151
|
Iwicka E, Hajtuch J, Dzierzbicka K, Inkielewicz-Stepniak I. Muramyl dipeptide-based analogs as potential anticancer compounds: Strategies to improve selectivity, biocompatibility, and efficiency. Front Oncol 2022; 12:970967. [PMID: 36237313 PMCID: PMC9551026 DOI: 10.3389/fonc.2022.970967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
According to the WHO, cancer is the second leading cause of death in the world. This is an important global problem and a major challenge for researchers who have been trying to find an effective anticancer therapy. A large number of newly discovered compounds do not exert selective cytotoxic activity against tumorigenic cells and have too many side effects. Therefore, research on muramyl dipeptide (MDP) analogs has attracted interest due to the urgency for finding more efficient and safe treatments for oncological patients. MDP is a ligand of the cytosolic nucleotide-binding oligomerization domain 2 receptor (NOD2). This molecule is basic structural unit that is responsible for the immune activity of peptidoglycans and exhibits many features that are important for modern medicine. NOD2 is a component of the innate immune system and represents a promising target for enhancing the innate immune response as well as the immune response against cancer cells. For this reason, MDP and its analogs have been widely used for many years not only in the treatment of immunodeficiency diseases but also as adjuvants to support improved vaccine delivery, including for cancer treatment. Unfortunately, in most cases, both the MDP molecule and its synthesized analogs prove to be too pyrogenic and cause serious side effects during their use, which consequently exclude them from direct clinical application. Therefore, intensive research is underway to find analogs of the MDP molecule that will have better biocompatibility and greater effectiveness as anticancer agents and for adjuvant therapy. In this paper, we review the MDP analogs discovered in the last 10 years that show promise for antitumor therapy. The first part of the paper compiles the achievements in the field of anticancer vaccine adjuvant research, which is followed by a description of MDP analogs that exhibit promising anticancer and antiproliferative activity and their structural changes compared to the original MDP molecule.
Collapse
Affiliation(s)
- Eliza Iwicka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Justyna Hajtuch
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
- *Correspondence: Iwona Inkielewicz-Stepniak,
| |
Collapse
|
152
|
Chang J, Lin S, Mao Y, Xu Y, Zhang Z, Wu Q, Chen Y, Wei Y, Feng Q, Xu J. CXCR6+ Tumor-Associated Macrophages Identify Immunosuppressive Colon Cancer Patients with Poor Prognosis but Favorable Response to Adjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14194646. [PMID: 36230570 PMCID: PMC9562861 DOI: 10.3390/cancers14194646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
We explored the infiltration and prognostic value of CXCR6+TAMs in all stages of colon cancer (CC) patients and assessed predictive ability as a biomarker for different ACT regimens among high-risk stage II and stage III patients in both primary and validation cohorts. Two independent cohorts of 360 and 126 consecutive colon cancer patients were enrolled from two medical centers of Zhongshan Hospital. Immunofluorescence and immunohistochemistry were performed to detect the density of CXCR6+TAMs and activated CD8+ T cells. The infiltration of CXCR6+TAMs was higher in tumor tissues and increased with advanced tumor stage. A high density of CXCR6+TAMs predicted worse overall survival (OS) in all CC patients (HR = 2.49, 95% CI = (1.68, 3.70), p < 0.001), and was an independent risk factor verified by Cox regression analysis (HR = 1.68, 95% CI = (1.09, 2.59), p = 0.019). For high-risk stage II and stage III patients with a high density of CXCR6+TAMs, better disease-free survival (DFS) (HR = 0.32, 95% CI = (0.11, 0.89), p = 0.003), and OS (HR = 0.28, 95% CI = (0.07, 1.11), p = 0.014) were observed in the 6-month treatment group. There was a negative relationship between the density of CXCR6+TAMs and CD8+ T cells (R = −0.51, p < 0.001) as well as activated CD8+ T cells (R = −0.54, p < 0.001). Higher levels of IL-6 and lower levels of IL-2R and TNF-α were expressed in high-CXCR6+ TAM-density patients, which indicates that CXCR6+TAMs contribute to an immunosuppressive microenvironment. CXCR6+TAMs predicted prognosis and response to different durations of ACT in CC patients. CXCR6+TAMs were associated with an immunosuppressive microenvironment and suppressed the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Jiang Chang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Songbin Lin
- General Surgery Department, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361000, China
| | - Yihao Mao
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Yuqiu Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Zhiyuan Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Qi Wu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Yijiao Chen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Ye Wei
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200000, China
- Correspondence: (Y.W.); (Q.F.); Tel.: +86-021-6564-2660 (Y.W. & Q.F.)
| | - Qingyang Feng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200000, China
- Correspondence: (Y.W.); (Q.F.); Tel.: +86-021-6564-2660 (Y.W. & Q.F.)
| | - Jianmin Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200000, China
| |
Collapse
|
153
|
Liu H, Lei D, Li J, Xin J, Zhang L, Fu L, Wang J, Zeng W, Yao C, Zhang Z, Wang S. MMP-2 Inhibitor-Mediated Tumor Microenvironment Regulation Using a Sequentially Released Bio-Nanosystem for Enhanced Cancer Photo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41834-41850. [PMID: 36073504 DOI: 10.1021/acsami.2c14781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combining photodynamic therapy (PDT) with natural killer (NK) cell-based immunotherapy has shown great potential against cancers, but the shedding of NK group 2, member D ligands (NKG2DLs) on tumor cells inhibited NK cell activation in the tumor microenvironment. Herein, we assembled microenvironment-/light-responsive bio-nanosystems (MLRNs) consisting of SB-3CT-containing β-cyclodextrins (β-CDs) and photosensitizer-loaded liposomes, in which SB-3CT was considered to remodel the tumor microenvironment. β-CDs and liposomes were linked by metalloproteinase 2 (MMP-2) responsive peptides, enabling sequential release of SB-3CT and chlorin e6 triggered by the MMP-2-abundant tumor microenvironment and 660 nm laser irradiation, respectively. Released SB-3CT blocked tumor immune escape by antagonizing MMP-2 and promoting the NKG2D/NKG2DL pathway, while liposomes were taken up by tumor cells for PDT. MLRN-mediated photo-immunotherapy significantly induced melanoma cell cytotoxicity (83.31%), inhibited tumor growth (relative tumor proliferation rate: 1.13% of that of normal saline) in the xenografted tumor model, and enhanced tumor-infiltrating NK cell (148 times) and NKG2DL expression (9.55 and 16.52 times for MICA and ULBP-1, respectively), achieving a synergistic effect. This study not only provided a simple insight into the development of new nanomedicine for programed release of antitumor drugs and better integration of PDT and immunotherapy but also a novel modality for clinical NK cell-mediated immunotherapy against melanoma.
Collapse
Affiliation(s)
- Huifang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jiong Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Lei Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Weihui Zeng
- Department of Dermatology, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| |
Collapse
|
154
|
Moslemizadeh A, Nematollahi MH, Amiresmaili S, Faramarz S, Jafari E, Khaksari M, Rezaei N, Bashiri H, Kheirandish R. Combination therapy with interferon-gamma as a potential therapeutic medicine in rat's glioblastoma: A multi-mechanism evaluation. Life Sci 2022; 305:120744. [PMID: 35798069 DOI: 10.1016/j.lfs.2022.120744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study assessed the effects of single or combined administration of temozolomide (TMZ) and interferon-gamma (IFN-ᵞ) on anxiety-like behaviors, balance disorders, learning and memory, TNF-α, IL-10, some oxidant and antioxidants factors with investigating the toll-like receptor-4 (TLR4) and p-CREB signaling pathway in C6-induced glioblastoma of rats. METHODS 40 male Sprague-Dawley rats bearing intra-caudate nucleus (CN) culture medium or C6 inoculation were randomly divided into five groups as follows: Sham, Tumor, TMZ, IFN-ᵞ and a TMZ + IFN-ᵞ combination. The open-field test (OFT), elevated plus maze (EPM), rotarod, and passive avoidance test (PAT) were done on days 14-17. On day 17 after tumor implantation, brain tissues were extracted for histopathological evaluation. TNF-α, IL-10, SOD, GPX, TAC, MDA, the protein level of TLR4 and p-CREB was measured. RESULTS Combination therapy inhibited the growth of the tumor. Treatment groups alleviated tumor-induced anxiety-like behaviors and improved imbalance and memory impairment. SOD, GPX, and TAC decreased in the tumor group. The combination group augmented GPX and TAC. MDA decreased in treatment groups. TMZ, IFN-ᵞ reduced tumor-increased TNF-α and IL-10 level. The combination group declined TNF-α level in serum and IL-10 level in serum and brain. Glioblastoma induced significant upregulation of TLR4 and p-CREB in the brain which inhibited by IFN-ᵞ and TMZ+ IFN-ᵞ. CONCLUSION The beneficial effects of TMZ, IFN-ᵞ, and TMZ+ IFN-ᵞ on neurocognitive functioning of rats with C6-induced glioblastoma may be mediated via modulating oxidative stress, reduced cytokines, and the downregulation of expression of TLR4 and p-CREB. Combination treatment appears to be more effective than single treatment.
Collapse
Affiliation(s)
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sanaz Faramarz
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Kheirandish
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
155
|
Olivera I, Sanz-Pamplona R, Bolaños E, Rodriguez I, Etxeberria I, Cirella A, Egea J, Garasa S, Migueliz I, Eguren-Santamaria I, Sanmamed MF, Glez-Vaz J, Azpilikueta A, Alvarez M, Ochoa MC, Malacrida B, Propper D, de Andrea CE, Berraondo P, Balkwill FR, Teijeira Á, Melero I. A Therapeutically Actionable Protumoral Axis of Cytokines Involving IL-8, TNFα, and IL-1β. Cancer Discov 2022; 12:2140-2157. [PMID: 35771565 DOI: 10.1158/2159-8290.cd-21-1115] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/20/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants. Although IL8 is absent from the mouse genome, a similar murine axis in which TNFα and IL-1β upregulate CXCL1 and CXCL2 in tumor cells was revealed. Furthermore, intratumoral injection of TNFα and IL-1β induced IL-8 release from human malignant cells xenografted in immunodeficient mice. In all these cases, the clinically used TNFα blockers infliximab and etanercept or the IL-1β inhibitor anakinra was able to interfere with this pathogenic cytokine loop. Finally, in paired plasma samples of patients with cancer undergoing TNFα blockade with infliximab in a clinical trial, reductions of circulating IL-8 were substantiated. SIGNIFICANCE IL-8 attracts immunosuppressive protumor myeloid cells to the tumor microenvironment, and IL-8 levels correlate with poor response to checkpoint inhibitors. TNFα and IL-1β are identified as major inducers of IL-8 expression on malignant cells across cancer types and models in a manner that is druggable with clinically available neutralizing agents. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Oncobell Program, Catalan Institute of Cancer (ICO), Bellvitge Biomedical Research Institute (IDIBELL), CIBERESP, Hospitalet de Llobregat, Barcelona, Spain and ARAID Researcher, Aragon Health Research institute (IIS Aragon), Zaragoza, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Josune Egea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Migueliz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - María C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Beatrice Malacrida
- Center for tumour microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kindgom
| | - David Propper
- Center for tumour microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kindgom
| | - Carlos E de Andrea
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Frances R Balkwill
- Center for tumour microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kindgom
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
156
|
Bhosale PB, Abusaliya A, Kim HH, Ha SE, Park MY, Jeong SH, Vetrivel P, Heo JD, Kim JA, Won CK, Kim HW, Kim GS. Apigetrin Promotes TNFα-Induced Apoptosis, Necroptosis, G2/M Phase Cell Cycle Arrest, and ROS Generation through Inhibition of NF-κB Pathway in Hep3B Liver Cancer Cells. Cells 2022; 11:cells11172734. [PMID: 36078142 PMCID: PMC9454891 DOI: 10.3390/cells11172734] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Apigetrin (7-(β-D-glucopyranosyloxy)-4′,5-dihydroxyflavone), a glycoside bioactive dietary flavonoid derived from Taraxacum officinale and Teucrium gnaphalodes, is known to possess anticancer, antioxidant, and anti-inflammatory effects on numerous cancers. In the present study, we examined the effect of apigetrin in Hep3B hepatocellular cancer cell line (HCC). Apigetrin inhibited cell growth and proliferation of Hep3B cells, as confirmed by MTT and colony formation assay. We used apigetrin at concentrations of 0, 50, and 100 µM for later experiments. Of these concentrations, 100 µM of apigetrin showed a significant effect on cell inhibition. In apigetrin-treated Hep3B cells, cell cycle arrest occurred at the G2/M phase. Apoptosis and necroptosis of Hep3B cells treated with apigetrin were confirmed by Annexin V/propidium iodide (PI) staining and flow cytometry results. Morphological observation through 4′,6-diamidino-2-phenylindole (DAPI) staining showed intense blue fluorescence representing chromatin condensation. Hematoxylin staining showed necroptotic features such as formation of vacuoles and swelling of organelles. Apigetrin increased reactive oxygen species (ROS) levels in cells, based on fluorescence imaging. Furthermore, the underlying mechanism involved in the apoptosis and necroptosis was elucidated through western blotting. Apigetrin up-regulated TNFα, but down-regulated phosphorylation of p-p65, and IκB. Apigetrin inhibited the expression of Bcl-xl but increased Bax levels. Up-regulation of cleaved PARP and cleaved caspase 3 confirmed the induction of apoptosis in apigetrin-treated Hep3B cells. Additionally, necroptosis markers RIP3, p-RIP3, and p-MLKL were significantly elevated by apigetrin dose-dependently, suggesting necroptotic cell death. Taken together, our findings strongly imply that apigetrin can induce apoptosis and necroptosis of Hep3B hepatocellular cancer cells. Thus, apigetrin as a natural compound might have potential for treating liver cancer.
Collapse
Affiliation(s)
- Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Sang Eun Ha
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Korea
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 117643, Singapore
| | - Jeong Doo Heo
- Department of Pharmacy, National University of Singapore, Singapore 117643, Singapore
| | - Jin-A Kim
- Department of Physical Therapy, International University of Korea, Jinju 52833, Korea
| | - Chung kil Won
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun-Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju 52725, Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-2346
| |
Collapse
|
157
|
Kong W, Yin G, Zheng S, Liu X, Zhu A, Yu P, Zhang J, Shan Y, Ying R, Jin H. Long noncoding RNA (lncRNA) HOTAIR: Pathogenic roles and therapeutic opportunities in gastric cancer. Genes Dis 2022; 9:1269-1280. [PMID: 35873034 PMCID: PMC9293693 DOI: 10.1016/j.gendis.2021.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer is one of the first malignant cancers in the world and a large number of people die every year due to this disease. Many genetic and epigenetic risk factors have been identified that play a major role in gastric cancer. HOTAIR is an effective epigenetic agent known as long noncoding RNA (lncRNA). HOTAIR has been described to have biological functions in biochemical and cellular processes through interactions with many factors, leading to genomic stability, proliferation, survival, invasion, migration, metastasis, and drug resistance. In the present article, we reviewed the prognostic value of the molecular mechanisms underlying the HOTAIR regulation and its function in the development of Gastric Cancer, whereas elucidation of HOTAIR–protein and HOTAIR–DNA interactions can be helpful in the identification of cancer processes, leading to the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Guang Yin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Sixin Zheng
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Xinchun Liu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Akao Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Panpan Yu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jian Zhang
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yuqiang Shan
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Huicheng Jin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
158
|
Wang R, Zhang X, Wang S. Differential genotypes of TNF-α and IL-10 for immunological diagnosis in discoid lupus erythematosus and oral lichen planus: A narrative review. Front Immunol 2022; 13:967281. [PMID: 35990645 PMCID: PMC9389012 DOI: 10.3389/fimmu.2022.967281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/24/2023] Open
Abstract
Discoid lupus erythematosus and oral lichen planus are chronic systemic immune system-mediated diseases with unclear etiology and pathogenesis. The oral mucosa is the common primary site of pathogenesis in both, whereby innate and adaptive immunity and inflammation play crucial roles. The clinical manifestations of discoid lupus erythematosus on the oral mucosa are very similar to those of oral lichen planus; therefore, its oral lesion is classified under oral lichenoid lesions. In practice, the differential diagnosis of discoid lupus erythematosus and oral lichen planus has always relied on the clinical manifestations, with histopathological examination as an auxiliary diagnostic tool. However, the close resemblance of the clinical manifestations and histopathology proves challenging for accurate differential diagnosis and further treatment. In most cases, dentists and pathologists fail to distinguish between the conditions during the early stages of the lesions. It should be noted that both are considered to be precancerous conditions, highlighting the significance of early diagnosis and treatment. In the context of unknown etiology and pathogenesis, we suggest a serological and genetic diagnostic method based on TNF-α and IL-10. These are the two most common cytokines produced by the innate and adaptive immune systems and they play a fundamental role in maintaining immune homeostasis and modulating inflammation. The prominent variability in their expression levels and gene polymorphism typing in different lesions compensates for the low specificity of current conventional diagnostic protocols. This new diagnostic scheme, starting from the immunity and inflammation of the oral mucosa, enables simultaneous comparison of discoid lupus erythematosus and oral lichen planus. With relevant supportive evidence, this information can enhance physicians’ understanding of the two diseases, contribute to precision medicine, and aid in prevention of precancerous conditions.
Collapse
Affiliation(s)
- Ruochong Wang
- Emergency Department, State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Zhang
- Emergency Department, State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siyu Wang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Siyu Wang,
| |
Collapse
|
159
|
Lopes NMD, Lens HHM, da Silva Brito WA, Bianchi JK, Marinello PC, Cecchini R, Armani A, Cecchini AL. Role of papillary thyroid carcinoma patients with Hashimoto thyroiditis: evaluation of oxidative stress and inflammatory markers. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2366-2378. [PMID: 35902455 DOI: 10.1007/s12094-022-02891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is the most frequent subtype of thyroid cancer; Hashimoto's thyroiditis (HT), autoimmune disease, commonly affects the thyroid gland; there is possibly a correlation between both, but the exact mechanisms that involve this relationship are still under debate. Since oxidative stress (OS) and the inflammatory environment participate in the development of several types of cancer, the objective of the present study was to establish the microenvironment and systemic participation of OS and inflammatory markers in patients with PTC and HT. METHODS Blood and tissue samples were collected from 115 patients: BENIGN (n = 63); PTC (n = 27); HT (n = 15) and PTC + HT (n = 10), and sixty-three were samples from healthy individuals (control group). RESULTS Superoxide dismutase, Catalase, reduced Glutathione, markers of lipid peroxidation and inflammation were evaluated in blood. Immunohistochemistry was performed on 3-nitrotyrosine, 4-hydroxynonenal, Ki-67 and VEGF. The results indicate that antioxidant enzymes were more active in groups with thyroid disorders compared to control, while the concentration of Reduced glutathione was reduced in BENIGN and PTC groups. When PTC and PTC + HT groups were analyzed, no significant differences were found in relation to the antioxidant defense and inflammatory markers. The ability to contain the induced lipid peroxidation was lower and a high level of malondialdehyde was observed in the PTC group. All immunohistochemical markers had higher scores in the PTC group compared to PTC + HT. CONCLUSION There was a more pronounced presence of OS and a greater activity of cell proliferation and angiogenesis markers in PTC than in PTC + HT group.
Collapse
Affiliation(s)
- Natália Medeiros Dias Lopes
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Hannah Hamada Mendonça Lens
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Walison Augusto da Silva Brito
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.,Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis "Plasma Redox Effects", Greifswald, Germany
| | - Julya Karen Bianchi
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rubens Cecchini
- Laboratory of Physiopathology and Free Radicals, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - André Armani
- Department of Surgery, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
160
|
Messeha SS, Zarmouh NO, Antonie L, Soliman KFA. Sanguinarine Inhibition of TNF-α-Induced CCL2, IKBKE/NF-κB/ERK1/2 Signaling Pathway, and Cell Migration in Human Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23158329. [PMID: 35955463 PMCID: PMC9368383 DOI: 10.3390/ijms23158329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was designed to determine the natural alkaloid sanguinarine (SANG) potential for its antiangiogenic and antimetastatic properties in triple-negative breast cancer (TNBC) cells. The cytotoxic effect of SANG was examined in MDA-MB-231 and MDA-MB-468 cell models at a low molecular level. In this study, SANG remarkably inhibited the inflammatory mediator chemokine CCL2 in MDA-MB-231 and MDA-MB-468 cells. Furthermore, qRT-PCR confirmed with Western analysis studies showed that mRNA CCL2 repression was concurrent with reducing its main regulator IKBKE and NF-κB signaling pathway proteins in both TNBC cell lines. The total ERK1/2 protein was inhibited in the more responsive MDA-MB-231 cells. SANG exhibited a higher potential to inhibit cell migration in MDA-MB-231 cells compared to MDA-MB-468 cells. Data obtained in this study suggest a unique antiangiogenic and antimetastatic effect of SANG in the MDA-MB-231 cell model. These effects are related to the compound’s ability to inhibit the angiogenic CCL2 and impact the ERK1/2 pathway. Therefore, SANG use may be recommended as a component of the therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Lovely Antonie
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
- Correspondence: ; Tel./Fax: +1-850-599-3306
| |
Collapse
|
161
|
Effect of Poly(methacrylic acid) on the Cytokine Level in an In Vivo Tumor Model. Molecules 2022; 27:molecules27144572. [PMID: 35889444 PMCID: PMC9316288 DOI: 10.3390/molecules27144572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a leading cause of mortality globally. Despite remarkable improvements in cancer-treatment approaches, disease recurrence and progression remain major obstacles to therapy. While chemotherapy is still a first-line treatment for a variety of cancers, the focus has shifted to the development and application of new approaches to therapy. Nevertheless, the relationship between immune response, neoplastic diseases and treatment efficiency is not fully understood. Therefore, the aim of the study was to investigate the immunopharmacological effects of methacrylic acid homopolymer in an in vivo tumor model. Materials and methods: Monomeric methacrylic acid was used to synthesize polymers. Methacrylic acid was polymerized in dioxane in the presence of 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid. To study the molecular weight characteristics of PMAA by GPC, carboxyl groups were preliminarily methylated with diazomethane. An experimental cancer model was obtained by grafting RMK1 breast cancer cells. The serum levels of IL-6, IL-10, IL-17, transforming growth factor β1 (TGF-β1), and tumor necrosis factor α (TNF-α) were measured by ELISA. Results: The effect of PMAA on the serum concentrations of several cytokines was studied upon its single administration to laboratory animals in early neoplastic process. The IL-6, IL-17 and TGF-β1 concentrations were found to change significantly and reach the level observed in intact rats. The IL-10 concentration tended to normalize. Conclusion: The positive results obtained are the basis for further studies on the effect of methacrylic-acid polymers with different molecular-weight characteristics on the neoplastic process.
Collapse
|
162
|
Zhang B, Tang B, Lv J, Gao J, Qin L. Systematic analyses to explore immune gene sets-based signature in hepatocellular carcinoma, in which IGF2BP3 contributes to tumor progression. Clin Immunol 2022; 241:109073. [PMID: 35817291 DOI: 10.1016/j.clim.2022.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/17/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
Tumor immune microenvironment (TIME) is of critical importance for the development and therapeutic response of hepatocellular carcinoma (HCC). However, limited studies have investigated immune-related indicators for clinical supervision and decision. The current study aimed to develop an improved prognostic signature based on TIME. HCC patients from TCGA and ICGC database were classified into three subtypes (Immunity High, Immunity Medium and Immunity Low) according to ssGSEA scores of 29 immune gene sets. Differentially expressed immune-related genes (DE IRGs) between Immune High and Low groups were screened with an adjusted P < 0.05. Weighted gene co-expression network analysis (WGCNA) was used to establish gene co-expression modules of differentially expressed genes (DEGs) between tumor and normal tissues. 45 survival-related immune genes (SRIGs) were identified at points of intersection between hub genes and DE IRGs. By performing Cox regression and LASSO analysis, 3 of the 45 SRIGs were screened to establish a prognostic model. Patients with high risk scores exhibited worse survival outcome and poorer response to chemotherapy. Potential mechanisms of chemotherapy resistance also have been discussed. More significantly, high -risk patients showed increased immune cell infiltration and checkpoints, which suggested a benefit of immunotherapy. In addition, knockdown of IGF2BP3 was determined to significantly inhibit cell proliferation and migration in HCC. Our immune-related model may be an effective tool for precise diagnosis and treatment of HCC. It may help to select patients suitable for chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Bufu Tang
- Departmcent of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Lv
- Department of Physiology, School of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Jianyao Gao
- Department of Radiation Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
163
|
Liu J, Wang P, Huang B, Cheng Q, Duan Y, Chen L, Ma T, Zhu C, Li D, Fan W, Yu M. Effective suppression of triple negative breast cancer by paclitaxel nanoparticles conjugated with transmembrane TNF-α monoclonal antibody. Int J Pharm 2022; 624:121969. [PMID: 35803533 DOI: 10.1016/j.ijpharm.2022.121969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Transmembrane TNF-α (tmTNF), a transmembrane form of TNF-α, was reported overexpressed in approximately 84% of triple-negative breast cancer (TNBC) patients and has emerged as a valid candidate biomarker for targeting TNBC. Paclitaxel is a first-line chemotherapeutic agent for the treatment of triple-negative breast cancer, but suffers from low water solubility, resulting in its low bioavailability. To achieve site-specific delivery of the anticancer chemotherapeutic drug (paclitaxel) on TNBC, we developed tmTNF-α monoclonal antibody (mAb)-conjugated paclitaxel (PTX) nanoparticles (NPs) (tmTNF-α mAb-PTX NPs) as potential nanocarriers. This targeted delivery-therapy nanocarriers was conducted by using an emulsification-evaporation method. tmTNF-α mAb-PTX NPs displayed favorable physicochemical properties. Compared with the control groups, tumor growth in human MDA-MB-231 xenograft mice was suppressed significantly by tmTNF-α mAb-PTX NPs. TmTNF-α mAb-PTX NPs exerts anti-tumor effects via promoting apoptosis and regulating mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) / protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) cascade, as well as AMP-activated protein kinase (AMPK) and nuclear factor Kappa-B (NF-κB) pathways. Moreover, tmTNF-α mAb-PTX NPs can inhibit the process of epithelial-mesenchymal transition (EMT) in TNBC to suppress tumor progression and metastasis. Together, the novel tmTNF-α mAb-PTX NPs based targeted drug delivery system is a potentially highly effective approach for treating TNBC.
Collapse
Affiliation(s)
- Jiacui Liu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Department of Clinical Laboratory, Xiamen Children's Hospital (Children's Hospital of Fudan University Xiamen Branch), Xiamen, Fujian 361006, China
| | - Ping Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Ben Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yiping Duan
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Liangyue Chen
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Tiantian Ma
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Cuiwen Zhu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Dongxu Li
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wei Fan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Mingxia Yu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
164
|
Jiang L, Zeng Y, Ai L, Yan H, Yang X, Luo P, Yang B, Xu Z, He Q. Decreased HMGB1 expression contributed to cutaneous toxicity caused by lapatinib. Biochem Pharmacol 2022; 201:115105. [PMID: 35617997 DOI: 10.1016/j.bcp.2022.115105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
The application of lapatinib, a widely used dual inhibitor of human epidermal growth factor receptor 1 (EGFR/ERBB1) and 2 (HER2/ERBB2), has been seriously limited due to cutaneous toxicity. However, the specific mechanism of lapatinib-induced cutaneous toxicity has not been clarified, leading to the lack of an effective strategy to improve clinical safety. Here, we found that lapatinib could induce mitochondrial dysfunction, lead to DNA damage and ultimately cause apoptosis of keratinocytes. In addition, we found that lapatinib could induce an aberrant immune response and promote the release of inflammatory factors in vitro and in vivo. Mechanistically, downregulated expression of the DNA repair protein HMGB1 played a critical role in these toxic reaction processes. Overexpression of HMGB1 inhibited keratinocyte apoptosis and inflammatory reactions. Therefore, restoring HMGB1 expression might be an effective remedy against lapatinib-induced cutaneous toxicity. Finally, we found that saikosaponin A could significantly rescue the reduced HMGB1 transcription, which could alleviate lapatinib-induced DNA damage, inhibit keratinocyte apoptosis and further prevent the toxicity of lapatinib in mice. Collectively, our study might bring new hope to clinicians and tumor patients and shed new light on the prevention of cutaneous adverse drug reactions induced by EGFR inhibitors.
Collapse
Affiliation(s)
- Liyu Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, P.R. China
| | - Yan Zeng
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Leilei Ai
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, P.R. China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, P.R. China.
| |
Collapse
|
165
|
Bao X, Li Q, Chen J, Chen D, Ye C, Dai X, Wang Y, Li X, Rong X, Cheng F, Jiang M, Zhu Z, Ding Y, Sun R, Liu C, Huang L, Jin Y, Li B, Lu J, Wu W, Guo Y, Fu W, Langley SR, Tano V, Fang W, Guo T, Sheng J, Zhao P, Ruan J. Molecular Subgroups of Intrahepatic Cholangiocarcinoma Discovered by Single-Cell RNA Sequencing-Assisted Multi-Omics Analysis. Cancer Immunol Res 2022; 10:811-828. [PMID: 35604302 DOI: 10.1158/2326-6066.cir-21-1101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively rare but highly aggressive tumor type that responds poorly to chemotherapy and immunotherapy. Comprehensive molecular characterization of ICC is essential for the development of novel therapeutics. Here, we constructed two independent cohorts from two clinic centers. A comprehensive multi-omics analysis of ICC via proteomic, whole-exome sequencing (WES), and single-cell RNA sequencing (scRNA-seq) was performed. Novel ICC tumor subtypes were derived in the training cohort (n=110) using proteomic signatures and their associated activated pathways, which was further validated in a validation cohort (n=41). Three molecular subtypes, chromatin remodeling, metabolism, and chronic inflammation, with distinct prognoses in ICC were identified. The chronic inflammation subtype associated with a poor prognosis. Our random forest algorithm revealed that mutation of lysine methyltransferase 2D (KMT2D) frequently occurred in the metabolism subtype and associated with lower inflammatory activity. scRNA-seq further identified an APOE+C1QB+ macrophage subtype, which showed the capacity to reshape the chronic inflammation subtype and contribute to a poor prognosis in ICC. Altogether, with single-cell transcriptome-assisted multi-omics analysis, we identified novel molecular subtypes of ICC and validated APOE+C1QB+ tumor-associated macrophages (TAMs) as potential immunotherapy targets against ICC.
Collapse
Affiliation(s)
- Xuanwen Bao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Med, China
| | - Diyu Chen
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chanqi Ye
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaomeng Dai
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| | - Yanfang Wang
- Ludwig-Maximilians-Universität München (LMU), 1, Germany
| | - Xin Li
- 5Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Germany
| | - Xiaoxiang Rong
- Nanfang Hospital, Southern medical University, Guangzhou 510000, Guangdong Province, People's Republic of China , GuangZhou, China
| | - Fei Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Ming Jiang
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Zheng Zhu
- Brigham and Women's Hospital, boston, United States
| | - Yongfeng Ding
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China., China
| | - Rui Sun
- Westlake University, Hang Zhou, Zhejiang Province, China
| | | | - Lingling Huang
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou, Zhejiang, China
| | - Yuzhi Jin
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| | - Bin Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, China
| | - Wei Wu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixuan Guo
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| | - Wenguang Fu
- Affiliated Hospital of Southwest Medical University, China
| | | | - Vincent Tano
- Nanyang Technological University, Singapore, Singapore
| | - Weijia Fang
- First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Jianpeng Sheng
- First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Zhao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China, Hangzhou, China
| | - Jian Ruan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| |
Collapse
|
166
|
Xie X, Zhou J, Hu L, Shu R, Zhang M, Sun L, Wu F, Fu Z, Li Z. Oral exposure to a hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts mitochondrial function and biogenesis in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128376. [PMID: 35158245 DOI: 10.1016/j.jhazmat.2022.128376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) is reported to have hepatotoxicity, lipotoxicity, and cytotoxicity. In this study, the toxicological effects of HFPO-TA on mitochondrial function and biogenesis were studied. Mice were exposed to drinking water which contained either 2, 20, or 200 μg/L HFPO-TA. Results showed exposure to HFPO-TA induced disadvantageous physiological changes in mice, including increases in liver weight, altered cell morphology, and inflammatory responses. Specifically, exposure to 200 μg/L HFPO-TA increased mitochondria number, relative mitochondrial DNA (mtDNA) content, and mRNA levels of mitochondrial genes encoded by mtDNA. Significant increases in TFAM mRNA and protein levels were also observed. Liver metabolome analysis also showed exposure to 200 μg/L HFPO-TA further enhanced increases in metabolites and altered metabolic pathways that correlated with mitochondrial function, especially the production of ATP. HFPO-TA exposure increased protein expression of mitochondrial complex I-V, and the activities of key enzymes involved in TCA cycle (α-ketoglutarate dehydrogenase, citrate synthase, and succinate dehydrogenase). Furthermore, exposure to 200 μg/L HFPO-TA significantly up-regulating mRNA and protein levels of Opa1, Mfn1, Mfn2, Fis1, and Mff, but did not change Drp1. These findings suggest HFPO-TA could have detrimental effects on health of animals, particularly it was associated with disrupted mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
167
|
Li A, Mei Y, Zhao M, Xu J, Zhao J, Zhou Q, Ge X, Xu Q. Do urinary metals associate with the homeostasis of inflammatory mediators? Results from the perspective of inflammatory signaling in middle-aged and older adults. ENVIRONMENT INTERNATIONAL 2022; 163:107237. [PMID: 35429917 DOI: 10.1016/j.envint.2022.107237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We aimed to investigate whether urinary metal mixtures are associated with the homeostasis of inflammatory mediators in middle-aged and older adults. METHODS A four-visit repeated-measures study was conducted with 98 middle-aged and older adults from five communities in Beijing, China. Only one person was lost to follow-up at the third visit. Ultimately, 391 observations were included in the analysis. The urinary concentrations of 10 metals were measured at each visit using inductively coupled plasma mass spectrometry (ICP-MS) with a limit of detection (LOD) ranging from 0.002 to 0.173 µg/L, and the detection rates were all above 84%. Similarly, 14 serum inflammatory mediators were measured using a Beckman Coulter analyzer and the Bio-Plex MAGPIX system. A linear mixed model (LMM), LMM with least absolute shrinkage and selection operator regularization (LMMLASSO), and Bayesian kernel machine regression (BKMR) were adopted to explore the effects of urinary metal mixtures on inflammatory mediators. RESULTS In LMM, a two-fold increase in urinary cesium (Cs) and chromium (Cr) was statistically associated with -35.22% (95% confidence interval [CI]: -53.17, -10.40) changes in interleukin 6 (IL-6) and -11.13% (95 %CI: -20.67, -0.44) in IL-8. Urinary copper (Cu) and selenium (Se) was statistically associated with IL-6 (88.10%, 95%CI: 34.92, 162.24) and tumor necrosis factor-alpha (TNF-α) (22.32%, 95%CI: 3.28, 44.12), respectively. Similar results were observed for the LMMLASSO and BKMR. Furthermore, Cr, Cs, Cu, and Se were significantly associated with other inflammatory regulatory network mediators. For example, urinary Cs was statistically associated with endothelin-1, and Cr was statistically associated with endothelin-1 and intercellular adhesion molecule 1 (ICAM-1). Finally, the interaction effects of Cu with various metals on inflammatory mediators were observed. CONCLUSION Our findings suggest that Cr, Cs, Cu, and Se may disrupt the homeostasis of inflammatory mediators, providing insight into the potential pathophysiological mechanisms of metal mixtures and chronic diseases.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
168
|
A label-free lateral offset spliced coreless fiber MZI biosensor based on hydrophobin HGFI for TNF-α detection. OPTOELECTRONICS LETTERS 2022; 18:263-268. [PMID: 35693480 PMCID: PMC9170553 DOI: 10.1007/s11801-022-2061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/24/2022] [Indexed: 11/06/2022]
Abstract
A real-time label-free lateral offset spliced coreless fiber (CF) Mach-Zehnder interferometer (MZI) biosensor functionalized with hydrophobin Grifola frondosa I (HGFI) was proposed for the detection of cytokine tumour necrosis factor alpha (TNF-α). The nanolayer self-assembled on the optical fiber surfaces by HGFI rendered the immobilization of probe TNF-α antibody and recognition of antigen TNF-α. Trifluoroacetic acid was utilized to remove the HGFI layer from the glass surface, which was validated by field emission scanning electron microscopy (FESEM) and water contact angle (WCA). Results demonstrated that the processes of HGFI modification, antibody immobilization and specific antibody detection can be monitored in real time. The proposed biosensor exhibited good specificity, repeatability and low detection limit for TNF-α, extending its application in inflammation and disease monitoring.
Collapse
|
169
|
Alhazzani K, Venkatesan T, Natarajan U, Algahtani M, Alaseem A, Alobid S, Rathinavelu A. Evaluation of antitumor effects of VEGFR-2 inhibitor F16 in a colorectal xenograft model. Biotechnol Lett 2022; 44:787-801. [PMID: 35501620 DOI: 10.1007/s10529-022-03243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Colorectal cancer (CRC) is the third most prevalent type of cancer in the United States. The treatment options for cancer include surgery, chemotherapy, radiation, and/or targeted therapy, which show significant improvement in overall survival. Among the various available treatments, antagonizing VEGF/VEGFR-2 pathways have shown effectiveness in limiting colorectal cancer growth and improving clinical outcomes. In this regard, we hypothesized that F16, a novel VEGFR-2 inhibitor, would control colorectal cancer growth by blocking the VEGFR-2 singling pathway in both in vitro and in vivo conditions. Therefore, the current study was aimed to analyze the efficacy of F16 on the growth of Colo 320DM cells under in vitro and in vivo conditions. RESULTS Human RT2 profiler PCR array analysis results clearly showed that angiogenesis and anti-apoptosis-related gene expressions were significantly reduced in HUVEC cells after F16 (5 μM) treatment. In addition, Western blot results revealed that F16 attenuated the downstream signaling of the VEGFR-2 pathway in HUVEC cells by up-regulating the p53 and p21 levels and down-regulating the p-AKT and p-FAK levels. Accordingly, F16 confirmed potent cytotoxic effects against the cell viability of Colo 320DM tumors, with an IC50 value of 9.52 ± 1.49 µM. Furthermore, treatment of mice implanted with Colo 320DM xenograft tumors showed a significant reduction in tumor growth and increases in survival rate compared to controls. Immunohistochemistry analysis of tumor tissues showed a reduction in CD31 levels also in F16 treated groups. CONCLUSIONS These results justify further evaluation of F16 as a potential new therapeutic agent for treating colorectal cancers.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA
| | - Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA
| | - Mohammad Algahtani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Ali Alaseem
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, 13317, Saudi Arabia
| | - Saad Alobid
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA. .,College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA.
| |
Collapse
|
170
|
Bakshi HA, Quinn GA, Nasef MM, Mishra V, Aljabali AAA, El-Tanani M, Serrano-Aroca Á, Webba Da Silva M, McCarron PA, Tambuwala MM. Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-α/NF-kB/VEGF Pathways. Cells 2022; 11:1502. [PMID: 35563808 PMCID: PMC9104358 DOI: 10.3390/cells11091502] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and metastasis play pivotal roles in the progression of cancer. We recently discovered that crocin, a dietary carotenoid derived from the Himalayan crocus, inhibited the growth of colon cancer cells. However, the exact role of crocin on the angiogenesis and metastasis in colorectal cancer remains unclear. In the present study, we demonstrated that crocin significantly reduces the viability of colon cancer cells (HT-29, Caco-2) and human umbilical vein endothelial cells (HUVEC), but was not toxic to human colon epithelial (HCEC) cells. Furthermore, pre-treatment of human carcinoma cells (HT-29 and Caco-2) with crocin inhibited cell migration, invasion, and angiogenesis in concentration -dependent manner. Further studies demonstrated that crocin inhibited TNF-α, NF-κB and VEGF pathways in colon carcinoma cell angiogenesis and metastasis. Crocin also inhibited cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVEC) in a concentration -dependent manner. We also observed that crocin significantly reduced the secretion of VEGF and TNF-α induced activation of NF-kB by human colon carcinoma cells. In the absence of TNF-α, a concentration-dependent reduction in NF-kB was observed. Many of these observations were confirmed by in vivo angiogenesis models, which showed that crocin significantly reduced the progression of tumour growth. Collectively, these finding suggest that crocin inhibits angiogenesis and colorectal cancer cell metastasis by targeting NF-kB and blocking TNF-α/NF-κB/VEGF pathways.
Collapse
Affiliation(s)
- Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Gerry A. Quinn
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Mohamed M. Nasef
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 566, Jordan;
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Paul A. McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| |
Collapse
|
171
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
172
|
Yu X, Wang X, Yamazaki A, Li X. Tumor microenvironment-regulated nanoplatforms for the inhibition of tumor growth and metastasis in chemo-immunotherapy. J Mater Chem B 2022; 10:3637-3647. [PMID: 35439801 DOI: 10.1039/d2tb00337f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapy is one of the major clinical anticancer therapies. However, its efficiency is limited by many factors, including the complex tumor microenvironment (TME). Herein, manganese-doped mesoporous silica nanoparticles (MM NPs) were constructed and applied to regulate the TME and enhance the efficiency of the combination of chemotherapy and immunotherapy (chemo-immunotherapy). Notably, the combination of MM NPs, doxorubicin hydrochloride, and immune checkpoint inhibitors enhanced the synergistic efficiency of chemo-immunotherapy in a bilateral animal model, which simultaneously inhibited the growth of primary tumors and distant untreated tumors. Moreover, Mn-doping endowed MSNs with six new regulatory functions for the TME by inducing glutathione depletion, ROS generation, oxygenation, cell-killing effect, immune activation, and degradation promotion. These results demonstrated that MM NPs with TME regulatory functions can potentially improve the efficiency of chemo-immunotherapy.
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
173
|
Antitumor Activity of Royal Jelly and Its Cellular Mechanisms against Ehrlich Solid Tumor in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7233997. [PMID: 35528154 PMCID: PMC9071879 DOI: 10.1155/2022/7233997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
Objective The present study was aimed at evaluating the antitumor effects of royal jelly (RJ) obtained from Apis mellifera compared with cyclophosphamide against the Ehrlich solid tumors (EST) in mice. Methods Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO), nitric oxide (NO), antioxidant enzymes (glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in EST mice treated with RJ (200 and 400 mg/kg orally once a day for 2 weeks). Results The results showed that treatment of EST-suffering mice with RJ at the doses of 200 and 400 mg/kg causes significant reduction in tumor volume and inhibition rate, body weight, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the EST mice receiving the normal saline; whereas RJ at the doses of 200 and 400 mg/kg/day significantly increased (p < 0.05) the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusion The findings revealed that oral administration of royal jelly especially at the doses of 200 and 400 mg/kg exhibited promising antitumor effects against EST in mice through induction of apoptosis as well as its antioxidant and anti-inflammatory effects, which suggest it as a novel anticancer agent against tumor; however, additional surveys especially in clinical setting are necessary to approve these findings.
Collapse
|
174
|
Karagulle OO, Yurttas AG. Ozone combined with doxorubicin exerts cytotoxic and anticancer effects on Luminal-A subtype human breast cancer cell line. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:507-513. [DOI: 10.1590/1806-9282.20211193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
|
175
|
Lin D, Zhao W, Yang J, Wang H, Zhang H. Integrative Analysis of Biomarkers and Mechanisms in Adamantinomatous Craniopharyngioma. Front Genet 2022; 13:830793. [PMID: 35432485 PMCID: PMC9006448 DOI: 10.3389/fgene.2022.830793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Craniopharyngioma is a benign tumor, and the predominant treatment methods are surgical resection and radiotherapy. However, both treatments may lead to complex complications, seriously affecting patients’ survival rate and quality of life. Adamantinomatous craniopharyngioma (ACP), as one of the histological subtypes of craniopharyngioma, is associated with a high incidence and poor prognosis, and there is a gap in the targeted therapy of immune-related genes for ACP. In this study, two gene expression profiles of ACP, namely GSE68015 and GSE94349, were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by the Limma package, and 271 differentially expressed immune-related genes (DEIRGs) were obtained from the Immport database. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were performed for annotation, visualization, and integrated discovery. Five hub genes, including CXCL6, CXCL10, CXCL11, CXCL13, and SAA1, were screened out through protein-protein interaction (PPI) network interaction construction. Two diagnostic markers, namely S100A2 and SDC1 (both of which have the Area Under Curve value of 1), were screened by the machine learning algorithm. CIBERSORT analysis showed that M2 macrophages, activated NK cells, and gamma delta T cells had higher abundance in ACP infiltration, while CD8+ T cells, regulatory T cells, and Neutrophils had less abundance in ACP infiltration. The expression of gamma delta T cells was positively correlated with CXCL6, S100A2, SDC1, and SAA1, while CD8+ T cells expression was negatively correlated with CXCL6, S100A2, SDC1, and CXCL10. ACP with high CXCL6 showed remarkable drug sensitivity to Pentostatin and Wortmannin via CellMiner database analysis. Our results deepened the understanding of the molecular immune mechanism in ACP and provided potential biomarkers for the precisely targeted therapy for ACP.
Collapse
Affiliation(s)
- Da Lin
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenyue Zhao
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Yang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hongbing Zhang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongbing Zhang,
| |
Collapse
|
176
|
Inflammatory Response-Related Long Non-Coding RNA Signature Predicts the Prognosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9917244. [PMID: 35342418 PMCID: PMC8947866 DOI: 10.1155/2022/9917244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 01/08/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a high mortality malignant tumor with genetic and phenotypic heterogeneity, making predicting prognosis challenging. Meanwhile, the inflammatory response is an indispensable player in the tumorigenesis process and regulates the tumor microenvironment, which can affect the prognosis of tumor patients. Methods Using HCC samples in the TCGA-LIHC dataset, we explored lncRNA expression profiles associated with the inflammatory response. The inflammatory response-related lncRNA signature was constructed by univariate Cox regression, LASSO regression, and multivariate Cox regression methods based on inflammatory response-related differentially expressed lncRNAs in HCC. Results Seven inflammatory response-related lncRNA signatures were identified in predicting HCC prognosis. Kaplan–Meier (K-M) survival analysis indicated that high-risk group HCC patients were associated with poor prognosis. The utility of the inflammatory response-related lncRNA signatures was proved by the AUC and DCA analysis. The nomogram further confirmed the accuracy of the novel signature in predicting HCC patients' prognoses. In validation, our novel signature is more accurate than traditional clinicopathological performance for prognosis prediction of HCC patients. GSEA analysis further elucidated the underlying mechanisms and pathways of HCC progression in the low- and high-risk groups. Moreover, immune cells infiltration responses and immune function analyses revealed a significant difference between high- and low-risk groups in cytolytic activity, MHC class I, type I INF response, type II INF response, inflammation-promoting, and T cell coinhibition. Finally, HHLA2, NRP1, CD276, TNFRSF9, TNFSF4, CD80, and VTCN1 were expressed higher in high-risk groups in the immune checkpoint analysis. Conclusions A novel inflammatory response-related lncRNA signature (AC145207.5, POLHAS1, AL928654.1, MKLN1AS, AL031985.3, PRRT3AS1, and AC023157.2) is capable of predicting the prognosis of HCC patients and providing new immune targeted therapies insight.
Collapse
|
177
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
178
|
Lembas A, Zawartko K, Sapuła M, Mikuła T, Kozłowska J, Wiercińska-Drapało A. VCAM-1 as a Biomarker of Endothelial Function among HIV-Infected Patients Receiving and Not Receiving Antiretroviral Therapy. Viruses 2022; 14:578. [PMID: 35336985 PMCID: PMC8955345 DOI: 10.3390/v14030578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The Human Immunodeficiency Virus and retroviral therapy are both known risk factors for cardiovascular disease. It remains an open question whether HIV or ARV leads to increased arterial inflammation. The objective of this study was to investigate the changes in endothelial activation by measuring VCAM-1 levels among HIV-infected patients who were and were not treated with antiretroviral therapy. It is a retrospective study that included 68 HIV-infected patients, 23 of whom were never antiretroviral-treated, 15 who were ART-treated for no longer than a year, and 30 who were ART-treated for longer than a year. Blood samples were collected for biochemical analysis of the concentration of VCAM-1. The results show a statistically lower VCAM-1 level (p = 0.007) in patients treated with ART longer than a year (1442 ng/mL) in comparison to treatment-naïve patients (2392 ng/mL). The average VCAM-1 level in patients treated no longer than a year (1552 ng/mL) was also lower than in treatment-naïve patients, but with no statistical significance (p = 0.096). Long-term antiretroviral therapy was associated with the decline of VCAM-1 concentration. That may suggest the lowering of endothelial activation and the decreased risk of the development of cardiovascular disease among ARV-treated patients. However, VCAM-1 may not be a sufficient factor itself to assess this, since simultaneously there are a lot of well-known cardiovascular-adverse effects of ART.
Collapse
Affiliation(s)
- Agnieszka Lembas
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Hospital for Infectious Diseases in Warsaw, 02-091 Warszawa, Poland; (M.S.); (T.M.); (J.K.); (A.W.-D.)
| | - Katarzyna Zawartko
- Students’ Science Society of the Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warszawa, Poland;
| | - Mariusz Sapuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Hospital for Infectious Diseases in Warsaw, 02-091 Warszawa, Poland; (M.S.); (T.M.); (J.K.); (A.W.-D.)
| | - Tomasz Mikuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Hospital for Infectious Diseases in Warsaw, 02-091 Warszawa, Poland; (M.S.); (T.M.); (J.K.); (A.W.-D.)
| | - Joanna Kozłowska
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Hospital for Infectious Diseases in Warsaw, 02-091 Warszawa, Poland; (M.S.); (T.M.); (J.K.); (A.W.-D.)
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Hospital for Infectious Diseases in Warsaw, 02-091 Warszawa, Poland; (M.S.); (T.M.); (J.K.); (A.W.-D.)
| |
Collapse
|
179
|
Liu ZW, Zhang YM, Zhang LY, Zhou T, Li YY, Zhou GC, Miao ZM, Shang M, He JP, Ding N, Liu YQ. Duality of Interactions Between TGF-β and TNF-α During Tumor Formation. Front Immunol 2022; 12:810286. [PMID: 35069596 PMCID: PMC8766837 DOI: 10.3389/fimmu.2021.810286] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment is essential for the formation and development of tumors. Cytokines in the microenvironment may affect the growth, metastasis and prognosis of tumors, and play different roles in different stages of tumors, of which transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α) are critical. The two have synergistic and antagonistic effect on tumor regulation. The inhibition of TGF-β can promote the formation rate of tumor, while TGF-β can promote the malignancy of tumor. TNF-α was initially determined to be a natural immune serum mediator that can induce tumor hemorrhagic necrosis, it has a wide range of biological activities and can be used clinically as a target to immune diseases as well as tumors. However, there are few reports on the interaction between the two in the tumor microenvironment. This paper combs the biological effect of the two in different aspects of different tumors. We summarized the changes and clinical medication rules of the two in different tissue cells, hoping to provide a new idea for the clinical application of the two cytokines.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Gansu Institute of Cardiovascular Diseases, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ming Shang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Nan- Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
180
|
Murthy SRK, Cheng X, Zhuang T, Ly L, Jones O, Basadonna G, Keidar M, Canady J. BCL2A1 regulates Canady Helios Cold Plasma-induced cell death in triple-negative breast cancer. Sci Rep 2022; 12:4038. [PMID: 35260587 PMCID: PMC8904455 DOI: 10.1038/s41598-022-07027-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the leading cause of cancer death among women. Triple-negative breast cancer (TNBC) has a poor prognosis and frequently relapses early compared with other subtypes. The Cold Atmospheric Plasma (CAP) is a promising therapy for prognostically poor breast cancer such as TNBC. The Canady Helios Cold Plasma (CHCP) induces cell death in the TNBC cell line without thermal damage, however, the mechanism of cell death by CAP treatment is ambiguous and the mechanism of resistance to cell death in some subset of cells has not been addressed. We investigate the expression profile of 48 apoptotic and 35 oxidative gene markers after CHCP treatment in six different types of breast cancer cell lines including luminal A (ER+ PR+/-HER2-), luminal B (ER+PR+/-HER2+), (ER-PR-HER2+), basal-like: ER-PR-HER2- cells were tested with CHCP at different power settings and at 4 different incubation time. The expression levels of the gene markers were determined at 4 different intervals after the treatment. The protein expression of BCL2A1 was only induced after CHCP treatment in TNBC cell lines (p < 0.01), whereas the HER2-positive and ER, PR positive cell lines showed little or no expression of BCL2A1. The BCL2A1 and TNF-alpha expression levels showed a significant correlation within TNBC cell lines (p < 0.01). Silencing BCL2A1 mRNA by siRNA increased the potency of the CHCP treatment. A Combination of CHCP and CPI203, a BET bromodomain inhibitor, and a BCL2A1 antagonist increased the CHCP-induced cell death (p < 0.05). Our results revealed that BCL2A1 is a key gene for resistance during CHCP induced cell death. This resistance in TNBCs could be reversed with a combination of siRNA or BCL2A1 antagonist-CHCP therapy.
Collapse
Affiliation(s)
- Saravana R K Murthy
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | - Xiaoqian Cheng
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | | | - Lawan Ly
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | - Olivia Jones
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | | | | | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA.
- The George Washington University, Washington, DC, USA.
- Holy Cross Hospital, Department of Surgery, Silver Spring, MD, USA.
| |
Collapse
|
181
|
Plundrich D, Chikhladze S, Fichtner-Feigl S, Feuerstein R, Briquez PS. Molecular Mechanisms of Tumor Immunomodulation in the Microenvironment of Colorectal Cancer. Int J Mol Sci 2022; 23:2782. [PMID: 35269922 PMCID: PMC8910988 DOI: 10.3390/ijms23052782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer remains one of the most important health challenges in our society. The development of cancer immunotherapies has fostered the need to better understand the anti-tumor immune mechanisms at play in the tumor microenvironment and the strategies by which the tumor escapes them. In this review, we provide an overview of the molecular interactions that regulate tumor inflammation. We particularly discuss immunomodulatory cell-cell interactions, cell-soluble factor interactions, cell-extracellular matrix interactions and cell-microbiome interactions. While doing so, we highlight relevant examples of tumor immunomodulation in colorectal cancer.
Collapse
Affiliation(s)
- Dorothea Plundrich
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sophia Chikhladze
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 900048, USA
- Department of Medicine, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 900048, USA
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Priscilla S Briquez
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
182
|
Dong X, Ma B, Lei L, Chen Y, Xu C, Zhao C, Liu H. Three-dimensional photonic nitrocellulose for minimally invasive detection of biomarker in tumor interstitial fluid. CHEMICAL ENGINEERING JOURNAL 2022; 432:134234. [DOI: 10.1016/j.cej.2021.134234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
183
|
Weidle UH, Nopora A. MicroRNAs and Corresponding Targets in Esophageal Cancer as Shown In Vitro and In Vivo in Preclinical Models. Cancer Genomics Proteomics 2022; 19:113-129. [PMID: 35181582 DOI: 10.21873/cgp.20308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
Squamous cell carcinoma of the esophagus is associated with a dismal prognosis. Therefore, identification of new targets and implementation of new treatment modalities are issues of paramount importance. Based on a survey of the literature, we identified microRNAs conferring antitumoral activity in preclinical in vivo experiments. In the category of miRs targeting secreted factors and transmembrane receptors, four miRs were up-regulated and 10 were down-regulated compared with five out of nine in the category transcription factors, and six miRs were down-regulated in the category enzymes, including metabolic enzymes. The down-regulated miRs have targets which can be inhibited by small molecules or antibody-related entities, or re-expressed by reconstitution therapy. Up-regulated miRs have targets which can be reconstituted with small molecules or inhibited with antagomirs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
184
|
Photosensitizer-induced HPV16 E7 nanovaccines for cervical cancer immunotherapy. Biomaterials 2022; 282:121411. [DOI: 10.1016/j.biomaterials.2022.121411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/17/2022]
|
185
|
Li B, Wang Y, Zhao H, Yin K, Liu Y, Wang D, Zong H, Xing M. Oxidative stress is involved in the activation of NF-κB signal pathway and immune inflammatory response in grass carp gill induced by cypermethrin and/or sulfamethoxazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19594-19607. [PMID: 34718981 DOI: 10.1007/s11356-021-17197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
At present, the concentration of environmental pollutants, such as pesticides and antibiotics exposed in environment, especially in aquatic environment is increasing. Research on environmental pollutants has exploded in the last few years. However, studies on the combined effects of pesticides and antibiotics on fish are rare, especially the toxic damage to gill tissue is vague. In this paper, cypermethrin (CMN) and sulfamethoxazole (SMZ) were analyzed and found that there was a strong correlation between the pathways affected by the first 30 genes regulated by CMN and SMZ, respectively. Therefore, the toxic effects of CMN (0.651 μg L-1) and/or SMZ (0.3 μg L-1) on grass carp gill were studied in this paper. Histopathology, quantitative real-time PCR, and other methods were used to detect the tissue morphology, oxidative stress level, inflammation, and apoptosis-related indicators of the fish gills after exposure of 42 days. It was found that compared with the single exposure (CMN/SMZ) group, the combined exposure (MIX) group had a more pronounced oxidative stress index imbalance. At the same time, nuclear factor-κB (NF-κB) signal pathway was activated and immuno-inflammatory reaction appeared in MIX group. The expression of tumor necrosis factor (TNF-α) in the rising range is 2.94 times that of the C group, while the expression of interleukin 8 (IL-8) is as high as 32.67 times. This study reveals the harm of CMN and SMZ to fish, and provides a reference and basis for the rational use of pesticides and antibiotics.
Collapse
Affiliation(s)
- Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou, 510000, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
186
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
187
|
Mahhengam N, Kazemnezhad K, Setia Budi H, Ansari MJ, Olegovich Bokov D, Suksatan W, Thangavelu L, Siahmansouri H. Targeted therapy of tumor microenvironment by gold nanoparticles as a new therapeutic approach. J Drug Target 2022; 30:494-510. [DOI: 10.1080/1061186x.2022.2032095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Kimia Kazemnezhad
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University,Al-kharj, Saudi Arabia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
188
|
Choezom D, Gross JC. Neutral Sphingomyelinase 2 controls exosomes secretion via counteracting V-ATPase-mediated endosome acidification. J Cell Sci 2022; 135:274565. [PMID: 35050379 PMCID: PMC8919340 DOI: 10.1242/jcs.259324] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
During endosome maturation, neutral sphingomyelinase 2 (nSMase2, encoded by SMPD3) is involved in budding of intraluminal vesicles (ILVs) into late endosomes or multivesicular bodies (MVBs). Fusion of these with the plasma membrane results in secretion of exosomes or small extracellular vesicles (sEVs). Here, we report that nSMase2 activity controls sEV secretion through modulation of vacuolar H+-ATPase (V-ATPase) activity. Specifically, we show that nSMase2 inhibition induces V-ATPase complex assembly that drives MVB lumen acidification and consequently reduces sEV secretion. Conversely, we further demonstrate that stimulating nSMase2 activity with the inflammatory cytokine TNFα (also known as TNF) decreases acidification and increases sEV secretion. Thus, we find that nSMase2 activity affects MVB membrane lipid composition to counteract V-ATPase-mediated endosome acidification, thereby shifting MVB fate towards sEV secretion. This article has an associated First Person interview with the first author of the paper. Summary: Changing neutral sphingomyelinase 2 activity regulates small extracellular vesicle secretion through modulation of V-ATPase activity.
Collapse
Affiliation(s)
- Dolma Choezom
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Christina Gross
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
189
|
Yang J, Wang Y, Zhang S, Li Y, Li C, Liu W, Liu S, Liang Y, Zhang X, Yan Z, Shi L, Yao Y. The Association of TNF-α Promoter Polymorphisms with Genetic Susceptibility to Cervical Cancer in a Chinese Han Population. Int J Gen Med 2022; 15:417-427. [PMID: 35046703 PMCID: PMC8760922 DOI: 10.2147/ijgm.s350263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background The tumour necrosis factor-α (TNF-α) gene plays an important role in the host immune response, which will influence the development and clearance of cancer. Polymorphism of the TNF-α promoter region is considered to influence its transcription and be a risk factor for tumorigenesis. In the current study, we evaluated the role of TNF-α promoter region polymorphisms in susceptibility to cervical intraepithelial neoplasia (CIN) and cervical cancer (CC). Methods A total of 2732 subjects, including 1173 healthy controls, 579 patients with CIN and 980 patients with CC in a Chinese Han population, were selected for the current study. Five SNPs in the TNF-α promoter, rs1799964 (−1031 C>T), rs1800630 (−863 A>C), rs1799724 (−857 C>T), rs1800629 (−308 A>G) and rs361525 (−238 A>G), were selected and genotyped using TaqMan Assays. The association of these SNPs with CIN and cervical cancer was evaluated among healthy controls, CIN and CC patients. Results The frequency distribution of rs1800629 and rs361525 alleles was significantly different between the CC group and the control group (P=0.009 and P=0.002). The rs1800629 A allele was found to be a protective factor for CC (OR=0.72; 95% CI=0.56–0.92). The rs361525 A allele was found to be a risk factor for CC (OR=1.69; 95% CI=1.21–2.38). After pathological subtyping of CC, the allele distribution of rs1800629 and rs361525 were both significantly different between the cervical squamous cell carcinoma and control groups (P=0.002 and P<0.001). The rs1800629 A allele was protective factor for cervical squamous cell carcinoma (OR=0.66; 95% CI=0.50–0.86). The rs361525 A allele was a risk factor for cervical squamous cell carcinoma (OR=1.87; 95% CI=1.32–2.65). Moreover, the genotypic frequency of rs361525 was significantly different between cervical cancer stage I and stage II (P=0.003). Conclusion The rs1800629 and rs361525 in the TNF-α promoter are associated with susceptibility to CC in the Chinese Han population.
Collapse
Affiliation(s)
- Jia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
| | - Yingying Wang
- School of Basic Medical Science, Kunming Medical University, Kunming, 650500, People’s Republic of China
| | - Shao Zhang
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, 650118, People’s Republic of China
| | - Yu Li
- Department of Obstetrics, The No. 1 People’s Hospital of Kunming, Kunming, 650011, People’s Republic of China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
| | - Weipeng Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
| | - Yan Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, 650118, People’s Republic of China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, 650118, People’s Republic of China
- Correspondence: Yufeng Yao Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, People’s Republic of China Email ;
| |
Collapse
|
190
|
Tao X, Zhou Q, Rao Z. Efficacy of ω-3 Polyunsaturated Fatty Acids in Patients with Lung Cancer Undergoing Radiotherapy and Chemotherapy: A Meta-Analysis. Int J Clin Pract 2022; 2022:6564466. [PMID: 35910071 PMCID: PMC9303080 DOI: 10.1155/2022/6564466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Radiotherapy and chemotherapy in patients with lung cancer can lead to a series of problems such as malnutrition and inflammatory reaction. Some studies have shown that ω-3 polyunsaturated fatty acids (PUFAs) could improve malnutrition and regulate inflammatory reaction in these patients, but no relevant meta-analysis exists. METHODS We systematically searched randomized controlled trials of ω-3 PUFAs in the adjuvant treatment of lung cancer in the PubMed, EMBASE, Cochrane Library, Web of Science, Chinese Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), and Wanfang databases. Relevant outcomes were extracted, and we pooled standardized mean differences (SMDs) using a random or fixed-effects model. The risk of bias was evaluated according to the Cochrane Handbook (version 15.1). The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS A total of 7 studies were included. The SMDs (95% CI) of body weight change, albumin change, energy intake, and protein intake at the end of intervention were 1.15 (0.50, 1.80), 0.60 (0.11, 1.09), 0.39 (-0.10, 0.89), and 0.27 (-0.04, 0.58), respectively. The SMDs (95% CI) of CRP change and TNF-α change were -3.44 (-6.15, -0.73) and -1.63 (-2.53, -0.73), respectively. CONCLUSIONS ω-3 PUFAs can improve nutritional status and regulate indicators of inflammation in patients with lung cancer undergoing radiotherapy and chemotherapy. This study was registered in the PROSPERO (registration number: CRD42022307699).
Collapse
Affiliation(s)
- Xin Tao
- Department of Clinical Nutrition, Suining Central Hospital, Suining, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
191
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
192
|
Zhang X, Shi S, Yao Z, Zheng X, Li W, Zhang Y, Wang L, Cao J, Zhou T. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1903-1911. [PMID: 35474013 DOI: 10.1093/jac/dkac128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shiyi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wangyang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
193
|
TNFR2 depletion reduces psoriatic inflammation in mice via downregulating specific dendritic cell populations in lymph nodes and inhibiting IL-23/IL-17 pathways. J Invest Dermatol 2022; 142:2159-2172.e9. [PMID: 35090950 PMCID: PMC9314460 DOI: 10.1016/j.jid.2021.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
TNF-α, a proinflammatory cytokine, is a crucial mediator of psoriasis pathogenesis. TNF-α functions by activating TNFR1 and TNFR2. Anti-TNF drugs that neutralize TNF-α, thus blocking the activation of TNFR1 and TNFR2, have been proven highly therapeutic in psoriatic diseases. TNF-α also plays an important role in host defense; thus, anti-TNF therapy can cause potentially serious adverse effects, including opportunistic infections and latent tuberculosis reactivation. These adverse effects are attributed to TNFR1 inactivation. Therefore, understanding the relative contributions of TNFR1 and TNFR2 has clinical implications in mitigating psoriasis versus global TNF-α blockade. We found a significant reduction in psoriasis lesions as measured by epidermal hyperplasia, characteristic gross skin lesion, and IL-23 or IL-17A levels in Tnfr2-knockout but not in Tnfr1-knockout mice in the imiquimod psoriasis model. Furthermore, imiquimod-mediated increase in the myeloid dendritic cells, TNF/inducible nitric oxide synthase‒producing dendritic cells, and IL-23 expression in the draining lymph nodes were dependent on TNFR2 but not on TNFR1. Together, our results support that psoriatic inflammation is not dependent on TNFR1 activity but is driven by a TNFR2-dependent IL-23/IL-17 pathway activation. Thus, targeting the TNFR2 pathway may emerge as a potential next-generation therapeutic approach for psoriatic diseases.
Collapse
|
194
|
Borek-Dorosz A, Pieczara A, Czamara K, Stojak M, Matuszyk E, Majzner K, Brzozowski K, Bresci A, Polli D, Baranska M. What is the ability of inflamed endothelium to uptake exogenous saturated fatty acids? A proof-of-concept study using spontaneous Raman, SRS and CARS microscopy. Cell Mol Life Sci 2022; 79:593. [PMID: 36380212 PMCID: PMC9666316 DOI: 10.1007/s00018-022-04616-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Endothelial cells (EC) in vivo buffer and regulate the transfer of plasma fatty acid (FA) to the underlying tissues. We hypothesize that inflammation could alter the functionality of the EC, i.e., their capacity and uptake of different FA. The aim of this work is to verify the functionality of inflamed cells by analyzing their ability to uptake and accumulate exogenous saturated FA. Control and inflammatory human microvascular endothelial cells stimulated in vitro with two deuterium-labeled saturated FA (D-FA), i.e., palmitic (D31-PA) and myristic (D27-MA) acids. Cells were measured both by spontaneous and stimulated Raman imaging to extract detailed information about uptaken FA, whereas coherent anti-Stokes Raman scattering and fluorescence imaging showed the global content of FA in cells. Additionally, we employed atomic force microscopy to obtain a morphological image of the cells. The results indicate that the uptake of D-FA in inflamed cells is dependent on their concentration and type. Cells accumulated D-FA when treated with a low concentration, and the effect was more pronounced for D27-MA, in normal cells, but even more so, in inflamed cells. In the case of D31-PA, a slightly increased uptake was observed for inflamed cells when administered at higher concentration. The results provide a better understanding of the EC inflammation and indicate the impact of the pathological state of the EC on their capacity to buffer fat. All the microscopic methods used showed complementarity in the analysis of FA uptake by EC, but each method recognized this process from a different perspective.
Collapse
Affiliation(s)
| | - Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Arianna Bresci
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Dario Polli
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy ,Institute for Photonics and Nanotechnology at CNR (CNR-IFN), Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| |
Collapse
|
195
|
Alnomasy S, Albalawi A, Althobaiti N, Alhasani R. Anti-tumor effects and cellular mechanisms of Pistacia atlantica methanolic extract against Ehrlich solid tumor in mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.335695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
196
|
Mocellin D, Bratti LDOS, Silva AH, Assunção LS, Kretzer IF, Filippin-Monteiro FB. Serum from morbidly obese patients affects melanoma cell behavior in vitro. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-979020201000x42e19375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
|
197
|
Jaramillo-Valverde L, Levano KS, Capristano S, Tarazona DD, Cisneros A, Yufra-Picardo VM, Valdivia-Silva J, Guio H. CXCR4 Knockdown Via CRISPR/CAS9 in a Tumor-Associated Macrophage Model Decreases Human Breast Cancer Cell Migration. Cureus 2021; 13:e20842. [PMID: 35111484 PMCID: PMC8794389 DOI: 10.7759/cureus.20842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Breast cancer is the leading cause of cancer-related deaths in women worldwide with the majority of deaths due to metastasis. The development of metastasis is closely related to the tumor microenvironment where tumor-associated macrophages (TAMs) are the main immune cell component playing a crucial role in tumor migration. Key players in tumor progression, metastasis and survival are the receptor CXCR4 and its ligand CXCL12. CXCR4 is expressed in multiple cell types including macrophages and breast cancer cells. Many studies have focus on the role of CXCR4 expressed in breast cancer cells. Methods In this study, we investigated the role of CXCR4 expressed in TAMs on breast cancer cell migration by reducing CXCR4 expression via CRISPR-CAS9 system in differentiated THP-1 cells (a TAMs model). Results According to wound healing migration assay, MCF7 cancer cells co-cultured with genetically edited dTHP-1 cells have a lower migration rate as compared to MCF7 cancer cells co-cultured with unedited and dTHP-1 cells. Conclusion The study demonstrates the role of CXCR4 on breast cancer cell migration through TAM-cancer cell crosstalk.
Collapse
|
198
|
Revealing the Mechanism of Astragali Radix against Cancer-Related Fatigue by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7075920. [PMID: 34925533 PMCID: PMC8674051 DOI: 10.1155/2021/7075920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
Background Cancer-related fatigue (CRF) is an increasingly appreciated complication in cancer patients, which severely impairs their quality of life for a long time. Astragali Radix (AR) is a safe and effective treatment to improve CRF, but the related mechanistic studies are still limited. Objective To systematically analyze the mechanism of AR against CRF by network pharmacology. Methods TCMSP was searched to obtain the active compounds and targets of AR. The active compound-target (AC-T) network was established and exhibited by related visualization software. The GeneCards database was searched to acquire CRF targets, and the intersection targets with AR targets were used to make the Venny diagram. The protein-protein interaction (PPI) network of intersection targets was established, and further, the therapeutic core targets were selected by topological parameters. The selected core targets were uploaded to Metascape for GO and KEGG analysis. Finally, AutoDock Vina and PyMOL were employed for molecular docking validation. Results 16 active compounds of AR were obtained, such as quercetin, kaempferol, 7-O-methylisomucronulatol, formononetin, and isorhamnetin. 57 core targets were screened, such as AKT1, TP53, VEGFA, IL-6, and CASP3. KEGG analysis manifested that the core targets acted on various pathways, including 137 pathways such as TNF, IL-17, and the AGE-RAGE signaling pathway. Molecular docking demonstrated that active compounds docked well with the core targets. Conclusion The mechanism of AR in treating CRF involves multiple targets and multiple pathways. The present study laid a theoretical foundation for the subsequent research and clinical application of AR and its extracts against CRF.
Collapse
|
199
|
Wang CI, Chu PM, Chen YL, Lin YH, Chen CY. Chemotherapeutic Drug-Regulated Cytokines Might Influence Therapeutic Efficacy in HCC. Int J Mol Sci 2021; 22:ijms222413627. [PMID: 34948424 PMCID: PMC8707970 DOI: 10.3390/ijms222413627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the second leading cause of cancer-related mortality worldwide. Processes involved in HCC progression and development, including cell transformation, proliferation, metastasis, and angiogenesis, are inflammation-associated carcinogenic processes because most cases of HCC develop from chronic liver damage and inflammation. Inflammation has been demonstrated to be a crucial factor inducing tumor development in various cancers, including HCC. Cytokines play critical roles in inflammation to accelerate tumor invasion and metastasis by mediating the migration of immune cells into damaged tissues in response to proinflammatory stimuli. Currently, surgical resection followed by chemotherapy is the most common curative therapeutic regimen for HCC. However, after chemotherapy, drug resistance is clearly observed, and cytokine secretion is dysregulated. Various chemotherapeutic agents, including cisplatin, etoposide, and 5-fluorouracil, demonstrate even lower efficacy in HCC than in other cancers. Tumor resistance to chemotherapeutic drugs is the key limitation of curative treatment and is responsible for treatment failure and recurrence, thus limiting the ability to treat patients with advanced HCC. Therefore, the capability to counteract drug resistance would be a major clinical advancement. In this review, we provide an overview of links between chemotherapeutic agents and inflammatory cytokine secretion in HCC. These links might provide insight into overcoming inflammatory reactions and cytokine secretion, ultimately counteracting chemotherapeutic resistance.
Collapse
Affiliation(s)
- Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: ; Tel./Fax: +886-6-2353535 (ext. 5329)
| |
Collapse
|
200
|
Xu W, Li B, Xu M, Yang T, Hao X. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed Pharmacother 2021; 146:112542. [PMID: 34929576 DOI: 10.1016/j.biopha.2021.112542] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of death due to cancer worldwide. The gastric mucosa often undergoes many years of precancerous lesions of gastric cancer (PLGC) stages before progressing to gastric malignancy. Unfortunately, there are no effective Western drugs for patients with PLGC. In recent years, traditional Chinese medicine (TCM) has been proven effective in treating PLGC. Classical TCM formulas and chemical components isolated from some Chinese herbal medicines have been administered to treat PLGC, and the main advantage is their comprehensive intervention with multiple approaches and multiple targets. In this review, we focus on recent studies using TCM treatment for PLGC, including clinical observations and experimental research, with a focus on targets and mechanisms of drugs. This review provides some ideas and a theoretical basis for applying TCM to treat PLGC and prevent GC.
Collapse
Affiliation(s)
- Weichao Xu
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China; Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine Gastroenterology, Shijiazhuang 050011, China
| | - Bolin Li
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China; Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine Gastroenterology, Shijiazhuang 050011, China
| | - Miaochan Xu
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinyu Hao
- Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|