151
|
Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics 2010; 7:366-77. [PMID: 20880501 PMCID: PMC2948548 DOI: 10.1016/j.nurt.2010.07.002] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/26/2010] [Accepted: 07/01/2010] [Indexed: 01/12/2023] Open
Abstract
Microglia are the primary mediators of the immune defense system of the CNS and are integral to the subsequent inflammatory response. The role of microglia in the injured CNS is under scrutiny, as research has begun to fully explore how postinjury inflammation contributes to secondary damage and recovery of function. Whether microglia are good or bad is under debate, with strong support for a dual role or differential activation of microglia. Microglia release a number of factors that modulate secondary injury and recovery after injury, including pro- and anti-inflammatory cytokines, chemokines, nitric oxide, prostaglandins, growth factors, and superoxide species. Here we review experimental work on the complex and varied responses of microglia in terms of both detrimental and beneficial effects. Addressed in addition are the effects of microglial activation in two examples of CNS injury: spinal cord and traumatic brain injury. Microglial activation is integral to the response of CNS tissue to injury. In that light, future research is needed to focus on clarifying the signals and mechanisms by which microglia can be guided to promote optimal functional recovery.
Collapse
Affiliation(s)
- David J. Loane
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, 21201 Baltimore, Maryland
| | - Kimberly R. Byrnes
- grid.265436.00000000104215525Room B2048, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814 Bethesda, MD
| |
Collapse
|
152
|
Traumatic brain injury reduces soluble extracellular amyloid-β in mice: a methodologically novel combined microdialysis-controlled cortical impact study. Neurobiol Dis 2010; 40:555-64. [PMID: 20682338 DOI: 10.1016/j.nbd.2010.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/22/2010] [Accepted: 06/26/2010] [Indexed: 12/21/2022] Open
Abstract
Acute amyloid-β peptide (Aβ) deposition has been observed in young traumatic brain injury (TBI) patients, leading to the hypothesis that elevated extracellular Aβ levels could underlie the increased risk of dementia following TBI. However, a recent microdialysis-based study in human brain injury patients found that extracellular Aβ dynamics correlate with changes in neurological status. Because neurological status is generally diminished following injury, this correlation suggested the alternative hypothesis that soluble extracellular Aβ levels may instead be reduced after TBI relative to baseline. We have developed a methodologically novel mouse model that combines experimental controlled cortical impact TBI with intracerebral microdialysis. In this model, we found that Aβ levels in microdialysates were immediately decreased by 25-50% in the ipsilateral hippocampus following TBI. This result was found in PDAPP, Tg2576, and Tg2576-ApoE2 transgenic mice producing human Aβ plus wild-type animals. Changes were not due to altered probe function, edema, changes in APP levels, or Aβ deposition. Similar decreases in Aβ were observed in phosphate buffered saline-soluble tissue extracts. Hippocampal electroencephalographic activity was also decreased up to 40% following TBI, and correlated with reduced microdialysate Aβ levels. These results support the alternative hypothesis that post-injury extracellular soluble Aβ levels are acutely decreased relative to baseline. Reduced neuronal activity may contribute, though the underlying mechanisms have not been definitively determined. Further work will be needed to assess the dynamics of insoluble and oligomeric Aβ after TBI.
Collapse
|
153
|
The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5:e9505. [PMID: 20209079 PMCID: PMC2831066 DOI: 10.1371/journal.pone.0009505] [Citation(s) in RCA: 779] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/20/2010] [Indexed: 01/17/2023] Open
Abstract
Background The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies. Conclusions/Significance Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies.
Collapse
|
154
|
Blocking β2-adrenergic receptor attenuates acute stress-induced amyloid β peptides production. Brain Res 2010; 1317:305-10. [DOI: 10.1016/j.brainres.2009.12.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/27/2009] [Accepted: 12/29/2009] [Indexed: 12/15/2022]
|
155
|
Kövesdi E, Lückl J, Bukovics P, Farkas O, Pál J, Czeiter E, Szellár D, Dóczi T, Komoly S, Büki A. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir (Wien) 2010; 152:1-17. [PMID: 19652904 DOI: 10.1007/s00701-009-0463-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/10/2009] [Indexed: 01/15/2023]
Abstract
PURPOSE This review summarizes protein biomarkers in mild and severe traumatic brain injury in adults and children and presents a strategy for conducting rationally designed clinical studies on biomarkers in head trauma. METHODS We performed an electronic search of the National Library of Medicine's MEDLINE and Biomedical Library of University of Pennsylvania database in March 2008 using a search heading of traumatic head injury and protein biomarkers. The search was focused especially on protein degradation products (spectrin breakdown product, c-tau, amyloid-beta(1-42)) in the last 10 years, but recent data on "classical" markers (S-100B, neuron-specific enolase, etc.) were also examined. RESULTS We identified 85 articles focusing on clinical use of biomarkers; 58 articles were prospective cohort studies with injury and/or outcome assessment. CONCLUSIONS We conclude that only S-100B in severe traumatic brain injury has consistently demonstrated the ability to predict injury and outcome in adults. The number of studies with protein degradation products is insufficient especially in the pediatric care. Cohort studies with well-defined end points and further neuroproteomic search for biomarkers in mild injury should be triggered. After critically reviewing the study designs, we found that large homogenous patient populations, consistent injury, and outcome measures prospectively determined cutoff values, and a combined use of different predictors should be considered in future studies.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Department of Neurosurgery, University of Pécs, Rét u. 2., 7623, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Abrahamson EE, Ikonomovic MD, Dixon CE, DeKosky ST. Simvastatin therapy prevents brain trauma-induced increases in beta-amyloid peptide levels. Ann Neurol 2009; 66:407-14. [PMID: 19798641 DOI: 10.1002/ana.21731] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Elevations in beta-amyloid peptide (A beta) levels after traumatic brain injury (TBI) may confer risk for developing Alzheimer's disease in head trauma patients. We investigated the effects of simvastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, on hippocampal A beta burden in a clinically relevant head injury/intervention model using mice expressing human A beta. Simvastatin therapy blunted TBI-induced increases in A beta, reduced hippocampal tissue damage and microglial activation, and improved behavioral outcome. The ability of statins to reduce post-injury A beta load and ameliorate pathological sequelae of brain injury makes them potentially effective in reducing the risk of developing Alzheimer's disease in TBI patients.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Department of Neurology, Brain Trauma Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
157
|
Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009; 68:709-35. [PMID: 19535999 DOI: 10.1097/nen.0b013e3181a9d503] [Citation(s) in RCA: 1562] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since the 1920s, it has been known that the repetitive brain trauma associated with boxing may produce a progressive neurological deterioration, originally termed dementia pugilistica, and more recently, chronic traumatic encephalopathy (CTE). We review 48 cases of neuropathologically verified CTE recorded in the literature and document the detailed findings of CTE in 3 profession althletes, 1 football player and 2 boxers. Clinically, CTE is associated with memory disturbances, behavioral and personality changes, parkinsonism, and speech and gait abnormalities. Neuropathologically, CTE is characterized by atrophy of the cerebral hemispheres, medial temporal lobe, thalamus, mammillary bodies, and brainstem, with ventricular dilatation and a fenestrated cavum septum pellucidum. Microscopically, there are extensive tau-immunoreactive neurofibrillary tangles, astrocytic tangles, and spindle-shaped and threadlike neurites throughout the brain. The neurofibrillary degeneration of CTE is distinguished from other tauopathies by preferential involvement of the superficial cortical layers, irregular patchy distribution in the frontal and temporal cortices, propensity for sulcal depths, prominent perivascular, periventricular, and subpial distribution, and marked accumulation of tau-immunoreactive astrocytes. Deposition of beta-amyloid, most commonly as diffuse plaques, occurs in fewer than half the cases. Chronic traumatic encephalopathy is a neuropathologically distinct slowly progressive tauopathy with a clear environmental etiology.
Collapse
|
158
|
Marklund N, Blennow K, Zetterberg H, Ronne-Engström E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg 2009; 110:1227-37. [PMID: 19216653 DOI: 10.3171/2008.9.jns08584] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Damage to axons contributes to postinjury disabilities and is commonly observed following traumatic brain injury (TBI). Traumatic brain injury is an important environmental risk factor for the development of Alzheimer disease (AD). In the present feasibility study, the aim was to use intracerebral microdialysis catheters with a high molecular cutoff membrane (100 kD) to harvest interstitial total tau (T-tau) and amyloid beta 1-42 (Abeta42) proteins, which are important biomarkers for axonal injury and for AD, following moderate-to-severe TBI. METHODS Eight patients (5 men and 3 women) were included in the study; 5 of the patients had a focal/mixed TBI and 3 had a diffuse axonal injury (DAI). Following the bedside analysis of the routinely measured energy metabolic markers (that is, glucose, lactate/pyruvate ratio, glycerol, and glutamate), the remaining dialysate was pooled and two 12-hour samples per day were used to analyze T-tau and Abeta42 by enzyme-linked immunosorbent assay from Day 1 up to 8 days postinjury. RESULTS The results show high levels of interstitial T-tau and Abeta42 postinjury. Patients with a predominantly focal lesion had higher interstitial T-tau levels than in the DAI group from Days 1 to 3 postinjury (p < 0.05). In contrast, patients with DAI had consistently higher Abeta42 levels when compared with patients with focal injury. CONCLUSIONS These results suggest that monitoring of interstitial T-tau and Abeta42 by using microdialysis may be an important tool when evaluating the presence and role of axonal injury following TBI.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
159
|
The impact of genetic and environmental factors on the pathobiology of Alzheimer's disease: a multifactorial disorder? Int Rev Psychiatry 2009. [DOI: 10.3109/09540269509022988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
160
|
Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med 2009; 15:377-9. [PMID: 19287391 DOI: 10.1038/nm.1940] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/18/2009] [Indexed: 02/04/2023]
Abstract
Amyloid-beta (Abeta) peptides, found in Alzheimer's disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either beta- or gamma-secretase, enzymes required for production of Abeta from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.
Collapse
|
161
|
Simpkins JW, Gatson JW, Wigginton JG. Commentary on "a roadmap for the prevention of dementia II. Leon Thal Symposium 2008." Rationale and recommendations for first evaluating anti-Alzheimer's disease medications in acute brain injury patients. Alzheimers Dement 2009; 5:143-6. [PMID: 19328446 PMCID: PMC5008237 DOI: 10.1016/j.jalz.2009.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | | | | |
Collapse
|
162
|
Mandal PK, Fodale V. Isoflurane and desflurane at clinically relevant concentrations induce amyloid beta-peptide oligomerization: an NMR study. Biochem Biophys Res Commun 2008; 379:716-20. [PMID: 19116131 DOI: 10.1016/j.bbrc.2008.12.092] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/17/2008] [Indexed: 11/25/2022]
Abstract
Current understanding on Alzheimer's disease (AD) reveals that soluble amyloid beta-peptide (Abeta) oligomeric formation plays an important role in AD pathophysiology. A potential role for several inhaled anesthetics in promoting Abeta oligomer formation has been suggested. Using a nuclear magnetic resonance (NMR) study, we previously demonstrated that at a high concentration (higher than clinically relevant concentrations), the inhaled anesthetics halothane and isoflurane, interact with specific amino acid residues (G29, A30, and I31) and induce Abeta oligomerization. The present study confirms this is true at a clinically relevant concentration. Isoflurane and desflurane induce Abeta oligomerization by inducing chemical shift changes of the critical amino acid residues (G29, A30, and I31), reinforcing the evidence that perturbation of these three crucial residues indeed plays an important role in oligomerization. These findings support the emerging hypothesis that several commonly used inhaled anesthetics could be involved in neurodegeneration, as well as risk factor for accelerating the onset of AD.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neurospectroscopy and Neuroimaging Laboratory, National Brain Research Centre, Manesar, Gurgaon, India.
| | | |
Collapse
|
163
|
|
164
|
Nadal RC, Rigby SEJ, Viles JH. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals. Biochemistry 2008; 47:11653-64. [PMID: 18847222 DOI: 10.1021/bi8011093] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oxidative stress plays a key role in Alzheimer's disease (AD). In addition, the abnormally high Cu(2+) ion concentrations present in senile plaques has provoked a substantial interest in the relationship between the amyloid beta peptide (Abeta) found within plaques and redox-active copper ions. There have been a number of studies monitoring reactive oxygen species (ROS) generation by copper and ascorbate that suggest that Abeta acts as a prooxidant producing H2O2. However, others have indicated Abeta acts as an antioxidant, but to date most cell-free studies directly monitoring ROS have not supported this hypothesis. We therefore chose to look again at ROS generation by both monomeric and fibrillar forms of Abeta under aerobic conditions in the presence of Cu(2+) with/without the biological reductant ascorbate in a cell-free system. We used a variety of fluorescence and absorption based assays to monitor the production of ROS, as well as Cu(2+) reduction. In contrast to previous studies, we show here that Abeta does not generate any more ROS than controls of Cu(2+) and ascorbate. Abeta does not silence the redox activity of Cu(2+/+) via chelation, but rather hydroxyl radicals produced as a result of Fenton-Haber Weiss reactions of ascorbate and Cu(2+) rapidly react with Abeta; thus the potentially harmful radicals are quenched. In support of this, chemical modification of the Abeta peptide was examined using (1)H NMR, and specific oxidation sites within the peptide were identified at the histidine and methionine residues. Our studies add significant weight to a modified amyloid cascade hypothesis in which sporadic AD is the result of Abeta being upregulated as a response to oxidative stress. However, our results do not preclude the possibility that Abeta in an oligomeric form may concentrate the redox-active copper at neuronal membranes and so cause lipid peroxidation.
Collapse
Affiliation(s)
- Rebecca C Nadal
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | |
Collapse
|
165
|
A Comparison of Cognitive Functioning in Older Adults With and Without Traumatic Brain Injury. J Head Trauma Rehabil 2008; 23:139-48. [DOI: 10.1097/01.htr.0000319930.69343.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
166
|
Wostyn P, Audenaert K, De Deyn PP. Alzheimer's disease-related changes in diseases characterized by elevation of intracranial or intraocular pressure. Clin Neurol Neurosurg 2007; 110:101-9. [PMID: 18061341 DOI: 10.1016/j.clineuro.2007.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/15/2022]
Abstract
In this review, we focus on the coexistence of Alzheimer's disease-related changes in brain diseases, such as normal pressure hydrocephalus and traumatic brain injury, and in glaucoma at the level of the retinal ganglion cells. This is a group of diseases that affect central nervous system tissue and are characterized by elevation of intracranial or intraocular pressure and/or local shear stress and strain. In considering possible mechanisms underlying Alzheimer-type changes in these diseases, we briefly summarize recent evidence indicating that caspase activation and abnormal processing of beta-amyloid precursor protein, which are important events in Alzheimer's disease, may play a role both in glaucoma and following traumatic brain injury. With regard to normal pressure hydrocephalus, evidence suggests that changes in cerebrospinal fluid circulatory dynamics ultimately may result in reduced clearance of neurotoxins, such as beta-amyloid peptides and tau protein, that play a role in the pathogenesis of Alzheimer's disease. Data presented in this review could be interpreted to suggest that Alzheimer-type changes in these diseases may result at least in part from exposure of central nervous system tissue to increased levels of mechanical stress. Evidence for such a relationship is of major importance because it may support an association between elevated mechanical load and the development of Alzheimer-type lesions. Further studies are warranted, however, especially to elucidate the role of elevated mechanical forces in Alzheimer's disease neuropathogenesis.
Collapse
Affiliation(s)
- Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Reigerlostraat 10, 8730 Beernem, Belgium.
| | | | | |
Collapse
|
167
|
Cole SL, Vassar R. The Alzheimer's disease beta-secretase enzyme, BACE1. Mol Neurodegener 2007; 2:22. [PMID: 18005427 PMCID: PMC2211305 DOI: 10.1186/1750-1326-2-22] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/15/2007] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Alzheimer's disease is highly complex. While several pathologies characterize this disease, amyloid plaques, composed of the β-amyloid peptide are hallmark neuropathological lesions in Alzheimer's disease brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. The BACE1 enzyme is essential for the generation of β-amyloid. BACE1 knockout mice do not produce β-amyloid and are free from Alzheimer's associated pathologies including neuronal loss and certain memory deficits. The fact that BACE1 initiates the formation of β-amyloid, and the observation that BACE1 levels are elevated in this disease provide direct and compelling reasons to develop therapies directed at BACE1 inhibition thus reducing β-amyloid and its associated toxicities. However, new data indicates that complete abolishment of BACE1 may be associated with specific behavioral and physiological alterations. Recently a number of non-APP BACE1 substrates have been identified. It is plausible that failure to process certain BACE1 substrates may underlie some of the reported abnormalities in the BACE1-deficient mice. Here we review BACE1 biology, covering aspects ranging from the initial identification and characterization of this enzyme to recent data detailing the apparent dysregulation of BACE1 in Alzheimer's disease. We pay special attention to the putative function of BACE1 during healthy conditions and discuss in detail the relationship that exists between key risk factors for AD, such as vascular disease (and downstream cellular consequences), and the pathogenic alterations in BACE1 that are observed in the diseased state.
Collapse
Affiliation(s)
- Sarah L Cole
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago Avenue, Chicago, IL, USA.
| | | |
Collapse
|
168
|
Gralle M, Ferreira ST. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 2007; 82:11-32. [PMID: 17428603 DOI: 10.1016/j.pneurobio.2007.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/26/2006] [Accepted: 02/01/2007] [Indexed: 12/30/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein that plays major roles in the regulation of several important cellular functions, especially in the nervous system, where it is involved in synaptogenesis and synaptic plasticity. The secreted extracellular domain of APP, sAPPalpha, acts as a growth factor for many types of cells and promotes neuritogenesis in post-mitotic neurons. Alternative proteolytic processing of APP releases potentially neurotoxic species, including the amyloid-beta (Abeta) peptide that is centrally implicated in the pathogenesis of Alzheimer's disease (AD). Reinforcing this biochemical link to neuronal dysfunction and neurodegeneration, APP is also genetically linked to AD. In this review, we discuss the biological functions of APP in the context of tissue morphogenesis and restructuring, where APP appears to play significant roles both as a contact receptor and as a diffusible factor. Structural investigation of APP, which is necessary for a deeper understanding of its roles at a molecular level, has also been advancing rapidly. We summarize recent progress in the determination of the structure of isolated APP fragments and of the conformations of full-length sAPPalpha, in both monomeric and dimeric states. The potential role of APP dimerization for the regulation of its biological functions is also discussed.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | | |
Collapse
|
169
|
Van Den Heuvel C, Thornton E, Vink R. Traumatic brain injury and Alzheimer's disease: a review. PROGRESS IN BRAIN RESEARCH 2007; 161:303-16. [PMID: 17618986 DOI: 10.1016/s0079-6123(06)61021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In an effort to identify the factors that are involved in the pathogenesis of Alzheimer's disease (AD), epidemiological studies have featured prominently in contemporary research. Of those epidemiological factors, accumulating evidence implicates traumatic brain injury (TBI) as a possible predisposing factor in AD development. Exactly how TBI triggers the neurodegenerative cascade of events in AD remains controversial. There has been extensive research directed towards understanding the potential relationship between TBI and AD and the putative influence that apolipoprotein E (APOE) genotype has on this relationship. The aim of the current paper is to provide a critical summary of the experimental and human studies regarding the association between TBI, AD and APOE genotype. It will be shown that despite significant discrepancies in the literature, there still appears to be an increasing trend to support the hypothesis that TBI is a potential risk factor for AD. Furthermore, although it is known that APOE genotype plays an important role in AD, its link to a deleterious outcome following TBI remains inconclusive and ambiguous.
Collapse
Affiliation(s)
- Corinna Van Den Heuvel
- Discipline of Pathology, University of Adelaide, Centre for Neurological Diseases, The Hanson Institute, Adelaide, Australia.
| | | | | |
Collapse
|
170
|
|
171
|
Senechal Y, Larmet Y, Dev KK. Unraveling in vivo functions of amyloid precursor protein: insights from knockout and knockdown studies. NEURODEGENER DIS 2006; 3:134-47. [PMID: 16954700 DOI: 10.1159/000094772] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid precursor protein (APP) is a widely expressed transmembrane protein that is cleaved to generate Abeta peptides in the central nervous system and is a key player in the pathogenesis of Alzheimer's disease. The precise biological functions of APP still remain unclear although various roles have been proposed. While a commonly accepted model argues that Abeta peptides are the cause of onset and early pathogenesis of Alzheimer's disease, recent discussions challenge this 'Abeta hypothesis' and suggest a direct role for APP in this neurodegenerative disease. Loss-of-function studies are an efficient way to elucidate the role of proteins and concurrently a variety of in vitro and in vivo studies has been performed for APP where protein levels have been downregulated and functional consequences monitored. Complete disruption of APP gene expression has been achieved by the generation of APP knockout animal models. Further knockdown studies using antisense and RNA interference have allowed scientists to reduce APP expression levels and have opened new avenues to explore the physiological roles of APP. In the present review, we focus on knockout and knockdown approaches that have provided insights into the physiological functions of APP and discuss their advantages and drawbacks.
Collapse
Affiliation(s)
- Yann Senechal
- Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
172
|
Leonard BE, Myint A. Changes in the immune system in depression and dementia: causal or coincidental effects? DIALOGUES IN CLINICAL NEUROSCIENCE 2006. [PMID: 16889103 PMCID: PMC3181774 DOI: 10.31887/dcns.2006.8.2/bleonard] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidemiological studies show that there is a correlation between chronic depression and the likelihood of demential in later life. There is evidence that inflammatory changes in the brain are pathological features of both depression and dementia. This suggests that an increase in inflammation-induced apoptosis, together with a reductin in the synthesis of neurotrophic factors caused by a rise in brain glucocorticoids, may play a role in the pathology of these disorders. A reduction in the neuroprotective components of the kynurenine pathway, such as kynurenic acid, and an increase in the neurodegenerative components, 3-hydroxykynurenine and quinolinic acid, contribute to the pathological changes. Such changes are postulated t cause neuronal damage, and thereby predispose chronically depressed patients to demential.
Collapse
Affiliation(s)
- Brian E Leonard
- Department of Pharmacology, National University of Ireland, Galway.
| | | |
Collapse
|
173
|
Abstract
Oxidative damage is a major feature in the pathophysiology of Alzheimer's disease (AD). In this review, we discuss free radical-mediated damage to the biochemical components involved in the pathology and clinical symptoms of AD. We explain how amyloid beta-protein (Abeta), microtubule-associated protein tau, presenilins, apolipoprotein E, mitochondria and proteases play a role in increasing oxidative stress in AD. Abeta not only can induce oxidative stress, but its generation is also increased as a result of oxidative stress. Finally, a hypothetical model linking oxidative stress with beta-amyloid and neurofibrillary tangle pathology in AD is proposed.
Collapse
Affiliation(s)
- Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | |
Collapse
|
174
|
Abstract
Alzheimer's disease is the most common cause of dementia. Research advances have enabled detailed understanding of the molecular pathogenesis of the hallmarks of the disease--ie, plaques, composed of amyloid beta (Abeta), and tangles, composed of hyperphosphorylated tau. However, as our knowledge increases so does our appreciation for the pathogenic complexity of the disorder. Familial Alzheimer's disease is a very rare autosomal dominant disease with early onset, caused by mutations in the amyloid precursor protein and presenilin genes, both linked to Abeta metabolism. By contrast with familial disease, sporadic Alzheimer's disease is very common with more than 15 million people affected worldwide. The cause of the sporadic form of the disease is unknown, probably because the disease is heterogeneous, caused by ageing in concert with a complex interaction of both genetic and environmental risk factors. This seminar reviews the key aspects of the disease, including epidemiology, genetics, pathogenesis, diagnosis, and treatment, as well as recent developments and controversies.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgren's University Hospital, Mölndal, Sweden.
| | | | | |
Collapse
|
175
|
Abstract
Epilepsy is a major unfavorable long-term consequence of traumatic brain injury (TBI). Moreover, TBI is one of the most important predisposing factors for the development of epilepsy, particularly in young adults. Understanding the molecular and cellular cascades that lead to the development of post-traumatic epilepsy (PTE) is key for preventing its development or modifying the disease process in such a way that epilepsy, if it develops, is milder and easier-to-treat. Tissue from TBI patients undergoing epileptogenesis is not available for such studies, which underscores the importance of developing clinically relevant animal models of PTE. The goal of this review is to (1) provide a description of PTE in humans, which is critical for the development of clinically relevant models of PTE, (2) review the characteristics of currently available PTE models, and (3) provide suggestions for the development of future models of PTE based on our current understanding of the mechanisms of TBI and epilepsy. The development of clinically relevant models of PTE is critical to advance our understanding of the mechanisms of post-traumatic epileptogenesis and epilepsy, as well as for producing breakthroughs in the development and testing of novel antiepileptogenic treatments.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, AI Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
176
|
Abstract
Alzheimer's disease (AD) is the chief cause of dementia, and age is its major risk factor. The majority of cases (90-95%) are sporadic (SAD), and the remainder are familial (FAD). AD is characterized by two brain lesions, intraneuronal fibrillary tangles and extracellular plaques. The lesions are identical in SAD and FAD as well as to those in persons with Down's syndrome (DS). The same lesions are also observed frequently in elderly non-demented individuals (E-ND). Both AD lesions may stem from the normal progressive increases in oxidative stress (OxS) throughout the body with age. Onset of dementia due to the accumulating lesions is around 40 years for DS, 40-60 years for FAD, over about 65 years for SAD, while that for E-ND is unknown. The lesions are made clinically manifest with time by the normal increase with age of OxS, "the dementia of old age," or by a process specific for each AD category, which enhances the normal OxS so as to lower the unknown onset age of dementia for E-ND individuals to that associated with the AD category. A plausible process can be advanced for each AD category. The hypothesis suggests convenient, effective measures to prevent and treat, for example, by decreasing brain OxS levels with oral antioxidants such as lipoic or dehydroascorbic acids that are capable of passing the blood-brain barrier.
Collapse
Affiliation(s)
- Denham Harman
- Department of Medicine, University of Nebraska College of Medicine, 984635 Nebraska Medical Center, Omaha, 68198-4635, USA.
| |
Collapse
|
177
|
Lesné S, Ali C, Gabriel C, Croci N, MacKenzie ET, Glabe CG, Plotkine M, Marchand-Verrecchia C, Vivien D, Buisson A. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 2006; 25:9367-77. [PMID: 16221845 PMCID: PMC6725703 DOI: 10.1523/jneurosci.0849-05.2005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta. This effect was preceded by an increased expression of neuronal Kunitz protease inhibitory domain (KPI) containing amyloid-beta precursor protein (KPI-APP) followed by a shift from alpha-secretase to beta-secretase-mediated APP processing. This shift is a result of the inhibition of the alpha-secretase candidate tumor necrosis factor-alpha converting enzyme (TACE) when associated with neuronal KPI-APPs. This KPI-APP/TACE interaction was also present in AD brains. Thus, our findings reveal a cellular mechanism linking NMDA receptor activation to neuronal Abeta secretion. These results suggest that even mild deregulation of the glutamatergic neurotransmission may increase Abeta production and represent a causal risk factor for developing AD.
Collapse
Affiliation(s)
- Sylvain Lesné
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6185, Centre Cyceron, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Preusser M, Ströbel T, Gelpi E, Eiler M, Broessner G, Schmutzhard E, Budka H. Alzheimer-type neuropathology in a 28 year old patient with iatrogenic Creutzfeldt-Jakob disease after dural grafting. J Neurol Neurosurg Psychiatry 2006; 77:413-6. [PMID: 16484658 PMCID: PMC2077694 DOI: 10.1136/jnnp.2005.070805] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We report the case of a 28 year old man who had received a cadaverous dura mater graft after a traumatic open skull fracture with tearing of the dura at the age of 5 years. A clinical suspicion of Creutzfeldt-Jakob disease (CJD) was confirmed by a brain biopsy 5 months prior to death and by autopsy, thus warranting the diagnosis of iatrogenic CJD (iCJD) according to WHO criteria. Immunohistochemistry showed widespread cortical depositions of disease associated prion protein (PrP(sc)) in a synaptic pattern, and western blot analysis identified PrP(sc) of type 2A according to Parchi et al. Surprisingly, we found Alzheimer-type senile plaques and cerebral amyloid angiopathy in widespread areas of the brain. Plaque-type and vascular amyloid was immunohistochemically identified as deposits of beta-A4 peptide. CERAD criteria for diagnosis of definite Alzheimer's disease (AD) were met in the absence of neurofibrillar tangles or alpha-synuclein immunoreactive inclusions. There was no family history of AD, CJD, or any other neurological disease, and genetic analysis showed no disease specific mutations of the prion protein, presenilin 1 and 2, or amyloid precursor protein genes. This case represents (a) the iCJD case with the longest incubation time after dural grafting reported so far, (b) the youngest documented patient with concomitant CJD and Alzheimer-type neuropathology to date, (c) the first description of Alzheimer-type changes in iCJD, and (d) the second case of iCJD in Austria. Despite the young patient age, the Alzheimer-type changes may be an incidental finding, possibly related to the childhood trauma.
Collapse
Affiliation(s)
- M Preusser
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
179
|
Chalmers K, Wilcock G, Love S. Contributors to white matter damage in the frontal lobe in Alzheimer's disease. Neuropathol Appl Neurobiol 2006; 31:623-31. [PMID: 16281911 DOI: 10.1111/j.1365-2990.2005.00678.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abnormalities of cerebral white matter are present in a majority of patients with Alzheimer's disease (AD) and probably contribute to motor dysfunction and cognitive impairment. The white matter abnormalities are usually attributed to degenerative vascular disease and cerebral amyloid angiopathy (CAA) but the evidence is scanty or inconclusive. In the present study we examined sections of frontal lobe from 125 autopsy-confirmed cases of AD and assessed the relationship of degenerative large and small vessel disease, CAA, parenchymal Abeta load and APOE genotype, to several objective measures of white matter damage: extent of immunolabelling for glial fibrillary acidic protein (GFAP), axonal accumulation of amyloid precursor protein (APP), axon density in superficial and deep white matter, and intensity of staining for myelin. We found no association between atherosclerosis, arteriolosclerosis, CAA or APOE genotype and white matter damage. However, labelling of white matter for GFAP correlated strongly with the parenchymal Abeta load (P = 0.0003) and with APP accumulation (P = 0.008). Our findings suggest that severity of frontal white matter damage in AD is closely related to parenchymal Abeta load and that in most cases the contribution of degenerative vascular disease, CAA and APOE is relatively minor.
Collapse
Affiliation(s)
- K Chalmers
- University of Bristol, Department of Clinical Science, Frenchay Hospital, Bristol, UK.
| | | | | |
Collapse
|
180
|
Abrahamson EE, Ikonomovic MD, Ciallella JR, Hope CE, Paljug WR, Isanski BA, Flood DG, Clark RSB, DeKosky ST. Caspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome. Exp Neurol 2005; 197:437-50. [PMID: 16300758 DOI: 10.1016/j.expneurol.2005.10.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/04/2005] [Accepted: 10/13/2005] [Indexed: 11/16/2022]
Abstract
The detrimental effects of traumatic brain injury (TBI) on brain tissue integrity involve progressive axonal damage, necrotic cell loss, and both acute and delayed apoptotic neuronal death due to activation of caspases. Post-injury accumulation of amyloid precursor protein (APP) and its toxic metabolite amyloid-beta peptide (Abeta) has been implicated in apoptosis as well as in increasing the risk for developing Alzheimer's disease (AD) after TBI. Activated caspases proteolyze APP and are associated with increased Abeta production after neuronal injury. Conversely, Abeta and related APP/Abeta fragments stimulate caspase activation, creating a potential vicious cycle of secondary injury after TBI. Blockade of caspase activation after brain injury suppresses apoptosis and improves neurological outcome, but it is not known whether such intervention also prevents increases in Abeta levels in vivo. The present study examined the effect of caspase inhibition on post-injury levels of soluble Abeta, APP, activated caspase-3, and caspase-cleaved APP in the hippocampus of nontransgenic mice expressing human Abeta, subjected to controlled cortical injury (CCI). CCI produced brain tissue damage with cell loss and elevated levels of activated caspase-3, Abeta(1-42) and Abeta(1-40), APP, and caspase-cleaved APP fragments in hippocampal neurons and axons. Post-CCI intervention with intracerebroventricular injection of 100 nM Boc-Asp(OMe)-CH(2)F (BAF, a pan-caspase inhibitor) significantly reduced caspase-3 activation and improved histological outcome, suppressed increases in Abeta and caspase-cleaved APP, but showed no significant effect on overall APP levels in the hippocampus after CCI. These data demonstrate that after TBI, caspase inhibition can suppress elevations in Abeta. The extent to which Abeta suppression contributes to improved outcome following inhibition of caspases after TBI is unclear, but such intervention may be a valuable therapeutic strategy for preventing the long-term evolution of Abeta-mediated pathology in TBI patients who are at risk for developing AD later in life.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Suite 811, 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Shipley SJ, Parkin ET, Itzhaki RF, Dobson CB. Herpes simplex virus interferes with amyloid precursor protein processing. BMC Microbiol 2005; 5:48. [PMID: 16109164 PMCID: PMC1198230 DOI: 10.1186/1471-2180-5-48] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 08/18/2005] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The early events underlying Alzheimer's disease (AD) remain uncertain, although environmental factors may be involved. Work in this laboratory has shown that the combination of herpes simplex virus type 1 (HSV1) in brain and carriage of the APOE-epsilon4 allele of the APOE gene strongly increases the risk of developing AD. The development of AD is thought to involve abnormal aggregation or deposition of a 39-43 amino acid protein--beta amyloid (Abeta)--within the brain. This is cleaved from the much larger transmembranal protein 'amyloid precursor protein' (APP). Any agent able to interfere directly with Abeta or APP metabolism may therefore have the capacity to contribute towards AD. One recent report showed that certain HSV1 glycoprotein peptides may aggregate like Abeta; a second study described a role for APP in transport of virus in squid axons. However to date the effects of acute herpesvirus infection on metabolism of APP in human neuronal-type cells have not been investigated. In order to find if HSV1 directly affects APP and its degradation, we have examined this protein from human neuroblastoma cells (normal and transfected with APP 695) infected with the virus, using Western blotting. RESULTS We have found that acute HSV1 (and also HSV2) infection rapidly reduces full length APP levels--as might be expected--yet surprisingly markedly increases levels of a novel C-terminal fragment of APP of about 55 kDa. This band was not increased in cells treated with the protein synthesis inhibitor cycloheximide CONCLUSION Herpes virus infection leads to rapid loss of full length APP from cells, yet also causes increased levels of a novel 55 kDa C-terminal APP fragment. These data suggest that infection can directly alter the processing of a transmembranal protein intimately linked to the aetiology of AD.
Collapse
Affiliation(s)
- Suzanne J Shipley
- Faculty of Life Sciences, Moffat Building, University of Manchester, Manchester, M60 1QD, UK
| | - Edward T Parkin
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, W. Yorks, LS2 9JT, UK
| | - Ruth F Itzhaki
- Faculty of Life Sciences, Moffat Building, University of Manchester, Manchester, M60 1QD, UK
| | - Curtis B Dobson
- Faculty of Life Sciences, Moffat Building, University of Manchester, Manchester, M60 1QD, UK
| |
Collapse
|
182
|
Szczygielski J, Mautes A, Steudel WI, Falkai P, Bayer TA, Wirths O. Traumatic brain injury: cause or risk of Alzheimer's disease? A review of experimental studies. J Neural Transm (Vienna) 2005; 112:1547-64. [PMID: 15959838 DOI: 10.1007/s00702-005-0326-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 04/25/2005] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury is the leading cause of death and disability among young individuals in our society. Moreover, according to some epidemiological studies, head trauma is one of the most potent environmental risk factors for subsequent development of Alzheimer's disease. Interestingly, pathological features that are present also in Alzheimer's disease (in particular deposition of beta-amyloid protein) were observed in traumatised brains already a few hours after the initial insult. The primary objective of this review is to present methodology and results of numerous recent human and animal studies dealing with this issue. Special emphasis was placed on head trauma experiments in transgenic mouse models of Alzheimer's disease. We further evaluate the connection between traumatic brain insults and subsequent development of dementia and try to differentiate between primary and secondary pathological mechanisms.
Collapse
Affiliation(s)
- J Szczygielski
- Department of Psychiatry, Section Neurobiology, Saarland University, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
183
|
Luukinen H, Viramo P, Herala M, Kervinen K, Kesäniemi YA, Savola O, Winqvist S, Jokelainen J, Hillbom M. Fall-related brain injuries and the risk of dementia in elderly people: a population-based study. Eur J Neurol 2005; 12:86-92. [PMID: 15679695 DOI: 10.1111/j.1468-1331.2004.00953.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe head injury in early adulthood may increase the risk of dementia in older age, but it is not known whether head injury in later life also increases the risk of dementia. A representative sample (82%) of persons aged 70 years or older with a Mini-Mental State Examination (MMSE) test score of > or =26 (n = 325) were followed-up for 9 years to record all their fall-related head injuries resulting in traumatic brain injury (TBI). At the end of the follow-up period, 152 persons (81% of the surviving population) were examined for clinical dementia, according to DSM-IV criteria. Eight persons sustained a TBI and 34 developed dementia. Brain injury was associated with younger age at detection of dementia even when adjusted for sex and educational status (low educational status significantly associated with dementia); age-specific hazard ratio (95% confidence interval) 2.80 (1.35-5.81). In a population scoring > or =28 points in the baseline MMSE an apolipoprotein E (ApoE) epsilon4 phenotype was also associated with younger age at the time of detecting dementia; 3.56 (1.35-9.34), and the effect of brain injury and ApoE epsilon4 phenotype was synergistic; 7.68 (2.32-25.3). We conclude that fall-related TBI predicts earlier onset of dementia and the effect is especially high amongst subjects who carry the ApoE epsilon4 allele.
Collapse
Affiliation(s)
- H Luukinen
- Department of Public Health Science and General Practice, University of Oulu, University Hospital, PB 5000, Oulu, FIN-90014 Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VMY, Clark RS, Marion DW, Wisniewski SR, DeKosky ST. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 2005; 190:192-203. [PMID: 15473992 DOI: 10.1016/j.expneurol.2004.06.011] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 05/20/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Traumatic brain injury (TBI) is a risk factor for the development of Alzheimer's disease (AD). This immunohistochemical study determined the extent of AD-related changes in temporal cortex resected from individuals treated surgically for severe TBI. Antisera generated against Abeta species (total Abeta, Abeta(1-42), and Abeta(1-40)), the C-terminal of the Abeta precursor protein (APP), apolipoprotein E (apoE), and markers of neuron structure and degeneration (tau, ubiquitin, alpha-, beta-, and gamma-synuclein) were used to examine the extent of Abeta plaque deposition and neurodegenerative changes in 18 TBI subjects (ages 18-64 years). Diffuse cortical Abeta deposits were observed in one third of subjects (aged 35-62 years) as early as 2 h after injury, with only one (35-year old) individual exhibiting "mature", dense-cored plaques. Plaque-like deposits, neurons, glia, and axonal changes were also immunostained with APP and apoE antibodies. In plaque-positive cases, the only statistically significant change in cellular immunostaining was increased neuronal APP (P = 0.013). There was no significant correlation between the distribution of Abeta plaques and markers of neuronal degeneration. Diffuse tau immunostaining was localized to neuronal cell soma, axons or glial cells in a larger subset of individuals. Tau-positive, neurofibrillary tangle (NFT)-like changes were detected in only two subjects, both of more advanced age and who were without Abeta deposits. Other neurodegenerative changes, evidenced by ubiquitin- and synuclein-immunoreactive neurons, were abundant in the majority of cases. Our results demonstrate a differential distribution and course of intra- and extra-cellular AD-like changes during the acute phase following severe TBI in humans. Abeta plaques and early evidence of neuronal degenerative changes can develop rapidly after TBI, while fully developed NFTs most likely result from more chronic disease- or injury-related processes. These observations lend further support to the hypothesis that head trauma significantly increases the risk of developing pathological and clinical symptoms of AD, and provide insight into the molecular mechanisms that initiate these pathological cascades very early during severe brain injury.
Collapse
Affiliation(s)
- Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Graham DI, Maxwell WL, Adams JH, Jennett B. Novel aspects of the neuropathology of the vegetative state after blunt head injury. PROGRESS IN BRAIN RESEARCH 2005; 150:445-55. [PMID: 16186041 DOI: 10.1016/s0079-6123(05)50031-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A detailed neuropathological study was undertaken of the brains of patients who had been assessed clinically as vegetative after blunt head injury. There were 35 cases, (33 male; median age 38 years) with a survival of 6.5-19 months (median 9): 17 were injured in a road traffic accident, 9 after assault and 6 after a fall; 3 were recorded as having had a lucid interval. There was an intracranial hematoma in 9 and the median contusion index was 4; raised intracranial pressure was identified in 25, grades 2 and 3 diffuse traumatic axonal injury was present in 25, ischemic damage in 15 and hydrocephalus in 27. Thalamic and hippocampal damage was present in 28 and stereological studies revealed a differential loss of neurons in three principal nuclei of the thalamus and in different sectors of the hippocampus. Immunohistochemistry provided evidence of an inflammatory reaction and in situ DNA fragmentation, features that are strongly indicative of a continuing neuronal loss in subcortical gray matter. These findings provide evidence for the importance of diffuse brain damage to white matter as the structural basis of the vegetative state after blunt head injury with contributions from neuronal loss in the thalami and the hippocampus. Although amyloid plaques and tau inclusions were identified in some, their contribution did not seem important in the ultimate clinical outcome.
Collapse
Affiliation(s)
- D I Graham
- Academic Unit of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, University of Glasgow, Glasgow, G51 4TF, UK.
| | | | | | | |
Collapse
|
186
|
Abstract
Early retrospective studies suggested that individuals with a history of a traumatic brain injury (TBI) had a higher risk for dementia than those without a history of TBI. Two meta-analyses demonstrated that the risk for dementia is higher among men, but not women, with a history of TBI. More recent prospective studies, however, are providing discrepant findings, probably due to important methodological differences. TBI is usually associated with significant neuropsychological deficits, primarily in the domains of attention, executive functioning and memory. These deficits may not improve with time. TBI may also lower the threshold for the clinical expression of dementia among predisposed individuals, and the onset of Alzheimer's disease (AD)-like neuropathological and biochemical changes immediately after severe TBI may play an important role in this mechanism.
Collapse
Affiliation(s)
- Sergio E Starkstein
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Fremantle Hospital, Western Australia, Australia.
| | | |
Collapse
|
187
|
Boules M, Williams K, Gollatz E, Fauq A, Richelson E. Down-regulation of amyloid precursor protein by peptide nucleic acid in vivo. J Mol Neurosci 2004; 24:123-8. [PMID: 15314260 DOI: 10.1385/jmn:24:1:123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with increased expression of amyloid precursor protein (APP) and the deposition of its proteolytic cleavage products, the amyloid-beta peptides, Abeta(1-40) and Abeta(1-42). Peptide nucleic acids (PNAs) have been shown to block the expression of proteins at transcriptional and translational levels. In this study we used a sense and an antisense PNA specifically targeted to APP to inhibit the transcription and translation of APP by complementary binding to DNA or mRNA, respectively. Using Western blotting, APP showed a drastic decrease (50% and 90% reduction, in two separate experiments, as compared with saline control) with the injection of sense APP. mRNA levels were higher at the same time point after injection of APP sense PNA, most probably because of a compensatory mechanism in response to the drop of APP that might have occurred at an earlier time point (0-1 h) and was reflected in a drop at the protein level at 1 h. The injection of antisense PNA showed about 70% decrease in APP as measured by Western blotting. Unmodified PNA can be used in vivo to reduce the levels of APP, which plays a critical role in the development of AD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | | | | | | | | |
Collapse
|
188
|
Bohr I. Hypercholesterolemic diet applied to rat dams protects their offspring against cognitive deficits. Simulated neonatal anoxia model. Physiol Behav 2004; 82:703-11. [PMID: 15327920 DOI: 10.1016/j.physbeh.2004.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 06/09/2004] [Accepted: 06/10/2004] [Indexed: 11/29/2022]
Abstract
There is accumulating data suggesting a neuroprotective activity of cholesterol, especially in stroke and Alzheimer's disease (AD). In the present study, a protective activity of this lipid in simulated neonatal anoxia was investigated. Rats were subjected to high cholesterol by feeding their dams with a diet enriched with cholesterol. Half of these rats were subjected to anoxia. One and a half months later, the rats were tested for their ability to acquire a spatial memory, one group on the linear maze and the other on the Morris water maze. After these assessments, the level of total plasma cholesterol was measured. Rats from dams subjected to neonatal anoxia on standard diet performed worse than control rats in both types of behavioral experiments, whereas anoxic rats from dams were housed on hypercholesterolemic diet performed as control animals. It suggests that dietetic cholesterol applied by their dams protected rats against cognitive deficits elicited by neonatal anoxia. Furthermore, offspring of anoxic rats housed on standard diet had elevated levels of blood cholesterol in relation to control animals. Generally, anoxia affected the concentration of this lipid much stronger than hypercholesterolemic diet of their dams. It might mean that the anoxia-related rise of cholesterol could be involved in physiological phenomenon being an adaptive response to neurotoxic processes. This concept is discussed in relation to pathological mechanisms in AD.
Collapse
Affiliation(s)
- Iwo Bohr
- Department of Animal Physiology, Institute of General and Molecular Biology, Nicholas Copernicus University, ul. Gagarina 9, 87-100 Torun, Poland.
| |
Collapse
|
189
|
|
190
|
Bullido MJ, Ramos MC, Ruiz-Gómez A, Tutor AS, Sastre I, Frank A, Coria F, Gil P, Mayor F, Valdivieso F. Polymorphism in genes involved in adrenergic signaling associated with Alzheimer's. Neurobiol Aging 2004; 25:853-9. [PMID: 15212839 DOI: 10.1016/j.neurobiolaging.2003.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 09/23/2003] [Accepted: 10/02/2003] [Indexed: 11/25/2022]
Abstract
To investigate the potential involvement of adrenergic signaling in Alzheimer's disease (AD) pathogenesis, we performed genetic and functional studies of genes initiating the cascade. We chose two functional single-nucleotide polymorphisms (SNPs) in the beta1-adrenergic receptor (ADRB1) and the G protein beta3 subunit (GNB3) genes, respectively, and analyzed their allelic frequencies in a case-control sample of AD. We found that the GNB3 T allele produces a significant risk for AD in individuals homozygous for the ADRB1 C allele, suggesting that the combined effect of both polymorphisms influences AD susceptibility. Interestingly, the co-expression of GNB3 T and ADRB1 C alleles, compared with GNB3 C and ADRB1 G, produced increased cAMP levels and MAPK activation following adrenergic stimulation of transfected human cell lines. Furthermore, the co-expression of these alleles also produced increases in APP expression. These data strongly indicate that the combination of GNB3 and ADRB1 polymorphisms produces AD susceptibility by changing the cell responsiveness to adrenergic stimulation, pointing to the modulation of brain adrenergic receptors as a potential target for novel AD therapeutic strategies.
Collapse
Affiliation(s)
- María Jesús Bullido
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:357-71. [PMID: 15277212 PMCID: PMC1618579 DOI: 10.1016/s0002-9440(10)63303-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plaques composed of amyloid beta (Abeta) have been found within days following brain trauma in humans, similar to the hallmark plaque pathology of Alzheimer's disease (AD). Here, we evaluated the potential source of this Abeta and long-term mechanisms that could lead to its production. Inertial brain injury was induced in pigs via head rotational acceleration of 110 degrees over 20 ms in the coronal plane. Animals were euthanized at 3 hours, 3 days, 7 days, and 6 months post-injury. Immunohistochemistry and Western blot analyses of the brains were performed using antibodies specific for amyloid precursor protein (APP), Abeta peptides, beta-site APP-cleaving enzyme (BACE), presenilin-1 (PS-1), caspase-3, and caspase-mediated cleavage of APP (CCA). Substantial co-accumulation for all of these factors was found in swollen axons at all time points up to 6 months following injury. Western blot analysis of injured brains confirmed a substantial increase in the protein levels of these factors, particularly in the white matter. These data suggest that impaired axonal transport due to trauma induces long-term pathological co-accumulation of APP with BACE, PS-1, and activated caspase. The abnormal concentration of these factors may lead to APP proteolysis and Abeta formation within the axonal membrane compartment.
Collapse
Affiliation(s)
- Xiao-Han Chen
- Department of Neurosurgery, University of Pennsylvania, 105c Hayden Hall, 3320 SmithWalk, Philadelphia, PA 19104-6316, USA
| | | | | | | | | | | |
Collapse
|
192
|
Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ. Infiltration of the brain by pathogens causes Alzheimer's disease. Neurobiol Aging 2004; 25:619-27. [PMID: 15172740 DOI: 10.1016/j.neurobiolaging.2003.12.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 12/05/2003] [Accepted: 12/08/2003] [Indexed: 11/19/2022]
Abstract
Despite very numerous studies on Alzheimer's disease (AD), especially on amyloid plaques and neurofibrillary tangles, little information has been obtained thus on the causes of the disease. Evidence is described here that implicates firstly herpes simplex virus type 1 (HSV1) as a strong risk factor when it is present in brain of carriers of the type 4 allele of the gene for apolipoprotein E (APOE-4). Indirect support comes from studies indicating the role of APOE in several diverse diseases of known pathogen cause. A second putative risk factor is the bacterium, Chlamydia pneumoniae. This pathogen has been identified and localized in AD brain. Current studies aimed at "proof of principle" address the entry of the organism into the CNS, the neuroinflammatory response to the organism, and the role that the organism plays in triggering AD pathology. An infection-based animal model demonstrates that following intranasal inoculation of BALB/c mice with C. pneumoniae, amyloid plaques/deposits consistent with those observed in the AD brain develop, thus implicating this infection in the etiology of AD.
Collapse
Affiliation(s)
- R F Itzhaki
- Department of Optometry and Neuroscience, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK.
| | | | | | | |
Collapse
|
193
|
Atwood CS, Bowen RL, Smith MA, Perry G. Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply. ACTA ACUST UNITED AC 2004; 43:164-78. [PMID: 14499467 DOI: 10.1016/s0165-0173(03)00206-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The integrity of the vasculature and the maintenance of the blood supply to the brain are crucial for the survival of higher vertebrates. However, peripheral mechanisms of sealing the vasculature that rely on the clotting of blood and platelet aggregation around the site of a 'leak' would lead to decreased cerebral perfusion and compromise the viability of terminally differentiated and irreplaceable neurons. Therefore, in higher organisms it is likely that a sealant/anti-coagulant system that maintains vascular supply has evolved as a necessity to life. We propose that one such system involves the amyloid-beta precursor protein (AbetaPP) and its cleavage product Abeta since (1) both AbetaPP/Abeta are known to deposit in the media of the cerebrovasculature wall following localized injury, (2) Abeta is generated from AbetaPP, a known acute phase reactant, (3) Abeta's physiochemical properties allow it to span between the extracellular matrix and the (endothelial) cell membrane and under inflammatory conditions aggregate to form an intracranial 'scab', thereby maintaining structural integrity of the blood brain barrier, (4) AbetaPP/Abeta together act as an anti-coagulant, (5) Abeta promotes vascular/neuronal remodeling, and (6) Abeta deposits resolve after injury. These properties are consistent with the acute phase generation and rapid cortical deposition of AbetaPP/Abeta following injury (either sustained by trauma or stresses associated with aging) that would be an important compensatory response aimed at limiting the loss of terminally differentiated neurons. Such a system would allow the maintenance of blood supply to the brain by sealing vascular lesions, preventing hemorrhagic stroke while at the same time inhibiting the coagulation cascade from blocking capillaries. Obviously, strategies to remove Abeta would have serious consequences for the integrity of the blood-brain barrier. Indeed, recent in vivo evidence demonstrates that the removal of deposited Abeta from the vasculature leads to increased cerebral microhemorrhage and strongly support the above mentioned functions of AbetaPP/Abeta. These insights also explain the root cause of the encephalitis and meningitis suffered by individuals in immunotherapy trials as being directly associated with the removal of Abeta from the vasculature, i.e. immunological responses to Abeta vaccination do not discriminate between physiologically purposive deposits of Abeta (vascular deposits) and pathological deposits of Abeta (senile plaques).
Collapse
Affiliation(s)
- Craig S Atwood
- School of Medicine, University of Wisconsin and William S. Middleton Memorial Veterans Administration, GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
194
|
Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN. Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. ACTA ACUST UNITED AC 2004; 43:1-16. [PMID: 14499458 DOI: 10.1016/s0165-0173(03)00174-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although much maligned, the amyloid-beta (Abeta) protein has been shown to possess a number of trophic properties that emanate from the protein's ability to bind Cu, Fe and Zn. Abeta belongs to a group of proteins that capture redox metal ions (even under mildly acidotic conditions), thereby preventing them from participating in redox cycling with other ligands. The coordination of Cu appears to be crucial for Abeta's own antioxidant activity that has been demonstrated both in vitro as well as in the brain, cerebrospinal fluid and plasma. The chelation of Cu by Abeta would therefore be predicted to dampen oxidative stress in the mildly acidotic and oxidative environment that accompanies acute brain trauma and Alzheimer's disease (AD). Given that oxidative stress promotes Abeta generation, the formation of diffuse amyloid plaques is likely to be a compensatory response to remove reactive oxygen species. This review weighs up the evidence supporting both the trophic and toxic properties of Abeta, and while evidence for direct Abeta neurotoxicity in vivo is scarce, we postulate that the product of Abeta's antioxidant activity, hydrogen peroxide (H(2)O(2)), is likely to mediate toxicity as the levels of this oxidant rise with the accumulation of Abeta in the AD brain. We propose that metal ion chelators, antioxidants, antiinflammatories and amyloid-lowering drugs that target the reduction of H(2)O(2) and/or Abeta generation may be efficacious in decreasing neurotoxicity. However, given the antioxidant activity of Abeta, we suggest that the excessive removal of Abeta may prevent adequate chelation of metal ions and removal of O(2)(-z.ccirf;), leading to enhanced, rather than reduced, neuronal oxidative stress.
Collapse
Affiliation(s)
- Craig S Atwood
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
195
|
Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. Protein accumulation in traumatic brain injury. Neuromolecular Med 2004; 4:59-72. [PMID: 14528053 DOI: 10.1385/nmm:4:1-2:59] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/14/2003] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is one of the most devastating diseases in our society, accounting for a high percentage of mortality and disability. A major consequence of TBI is the rapid and long-term accumulation of proteins. This process largely reflects the interruption of axonal transport as a result of extensive axonal injury. Although many proteins are found accumulating after TBI, three have received particular attention; beta-amyloid precursor protein and its proteolytic products, amyloid-beta (Abeta) peptides, neurofilament proteins, and synuclein proteins. Massive coaccumulations of all of these proteins are found in damaged axons throughout the white matter after TBI. Additionally, these proteins form aggregates in other neuronal compartments and in brain parenchyma after brain trauma. Interestingly, TBI is also an epigenetic risk factor for developing neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Here, the similarities and differences of these accumulations with pathologies of neurodegenerative diseases will be explored. In addition, the potential deleterious roles of protein accumulations on functional outcome and progressive neurodegeneration following TBI will be examined.
Collapse
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
196
|
Smith C, Graham DI, Murray LS, Nicoll JAR. Tau immunohistochemistry in acute brain injury. Neuropathol Appl Neurobiol 2003; 29:496-502. [PMID: 14507341 DOI: 10.1046/j.1365-2990.2003.00488.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological studies have identified a history of head injury as a risk factor for Alzheimer's disease. However, the neuropathological mechanism underlying this relationship is as yet unclear. Neuronal cytoskeletal changes in the form of neurofibrillary tangles and neuropil threads have recently been demonstrated in young men who had sustained repetitive head injury and subsequently died in their 20s. In addition, recent experimental studies have found accumulation of tau within neuronal somata and damaged axons following diffuse brain injury. We hypothesized that tau-immunoreactive tangles may be present in the brains of patients who died after a single acute blunt head injury. A total of 45 cases of fatal head injury were immunostained for tau. They comprised nine groups (n=5 for each group) separated by age (0-19 years, 20-50 years, 50+ years) and survival time (<24 h, 24 h-1 week, 1 week-1 month) and were compared with age-matched controls. Subtle alterations in tau immunoreactivity, for example, in oligodendrocytes, were present in some head injury cases but not controls. However, neurofibrillary tangles did not appear more prevalent after traumatic brain injury (TBI) when compared with age-matched controls. Although alterations in tau immunoreactivity may occur which warrant further study, neurofibrillary tangles were not more prevalent after a single fatal episode of TBI.
Collapse
Affiliation(s)
- C Smith
- Department of Neuropathology, University of Glasgow, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK.
| | | | | | | |
Collapse
|
197
|
Kerr ME, Ilyas Kamboh M, Yookyung K, Kraus MF, Puccio AM, DeKosky ST, Marion DW. Relationship between apoE4 allele and excitatory amino acid levels after traumatic brain injury. Crit Care Med 2003; 31:2371-9. [PMID: 14501969 DOI: 10.1097/01.ccm.0000080484.72004.c4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Apolipoprotein E isoform (E4) has been posited to affect outcomes after central nervous system injury. This project sought to determine the relationship between the apoE4 allele and the recovery of amino acid neurotransmitters (aspartate, glutamate, and lactate/pyruvate ratio [L/P]) following a traumatic brain injury (TBI) after controlling for patient characteristics. DESIGN This prospective clinical study examined neurotransmitters and L/P within the cerebrospinal fluid and compared the trends by apoE genotypes. SETTING Adults with TBI were recruited from a neurotrauma intensive care unit within a trauma I university medical center. PATIENTS Ninety-one patients were enrolled into the study after a severe TBI (Glasgow Coma Scale [GCS] score, </=8). Cerebrospinal fluid was serially sampled from a ventriculostomy every 4 hrs for the first 24 hrs and every 6 hrs for 25-120 hrs after injury. MEASUREMENTS AND MAIN RESULTS Hierarchical linear modeling analyses were used to compare the change of glutamate, aspartate, and L/P over time by the presence or absence of the apoE4 allele, with GCS score, sex, race, and therapeutic hypothermias included as covariates. There was a significant apoE4 allele group effect on both the linear and quadratic slopes in aspartate. In glutamate, the rate of change in glutamate was statistically related to GCS score. There was no significant difference in the glutamate response over time by the presence of the apoE4 allele. There was a significant difference in the change in L/P across time, with faster recovery when the apoE4 allele was absent. CONCLUSIONS Recovery of aspartate and L/P differed depending on the presence of the apoE4 allele. Patients with the allele had significant increased and sustained levels of aspartate and L/P after TBI. Changes in glutamate were related to severity of illness and were independent of the presence of the apoE4 allele.
Collapse
Affiliation(s)
- Mary E Kerr
- University of Pittsburgh, University of Pittsburgh Medical Center, Western Psychiatric Institute and Clinic, PA, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
BACKGROUND Diffuse axonal injury (DAI) is one of the most common and important pathologic features of traumatic brain injury (TBI). The susceptibility of axons to mechanical injury appears to be due to both their viscoelastic properties and their high organization in white matter tracts. Although axons are supple under normal conditions, they become brittle when exposed to rapid deformations associated with brain trauma. Accordingly, rapid stretch of axons can damage the axonal cytoskeleton resulting in a loss of elasticity and impairment of axoplasmic transport. Subsequent swelling of the axon occurs in discrete bulb formations or in elongated varicosities that accumulate transported proteins. Calcium entry into damaged axons is thought to initiate further damage by the activation of proteases. Ultimately, swollen axons may become disconnected and contribute to additional neuropathologic changes in brain tissue. DAI may largely account for the clinical manifestations of brain trauma. However, DAI is extremely difficult to detect noninvasively and is poorly defined as clinical syndrome. CONCLUSIONS Future advancements in the diagnosis and treatment of DAI will be dependent on our collective understanding of injury biomechanics, temporal axonal pathophysiology, and its role in patient outcome.
Collapse
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
199
|
Affiliation(s)
- Ashley I Bush
- Laboratory for Oxidation Biology, Genetics and Aging Research Unit, Massachusetts General Hospital East, Charleston, MA 02129, USA.
| |
Collapse
|
200
|
Affiliation(s)
- Curtis B Dobson
- Molecular Neurobiology Laboratory, Department of Optometry and Neuroscience, UMIST, Manchester M60 1QD, UK
| | | | | |
Collapse
|