151
|
Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2018; 9:1473. [PMID: 30405652 PMCID: PMC6206271 DOI: 10.3389/fpls.2018.01473] [Citation(s) in RCA: 658] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/20/2018] [Indexed: 05/02/2023]
Abstract
Microbes of the phytomicrobiome are associated with every plant tissue and, in combination with the plant form the holobiont. Plants regulate the composition and activity of their associated bacterial community carefully. These microbes provide a wide range of services and benefits to the plant; in return, the plant provides the microbial community with reduced carbon and other metabolites. Soils are generally a moist environment, rich in reduced carbon which supports extensive soil microbial communities. The rhizomicrobiome is of great importance to agriculture owing to the rich diversity of root exudates and plant cell debris that attract diverse and unique patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics, and various signal compounds, all leading to enhancement of plant growth. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. Research has demonstrated that inoculating plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-to-plant signal compounds can be an effective strategy to stimulate crop growth. Furthermore, these strategies can improve crop tolerance for the abiotic stresses (e.g., drought, heat, and salinity) likely to become more frequent as climate change conditions continue to develop. This discovery has resulted in multifunctional PGPR-based formulations for commercial agriculture, to minimize the use of synthetic fertilizers and agrochemicals. This review is an update about the role of PGPR in agriculture, from their collection to commercialization as low-cost commercial agricultural inputs. First, we introduce the concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century. Next, mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance. On the application side, strategies are discussed to improve rhizosphere colonization by PGPR inoculants. The final sections of the paper describe the applications of PGPR in 21st century agriculture and the roadmap to commercialization of a PGPR-based technology.
Collapse
Affiliation(s)
- Rachel Backer
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - J. Stefan Rokem
- School of Medicine, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - John Lamont
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Dana Praslickova
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Emily Ricci
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
152
|
Alori ET, Babalola OO. Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front Microbiol 2018; 9:2213. [PMID: 30283427 PMCID: PMC6156547 DOI: 10.3389/fmicb.2018.02213] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Current agricultural practices depend heavily on chemical inputs (such as fertilizers, pesticides, herbicides, etc.) which, all things being equal cause a deleterious effect on the nutritional value of farm product and health of farm workers and consumers. Excessive and indiscriminate use of these chemicals have resulted in food contamination, weed and disease resistance and negative environmental outcomes which together have a significant impact on human health. Application of these chemical inputs promotes the accumulation of toxic compounds in soils. Chemical compounds are absorbed by most crops from soil. Several synthetic fertilizers contain acid radicals, such as hydrochloride and sulfuric radicals, and hence increase the soil acidity and adversely affect soil and plant health. Highly recalcitrant compounds can also be absorbed by some plants. Continuous consumption of such crops can lead to systematic disorders in humans. Quite a number of pesticides and herbicides have carcinogenicity potential. The increasing awareness of health challenges as a result of consumption of poor quality crops has led to a quest for new and improved technologies of improving both the quantity and quality of crop without jeopardizing human health. A reliable alternative to the use of chemical inputs is microbial inoculants that can act as biofertilizers, bioherbicide, biopesticides, and biocontrol agents. Microorganisms are able to carry out the plant growth promotion, pest and disease and weed control. Microbial inoculants are beneficiary microorganisms applied to either the soil or the plant in order to improve productivity and crop health. Microbial inoculants are natural-based products being widely used to control pests and improve the quality of the soil and crop, and hence human health. Microbial inoculants involve a blend of microorganisms that work with the soil and the soil life to improve soil fertility and health and by extension improve human health. Microbial inoculants have the ability to minimize the negative impact of chemical input and consequently increase the quantity and quality of farm produce. Microbial inoculants are environmental-friendly and deliver plant nutrients to plants in a more sustainable manner. Microbial inoculants can help reduce chemical fertilizer application. Microbial inoculants could include bacteria, fungi and algae. This research summarizes the impact of agricultural chemical inputs on human health. The contribution of microbial inoculants in sustainable maintenance of human health will be expatiated. Advances in microbial inoculants and technology and strategies to explore this natural, user friendly biological resource for sustainable maintenance of plant health will be discussed.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| |
Collapse
|
153
|
Igiehon NO, Babalola OO. Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiol J 2018; 12:261-279. [PMID: 30197700 PMCID: PMC6110075 DOI: 10.2174/1874285801812010261] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Organisms seldom exist in isolation and are usually involved in interactions with several hosts and these interactions in conjunction with the physicochemical parameters of the soil affect plant growth and development. Researches into below and aboveground microbial community are unveiling a myriad of intriguing interactions within the rhizosphere, and many of the interactions are facilitated by exudates that are secreted by plants roots. These interactions can be harnessed for beneficial use in agriculture to enhance crop productivity especially in semi-arid and arid environments. THE RHIZOSPHERE The rhizosphere is the region of soil close to plants roots that contain large number of diverse organisms. Examples of microbial candidates that are found in the rhizosphere include the Arbuscular Mycorrhizal Fungi (AMF) and rhizobacteria. These rhizosphere microorganisms use plant root secretions such as mucilage and flavonoids which are able to influence their diversity and function and also enhance their potential to colonize plants root. NATURAL INTERACTIONS BETWEEN MICROORGANISMS AND PLANT In the natural environments, plants live in interactions with different microorganisms, which thrive belowground in the rhizosphere and aboveground in the phyllosphere. Some of the plant-microbial interactions (which can be in the form of antagonism, amensalism, parasitism and symbiosis) protect the host plants against detrimental microbial and non-microbial invaders and provide nutrients for plants while others negatively affect plants. These interactions can influence below-ground-above-ground plants' biomass development thereby playing significant role in sustaining plants. Therefore, understanding microbial interactions within the rhizosphere and phyllosphere is urgent towards farming practices that are less dependent on conventional chemical fertilizers, which have known negative impacts on the environments. BELOW GROUND RHIZOBACTERIA INTERACTIONS ALLEVIATE DROUGHT STRESS Drought stress is one of the major factors militating against agricultural productivity globally and is likely to further increase. Belowground rhizobacteria interactions could play important role in alleviating drought stress in plants. These beneficial rhizobacterial colonize the rhizosphere of plants and impart drought tolerance by up regulation or down regulation of drought responsive genes such as ascorbate peroxidase, S-adenosyl-methionine synthetase, and heat shock protein. INSIGHTS INTO BELOW AND ABOVE THE GROUND MICROBIAL INTERACTIONS VIA OMIC STUDIES Investigating complex microbial community in the environment is a big challenge. Therefore, omic studies of microorganisms that inhabit the rhizosphere are important since this is where most plant-microbial interactions occur. One of the aims of this review is not to give detailed account of all the present omic techniques, but instead to highlight the current omic techniques that can possibly lead to detection of novel genes and their respective proteins within the rhizosphere which may be of significance in enhancing crop plants (such as soybean) productivity especially in semi-arid and arid environments. FUTURE PROSPECTS AND CONCLUSIONS Plant-microbial interactions are not totally understood, and there is, therefore, the need for further studies on these interactions in order to get more insights that may be useful in sustainable agricultural development. With the emergence of omic techniques, it is now possible to effectively monitor transformations in rhizosphere microbial community together with their effects on plant development. This may pave way for scientists to discover new microbial species that will interact effectively with plants. Such microbial species can be used as biofertilizers and/or bio-pesticides to increase crop yield and enhance global food security.
Collapse
Affiliation(s)
- Nicholas O. Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa
| | - Olubukola O. Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
154
|
The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 2018; 102:7821-7835. [PMID: 30030564 PMCID: PMC6132541 DOI: 10.1007/s00253-018-9214-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
Action is needed to face the global threat arising from inconsistent rainfall, rise in temperature, and salinization of farm lands which may be the product of climate change. As crops are adversely affected, man and animals may face famine. Plants are severely affected by abiotic stress (drought, salinity, alkalinity, and temperature), which impairs yield and results in loss to farmers and to the nation at large. However, microbes have been shown to be of great help in the fight against abiotic stress, via their biological activities at the rhizosphere of plants. The external application of chemical substances such as glycine betaine, proline, and nutrients has helped in sustaining plant growth and productive ability. In this review, we tried to understand the part played by bioinoculants in aiding plants to resist the negative consequences arising from abiotic stress and to suggest better practices that will be of help in today’s farming systems. The fact that absolute protection and sustainability of plant yield under stress challenges has not been achieved by microbes, nutrients, nor the addition of chemicals (osmo-protectants) alone suggests that studies should focus on the integration of these units (microbes, nutrients, chemical stimulants, and osmo-protectants) into a strategy for achieving a complete tolerance to abiotic stress. Also, other species of microbes capable of shielding plant from stress, boosting yield and growth, providing nutrients, and protecting the plants from harmful invading pathogens should be sought.
Collapse
|
155
|
Ahmad M, Ahmad I, Hilger TH, Nadeem SM, Akhtar MF, Jamil M, Hussain A, Zahir ZA. Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ 2018; 6:e5122. [PMID: 30013829 PMCID: PMC6035724 DOI: 10.7717/peerj.5122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/07/2018] [Indexed: 11/25/2022] Open
Abstract
Background Low phosphorus availability limits crop production in alkaline calcareous soils in semi-arid regions including Pakistan. Phosphate solubilizing bacteria may improve crop growth on alkaline calcareous soils due to their ability to enhance P availability. Methods Twenty rhizobacterial isolates (Q1–Q20) were isolated from rhizosphere of cotton and characterized for their growth promoting attributes in vitro. The selected phosphate solubilizing isolates were further screened for their ability to improve cotton growth under axenic conditions (jar trial). The phosphorus solubilization capacities of selected strains were quantified and these strains were identified through 16S rDNA sequencing. Results Isolates Q2, Q3, Q6, Q7, Q8, Q13 and Q14 were able to solubilize phosphate from insoluble sources. Most of these isolates also possessed other traits including catalase activity and ammonia production. The growth promotion assay showed that Q3 was significantly better than most of the other isolates followed by Q6. Maximum root colonization (4.34 × 106 cfu g−1) was observed in case of isolate Q6 followed by Q3. The phosphorus solubilization capacities of these strains were quantified, showing a maximum phosphorus solubilization by Q3 (optical density 2.605 ± 0.06) followed by the Q6 strain. The strain Q3 was identified as Bacillus subtilis (accession # KX788864) and Q6 as Paenibacillus sp. (accession # KX788865) through 16S rDNA sequencing. Discussion The bacterial isolates varied in their abilities for different growth promoting traits. The selected PGPR Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 have multifarious growth promoting traits including ability to grow at higher EC and pH levels, and phosphorus solubilizing ability. These strains can efficiently colonize cotton roots under salt affected soils and help plants in phosphorus nutrition. It is concluded that both strains are potential candidates for promoting cotton growth under alkaline conditions, however further investigation is required to determine their potential for field application.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Iqra Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Thomas H Hilger
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg Institute), University of Hohenheim, Stuttgart, Germany
| | - Sajid M Nadeem
- Department of Soil Science, University of Agriculture Faisalabad, Sub-campus Burewala-Vehari, Pakistan, Burewala, Punjab, Pakistan
| | - Muhammad F Akhtar
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Moazzam Jamil
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Zahir A Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
156
|
Adeniji AA, Babalola OO. Tackling maize fusariosis: in search of Fusarium graminearum biosuppressors. Arch Microbiol 2018; 200:1239-1255. [PMID: 29934785 DOI: 10.1007/s00203-018-1542-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/17/2018] [Accepted: 06/16/2018] [Indexed: 12/16/2022]
Abstract
This review presents biocontrol agents employed to alleviate the deleterious effect of the pathogen Fusarium graminearum on maize. The control of this mycotoxigenic phytopathogen remains elusive despite the elaborate research conducted on its detection, identification, and molecular fingerprinting. This could be attributed to the fact that in vitro and greenhouse biocontrol studies on F. graminearum have exceeded the number of field studies done. Furthermore, along with the variances seen among these F. graminearum suppressing biocontrol strains, it is also clear that the majority of research done to tackle F. graminearum outbreaks was on wheat and barley cultivars. Most fusariosis management related to maize targeted other members of Fusarium such as Fusarium verticillioides, with biocontrol strains from the genera Bacillus and Pseudomonas being used frequently in the experiments. We highlight relevant current techniques needed to identify an effective biofungicide for maize fusariosis and recommend alternative approaches to reduce the scarcity of data for indigenous maize field trials.
Collapse
Affiliation(s)
- Adetomiwa Ayodele Adeniji
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
157
|
Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiol Res 2018; 211:21-30. [PMID: 29705203 DOI: 10.1016/j.micres.2018.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Bacillus sp. B19, Bacillus sp. P12 and B. amyloliquefaciens B14 were isolated from soils of Salta province, and PGPR properties on the common bean (Phaseolus vulgaris L.) cv. Alubia and antagonistic activity against Sclerotinia sclerotiorum were studied. It was determined that B19 and P12 increased crop germination potential (GP) from the common bean by 14.5% compared to control seeds; these strains also increased root length (10.4 and 15%, respectively) and stem length (20.2 and 30%, respectively) compared to the control; however, as for the B14 strain, no increases in growth parameters were detected. In addition, all the treatments that combined two bacilli: B14 + B19, B14 + P12 and B19 + P12, generated beneficial effects on GP and seedling growth compared to control seeds, but not compared to a single inoculant. B19 and P12 strains synthesized auxins at concentrations of 5.71 and 4.90 mg/mL, respectively, and it was qualitatively determined that they synthesize siderophores. In addition, previous studies have determined that B14 produces auxins in a concentration of 10.10 mg/mL, and qualitatively synthesizes siderophores. The phytosanitary state of the white bean cv. Alubia control seeds revealed bacterial contamination in 87% of all the evaluated seeds and different fungi such as Cladosporium sp., Fusarium sp., and Rhizopus sp. Bean seeds treated with B14, B19 or P12 showed no growth of contaminating bacteria or of pathogenic fungi; in fact, bacilli inoculum development was observed in all seeds. Additionally, B19, P12 and B14 strains inhibited in vitro the development of 9 native S. sclerotiorum strains isolated from the Salta region, with FI ranging between 60 and 100%. The three Bacillus strains synthesized different isoforms of the lipopeptides: surfactin, iturin, and fengycin in the presence of S. sclerotiorum, as determined by MALDI-TOF. In the in vivo trials, when common bean seeds were grown in soils contaminated with S. sclerotiorum, an incidence of 100% was determined when the seeds were not treated with any Bacillus. Seeds treated with the chemical fungicide and sown in S. sclerotiorum-infested soil did not produce seed emergence, while the inoculation of the seeds with B14 + P12, B14 + B19 or B19 + P12 reduced the effect of the pathogen by 46, 43 and 25%, respectively. Disease progression in B14 + P12 and B14 + B19 treatments was significantly lower than in the remaining treatments, with an AUDPC of 873.75 and 1071, respectively.
Collapse
|
158
|
Igiehon NO, Babalola OO. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040574. [PMID: 29570619 PMCID: PMC5923616 DOI: 10.3390/ijerph15040574] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023]
Abstract
Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study.
Collapse
Affiliation(s)
- Nicholas Ozede Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| |
Collapse
|
159
|
Chen D, Wang D, Xu C, Chen C, Li J, Wu W, Huang X, Xie H. Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36. Appl Microbiol Biotechnol 2018; 102:3301-3314. [DOI: 10.1007/s00253-018-8869-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 02/10/2018] [Indexed: 12/01/2022]
|
160
|
Castellano-Hinojosa A, Pérez-Tapia V, Bedmar EJ, Santillana N. Purple corn-associated rhizobacteria with potential for plant growth promotion. J Appl Microbiol 2018; 124:1254-1264. [PMID: 29368373 DOI: 10.1111/jam.13708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/21/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
AIMS Purple corn (Zea mays var. purple amylaceum) is a native variety of the Peruvian Andes, cultivated at 3000 m since the pre-Inca times without N fertilization. We aimed to isolate and identify native plant growth-promoting rhizobacteria (PGPR) for future microbial-based inoculants. METHODS AND RESULTS Eighteen strains were isolated from the rhizosphere of purple corn plants grown without N fertilization in Ayacucho (Peru). The 16S rRNA gene clustered the 18 strains into nine groups that contained species of Bacillus, Stenotrophomonas, Achromobacter, Paenibacillus, Pseudomonas and Lysinibacillus. A representative strain from each group was selected and assayed for N2 fixation, phosphate solubilization, indole acetic and siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase activity and biocontrol abilities. Inoculation of purple corn plants with single and combined strains selected after a principal component analysis caused significant increases in root and shoot dry weight, total C and N contents of the plants. CONCLUSIONS PGPRs can support growth and crop production of purple corn in the Peruvian Andes and constitute the base for microbial-based inoculants. SIGNIFICANCE AND IMPACT OF THE STUDY This study enlarges our knowledge on plant-microbial interactions in high altitude mountains and provides new applications for PGPR inoculation in purple amylaceum corn, which is part of the staple diet for the native Quechua communities.
Collapse
Affiliation(s)
- A Castellano-Hinojosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - V Pérez-Tapia
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Granada, Spain
| | - E J Bedmar
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - N Santillana
- Facultad de Ciencias Agrarias, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Perú
| |
Collapse
|
161
|
Rodrigues RR, Rodgers NC, Wu X, Williams MA. COREMIC: a web-tool to search for a niche associated CORE MICrobiome. PeerJ 2018; 6:e4395. [PMID: 29473009 PMCID: PMC5816963 DOI: 10.7717/peerj.4395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/30/2018] [Indexed: 02/01/2023] Open
Abstract
Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains only vaguely understood. A systems-biology approach was used to mine information from databases to show how it can be used to answer questions related to the core microbiome of habitat-microbe relationships. By making use of the burgeoning growth of information from databases, our tool “COREMIC” meets a great need in the search for understanding niche partitioning and habitat-function relationships. The work is unique, furthermore, because it provides a user-friendly statistically robust web-tool (http://coremic2.appspot.com or http://core-mic.com), developed using Google App Engine, to help in the process of database mining to identify the “core microbiome” associated with a given habitat. A case study is presented using data from 31 switchgrass rhizosphere community habitats across a diverse set of soil and sampling environments. The methodology utilizes an outgroup of 28 non-switchgrass (other grasses and forbs) to identify a core switchgrass microbiome. Even across a diverse set of soils (five environments), and conservative statistical criteria (presence in more than 90% samples and FDR q-val <0.05% for Fisher’s exact test) a core set of bacteria associated with switchgrass was observed. These included, among others, closely related taxa from Lysobacter spp., Mesorhizobium spp, and Chitinophagaceae. These bacteria have been shown to have functions related to the production of bacterial and fungal antibiotics and plant growth promotion. COREMIC can be used as a hypothesis generating or confirmatory tool that shows great potential for identifying taxa that may be important to the functioning of a habitat (e.g. host plant). The case study, in conclusion, shows that COREMIC can identify key habitat-specific microbes across diverse samples, using currently available databases and a unique freely available software.
Collapse
Affiliation(s)
- Richard R Rodrigues
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Nyle C Rodgers
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Xiaowei Wu
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Mark A Williams
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
162
|
Kaul S, Gupta S, Sharma T, Dhar MK. Unfolding the Role of Rhizomicrobiome Toward Sustainable Agriculture. SOIL BIOLOGY 2018. [DOI: 10.1007/978-3-319-75910-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
163
|
Woo SL, Pepe O. Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2018; 9:1801. [PMID: 30564264 PMCID: PMC6288764 DOI: 10.3389/fpls.2018.01801] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/19/2018] [Indexed: 05/19/2023]
Affiliation(s)
- Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- *Correspondence: Sheridan L. Woo
| | - Olimpia Pepe
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- CIRAM-Interdepartmental Center for Environmental Research, University of Naples Federico II, Naples, Italy
- Olimpia Pepe
| |
Collapse
|
164
|
Lally RD, Galbally P, Moreira AS, Spink J, Ryan D, Germaine KJ, Dowling DN. Application of Endophytic Pseudomonas fluorescens and a Bacterial Consortium to Brassica napus Can Increase Plant Height and Biomass under Greenhouse and Field Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:2193. [PMID: 29312422 PMCID: PMC5744461 DOI: 10.3389/fpls.2017.02193] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/12/2017] [Indexed: 05/26/2023]
Abstract
Plant associated bacteria with plant growth promotion (PGP) properties have been proposed for use as environmentally friendly biofertilizers for sustainable agriculture; however, analysis of their efficacy in the field is often limited. In this study, greenhouse and field trials were carried out using individual endophytic Pseudomonas fluorescens strains, the well characterized rhizospheric P. fluorescens F113 and an endophytic microbial consortium of 10 different strains. These bacteria had been previously characterized with respect to their PGP properties in vitro and had been shown to harbor a range of traits associated with PGP including siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and inorganic phosphate solubilization. In greenhouse experiments individual strains tagged with gfp and Kmr were applied to Brassica napus as a seed coat and were shown to effectively colonize the rhizosphere and root of B. napus and in addition they demonstrated a significant increase in plant biomass compared with the non-inoculated control. In the field experiment, the bacteria (individual and consortium) were spray inoculated to winter oilseed rape B. napus var. Compass which was grown under standard North Western European agronomic conditions. Analysis of the data provides evidence that the application of the live bacterial biofertilizers can enhance aspects of crop development in B. napus at field scale. The field data demonstrated statistically significant increases in crop height, stem/leaf, and pod biomass, particularly, in the case of the consortium inoculated treatment. However, although seed and oil yield were increased in the field in response to inoculation, these data were not statistically significant under the experimental conditions tested. Future field trials will investigate the effectiveness of the inoculants under different agronomic conditions.
Collapse
Affiliation(s)
- Richard D. Lally
- EnviroCORE, The Dargan Research and Innovation Centre, Department of Science and Health, Institute of Technology, Carlow, Carlow, Ireland
| | - Paul Galbally
- EnviroCORE, The Dargan Research and Innovation Centre, Department of Science and Health, Institute of Technology, Carlow, Carlow, Ireland
- Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - António S. Moreira
- EnviroCORE, The Dargan Research and Innovation Centre, Department of Science and Health, Institute of Technology, Carlow, Carlow, Ireland
- Dundalk Institute of Technology, Dundalk, Ireland
| | - John Spink
- Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - David Ryan
- EnviroCORE, The Dargan Research and Innovation Centre, Department of Science and Health, Institute of Technology, Carlow, Carlow, Ireland
| | - Kieran J. Germaine
- EnviroCORE, The Dargan Research and Innovation Centre, Department of Science and Health, Institute of Technology, Carlow, Carlow, Ireland
| | - David N. Dowling
- EnviroCORE, The Dargan Research and Innovation Centre, Department of Science and Health, Institute of Technology, Carlow, Carlow, Ireland
| |
Collapse
|
165
|
Ojuederie OB, Babalola OO. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121504. [PMID: 29207531 PMCID: PMC5750922 DOI: 10.3390/ijerph14121504] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
Abstract
Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.
Collapse
Affiliation(s)
- Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
166
|
Rahimi M, Hosseini MR, Bakhshi M. Biosynthesis of Ag
3
PO
4
nanoparticles in the absence of phosphate source using a phosphorus mineralising bacterium. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2017.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mohammadhosein Rahimi
- Department of Mining EngineeringIsfahan University of TechnologyIsfahan 84156‐83111Iran
| | | | - Mehran Bakhshi
- Department of Mining EngineeringIsfahan University of TechnologyIsfahan 84156‐83111Iran
| |
Collapse
|
167
|
Ilangumaran G, Smith DL. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective. FRONTIERS IN PLANT SCIENCE 2017; 8:1768. [PMID: 29109733 PMCID: PMC5660262 DOI: 10.3389/fpls.2017.01768] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/27/2017] [Indexed: 05/18/2023]
Abstract
Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR). Recent advances in molecular studies have yielded insights into the signaling networks of plant-microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.
Collapse
Affiliation(s)
| | - Donald L. Smith
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
168
|
Angulo-Castro A, Ferrera-Cerrato R, Alarcón A, Almaraz-Suárez JJ, Delgadillo-Martínez J, Jiménez-Fernández M, García-Barradas O. [Growth and photochemical efficiency of photosystem ii in seedlings of two varieties of Capsicum annuum L. inoculated with rhizobacteria and arbuscular mycorrhizal fungi]. Rev Argent Microbiol 2017; 50:178-188. [PMID: 29054549 DOI: 10.1016/j.ram.2017.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/17/2017] [Accepted: 03/02/2017] [Indexed: 10/18/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are a biological alternative for the sustainable management of Capsicum annuum L. This research work evaluated the effects of both PGPR and AMF on bell pepper and jalapeno pepper plants. Five bacterial strains isolated from several locations in Estado de Mexico were used: [P61 (Pseudomonas tolaasii), A46 (P. tolaasii), R44 (Bacillus pumilus), BSP1.1 (Paenibacillus sp.), and OLs-Sf5 (Pseudomonas sp.)], and three treatments with AMF [H1 (consortium isolated from pepper crops in the State of Puebla), H2 (Rhizophagus intraradices), and H3 (consortium isolated from the rhizosphere of lemon trees, State of Tabasco)]. In addition, a fertilized treatment (Steiner nutrient solution at 25%) and an unfertilized control were included. Seedlings of "Caloro" jalapeno pepper and "California Wonder" bell pepper were inoculated with AMF at seed sowing, and PGPR were inoculated after 15 days of seedling emergence; seedlings were grown under plant growth chamber conditions. P61 bacterium and H1 AMF consortia were the most effective microorganisms for jalapeno pepper whereas R44 bacterium and AMF H3 and H1 were the most effective for bell peppers, when compared to the unfertilized control. Furthermore, P61 and R44 bacteria showed beneficial effects on PSII efficiency.
Collapse
Affiliation(s)
- Azareel Angulo-Castro
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | - Ronald Ferrera-Cerrato
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México.
| | - Alejandro Alarcón
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | - Juan José Almaraz-Suárez
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | - Julián Delgadillo-Martínez
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | | | - Oscar García-Barradas
- Unidad de Servicios de Apoyo en Resolución Analítica (SARA), Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
169
|
Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 2017; 33:197. [PMID: 28986676 PMCID: PMC5686270 DOI: 10.1007/s11274-017-2364-9] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023]
Abstract
The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.
Collapse
|
170
|
Khan Chowdhury MDE, Jeon J, Ok Rim S, Park YH, Kyu Lee S, Bae H. Composition, diversity and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea. Sci Rep 2017; 7:10098. [PMID: 28855721 PMCID: PMC5577135 DOI: 10.1038/s41598-017-10280-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023] Open
Abstract
Plants harbor diverse communities of bacterial species in their internal compartments. Here we isolated and identified bacterial endophytes from mountain-cultivated ginseng (MCG, Panax ginseng Meyer) to make working collection of endophytes and exploit their potentially beneficial properties toward plants and human being. A total of 1,886 bacteria were isolated from root, stem and leaf of MCGs grown in 24 different sites across the nation, using culture-dependent approach. Sequencing of 16S rDNA allowed us to classify them into 252 distinct groups. Taxonomic binning of them resulted in 117 operational taxonomic units (OTUs). Analysis of diversity indices across sampling sites and tissues suggested that composition of bacterial endophyte community within ginseng could differ substantially from one site to the next as well as from one host compartment to another. Assessment of 252 bacterial isolates for their beneficial traits to host plants showed that some bacteria possesses the ability to promote plant growth and produce ß-glucosidase, indicating their potential roles in plant growth promotion and bio-transformation. Taken together, our work provides not only valuable resources for utilization of bacterial endophytes in ginseng but also insights into bacterial communities inside a plant of medicinal importance.
Collapse
Affiliation(s)
- M D Emran Khan Chowdhury
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Soon Ok Rim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Young-Hwan Park
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Seung Kyu Lee
- Division of Forest Diseases & Insect Pests, Korea Forest Research Institute, Seoul, 02455, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea.
| |
Collapse
|
171
|
Defez R, Andreozzi A, Bianco C. The Overproduction of Indole-3-Acetic Acid (IAA) in Endophytes Upregulates Nitrogen Fixation in Both Bacterial Cultures and Inoculated Rice Plants. MICROBIAL ECOLOGY 2017; 74:441-452. [PMID: 28197647 DOI: 10.1007/s00248-017-0948-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/02/2017] [Indexed: 05/26/2023]
Abstract
Endophytic bacteria from roots and leaves of rice plants were isolated and identified in order to select the diazotrophs and improve their nitrogen-fixing abilities. The nitrogen-fixing endophytes were identified by PCR amplification of the nifH gene fragment. For this purpose, two isolates, Enterobacter cloacae RCA25 and Klebsiella variicola RCA26, and two model bacteria (Herbaspirillum seropedicae z67 and Sinorhizobium fredii NGR234) were transformed to increase the biosynthesis of the main plant auxin indole-3-acetic acid (IAA). A significant increase in the production of IAA was observed for all strains. When the expression of nifH gene and the activity of the nitrogenase enzyme were analyzed in liquid cultures, we found that they were positively affected in the IAA-overproducing endophytes as compared to the wild-type ones. Rice plants inoculated with these modified strains showed a significant upregulation of the nitrogenase activity when plants infected with the wild-type strains were used as reference. Similar results were obtained too with common bean plants infected with the S. fredii NGR234 strain. These findings suggest that IAA overproduction improves nitrogen-fixing apparatus of endophytic bacteria both in liquid cultures and in inoculated host plants. The present study highlights new perspectives to enhance nitrogen-fixing ability in non-legume crops. These strains could be used as bioinoculants to improve the growth and the yield of agricultural crops, offering an alternative to the use of chemical nitrogen fertilizers.
Collapse
Affiliation(s)
- Roberto Defez
- Institute of Biosciences and Bioresources, Via P. Castellino 111, 80131, Naples, Italy
| | - Anna Andreozzi
- Institute of Biosciences and Bioresources, Via P. Castellino 111, 80131, Naples, Italy
| | - Carmen Bianco
- Institute of Biosciences and Bioresources, Via P. Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
172
|
Jimtha John C, Jishma P, Karthika NR, Nidheesh KS, Ray JG, Mathew J, Radhakrishnan EK. Pseudomonas fluorescens R68 assisted enhancement in growth and fertilizer utilization of Amaranthus tricolor (L.). 3 Biotech 2017; 7:256. [PMID: 28730551 PMCID: PMC5519494 DOI: 10.1007/s13205-017-0887-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022] Open
Abstract
Plant probiotic potential of rhizosphere microbiome and its role in phytofertilizer mobilization are largely unexplored. In the current study, the rhizobacterium Pseudomonas fluorescens R68 (PFR68) isolated from Western Ghat was analyzed for its growth enhancement effect on the leafy vegetable Amaranthus tricolor (L.). One month of field growth of PFR68 inoculated A. tricolor has found to have enhanced growth parameters such as leaf number (1.57 fold), root number (1.76 fold), shoot length (1.28 fold) and fresh weight (2.31 fold). The treatment also improved soil fertility in terms of Nitrogen, Phosphorus and Potassium content. Most remarkably, application of PFR68 alone and 50% of recommended NPK dose along with PFR68 has resulted in enhanced growth of A. tricolor comparable to plants treated with full dose of NPK. In addition to this, application of PFR68 along with 50% NPK augmented the available Nitrogen and Phosphorus content in soil. This indicates the potential of selected organism in enrichment of soil health and enhancement of crop productivity. In conclusion, field performance of PFR68 on growth of A. tricolor confirms its promises to develop into plant probiotic formulation.
Collapse
Affiliation(s)
- C Jimtha John
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India
| | - P Jishma
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India
| | - N R Karthika
- Kuriakose Elias College, Mannanam, Kottayam, Kerala, India
| | - K S Nidheesh
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India
| | - J G Ray
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India.
| |
Collapse
|
173
|
Bhise KK, Bhagwat PK, Dandge PB. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech 2017; 7:105. [PMID: 28560646 DOI: 10.1007/s13205-017-0739-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/08/2017] [Indexed: 10/19/2022] Open
Abstract
Soil salinity is major abiotic stresses affecting morphological, biochemical and physiological processes of plant growth. Chryseobacterium gleum sp. SUK isolated from salt-stressed soil exhibited ACC (1-aminocyclopropane-1-carboxylate) deaminase activity with IAA (indole acetic acid), siderophore, ammonia, hydrogen cyanide production, 2% salt tolerance and fungal cell wall degrading enzyme production (cellulase, protease). The isolate also showed a poultry feather degrading activity which is the main waste material of poultry industry and opulent source of proteins, amino acids, nitrogen, phosphorous, calcium, potassium, manganese, zinc and copper. Application of feather-degraded lysate with the degrading isolate, C. gleum sp. SUK denotes triple role of bioformulation to surmount salinity stress, management of poultry waste disposal and utilization of feathers degraded products as a biostimulant for better growth of plants as well as strain SUK having multifarious plant growth promoting traits. Wheat crops exposed to salt stressor were inoculated with studied bioformulation. Results of plant analysis showed improvement in root and shoot length, fresh and dry weight, chlorophyll, proteins, amino acids, phenolics, flavonoids content and decreased level of proline. In addition, Na+ uptake was decreased and K+ uptake was increased. Therefore, application of novel bioformulation could increase the yield of crops by ameliorating growth of plants and alleviating the salinity stress.
Collapse
|
174
|
Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 2017; 101:4871-4881. [DOI: 10.1007/s00253-017-8344-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/26/2022]
|
175
|
Ishaq SL. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiol 2017; 3:335-353. [PMID: 31294165 PMCID: PMC6605018 DOI: 10.3934/microbiol.2017.2.335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
A thorough understanding of the services provided by microorganisms to the agricultural ecosystem is integral to understanding how management systems can improve or deteriorate soil health and production over the long term. Yet it is hampered by the difficulty in measuring the intersection of plant, microbe, and environment, in no small part because of the situational specificity to some plant-microbial interactions, related to soil moisture, nutrient content, climate, and local diversity. Despite this, perspective on soil microbiota in agricultural settings can inform management practices to improve the sustainability of agricultural production.
Collapse
Affiliation(s)
- Suzanne L Ishaq
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, Montana, USA
| |
Collapse
|
176
|
Sun W, Qian X, Gu J, Wang XJ, Li Y, Duan ML. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity. Can J Microbiol 2017; 63:392-401. [PMID: 28177785 DOI: 10.1139/cjm-2016-0758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.
Collapse
Affiliation(s)
- Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiao-Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Man-Li Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
177
|
Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 2017; 12:e0173203. [PMID: 28282395 PMCID: PMC5345817 DOI: 10.1371/journal.pone.0173203] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/16/2017] [Indexed: 12/22/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography-mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity.
Collapse
Affiliation(s)
- Yeon-Gyeong Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Woo Seo
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ah-Yeong Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeong Yeol Oh
- Gyeongnam Oriental Medicinal Herb Institute, Sancheong, Republic of Korea
| | - Dong Yeol Lee
- Gyeongnam Oriental Medicinal Herb Institute, Sancheong, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
178
|
Xu T, Li Y, Zeng X, Yang X, Yang Y, Yuan S, Hu X, Zeng J, Wang Z, Liu Q, Liu Y, Liao H, Tong C, Liu X, Zhu Y. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1149-1157. [PMID: 27293085 DOI: 10.1002/jsfa.7841] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Biocontrol is a promising strategy in the control of rice blast disease. In the present study, we isolated and characterized a novel antagonist to the pathogen Magnaporthe oryzae from rice endophytic actinomycetes. RESULTS Out of 482 endophytic actinomycetes isolated from rice blast infected and healthy rice, Streptomyces endus OsiSh-2 exhibited remarkable in vitro antagonistic activity. Scanning electron microscopy observations of M. oryzae treated by OsiSh-2 revealed significant morphological alterations in hyphae. In 2-year field tests, the spraying of OsiSh-2 spore solution (107 spores mL-1 ) is capable of reducing rice blast disease severity by 59.64%. In addition, a fermentation broth of OsiSh-2 and its cell-free filtrates could inhibit the growth of M. oryzae, suggesting the presence of active enzymes and secondary metabolites. OsiSh-2 tested positive for polyketide synthase-I and nonribosomal peptide synthetase genes and can produce cellulase, protease, gelatinase, siderophore, indole-3-acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase. A preliminary separation indicated that the methanol extract of OsiSh-2 could suppress the growth of pathogens. The major active component was identified as nigericin. CONCLUSION Endophytic S. endus OsiSh-2 has potential as a biocontrol agent against rice blast in agriculture. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yan Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiadong Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiaolu Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yuanzhu Yang
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, Hunan, PR China
| | - Shanshan Yuan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiaochun Hu
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, Hunan, PR China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Zhenzhen Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Qian Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yuqing Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Hongdong Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Chunyi Tong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| |
Collapse
|
179
|
Timmermann T, Armijo G, Donoso R, Seguel A, Holuigue L, González B. Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:215-230. [PMID: 28118091 DOI: 10.1094/mpmi-09-16-0192-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Paraburkholderia phytofirmans PsJN is a plant growth-promoting rhizobacterium (PGPR) that stimulates plant growth and improves tolerance to abiotic stresses. This study analyzed whether strain PsJN can reduce plant disease severity and proliferation of the virulent strain Pseudomonas syringae pv. tomato DC3000, in Arabidopsis plants, through the activation of induced resistance. Arabidopsis plants previously exposed to strain PsJN showed a reduction in disease severity and pathogen proliferation in leaves compared with noninoculated, infected plants. The plant defense-related genes WRKY54, PR1, ERF1, and PDF1.2 demonstrated increased and more rapid expression in strain PsJN-treated plants compared with noninoculated, infected plants. Transcriptional analyses and functional analysis using signaling mutant plants suggested that resistance to infection by DC3000 in plants treated with strain PsJN involves salicylic acid-, jasmonate-, and ethylene-signaling pathways to activate defense genes. Additionally, activation occurs through a specific PGPR-host recognition, being a necessary metabolically active state of the bacterium to trigger the resistance in Arabidopsis, with a strain PsJN-associated molecular pattern only partially involved in the resistance response. This study provides the first report on the mechanism used by the PGPR P. phytofirmans PsJN to protect A. thaliana against a widespread virulent pathogenic bacterium.
Collapse
Affiliation(s)
- Tania Timmermann
- 1 Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
- 4 Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Grace Armijo
- 2 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
| | - Raúl Donoso
- 1 Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
- 4 Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Aldo Seguel
- 2 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
| | - Loreto Holuigue
- 2 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
| | - Bernardo González
- 1 Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
- 4 Center of Applied Ecology and Sustainability, Santiago, Chile
| |
Collapse
|
180
|
Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb Biotechnol 2017; 10:719-734. [PMID: 28205337 PMCID: PMC5481536 DOI: 10.1111/1751-7915.12693] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/26/2022] Open
Abstract
Almost one‐third of crop yields are lost every year due to microbial alterations and diseases. The main control strategy to limit these losses is the use of an array of chemicals active against spoilage and unwanted pathogenic microorganisms. Their massive use has led to extensive environmental pollution, human poisoning and a variety of diseases. An emerging alternative to this chemical approach is the use of microbial biocontrol agents. Biopesticides have been used with success in several fields, but a better understanding of their mode of action is necessary to better control their activity and increase their use. Very few studies have considered that biofilms are the preferred mode of life of microorganisms in the target agricultural biotopes. Increasing evidence shows that the spatial organization of microbial communities on crop surfaces may drive important bioprotection mechanisms. The aim of this review is to summarize the evidence of biofilm formation by biocontrol agents on crops and discuss how this surface‐associated mode of life may influence their biology and interactions with other microorganisms and the host and, finally, their overall beneficial activity.
Collapse
Affiliation(s)
- Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Dominique Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Aymerich
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
181
|
Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3315-3335. [PMID: 27888482 DOI: 10.1007/s11356-016-8104-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.
Collapse
Affiliation(s)
- Trishna Mahanty
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Madhurankhi Goswami
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Purnita Bhattacharyya
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, 700054, India
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
182
|
M T. Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.29328/journal.jpsp.1001004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
183
|
|
184
|
Amin A, Latif Z. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J Basic Microbiol 2016; 57:204-217. [PMID: 27911010 DOI: 10.1002/jobm.201600352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 11/11/2022]
Abstract
Mercury resistant (HgR ) bacteria were screened from industrial effluents and effluents-polluted rhizosphere soils near to districts Kasur and Sheikhupura, Pakistan. Out of 60 isolates, three bacterial strains, Bacillus sp. AZ-1, Bacillus cereus AZ-2, and Enterobacter cloacae AZ-3 showed Hg-resistance as 20 μg ml-1 of HgCl2 and indole-3-acetic acid (IAA) production as 8-38 μg ml-1 . Biochemical and molecular characterization of selected bacteria was confirmed by 16S ribotyping. Mercury resistant genes merA, merB, and merE of mer operon in Bacillus spp. were checked by PCR amplification. The merE gene involved in the transportation of elemental mercury (Hg0 ) via cell membrane was first time cloned into pHLV vector and transformed in C43(DE3) Escherichia coli cells. The recombinant plasmid (pHLMerE) was expressed and purified by nickel (Ni+2 ) affinity chromatography. Chromatographic techniques viz. thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS) confirmed the presence of Indole-3-acetic acid (IAA) in supernatant of selected bacteria. The strain E. cloacae AZ-3 detoxified 88% of mercury (Hg+2 ) from industrial effluent (p < 0.05) after immobilization in Na-alginate beads. Finally, Hg-resistant and IAA producing bacterial consortium of two strains, Bacillus sp. AZ-1 and E. cloacae AZ-3, inoculated in mercury amended soil with 20 μg ml-1 HgCl2 resulted 80, 22, 64, 116, 50, 75, 30, and 100% increase as compared to control plants in seed germination, shoot and root length, shoot and root fresh weight, number of pods per plant, number of seeds and weight of seeds, respectively, of chickpea (Cicer arietinum L.) in pot experiments (p < 0.05).
Collapse
Affiliation(s)
- Aatif Amin
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zakia Latif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
185
|
Khan N, Bano A. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1258-69. [PMID: 27348506 DOI: 10.1080/15226514.2016.1203287] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The present attempt was made to determine the effects of untreated municipal wastewater (MW) on growth and physiology of maize and to evaluate the role of Ag nanoparticle and plant-growth-promoting rhizobacteria (PGPR) when interacting with MW used for irrigation. It was used for the isolation of PGPR. The isolates were identified and characterized based on the colony morphology, C/N source utilization pattern using miniaturized identification system (QTS 24), catalase (CAT) and oxidase tests, and 16S rRNA sequence analyses. The three PGPR isolates were Planomicrobium chinense (accession no. NR042259), Bacillus cereus (accession no. CP003187) and Pseudomonas fluorescens (accession no. GU198110). The isolates solubilized phosphate and exhibited antibacterial activities against pathogenic bacteria i.e., Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae and Escherichia coli and antifungal activities against Helminthosporium sativum and Fusarium solani. The untreated MW irrigation as well as Ag nanoparticle treatment resulted in significant accumulation of Ni in the rhizosphere soil. PGPR induced accumulation of Ni and Pb in the rhizosphere soil and maize shoot. Ag nanoparticle also caused Ni and Pb accumulation in maize shoot. Combined treatment with PGPR, Ag nanoparticle and MW resulted in decreased accumulation of Pb and Ni both in the rhizosphere soil and maize shoot. Combined treatment of Ag nanoparticle, MW and PGPR decreased Na accumulation and increased K accumulation. Ag nanoparticle increased Fe and Co accumulation but decreased Zn and Cu accumulation in MW treatment; in combined treatment, it reduced PGPR-induced accumulation of Co and Fe in the rhizosphere and Co accumulation in shoot. PGPR significantly increased root weight, shoot weight, root length, shoot length, leaf area, and proline, chlorophyll and carotenoid content of the maize plant. Ag nanoparticle also enhanced the leaf area, fresh weight, root length and antioxidant activities of maize. Treatment with Ag nanoparticle increased the gibberellic acid (GA) and abscisic acid (ABA) content of maize leaves but decreased the accumulation of GA in the presence of PGPR and MW.
Collapse
Affiliation(s)
- Naeem Khan
- a Phytohormone lab, Department of Plant Sciences, Quaid-i-Azam University , Islamabad , Pakistan
| | - Asghari Bano
- a Phytohormone lab, Department of Plant Sciences, Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
186
|
Wu L, Chen J, Wu H, Qin X, Wang J, Wu Y, Khan MU, Lin S, Xiao Z, Luo X, Zhang Z, Lin W. Insights into the Regulation of Rhizosphere Bacterial Communities by Application of Bio-organic Fertilizer in Pseudostellaria heterophylla Monoculture Regime. Front Microbiol 2016; 7:1788. [PMID: 27899917 PMCID: PMC5110535 DOI: 10.3389/fmicb.2016.01788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
The biomass and quality of Pseudostellariae heterophylla suffers a significant decline under monoculture. Since rhizosphere miobiome plays crucial roles in soil health, deep pyrosequencing combined with qPCR was applied to characterize the composition and structure of soil bacterial community under monoculture and different amendments. The results showed compared with the 1st-year planted (FP), 2nd-year monoculture of P. heterophylla (SP) led to a significant decline in yield and resulted in a significant increase in Fusarium oxysporum but a decline in Burkholderia spp. Bio-organic fertilizer (MT) formulated by combining antagonistic bacteria with organic matter could significantly promote the yield by regulating rhizosphere bacterial community. However, organic fertilizer (MO) without antagonistic bacteria could not suppress Fusarium wilt. Multivariate statistics analysis showed a distinct separation between the healthy samples (FP and MT) and the unhealthy samples (SP and MO), suggesting a strong relationship between soil microbial community and plant performance. Furthermore, we found the application of bio-organic fertilizer MT could significantly increase the bacterial community diversity and restructure microbial community with relatively fewer pathogenic F. oxysporum and more beneficial Burkholderia spp. In conclusion, the application of novel bio-organic fertilizer could effectively suppress Fusarium wilt by enriching the antagonistic bacteria and enhancing the bacterial diversity.
Collapse
Affiliation(s)
- Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jun Chen
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hongmiao Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xianjin Qin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China; College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Juanying Wang
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yanhong Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muhammad U Khan
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Sheng Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhigang Xiao
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiaomian Luo
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhongyi Zhang
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
187
|
Kunova A, Bonaldi M, Saracchi M, Pizzatti C, Chen X, Cortesi P. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiol 2016; 16:272. [PMID: 27829359 PMCID: PMC5103511 DOI: 10.1186/s12866-016-0886-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/03/2016] [Indexed: 01/27/2023] Open
Abstract
Background In the search for new natural resources for crop protection, streptomycetes are gaining interest in agriculture as plant growth promoting bacteria and/or biological control agents. Because of their peculiar life cycle, in which the production of secondary metabolites is synchronized with the development of aerial hyphae and sporulation, the commonly used methods to screen for bacterial antagonists need to be adapted. Results The dual culture assay was standardized in terms of inoculation timing of Streptomyces antagonist and pathogen, and growth rate of different fungal pathogens. In case of fast-growing fungi, inoculation of the antagonist 2 or 3 days prior to the pathogen resulted in significantly stronger inhibition of mycelium growth. One hundred and thirty Streptomyces strains were evaluated against six destructive soil borne pathogens. The activity of strains varied from broad-spectrum to highly specific inhibition of individual pathogens. All strains inhibited at least one tested pathogen. Three strains, which combined the largest broad-spectrum with the highest inhibition activity, were selected for further characterization with four vegetable species. All of them were able to colonize seed surface of all tested vegetable crops. They mostly improved radicle and hypocotyl growth in vitro, although no statistically significant enhancement of biomass weight was observed in vivo. Occasionally, transient negative effects on germination and plant growth were observed. Conclusions The adapted dual culture assay allowed us to compare the inhibition of individual Streptomyces strains against six fungal soil borne pathogens. The best selected strains were able to colonize the four vegetable crops and have a potential to be developed into biocontrol products. Although they occasionally negatively influenced plant growth, these effects did not persist during the further development. Additional in vivo studies are needed to confirm their potential as biological control or plant growth promoting agents. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0886-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Kunova
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy.
| | - Maria Bonaldi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Cristina Pizzatti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Xiaoyulong Chen
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| |
Collapse
|
188
|
THE DEVELOPMENT OF BIOLOGICAL PRODUCT FOR PLANT GROWING ON THE BASIS OF STREPTOMYCES ALBUS. EUREKA: LIFE SCIENCES 2016. [DOI: 10.21303/2504-5695.2016.00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work the influence of experimental forms of biological product from Streptomyces albus UN44 on the growth processes of agricultural plants (wheat, peas, corn) was studied. The advantages of the preparation are demonstrated, which contains not only antibiotic and enzymatic complexes, synthesized by the producer, but also its biomass for the stimulation of seed germination processes, growth and development of the said plants seedlings.
The proposed process description of biological product Streptofungin-Phyto production in two forms is the basis for engineering development and operating regulations. The preparation can be developed as a suspension with a cell titer of 109 CFU/cm3 in PET-containers (2 – 5 l) or as a dried mass in plastic bags (1 – 2 kg).
The biological product can be recommended for use on the stage of pre-planting treatment of seeds by soaking, as well as deep root watering and irrigation. The remedy is safe for humans, animals and plants and can be used together with other microbial mass-based biofertilizers.
Collapse
|
189
|
Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5798593. [PMID: 27774456 PMCID: PMC5059645 DOI: 10.1155/2016/5798593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/11/2016] [Accepted: 09/04/2016] [Indexed: 11/17/2022]
Abstract
Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection.
Collapse
|
190
|
Ayyaz K, Zaheer A, Rasul G, Mirza MS. Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat. Braz J Microbiol 2016; 47:542-50. [PMID: 27133558 PMCID: PMC4927691 DOI: 10.1016/j.bjm.2015.11.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2015] [Indexed: 11/21/2022] Open
Abstract
The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49±1.04mgL(-1)) and phosphate solubilization (105.50±4.93mgL(-1)) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth.
Collapse
Affiliation(s)
- Khadija Ayyaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Ahmad Zaheer
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Ghulam Rasul
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
191
|
O'Callaghan M. Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 2016; 100:5729-46. [PMID: 27188775 PMCID: PMC4909795 DOI: 10.1007/s00253-016-7590-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 11/29/2022]
Abstract
There is increasing interest in the use of beneficial microorganisms as alternatives to chemical pesticides and synthetic fertilisers in agricultural production. Application of beneficial microorganisms to seeds is an efficient mechanism for placement of microbial inocula into soil where they will be well positioned to colonise seedling roots and protect against soil-borne diseases and pests. However, despite the long history of inoculation of legume seeds with Rhizobia spp. and clear laboratory demonstration of the ability of a wide range of other beneficial microorganisms to improve crop performance, there are still very few commercially available microbial seed inoculants. Seed inoculation techniques used for research purposes are often not feasible at a commercial scale and there are significant technical challenges in maintaining viable microbial inocula on seed throughout commercial seed treatment processes and storage. Further research is needed before the benefits of a wide range of environmentally sensitive potential seed inoculants can be captured for use in agriculture, ecosystem restoration and bioremediation. There is no single solution to the challenge of improving the ability of seed inoculants to establish and function consistently in the field. Development of novel formulations that maintain the viability of both inoculant and seed during storage will result from multidisciplinary research in microbial and seed physiology and adjuvant chemistry.
Collapse
Affiliation(s)
- Maureen O'Callaghan
- Lincoln Science Centre, AgResearch Ltd, Private Bag 4749, Christchurch, 8140, New Zealand.
| |
Collapse
|
192
|
Reddy CA, Saravanan RS. Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity. ADVANCES IN APPLIED MICROBIOLOGY 2016; 82:53-113. [PMID: 23415153 DOI: 10.1016/b978-0-12-407679-2.00003-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is an increasing global need for enhancing the food production to meet the needs of the fast-growing human population. Traditional approach to increasing agricultural productivity through high inputs of chemical nitrogen and phosphate fertilizers and pesticides is not sustainable because of high costs and concerns about global warming, environmental pollution, and safety concerns. Therefore, the use of naturally occurring soil microbes for increasing productivity of food crops is an attractive eco-friendly, cost-effective, and sustainable alternative to the use of chemical fertilizers and pesticides. There is a vast body of published literature on microbial symbiotic and nonsymbiotic nitrogen fixation, multiple beneficial mechanisms used by plant growth-promoting rhizobacteria (PGPR), the nature and significance of mycorrhiza-plant symbiosis, and the growing technology on production of efficacious microbial inoculants. These areas are briefly reviewed here. The construction of an inoculant with a consortium of microbes with multiple beneficial functions such as N(2) fixation, biocontrol, phosphate solubilization, and other plant growth-promoting properties is a positive new development in this area in that a single inoculant can be used effectively for increasing the productivity of a broad spectrum of crops including legumes, cereals, vegetables, and grasses. Such a polymicrobial inoculant containing several microorganisms for each major function involved in promoting the plant growth and productivity gives it greater stability and wider applications for a range of major crops. Intensifying research in this area leading to further advances in our understanding of biochemical/molecular mechanisms involved in plant-microbe-soil interactions coupled with rapid advances in the genomics-proteomics of beneficial microbes should lead to the design and development of inoculants with greater efficacy for increasing the productivity of a wide range of crops.
Collapse
Affiliation(s)
- Chilekampalli A Reddy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
193
|
do Amaral FP, Pankievicz VCS, Arisi ACM, de Souza EM, Pedrosa F, Stacey G. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. PLANT MOLECULAR BIOLOGY 2016; 90:689-697. [PMID: 26873699 DOI: 10.1007/s11103-016-0449-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.
Collapse
Affiliation(s)
- Fernanda P do Amaral
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vânia C S Pankievicz
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Ana Carolina M Arisi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Fabio Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
194
|
Ghorbanpour M, Hatami M, Kariman K, Abbaszadeh Dahaji P. Phytochemical Variations and Enhanced Efficiency of Antioxidant and Antimicrobial Ingredients inSalvia officinalisas Inoculated with Different Rhizobacteria. Chem Biodivers 2016; 13:319-330. [DOI: 10.1002/cbdv.201500082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Mansour Ghorbanpour
- Department of Medicinal Plants; Faculty of Agriculture and Natural Resources; Arak University; Arak 38156-8-8349 Iran
| | - Mehrnaz Hatami
- Department of Medicinal Plants; Faculty of Agriculture and Natural Resources; Arak University; Arak 38156-8-8349 Iran
| | - Khalil Kariman
- School of Earth and Environment M087; The University of Western Australia; Crawley WA 6009 Australia
| | - Payman Abbaszadeh Dahaji
- Department of Agriculture; Faculty of Soil Science; University of Vali-e-Asr; Rafsanjan Kerman Iran
| |
Collapse
|
195
|
Figueroa-López AM, Cordero-Ramírez JD, Martínez-Álvarez JC, López-Meyer M, Lizárraga-Sánchez GJ, Félix-Gastélum R, Castro-Martínez C, Maldonado-Mendoza IE. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SPRINGERPLUS 2016; 5:330. [PMID: 27066355 PMCID: PMC4792820 DOI: 10.1186/s40064-016-1780-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022]
Abstract
The stalk, ear and root rot (SERR) of maize caused by Fusarium verticillioides (Fv) severely impacts crop production in tropical and subtropical regions. The aim of the present work was to screen bacterial isolates in order to find novel native biocontrol agents against Fv. A culturable bacterial collection consisting of 11,520 isolates enriched in Firmicutes and Proteobacteria was created from rhizosphere samples taken from SERR symptomatic or asymptomatic maize plants. The complete collection was screened for potential activity against Fv using a liquid antagonism assay followed by dual cultures in solid medium, selecting for 42 bacteria (Bacillus, Pseudomonas and Paenibacillus) that inhibit Fv growth (>45 %). In planta assays demonstrated that three Bacillus isolates: B. megaterium (B5), B. cereus sensu lato (B25) and Bacillus sp. (B35) displayed the highest antagonistic activity against Fv. Pot experiments performed in a greenhouse with Bacillus cereus sensu lato B25 confirmed these findings and showed a reduction of Fv disease severity and incidence on plants. Antagonistic activity analysis revealed that these strains produce glucanases, proteases or chitinases, as well as siderophores and auxins and suggests these as possible control mechanisms against Fv.
Collapse
Affiliation(s)
- Alejandro Miguel Figueroa-López
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes No. 250, AP 280. Col. San Joachin, CP 81101 Guasave, Sinaloa Mexico
| | - Jesús Damián Cordero-Ramírez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes No. 250, AP 280. Col. San Joachin, CP 81101 Guasave, Sinaloa Mexico
| | - Juan Carlos Martínez-Álvarez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes No. 250, AP 280. Col. San Joachin, CP 81101 Guasave, Sinaloa Mexico
| | - Melina López-Meyer
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes No. 250, AP 280. Col. San Joachin, CP 81101 Guasave, Sinaloa Mexico
| | - Glenda Judith Lizárraga-Sánchez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes No. 250, AP 280. Col. San Joachin, CP 81101 Guasave, Sinaloa Mexico
| | - Rubén Félix-Gastélum
- Unidad Los Mochis, Depto. de Ciencias Biológicas, Universidad de Occidente, Blvd. Macario Gaxiola y Carr. Internacional s/n, CP 81223 Los Mochis, Sinaloa Mexico
| | - Claudia Castro-Martínez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes No. 250, AP 280. Col. San Joachin, CP 81101 Guasave, Sinaloa Mexico
| | - Ignacio Eduardo Maldonado-Mendoza
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes No. 250, AP 280. Col. San Joachin, CP 81101 Guasave, Sinaloa Mexico
| |
Collapse
|
196
|
Nosheen A, Bano A, Yasmin H, Keyani R, Habib R, Shah STA, Naz R. Protein Quantity and Quality of Safflower Seed Improved by NP Fertilizer and Rhizobacteria (Azospirillum and Azotobacter spp.). FRONTIERS IN PLANT SCIENCE 2016; 7:104. [PMID: 26941744 PMCID: PMC4762221 DOI: 10.3389/fpls.2016.00104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/20/2016] [Indexed: 05/18/2023]
Abstract
HIGHLIGHTS Rhizobacteria (Azotobacter spp.) have improved the quality and quantity of safflower seed protein.Protein quality was confirmed by SDS-PAGE and new bands were found in response to different combinations of rhizobacteria and lower doses of fertilizers.The PGPR application has reduced the use of fertilizers upto 50%. Protein is an essential part of the human diet. The aim of this present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR) in combination with conventional nitrogen and phosphate (NP) fertilizers. The seeds of two safflower cultivars Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis, and SDS-PAGE. Seed crude protein and amino acids (methionine, phenylalanine, and glutamic acid) showed significant improvements (55-1250%) by Azotobacter supplemented with a quarter dose of fertilizers (BTQ) at P ≤ 0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with a half dose of fertilizer) respectively. The Azospirillum in combination with half dose of fertilizer (SPH) and BTQ enhanced both indole acetic acid (IAA) (90%) and gibberellic acid (GA) (23-27%) content in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75%) use of NP fertilizers could improve the quality and quantity of safflower seed protein.
Collapse
Affiliation(s)
- Asia Nosheen
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Asghari Bano
- Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
- *Correspondence: Asghari Bano
| | - Humaira Yasmin
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Rabia Habib
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Syed T. A. Shah
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| |
Collapse
|
197
|
Hector S, Willard K, Bauer R, Mulako I, Slabbert E, Kossmann J, George GM. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield. PLoS One 2015; 10:e0145487. [PMID: 26710215 PMCID: PMC4692551 DOI: 10.1371/journal.pone.0145487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation.
Collapse
Affiliation(s)
- Stanton Hector
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Kyle Willard
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Rolene Bauer
- LaunchLab, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Inonge Mulako
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Etienne Slabbert
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Jens Kossmann
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gavin M George
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- * E-mail:
| |
Collapse
|
198
|
Cohen AC, Bottini R, Piccoli P. Role of Abscisic Acid Producing PGPR in Sustainable Agriculture. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-24654-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
199
|
Santoro MV, Cappellari LR, Giordano W, Banchio E. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1218-1226. [PMID: 26012535 DOI: 10.1111/plb.12351] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains.
Collapse
Affiliation(s)
- M V Santoro
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - L R Cappellari
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - W Giordano
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - E Banchio
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| |
Collapse
|
200
|
Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E. A review: what is the spermosphere and how can it be studied? J Appl Microbiol 2015; 119:1467-81. [PMID: 26332271 DOI: 10.1111/jam.12946] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/27/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022]
Abstract
The spermosphere is the zone surrounding seeds where interactions between the soil, microbial communities and germinating seeds take place. The concept of the spermosphere is usually only applied during germination sensu stricto. Despite the transient nature of this very small zone of soil around the germinating seed, the microbial activities which occur there may have long-lasting impacts on plants. The spermosphere is indirectly characterized by either (i) seed exudates, which could be inhibitors or stimulators of micro-organism growth or (ii) the composition of the microbiome on and around the germinating seeds. The microbial communities present in the spermosphere directly reflect that of the germination medium or are host-dependent and influenced quantitatively and qualitatively by host exudates. Despite its strong impact on the future development of plants, the spermosphere remains little studied. This can be explained by the technical difficulties related to characterizing this concept due to its short duration, small size and biomass, and the number and complexity of the interactions that take place. However, recent technical methods, such as metabolite profiling, combining phenotypic methods with DNA- and RNA-based methods, could be used to investigate seed exudates, microbial communities and their interactions with the soil environment.
Collapse
Affiliation(s)
- S Schiltz
- Biologie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - I Gaillard
- Biologie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - N Pawlicki-Jullian
- Biologie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - B Thiombiano
- Biologie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - F Mesnard
- Biologie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - E Gontier
- Biologie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|