the rectum (50.0%) followed by the small bowel, stomach and colon. Using WHO 2010 grading, 40.9% of patients had low-grade (G1) tumour, 22.7% intermediate (G2) and 4.5% high (G3). Of ten patients scheduled for pre-operative staging, 68Ga-DOTA-peptide PET/CT only led to therapeutic change in three patients. Furthermore, false-negative results of 68Ga-DOTA-peptide PET/CT were reported in one patient after surgical confirmation. However, therapeutic changes were seen in 20/36 patients (55.6%) scheduled for post-surgical restaging or assessment of somatostatin analogue (SSA) eligibility. When 68Ga-DOTA-peptide PET/CT was used for monitoring disease progress during systemic treatment (sandostatin, chemotherapy, everolimus and PRRT) in metastatic disease, impact on management modification was seen in 19/36 patients (52.8%), of which 84.2% had inter-modality change (switch to everolimus, chemotherapy or PRRT) and 15.8% had intra-modality change (increased SSA dosage). Conclusions 68Ga-DOTA-peptide PET/CT has a significant impact on management decisions in GI-NET patients as it can provide additional information on occult metastasis/equivocal lesions and supply the clinician an opportunity to select patients for targeted therapy.
Collapse
Affiliation(s)
- Teik Hin Tan
- Nuclear Medicine Centre, Sunway Medical Centre, No 5, Jalan Lagoon Selatan, 74500 Bandar Sunway, Selangor Malaysia
| | - Ching Yeen Boey
- 2Department of Nuclear Medicine, National Cancer Institute, No 4, Jalan P7, Presint 7, 62250 Putrajaya, Malaysia
| | - Boon Nang Lee
- 2Department of Nuclear Medicine, National Cancer Institute, No 4, Jalan P7, Presint 7, 62250 Putrajaya, Malaysia
| |
Collapse
|
163
|
Lucente E, Liu H, Liu Y, Hu X, Lacivita E, Leopoldo M, Cheng Z. Novel 64Cu Labeled RGD2-BBN Heterotrimers for PET Imaging of Prostate Cancer. Bioconjug Chem 2018; 29:1595-1604. [DOI: 10.1021/acs.bioconjchem.8b00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ermelinda Lucente
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305-5344, United States
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Hongguang Liu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305-5344, United States
| | - Yang Liu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305-5344, United States
| | - Xiang Hu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305-5344, United States
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305-5344, United States
| |
Collapse
|
164
|
Willekens SMA, Joosten L, Boerman OC, Brom M, Gotthardt M. Characterization of 111In-labeled Glucose-Dependent Insulinotropic Polypeptide as a Radiotracer for Neuroendocrine Tumors. Sci Rep 2018; 8:2948. [PMID: 29440684 PMCID: PMC5811606 DOI: 10.1038/s41598-018-21259-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/04/2022] Open
Abstract
Somatostatin receptor targeting is considered the standard nuclear medicine technique for visualization of neuroendocrine tumors (NET). Since not all NETs over-express somatostatin receptors, the search for novel targets, visualizing these NETs, is ongoing. Many NETs, expressing low somatostatin receptor levels, express glucose-dependent insulinotropic polypeptide (GIP) receptors (GIPR). Here, we evaluated the performance of [Lys37(DTPA)]N-acetyl-GIP1-42, a newly synthesized GIP analogue to investigate whether NET imaging via GIPR targeting is feasible. Therefore, [Lys37(DTPA)]N-acetyl-GIP1-42 was radiolabeled with 111In with specific activity up to 1.2 TBq/µmol and both in vitro and in vivo receptor targeting properties were examined. In vitro, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 showed receptor-mediated binding to BHK-GIPR positive cells, NES2Y cells and isolated islets. In vivo, both NES2Y and GIPR-transfected BHK tumors were visualized on SPECT/CT. Furthermore, co-administration of an excess unlabeled GIP1-42 lowered tracer uptake from 0.7 ± 0.2%ID/g to 0.6 ± 0.01%ID/g (p = 0.78) in NES2Y tumors and significantly lowered tracer uptake from 3.3 ± 0.8 to 0.8 ± 0.2%ID/g (p = 0.0001) in GIPR-transfected BHK tumors. In conclusion, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 shows receptor-mediated binding in various models. Furthermore, both GIPR-transfected BHK tumors and NES2Y tumors were visible on SPECT/CT using this tracer. Therefore, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 SPECT seems promising for visualization of somatostatin receptor negative NETs.
Collapse
Affiliation(s)
- Stefanie M A Willekens
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands. .,Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals and KU Leuven, Leuven, Belgium.
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
165
|
Liu F, Liu T, Xu X, Guo X, Li N, Xiong C, Li C, Zhu H, Yang Z. Design, Synthesis, and Biological Evaluation of 68Ga-DOTA-PA1 for Lung Cancer: A Novel PET Tracer for Multiple Somatostatin Receptor Imaging. Mol Pharm 2018; 15:619-628. [PMID: 29278911 DOI: 10.1021/acs.molpharmaceut.7b00963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most of the radiolabeled somatostatin analogues (SSAs) are specific for subtype somatostatin receptor 2 (SSTR2). Lack of ligands targeting other subtypes of SSTRs, especially SSTR1, SSTR3, and SSTR5, limited their applications in tumors of low SSTR2 expression, including lung tumor. In this study, we aimed to design and synthesize a positron emission tomography (PET) radiotracer targeting multi-subtypes of SSTRs for PET imaging. PA1 peptide and its conjugate with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator or fluorescein isothiocyanate (FITC) at the N-terminal of the lysine position were synthesized. 68Ga was chelated to DOTA-PA1 to obtain 68Ga-DOTA-PA1 radiotracer. The stability, lipophilicity, binding affinity, and binding specificity of 68Ga-DOTA-PA1 and FITC-PA1 were evaluated by various in vitro experiments. Micro-PET imaging of 68Ga-DOTA-PA1 was performed in nude mice bearing A549 lung adenocarcinoma, as compared with 68Ga-DOTA-(Tyr3)-octreotate (68Ga-DOTA-TATE). Histological analysis of SSTR expression in A549 tumor tissues and human tumor tissues was conducted using immunofluorescence staining and immunohistochemical assay. 68Ga-DOTA-PA1 had high radiochemical yield and radiochemical purity of over 95% and 99%, respectively. The radiotracer was stable in vitro in different buffers over a 2 h incubation period. Cell uptake of 68Ga-DOTA-PA1 was 1.31-, 1.33-, and 1.90-fold that of 68Ga-DOTA-TATE, which has high binding affinity only for SSTR2, after 2 h incubation in H520, PG, and A549 lung cancer cell lines, respectively. Micro-PET images of 68Ga-DOTA-PA1 showed that the PET imaging signal correlated with the total expression of SSTRs, instead of SSTR2 only, which was measured by Western blotting and immunofluorescence analysis in mice bearing A549 tumors. In summary, a novel PET radiotracer, 68Ga-DOTA-PA1, targeting multi-subtypes of SSTRs, was successfully synthesized and was confirmed to be useful for PET imaging. It may have potential as a noninvasive PET radiotracer for imaging SSTR-positive tumors.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, P. R. China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, P. R. China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, P. R. China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, P. R. China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, P. R. China
| | - Chiyi Xiong
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center , Houston, Texas 77030, United States
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center , Houston, Texas 77030, United States
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, P. R. China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, P. R. China
| |
Collapse
|
166
|
Mossman AK, Pattison DA, Hicks RJ, Hamblin PS, Yates CJ. Localisation of occult extra-pancreatic insulinoma using glucagon-like peptide-1 receptor molecular imaging. Intern Med J 2018; 48:97-98. [DOI: 10.1111/imj.13664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Anna K. Mossman
- Endocrinology and Diabetes; Western Health; Melbourne Victoria Australia
| | - David A. Pattison
- Centre for Cancer Imaging; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
- Endocrinology Service; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Rodney J. Hicks
- Centre for Cancer Imaging; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
- Department of Oncology; The Sir Peter MacCallum, University of Melbourne; Melbourne Victoria Australia
| | - Peter S. Hamblin
- Endocrinology and Diabetes; Western Health; Melbourne Victoria Australia
- Endocrinology and Diabetes; Alfred Health; Melbourne Victoria Australia
- Department of Medicine, Faculty of Medicine, Nursing and Health Sciences; Monash University; Melbourne Victoria Australia
- Department of Medicine, Melbourne Medical School - Western Precinct; University of Melbourne; Melbourne Victoria Australia
| | - Christopher J. Yates
- Endocrinology and Diabetes; Western Health; Melbourne Victoria Australia
- Department of Diabetes and Endocrinology; Melbourne Health; Melbourne Victoria Australia
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
167
|
Dialer LO, Jodal A, Schibli R, Ametamey SM, Béhé M. Radiosynthesis and evaluation of an 18F-labeled silicon containing exendin-4 peptide as a PET probe for imaging insulinoma. EJNMMI Radiopharm Chem 2018; 3:1. [PMID: 29503858 PMCID: PMC5824708 DOI: 10.1186/s41181-017-0036-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/14/2017] [Indexed: 12/05/2022] Open
Abstract
Background Analogues of exendin-4 have been radiolabeled for imaging the glucagon-like peptide type 1 receptors (GLP-1R) which are overexpressed in insulinoma. The aim of this research was to synthesize an 18F–labeled silicon containing exendin-4 peptide (18F-2) and to evaluate its in vitro and in vivo behavior in CHL-GLP-1 receptor positive tumor-bearing mice. 18F–labeled silicon containing exendin-4 peptide (18F-2) was prepared via one-step nucleophilic substitution of a silane precursor with 18F–fluoride in the presence of acetic acid and K222. 18F-2 was then administered to tumor-bearing mice for PET imaging and ex vivo biodistribution experiments. Results 18F-2 was produced in a radiochemical yield (decay corrected) of 1.5% and a molar activity of max. 16 GBq/μmol. The GLP-1R positive tumors were clearly visualized by PET imaging. Biodistribution studies showed reduced uptake of 18F-2 in the kidneys compared to radiometal labeled exendin-4 derivatives. The radiotracer showed specific tumour uptake which remained steady over 2 h. Conclusions This exendin-4 analogue, 18F-2, is a potential probe for imaging GLP-1R positive tumors.
Collapse
Affiliation(s)
- Lukas O Dialer
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland
| | - Andreas Jodal
- 2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Roger Schibli
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland.,2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Simon M Ametamey
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- 2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
168
|
Role of Functional Imaging in the Diagnosis of Neuroendocrine Tumors. Updates Surg 2018. [DOI: 10.1007/978-88-470-3955-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
169
|
Tirosh A, Kebebew E. The utility of 68Ga-DOTATATE positron-emission tomography/computed tomography in the diagnosis, management, follow-up and prognosis of neuroendocrine tumors. Future Oncol 2018; 14:111-122. [PMID: 29072093 PMCID: PMC5967363 DOI: 10.2217/fon-2017-0393] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms that emerge mainly from the GI tract, pancreas and respiratory tract. The incidence of NETs has increased more than sixfold in the last decades. NETs typically express somatostatin receptors on their cell surface, which can be targeted by 'cold' somatostatin analogs for therapy or by 'hot' radiolabeled somatostatin analogs for tumor localization and treatment. 68-Gallium-DOTA peptides (DOTATATE, DOTATOC, DOTANOC) positron emission tomography/computed tomography is a highly accurate imaging modality for NETs that has been found to be more sensitive for NET detection than other imaging modalities. In the current review, we will discuss the clinical utility of 68-Gallium-DOTATATE positron emission tomography/computed tomography for the diagnosis and management of patients with NETs.
Collapse
Affiliation(s)
- Amit Tirosh
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Electron Kebebew
- Sackler Faculty of Medicine, Tel Aviv University, Israel
- Department of Surgery, The George Washington University School of Medicine & Health Sciences, Washington DC, USA
| |
Collapse
|
170
|
Joosten L, Brom M, Peeters H, Heskamp S, Béhé M, Boerman O, Gotthardt M. Enhanced Specific Activity by Multichelation of Exendin-3 Leads To Improved Image Quality and In Vivo Beta Cell Imaging. Mol Pharm 2017; 15:486-494. [PMID: 29226686 PMCID: PMC6150723 DOI: 10.1021/acs.molpharmaceut.7b00853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) targeting using radiolabeled exendin is a promising approach to noninvasively visualize and determine beta cell mass (BCM), which could help to unravel the pathophysiology of diabetes. However, saturation of the GLP-1R on beta cells occurs at low peptide doses, since the number of receptors expressed under physiological conditions is low. Therefore, tracers with high specific activities are required to sensitively image small variations in BCM. Here, we describe a novel exendin-3-based radiotracer with multiple chelators and determine its potential for in vivo beta cell imaging. Exendin-3 was modified by adding six lysine residues C-terminally conjugated with one, two, or six DTPA moieties. All compounds were labeled with 111In and their GLP-1R affinity was determined in vitro using GLP-1R expressing cells. The in vivo behavior of the 111In-labeled tracers was examined in BALB/c nude mice with a subcutaneous GLP-1R expressing tumor (INS-1). Brown Norway rats were used for SPECT visualization of the pancreatic BCM. Addition of six lysine and six DTPA residues (hexendin(40-45)) resulted in a 7-fold increase in specific activity (from 0.73 GBq/nmol to 5.54 GBq/nmol). IC50 values varied between 5.2 and 69.5 nM. All compounds with two or six lysine and DTPA residues had a significantly lower receptor affinity than [Lys40(DTPA)]exendin-3 (4.4 nM, p < 0.05). The biodistribution in mice revealed no significant decrease in pancreatic uptake after addition of six lysine and DTPA molecules. Hexendin(40-45) showed a 6-fold increase in absolute 111In uptake in the pancreas of Brown Norway rats compared to [Lys40(DTPA)]exendin-3 (182.7 ± 42.3 kBq vs 28.8 ± 6.0 kBq, p < 0.001). Visualization of the pancreas on SPECT was improved using hexendin(40-45), due to the higher count rate, achieved at the same peptide dose. In conclusion, hexendin(40-45) showed an improved visualization of the pancreas with SPECT. This tracer holds promise to sensitively and specifically detect small variations in BCM.
Collapse
Affiliation(s)
- Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanneke Peeters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut , 5232 Villigen, Switzerland
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
171
|
Nicolas GP, Schreiter N, Kaul F, Uiters J, Bouterfa H, Kaufmann J, Erlanger TE, Cathomas R, Christ E, Fani M, Wild D. Sensitivity Comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase II Imaging Study. J Nucl Med 2017; 59:915-921. [DOI: 10.2967/jnumed.117.199760] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
|
172
|
Ocampo-García BE, Santos-Cuevas CL, Luna-Gutiérrez MA, Ignacio-Alvarez E, Pedraza-López M, Manzano-Mayoral C. 99mTc-exendin(9-39)/octreotide. Nucl Med Commun 2017; 38:912-918. [DOI: 10.1097/mnm.0000000000000736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
173
|
Bodei L, Ćwikla JB, Kidd M, Modlin IM. The role of peptide receptor radionuclide therapy in advanced/metastatic thoracic neuroendocrine tumors. J Thorac Dis 2017; 9:S1511-S1523. [PMID: 29201454 DOI: 10.21037/jtd.2017.09.82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary (BP) neuroendocrine tumors (NETs) comprise a spectrum of tumors that develop from respiratory neuroendocrine cells and represent ~20% of all lung neoplasia and ~30% of all NETs. The only curative treatment is surgical resection. For well-differentiated forms (typical and atypical carcinoids), medical therapy ranges from bioactive agents (e.g., somatostatin analogs), to biotherapy (e.g., everolimus), standard chemotherapy and peptide receptor radionuclide therapy (PRRT). PRRT with radiolabeled somatostatin analogs is an innovative treatment for inoperable or metastasized, well/moderately differentiated, NET. Initially developed for gastroenteropancreatic tumors, it is also used in BP-NET because these tumors express the target receptor. Two decades of clinical trials with either 90Y-octreotide or 177Lu-octreotate, have demonstrated the efficacy of PRRT, as measured by tumor response, symptom relief and quality of life (QoL) improvement. PRRT with 90Y- and 177Lu-peptides is generally well-tolerated and adverse events (kidney and bone marrow) are modest. The paper illustrates the history, technique and results of this treatment in the few dedicated studies and the many BP NET cases embedded within larger NET series. The limitations of the present body of information are addressed, and the future perspectives, in terms of prospective studies required to define the position of PRRT in the therapeutic algorithm of BP-NETs and the need for predictive molecular biomarkers to guide future studies, are discussed.
Collapse
Affiliation(s)
- Lisa Bodei
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarosław B Ćwikla
- Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, CT, USA
| | - Irvin M Modlin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
174
|
Nicolas GP, Beykan S, Bouterfa H, Kaufmann J, Bauman A, Lassmann M, Reubi JC, Rivier JE, Maecke HR, Fani M, Wild D. Safety, Biodistribution, and Radiation Dosimetry of 68Ga-OPS202 in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase I Imaging Study. J Nucl Med 2017; 59:909-914. [DOI: 10.2967/jnumed.117.199737] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/30/2017] [Indexed: 12/24/2022] Open
|
175
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Halldin C, Gulyás BZ. PET probes for imaging pancreatic islet cells. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
176
|
Abstract
Intestinal neuroendocrine tumors (NETs) constitute a heterogeneous group with duodenal, small intestinal, colonic and rectal NETs. They constitute more than half of all NETs, with the highest frequencies in the rectum, small intestine, and colon. The tumor biology varies with the location of the primary tumor as well as with the grade and staging of the tumor. Small intestinal NETs usually present low proliferation and are treated in the first line with somatostatin analogs according to current guidelines. If progression occurs, one can add interferon alpha or change the treatment to everolimus. Peptide receptor radionuclide therapy (PRRT) with Lutetium177-DOTATATE can be an option in the future after registration of the compound. Rectal tumors are usually small when they metastasize; they can be treated with somatostatin analogs but more so with PRRT, while another option is of course everolimus. Colonic NETs are more aggressive than the rest of intestinal NETs and will be treated with everolimus, sometimes in combination with somatostatin analogs based on positive scintigraphy. Another option is a cytotoxic agent such as streptozotocin plus 5-fluorouracil (5-FU) or temozolomide plus capecitabine. The most aggressive tumors, i.e. neuroendocrine carcinoma G3, are treated with a platin-based therapy plus etoposide; if they present with a lower proliferation, i.e. <50%, temozolomide plus capecitabine plus bevacizumab can also be attempted. Duodenal NETs are mostly treated similar to pancreatic NETs, either with cytotoxic agents, streptozotocin plus 5-FU, or temozolomide plus capecitabine, or with targeted agents such as everolimus.
Collapse
Affiliation(s)
- Kjell Öberg
- Department of Endocrine Oncology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
177
|
|
178
|
Reubi JC, Maecke HR. Approaches to Multireceptor Targeting: Hybrid Radioligands, Radioligand Cocktails, and Sequential Radioligand Applications. J Nucl Med 2017; 58:10S-16S. [DOI: 10.2967/jnumed.116.186882] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 01/21/2023] Open
|
179
|
Sood A, Singh H, Sood A, Basher RK, Mittal BR. Incidentally Detected Thyroid Follicular Neoplasm on Somatostatin Receptor Imaging and Post-therapy Scan. Indian J Nucl Med 2017; 32:224-226. [PMID: 28680210 PMCID: PMC5482022 DOI: 10.4103/ijnm.ijnm_37_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) either using Lu-177 or Y-90 peptide radiopharmaceuticals has emerged as promising treatment modality in patients with inoperable metastatic neuroendocrine tumour (NET) including medullary thyroid cancer, because of overexpression of somatostatin receptor 2 (sstr-2) on these cells. The several investigators have used PRRT in non-iodine avid differentiated thyroid cancer patients with limited success, where other treatment modalities have failed, probably due to faint sstr-2 expression in these lesions. However Hurthle cell neoplasms being predominantly non-iodine avid lesions have shown sstr-2 over-expression. The present case of inoperable NET patient imaged and treated with radiolabelled somatostatin analogue showed incidentally detected thyroid lesion highlighting the its importance in imaging and treatment in these type of thyroid malignancies.
Collapse
Affiliation(s)
- Apurva Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harpreet Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajender Kumar Basher
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
180
|
Pattison DA, Hicks RJ. Molecular imaging in the investigation of hypoglycaemic syndromes and their management. Endocr Relat Cancer 2017; 24:R203-R221. [PMID: 28400403 DOI: 10.1530/erc-17-0005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
There has been recent progress in molecular imaging using a variety of cellular targets for the investigation of adult non-diabetic hypoglycaemic syndromes and its integration into patient management. These targets include peptide receptors (somatostatin receptors (SSTRs) and glucagon-like peptide-1 receptor (GLP-1R)) the amine precursor uptake and decarboxylation system utilising the diphydroxyphenylaline (DOPA) analogue 6-[18F]-l-fluoro-l-3,4-dihydroxyphenylalanine (18F-FDOPA), and glycolytic metabolism with 2-[18F]fluoro-2-deoxy-d-glucose (FDG). Accurate preoperative localisation and staging is critical to enable directed surgical excision or enucleation with minimal morbidity and preservation of residual pancreatic function. Benign insulinoma has near ubiquitous dense GLP-1R expression enabling accurate localisation with radiolabelled-exendin-4 compounds (e.g. 68Ga-NOTA-exendin-4 PET/CT), whilst the rarer and more difficult to manage metastatic insulinoma typically express SSTR and is preferably imaged with radiolabelled-SSTR analogues such as 68Ga-DOTA-octreotate (DOTATATE) PET/CT for staging and assessment of suitability for peptide receptor radionuclide therapy (PRRT). Similar to other metastatic neuroendocrine tumours, FDG PET/CT is used in the setting of higher-grade metastatic insulinoma to provide important prognostic information that can guide treatment and determine suitability for PRRT. Interestingly, these three tracers appear to represent a spectrum of differentiation, which we conceptually describe as the 'triple-flop' phenomenon, with GLP-1R > SSTR > FDG in benign insulinoma and the opposite in higher-grade disease. This paper will review the clinical syndromes of adult hypoglycaemia (including a practical overview of the differential diagnoses to be considered), comparison of techniques for insulinoma localisation with emphasis on molecular imaging before discussing its implications for management of metastatic insulinoma.
Collapse
Affiliation(s)
- David A Pattison
- Centre for Cancer ImagingPeter MacCallum Cancer Centre, Melbourne, Australia
- Endocrinology ServicePeter MacCallum Cancer Centre, Melbourne, Australia
- Department of Nuclear Medicine & Specialised PET ServicesRoyal Brisbane & Women's Hospital, Brisbane, Australia
| | - Rodney J Hicks
- Centre for Cancer ImagingPeter MacCallum Cancer Centre, Melbourne, Australia
- Neuroendocrine ServicePeter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of OncologyUniversity of Melbourne, Melbourne, Australia
| |
Collapse
|
181
|
Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F–DOPA. Eur J Nucl Med Mol Imaging 2017; 44:1588-1601. [DOI: 10.1007/s00259-017-3728-y] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
|
182
|
Joosten L, Brom M, Schäfer MKH, Boerman OC, Weihe E, Gotthardt M. Preclinical evaluation of PAC1 targeting with radiolabeled Maxadilan. Sci Rep 2017; 7:1751. [PMID: 28496188 PMCID: PMC5431918 DOI: 10.1038/s41598-017-01852-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
There is an ongoing search for new tracers to optimize imaging of beta cell-derived tumors (insulinomas). The PAC1 receptor, expressed by insulinomas, can be used for targeting of these tumors. Here, we investigated whether radiolabeled maxadilan could be used for insulinoma imaging. Maxadilan was C- or N-terminally conjugated with DTPA (termed maxadilan-DPTA or DTPA-maxadilan respectively). BALB/c nude mice bearing subcutaneous INS-1 tumors were injected with either In-111-labeled maxadilan-DTPA or In-111-DTPA-maxadilan. Biodistribution studies were carried out at 1, 2 and 4 hours after injection and SPECT/CT imaging 1 and 4 hours after injection of maxadilan-DTPA-111In. Radiolabeling of maxadilan-DTPA (680 MBq/nmol) was more efficient than of DTPA-maxadilan (55 MBq/nmol). Conjugation with DTPA slightly reduced receptor binding affinity in vitro: IC50 values were 3.2, 21.0 and 21.0 nM for maxadilan, natIn-DTPA-maxadilan and maxadilan-DTPA-natIn respectively. Upon i.v. injection maxadilan-DTPA-111In accumulated specifically in INS-1 tumors (7.30 ± 1.87%ID/g) and in the pancreas (3.82 ± 0.22%ID/g). INS-1 tumors were clearly visualized by small animal SPECT/CT. In conclusion, this study showed that the high affinity of maxadilan to the PAC1 receptor was maintained after DTPA conjugation. Furthermore, radiolabeled maxadilan-DTPA accumulated specifically in INS-1 tumors and, therefore, may qualify as a useful tracer to image insulinomas.
Collapse
Affiliation(s)
- Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Martin K H Schäfer
- Institute of Anatomy and Cell Biology, Dept. of Molecular Neuroscience, Philipps University of Marburg, Robert-Koch-Strasse 8, 35037, Marburg, Germany
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology, Dept. of Molecular Neuroscience, Philipps University of Marburg, Robert-Koch-Strasse 8, 35037, Marburg, Germany
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| |
Collapse
|
183
|
Charoenpitakchai M, Liu E, Zhao Z, Koyama T, Huh WJ, Berlin J, Hande K, Walker R, Shi C. In liver metastases from small intestinal neuroendocrine tumors, SSTR2A expression is heterogeneous. Virchows Arch 2017; 470:545-552. [PMID: 28213807 PMCID: PMC5623953 DOI: 10.1007/s00428-017-2093-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 01/23/2023]
Abstract
We examined somatostatin receptor type 2A (SSTR2A) expression in primary and metastatic small intestinal neuroendocrine tumors (SI-NETs). We retrieved 156 liver metastases from 26 patients (10 males, 16 females) who had two or more liver lesions resected. A representative formalin-fixed paraffin-embedded section of tumor tissue from each liver metastasis and from the primary tumor, when available, were immunohistochemically stained for SSTR2A. SSTR2A expression was evaluated by the Her2/neu-scoring system and the scoring system proposed by Volante et al. Based on the Her2/neu-scoring system, moderate to strong SSTR2A expression was observed in 121 of 156 (78%) liver metastases. In 15 (58%) subjects, all liver metastases showed moderate to strong SSTR2A expression, whereas in 11 (42%) one or more liver tumors had weak or no expression. Of the 16 stained primaries, 11 (69%) showed heterogeneous SSTR2A expression. The corresponding liver metastases showed only weak to no expression in one, moderate to strong in five, and both weak to no and moderate to strong expression in five of the 11 cases. Using the Volante scoring system, no tumor was scored 0 (0%), two were scored 1 (1%), 38 were scored 2 (24%), and 116 were scored 3 (74%). No statistically significant association was observed between SSTR2A expression and Ki67 index (p = 0.56). Fifteen of 18 (83%) metastatic tumors with a Ki67 index >20% showed moderate to strong SSTR2A. Most liver tumors with weak SSTR2A expression or an IHC score of 2 were detected by OctreoScan. SSTR2A expression in liver metastases of SI-NETs can be variable, even between lesions in the same patient. Expression in metastatic lesions is not always similar to that in the primary tumor. SSTR2A expression is not associated with the Ki67 index.
Collapse
Affiliation(s)
- Mongkon Charoenpitakchai
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C-3321 MCN, Nashville, TN, 37232-2561, USA
| | - Eric Liu
- Department of Surgery, Rocky Mountain Cancer Centers, Denver, CO, 80218, USA
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Won Jae Huh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C-3321 MCN, Nashville, TN, 37232-2561, USA
| | - Jordan Berlin
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Kenneth Hande
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Ronald Walker
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37027, USA
| | - Chanjuan Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C-3321 MCN, Nashville, TN, 37232-2561, USA.
| |
Collapse
|
184
|
Gut P, Waligórska-Stachura J, Czarnywojtek A, Sawicka-Gutaj N, Bączyk M, Ziemnicka K, Fischbach J, Woliński K, Kaznowski J, Wrotkowska E, Ruchała M. Management of the hormonal syndrome of neuroendocrine tumors. Arch Med Sci 2017; 13:515-524. [PMID: 28507564 PMCID: PMC5420621 DOI: 10.5114/aoms.2016.60311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 04/07/2016] [Indexed: 12/17/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP/NET) are unusual and rare neoplasms that present many clinical challenges. They characteristically synthesize store and secrete a variety of peptides and neuroamines which can lead to the development of distinct clinical syndrome, however many are clinically silent until late presentation with mass effects. Management strategies include surgery cure and cytoreduction with the use of somatostatin analogues. Somatostatin have a broad range of biological actions that include inhibition of exocrine and endocrine secretions, gut motility, cell proliferation, cell survival and angiogenesis. Five somatostatin receptors (SSTR1-SSTR5) have been cloned and characterized. Somatostatin analogues include octreotide and lanreotide are effective medical tools in the treatment and present selectivity for SSTR2 and SSTR5. During treatment is seen disapperance of flushing, normalization of bowel movements and reduction of serotonin and 5-hydroxyindole acetic acid (5-HIAA) secretion. Telotristat represents a novel approach by specifically inhibiting serotonin synthesis and as such, is a promising potential new treatment for patients with carcinoid syndrome. To pancreatic functionig neuroendocrine tumors belongs insulinoma, gastrinoma, glucagonoma and VIP-oma. Medical management in patients with insulinoma include diazoxide which suppresses insulin release. Also mTOR inhibitors may inhibit insulin secretion. Treatment of gastrinoma include both proton pump inhibitors (PPIs) and histamine H2 - receptor antagonists. In patients with glucagonomas hyperglycaemia can be controlled using insulin and oral blood glucose lowering drugs. In malignant glucagonomas smatostatin analogues are effective in controlling necrolytic migratory erythemia. Severe cases of the VIP-oma syndrome require supplementation of fluid losses. Octreotide reduce tumoral VIP secretion and control secretory diarrhoea.
Collapse
Affiliation(s)
- Paweł Gut
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Agata Czarnywojtek
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Bączyk
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Fischbach
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kosma Woliński
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jarosław Kaznowski
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
185
|
Fani M, Peitl PK, Velikyan I. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals (Basel) 2017; 10:E30. [PMID: 28295000 PMCID: PMC5374434 DOI: 10.3390/ph10010030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.
Collapse
Affiliation(s)
- Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital of Basel, 4031 Basel, Switzerland.
| | - Petra Kolenc Peitl
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
186
|
Schulz J, Rohracker M, Stiebler M, Goldschmidt J, Stöber F, Noriega M, Pethe A, Lukas M, Osterkamp F, Reineke U, Höhne A, Smerling C, Amthauer H. Proof of Therapeutic Efficacy of a 177Lu-Labeled Neurotensin Receptor 1 Antagonist in a Colon Carcinoma Xenograft Model. J Nucl Med 2017; 58:936-941. [PMID: 28254866 DOI: 10.2967/jnumed.116.185140] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/05/2017] [Indexed: 11/16/2022] Open
Abstract
Increased expression of neurotensin receptor 1 (NTR1) has been shown in a large number of tumor entities such as pancreatic or colon carcinoma. Hence, this receptor is a promising target for diagnostic imaging and radioligand therapy. Using the favorable biodistribution data of the NTR1-targeting agent 111In-3BP-227, we investigated the therapeutic effect of its 177Lu-labeled analog on the tumor growth of NTR1-positive HT29 colon carcinoma xenografts. Methods: 3BP-227 was labeled with 177Lu. To assess its biodistribution properties, SPECT and CT scans of HT29-xenografted nude mice injected with 177Lu-3BP-227 were acquired, and ex vivo tissue activity was determined. To evaluate therapeutic efficacy, 2 groups of mice received the radiopharmaceutical in a median dose of either 165 MBq (129-232 MBq, n = 10) or 110 MBq (82-116 MBq, n = 10), whereas control mice were injected with vehicle (n = 10). Tumor sizes and body weights were monitored for up to 49 d. Renal function and histologic morphology were evaluated. Results: Whole-body SPECT/CT images allowed clear tumor visualization with low background activity and high tumor-to-kidney and -liver ratios. Ex vivo biodistribution data confirmed high and persistent uptake of 177Lu-3BP-227 in HT29 tumors (19.0 ± 3.6 vs. 2.7 ± 1.6 percentage injected dose per gram at 3 and 69 h after injection, respectively). The application of 177Lu-3BP-227 resulted in a distinct delay of tumor growth. Median tumor doubling time for controls was 5.5 d (interquartile range [IQR], 2.8-7.0), compared with 17.5 d (IQR, 5.5-22.5 d) for the 110-MBq and 41.0 d (IQR, 27.5-55.0) for the 165-MBg group. Compared with controls, median relative tumor volume at day 23 after injection was reduced by 55% (P = 0.034) in the 110-MBq and by 88% (P < 0.01) in the 165-MBq group. Renal histology and clinical chemistry results did not differ between radiotherapy groups and controls, suggesting absence of therapy-induced acute renal damage. Conclusion: These data demonstrate that the novel NTR1-targeting theranostic agent 3BP-227 is an effective and promising candidate for radioligand therapy, with a favorable preliminary safety profile and high potential for clinical translation.
Collapse
Affiliation(s)
- Jörg Schulz
- Klinik für Radiologie und Nuklearmedizin, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Martin Rohracker
- Klinik für Radiologie und Nuklearmedizin, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Marvin Stiebler
- Klinik für Radiologie und Nuklearmedizin, Otto-von-Guericke Universität, Magdeburg, Germany
| | | | - Franziska Stöber
- Klinik für Radiologie und Nuklearmedizin, Otto-von-Guericke Universität, Magdeburg, Germany.,Leibniz-Institut für Neurobiologie, Magdeburg, Germany
| | - Mercedes Noriega
- Institut für Pathologie, Universitätsklinik Hamburg-Eppendorf, Hamburg, Germany
| | - Anette Pethe
- Klinik für Radiologie und Nuklearmedizin, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Mathias Lukas
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Siemens Healthcare GmbH, Erlangen, Germany; and
| | | | | | | | | | - Holger Amthauer
- Klinik für Radiologie und Nuklearmedizin, Otto-von-Guericke Universität, Magdeburg, Germany .,Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
187
|
Paschali AN, Nekolla SG, Evangelou K, Cook GJ, Anagnostopoulos CD. One Coin, No Need to Flip: Shared PET Targets in Cancer and Coronary Artery Disease. AJR Am J Roentgenol 2017; 208:434-445. [PMID: 27897437 DOI: 10.2214/ajr.16.16599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purposes of this article are to review the common biologic features of cancer and coronary artery disease assessed with PET tracers, focusing on those already used in the clinic and those with translational potential, and to discuss the current value and expected contribution of PET in diagnosis, risk stratification, and treatment monitoring. CONCLUSION PET using a wide variety of radiotracers enhances understanding of pathophysiologic changes shared by cancer and coronary artery disease, helps establish an accurate diagnosis, and aids in prognostic assessment and management decisions. It is likely that with the evolution of therapeutic strategies for blocking the development and progression of both diseases and with the introduction of novel, specific ligands in clinical practice, PET will play an ever stronger role in diagnosis, risk stratification, and monitoring of therapy.
Collapse
Affiliation(s)
- Anna N Paschali
- 1 Department of Nuclear Medicine, Theagenion Cancer Hospital, Thessaloniki, Greece
| | - Stephen G Nekolla
- 2 Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar der Technischen Universitaet München, München, Germany
| | | | - Gary J Cook
- 4 PET Imaging Centre, St Thomas' Hospital, London, UK
| | - Constantinos D Anagnostopoulos
- 5 PET/CT Department and MicroPET/CT Unit, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece
| |
Collapse
|
188
|
Abstract
Insulinomas are rare neuroendocrine tumors which occur predominantly in the pancreas. Although majority of the insulinomas are benign, over-secretion of insulin by the tumor leads to debilitating hypoglycemic symptoms. The diagnosis is based on clinical and biochemical findings. After the diagnosis is made, the principal challenge lies in locating the tumor because most tumors are solitary and small in size. Locating the tumor is of paramount importance as complete surgical excision is the only curative treatment, and incomplete resection leads to persistence of symptoms. Different preoperative and intraoperative imaging techniques have been used with varying success rates for the insulinoma imaging. Besides localizing the tumor, imaging also helps to guide biopsy, detect metastatic lesions, and perform image-guided therapeutic procedures. This review will discuss the role of different Cross sectional and nuclear medicine imaging modalities in insulinomas.
Collapse
|
189
|
Marin G, Vanderlinden B, Karfis I, Guiot T, Wimana Z, Flamen P, Vandenberghe S. Accuracy and precision assessment for activity quantification in individualized dosimetry of 177Lu-DOTATATE therapy. EJNMMI Phys 2017; 4:7. [PMID: 28127694 PMCID: PMC5267757 DOI: 10.1186/s40658-017-0174-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/14/2017] [Indexed: 11/16/2022] Open
Abstract
Background In order to obtain a reliable 177Lu-DOTATATE therapy dosimetry, it is crucial to acquire accurate and precise activity measurements with the radionuclide calibrator, the SPECT/CT camera, and the NaI(Tl) well counter. The aim of this study was to determine, in a clinical context, the accuracy and the precision of their activity quantification over a range of activities and time. Ninety-three 177Lu sources from the manufacturer were measured in the radionuclide calibrator over 2.5 years to evaluate its calibration accuracy and precision compared to the manufacturer’s value. A NEMA 2012/IEC 2008 phantom was filled with a 177Lu activity concentration sphere-to-background ratio of five. It was acquired with the SPECT/CT camera to determine the reconstruction parameters offering the best compromise between partial volume effect and signal-to-noise ratio. The calibration factor was computed accordingly. The calibration quality was monitored over 2.5 years with 33 phantom acquisitions with activities ranging from 7040 to 0.6 MBq. Home-made sources were used to calibrate the well counter. Its reliability was evaluated with activities ranging from 150 to 0.2 kBq measured 34 times over 2.5 years. Results For the radionuclide calibrator, median [interquartile range] for the error on activity measurement was −0.99 [1.31] %. The optimal SPECT reconstruction parameters were obtained with 16 iterations, 16 subsets and a 12-mm Gaussian post-filter. The calibration factor was 9.87 cps/MBq with an error of −1.05 [2.12] %. The well counter was calibrated with 31.5 cps/kBq, and the error was evaluated to −12.89 [16.55] %. Conclusions The accuracy and the precision of activity quantification using dedicated quality control were found to be sufficient for use in dosimetry implemented in clinical routine. The proposed methodology could be implemented in other centres to obtain reproducible 177Lu-based treatment dosimetry.
Collapse
Affiliation(s)
- Gwennaëlle Marin
- Department of Medical Physics, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000, Brussels, Belgium. .,Medical Imaging and Signal Processing (MEDISIP), Department of Electronics and Information Systems (ELIS), Faculty of Engineering and Architecture (FEA), Ghent University (UGent), 185 De Pintelaan, 9000, Gent, Belgium.
| | - Bruno Vanderlinden
- Department of Medical Physics, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000, Brussels, Belgium
| | - Ioannis Karfis
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000, Brussels, Belgium
| | - Thomas Guiot
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000, Brussels, Belgium
| | - Zena Wimana
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000, Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000, Brussels, Belgium
| | - Stefaan Vandenberghe
- Medical Imaging and Signal Processing (MEDISIP), Department of Electronics and Information Systems (ELIS), Faculty of Engineering and Architecture (FEA), Ghent University (UGent), 185 De Pintelaan, 9000, Gent, Belgium
| |
Collapse
|
190
|
Sizdahkhani S, Feldman MJ, Piazza MG, Ksendzovsky A, Edwards NA, Ray-Chaudhury A, Maric D, Merrill MJ, Pacak K, Zhuang Z, Chittiboina P. Somatostatin receptor expression on von Hippel-Lindau-associated hemangioblastomas offers novel therapeutic target. Sci Rep 2017; 7:40822. [PMID: 28094316 PMCID: PMC5240113 DOI: 10.1038/srep40822] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
Von Hippel-Lindau (VHL)-associated hemangioblastomas (VHL-HB) arise in the central nervous system (CNS), and are a leading cause of morbidity and mortality in VHL disease. Currently, surgical resection is the most effective way to manage symptomatic VHL-HBs. Surgically unresectable VHL-HBs or those in frail patients are challenging problems. Therapies targeting oncologic and vascular endothelial growth factor (VEGF) pathways have failed to demonstrate tumor control. Our experience and previous reports on VHL-HB avidity to somatostatin analogues suggested somatostatin receptor (SSTR) expression in VHL-HBs, offering an alternative therapeutic strategy. We explored this possibility by demonstrating consistent histologic expression of SSTR1, 2a, 4, and 5 in VHL-HBs. We found that somatostatin analogue octreotide induces apoptosis in VHL-HB stromal cells in a dose-dependent fashion by BAX – caspase-3 pathway unrelated to canonical VHL pathway. When administered to a patient with unresectable symptomatic suprasellar hemangioblastoma, octreotide resulted in tumor volume reduction, symptom stabilization, and tumor cytopenia on repeat 68Ga-DOTA-TATE positron emission tomography (PET) within 6 months, suggesting tumor infarction. We conclude that VHL-HBs harbor multiple SSTR subtypes that offer actionable chemo-therapeutic strategy for management of symptomatic, unresectable tumors by somatostatin analogue therapy.
Collapse
Affiliation(s)
- Saman Sizdahkhani
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael J Feldman
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin G Piazza
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Ksendzovsky
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia USA
| | - Nancy A Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dragan Maric
- Flow Cytometry Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marsha J Merrill
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
191
|
Paragliola RM, Prete A, Papi G, Torino F, Corsello A, Pontecorvi A, Corsello SM. Clinical utility of lanreotide Autogel ® in gastroenteropancreatic neuroendocrine tumors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3459-3470. [PMID: 27822010 PMCID: PMC5087808 DOI: 10.2147/dddt.s76732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Somatostatin analogs (SSAs), which were initially used to control hormonal syndromes associated with neuroendocrine neoplasms (NENs), have been successfully proposed as antiproliferative agents, able to control tumor growth in patients affected by gastroenteropancreatic (GEP)-NENs. The development of long-acting formulations of SSAs which require only weekly or monthly injections can improve patient compliance. In particular, lanreotide (LAN) Autogel®, which is a viscous aqueous formulation supplied in ready-to-use prefilled syringes, can be administered every 28–56 days. Since its introduction in the clinical practice, several studies evaluated the clinical utility of LAN Autogel in the medical treatment of GEP-NENs. Although there is no evidence of an overall survival benefit, these studies confirm the efficacy of LAN Autogel in terms of benefit in progression-free survival, and in more than half of cases, a reduction of tumor markers can be observed during treatment with this drug. Moreover, LAN Autogel is widely recognized to be effective in controlling tumor-related symptoms in the majority of patients affected by GEP tumors, especially in patients affected by carcinoid syndrome, improving considerably patients’ quality of life.
Collapse
Affiliation(s)
| | - Alessandro Prete
- Department of Medicine, Unit of Endocrinology, Università Cattolica del Sacro Cuore
| | - Giampaolo Papi
- Department of Medicine, Unit of Endocrinology, Università Cattolica del Sacro Cuore
| | | | - Andrea Corsello
- Department of General Medicine and Endocrine Tumor Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alfredo Pontecorvi
- Department of Medicine, Unit of Endocrinology, Università Cattolica del Sacro Cuore
| | | |
Collapse
|
192
|
Reubi JC, Waser B, Mäcke H, Rivier J. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers. J Nucl Med 2016; 58:300-306. [DOI: 10.2967/jnumed.116.177733] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
|
193
|
99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma. PLoS One 2016; 11:e0160714. [PMID: 27526057 PMCID: PMC4985165 DOI: 10.1371/journal.pone.0160714] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/22/2016] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The aim of this study was to assess the utility of [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 scintigraphy in the management of patients with hypoglycemia, particularly in the detection of occult insulinoma. MATERIALS AND METHODS Forty patients with hypoglycemia and increased/confusing results of serum insulin and C-peptide concentration and negative/inconclusive results of other imaging examinations were enrolled in the study. In all patients GLP-1 receptor imaging was performed to localise potential pancreatic lesions. RESULTS Positive results of GLP-1 scintigraphy were observed in 28 patients. In 18 patients postsurgical histopathological examination confirmed diagnosis of insulinoma. Two patients had contraindications to the surgery, one patient did not want to be operated. One patient, who presented with postprandial hypoglycemia, with positive result of GLP-1 imaging was not qualified for surgery and is in the observational group. Eight patients were lost for follow up, among them 6 patients with positive GLP-1 scintigraphy result. One patient with negative scintigraphy was diagnosed with malignant insulinoma. In two patients with negative scintigraphy Munchausen syndrome was diagnosed (patients were taking insulin). Other seven patients with negative results of 99mTcGLP-1 scintigraphy and postprandial hypoglycemia with C-peptide and insulin levels within the limits of normal ranges are in the observational group. We would like to mention that 99mTc-GLP1-SPECT/CT was also performed in 3 pts with nesidioblastosis (revealing diffuse tracer uptake in two and a focal lesion in one case) and in two patients with malignant insulinoma (with the a focal uptake in the localization of a removed pancreatic headin one case and negative GLP-1 1 scintigraphy in the other patient). CONCLUSIONS 99mTc-GLP1-SPECT/CT could be helpful examination in the management of patients with hypoglycemia enabling proper localization of the pancreatic lesion and effective surgical treatment. This imaging technique may eliminate the need to perform invasive procedures in case of occult insulinoma.
Collapse
|
194
|
Paget's Disease Mimicking Bone Metastasis in a Patient with Neuroendocrine Tumor on 68Ga-DOTANOC PET/CT. J Belg Soc Radiol 2016; 100:66. [PMID: 30151468 PMCID: PMC6100429 DOI: 10.5334/jbr-btr.903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Somatostatin (SST) is a neuropeptide present in neurons, endocrine cells, and a wide range of neuroendocrine tumors (NETs). 68Ga-DOTATOC, 68Ga-DOTANOC, and 68Ga-DOTATATE are current SST analogues used for PET/CT which bind to SST receptors expressed in NETs. These SST analogues have been used successfully for diagnosis of SST-expressing tumors with a more sensitive detection technique than conventional scintigraphy. However, there is a lack of clinical data on the differentiation between NETs and other malignant tumors or benign pathological conditions. Here, we report a case of Paget’s disease mimicking bone metastasis of NET on PET/CT due to increased 68Ga-DOTANOC uptake and review examples of similar cases in the literature.
Collapse
|
195
|
Luo Y, Pan Q, Yao S, Yu M, Wu W, Xue H, Kiesewetter DO, Zhu Z, Li F, Zhao Y, Chen X. Glucagon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study. J Nucl Med 2016; 57:715-720. [PMID: 26795291 PMCID: PMC5227553 DOI: 10.2967/jnumed.115.167445] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Preoperative localization of insulinoma is a clinical dilemma. We aimed to investigate whether glucagon-like peptide-1 receptor (GLP-1R) PET/CT with (68)Ga-NOTA-MAL-cys(40)-exendin-4 ((68)Ga-NOTA-exendin-4) is efficient in detecting insulinoma. METHODS In our prospective cohort study, patients with endogenous hyperinsulinemic hypoglycemia were enrolled. CT, MRI, endoscopic ultrasound, and (99m)Tc-hydrazinonicotinamide-TOC SPECT/CT were done according to standard protocols. GLP-1R PET/CT was performed 30-60 min after the injection of (68)Ga-NOTA-exendin-4. The gold standard for diagnosis was the histopathologic results after surgery. RESULTS Of 52 recruited patients, 43 patients with histopathologically proven insulinomas were included for the imaging studies. Nine patients did not undergo surgical intervention. (68)Ga-NOTA-exendin-4 PET/CT correctly detected insulinomas in 42 of 43 patients with high tumor uptake (mean SUVavg ± SD, 10.2 ± 4.9; mean SUVmax ± SD, 23.6 ± 11.7), resulting in sensitivity of 97.7%. In contrast, (99m)Tc-hydrazinonicotinamide-TOC SPECT/CT showed a low sensitivity of 19.5% (8/41) in this group of patients; however, it successfully localized the tumor that was false-negative with GLP-1R PET/CT. The sensitivities of CT, MR, and endoscopic ultrasonography were 74.4% (32/43), 56.0% (14/25), and 84.0% (21/25), respectively. CONCLUSION (68)Ga-NOTA-exendin-4 PET/CT is a highly sensitive imaging technique for the localization of insulinoma.
Collapse
Affiliation(s)
- Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Shaobo Yao
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Miao Yu
- Department of Endocrinology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Wenming Wu
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Huadan Xue
- Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China; and
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
196
|
Santini C, Kuil J, Bunschoten A, Pool S, de Blois E, Ridwan Y, Essers J, Bernsen MR, van Leeuwen FWB, de Jong M. Evaluation of a Fluorescent and Radiolabeled Hybrid Somatostatin Analog In Vitro and in Mice Bearing H69 Neuroendocrine Xenografts. J Nucl Med 2016; 57:1289-95. [PMID: 27127222 DOI: 10.2967/jnumed.115.164970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/17/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED In the treatment of neuroendocrine tumors (NETs), complete surgical removal of malignancy is generally desirable, because it offers curative results. Preoperative guidance with radiolabeled somatostatin analogs, commonly used for NET diagnosis and preoperative planning, is limited by its low resolution, with the risk that tumor margins and small metastases will be incompletely resected with subsequent recurrence. A single hybrid probe combining radiotracer and optical dye would enable high-resolution optical guidance, also during surgery. In the current study, the hybrid labeled somatostatin analog Cy5-DTPA-Tyr(3)-octreotate (DTPA is diethylene triamine pentaacetic acid) was synthesized and evaluated for its ability to specifically trace NET cells in vitro and in an animal model. The performance of the hybrid tracer was compared with that of octreotate with only radiolabel or only optical label. METHODS The binding affinity and internalization capacity of Cy5-DTPA-Tyr(3)-octreotate were assessed in vitro. Biodistribution profiles and both nuclear and optical in vivo imaging of Cy5-(111)In -DTPA-Tyr(3)-octreotate were performed in NET-bearing mice and compared with the performance of (111)In-DTPA-Tyr(3)-octreotate. RESULTS In vitro studies showed a low receptor affinity and internalization rate for Cy5-DTPA-Tyr(3)-octreotate. The dissociation constant value was 387.7 ± 97.9 nM for Cy5-DTPA-Tyr(3)-octreotate, whereas it was 120.5 ± 18.1 nM for DTPA-Tyr(3)-octreotate. Similarly, receptor-mediated internalization reduced from 33.76% ± 1.22% applied dose for DTPA-Tyr(3)-octreotate to 1.32% ± 0.02% applied dose for Cy5-DTPA-Tyr(3)-octreotate. In contrast, in vivo and ex vivo studies revealed similar tumor uptake values of Cy5-(111)In-DTPA-Tyr(3)-octreotate and (111)In -DTPA-Tyr(3)-octreotate (6.93 ± 2.08 and 5.16 ± 1.27, respectively). All organs except the kidneys showed low background radioactivity, with especially low activities in the liver, and high tumor-to-tissue ratios were achieved-both favorable for the tracer's toxicity profile. Hybrid imaging in mice confirmed that the nuclear and fluorescence signals colocalized. CONCLUSION The correlation between findings with the optical and the nuclear probes underlines the potential of combining SPECT imaging with fluorescence guidance and shows the promise of this novel hybrid peptide for preoperative and intraoperative imaging of NET.
Collapse
Affiliation(s)
- Costanza Santini
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joeri Kuil
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, LUMC, Leiden, The Netherlands
| | - Anton Bunschoten
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, LUMC, Leiden, The Netherlands
| | - Stefan Pool
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Yanto Ridwan
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; and
| | - Jeroen Essers
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; and Departments of Radiation Oncology and Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Monique R Bernsen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, LUMC, Leiden, The Netherlands
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
197
|
Morera J, Guillaume A, Courtheoux P, Palazzo L, Rod A, Joubert M, Reznik Y. Preoperative localization of an insulinoma: selective arterial calcium stimulation test performance. J Endocrinol Invest 2016; 39:455-63. [PMID: 26577133 DOI: 10.1007/s40618-015-0406-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE Preoperative localization of an insulinoma is recommended to improve the cure rate, but non-invasive procedures can fail to detect the tumour. The objective of the study was to assess the performance of a selective arterial calcium stimulation test in the preoperative localization of insulinomas that were not detected by conventional imaging procedures. METHODS We conducted a monocenter retrospective case review of 13 patients who had endogenous hyperinsulinism and were treated between 1994 and 2013. Patients were selected on the basis of negative or doubtful non-invasive preoperative imaging. A selective arterial calcium stimulation test was performed by pancreatic and hepatic arteriography with selective intra-arterial calcium stimulation and hepatic venous sampling in order to obtain the plasma insulin measurement. We evaluated the efficacy of the test by comparing the results with an endoscopic ultrasound. RESULTS Twelve of the 13 patients underwent surgery, and the presence of an insulinoma was proven in 11 patients by pathological analysis of the tumour. An endoscopic ultrasound was consistent with surgery in 71.4 % of cases, while selective arterial calcium stimulation was consistent with surgery in 90.9 % and allowed detection of an insulinoma in two additional patients with a negative endoscopic ultrasound. One false-negative and one false-positive arterial calcium test were observed. No adverse events were recorded except transient skin flush following calcium injection in one patient. CONCLUSION The selective arterial calcium stimulation test is a sensitive diagnostic procedure for localizing insulinomas and may be considered when non-invasive radiological imaging does not allow the detection of an occult insulinoma.
Collapse
Affiliation(s)
- J Morera
- Endocrinology Unit, Centre Hospitalo-Universitaire de Caen, Avenue de la côte de Nacre, CS 30001, 14033, Caen Cedex 9, France
| | - A Guillaume
- Endocrinology Unit, Centre Hospitalo-Universitaire de Caen, Avenue de la côte de Nacre, CS 30001, 14033, Caen Cedex 9, France
| | - P Courtheoux
- Diagnostic Radiology Unit, Centre Hospitalo-Universitaire de Caen, Avenue de la côte de nacre, CS 30001, 14033, Caen Cedex 9, France
| | - L Palazzo
- Endoscopic Ultrasound Unit, Trocadero Clinic, 75016, Paris, France
| | - A Rod
- Endocrinology Unit, Centre Hospitalo-Universitaire de Caen, Avenue de la côte de Nacre, CS 30001, 14033, Caen Cedex 9, France
| | - M Joubert
- Endocrinology Unit, Centre Hospitalo-Universitaire de Caen, Avenue de la côte de Nacre, CS 30001, 14033, Caen Cedex 9, France
| | - Y Reznik
- Endocrinology Unit, Centre Hospitalo-Universitaire de Caen, Avenue de la côte de Nacre, CS 30001, 14033, Caen Cedex 9, France.
| |
Collapse
|
198
|
Beiderwellen K, Sabet A, Lauenstein TC, Lahner H, Poeppel TD. Neuroendokrine Neoplasien des Pankreas. Radiologe 2016; 56:348-54. [PMID: 27003413 DOI: 10.1007/s00117-016-0094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
199
|
Pattison DA, Solomon B, Hicks RJ. A New Theranostic Paradigm for Advanced Thyroid Cancer. J Nucl Med 2016; 57:1493-1494. [DOI: 10.2967/jnumed.116.173534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022] Open
|
200
|
Violet JA, Farrugia G, Skene C, White J, Lobachevsky P, Martin R. Triple targeting of Auger emitters using octreotate conjugated to a DNA-binding ligand and a nuclear localizing signal. Int J Radiat Biol 2016; 92:707-715. [DOI: 10.3109/09553002.2016.1157278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- John A. Violet
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Gabriella Farrugia
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Colin Skene
- School of Chemistry and Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan White
- School of Chemistry and Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Pavel Lobachevsky
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Roger Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|