151
|
Dekker RFH, Queiroz EAIF, Cunha MAA, Barbosa-Dekker AM. Botryosphaeran – A Fungal Exopolysaccharide of the (1→3)(1→6)-β-D-Glucan Kind: Structure and Biological Functions. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
152
|
Meng Y, Shi X, Cai L, Zhang S, Ding K, Nie S, Luo C, Xu X, Zhang L. Triple-Helix Conformation of a Polysaccharide Determined with Light Scattering, AFM, and Molecular Dynamics Simulation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yan Meng
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan, China
| | - Xiaodan Shi
- College of Food Science, Nanchang University, Nanchang, China
| | - Liqin Cai
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan, China
| | - Shihai Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kan Ding
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shaoping Nie
- College of Food Science, Nanchang University, Nanchang, China
| | - Chuanfu Luo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Chang Chun, China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan, China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
153
|
Liao X, Větvička V, Crich D. Synthesis and Evaluation of 1,5-Dithia-d-laminaribiose, Triose, and Tetraose as Truncated β-(1→3)-Glucan Mimetics. J Org Chem 2018; 83:14894-14904. [PMID: 30456952 DOI: 10.1021/acs.joc.8b01645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The preparation and characterization of a series of di-, tri-, and tetrasaccharide analogues of β-(1→3)-glucans is described in which each pyranoside ring is replaced by a 5-thiopyranosyl ring and each glycosidic oxygen by a thioether. These oligomeric 1,5-dithio-d-glucopyranose derivatives were shown to inhibit the staining of human neutrophils and of mouse macrophages by fluorescent anti-CR3 and anti-Dectin-1 antibodies, respectively. The compounds were also demonstrated to stimulate phagocytosis and pinocytosis indicative of binding to the carbohydrate binding domains of complement receptor 3 (CR3) and Dectin-1. Activity in all three assays was optimum at the level of the trisaccharide mimic, suggesting that, while the replacement of ethereal oxygens by thioethers results in a greater affinity for the aromatic lined hydrophobic binding pockets, the presence of multiple longer C-S bonds eventually results in a mismatch and a loss of affinity.
Collapse
Affiliation(s)
- Xiaoxiao Liao
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Václav Větvička
- Department of Pathology , University of Louisville , 323 East Chestnut Street , Louisville , Kentucky 40202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
154
|
Hereher F, ElFallal A, Toson E, Abou-Dobara M, Abdelaziz M. Pilot study: Tumor suppressive effect of crude polysaccharide substances extracted from some selected mushroom. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
155
|
Eyigor A, Bahadori F, Yenigun VB, Eroglu MS. Beta-Glucan based temperature responsive hydrogels for 5-ASA delivery. Carbohydr Polym 2018; 201:454-463. [DOI: 10.1016/j.carbpol.2018.08.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 11/30/2022]
|
156
|
Franco Montoya LN, Favero GC, Zanuzzo FS, Urbinati EC. Distinct β-glucan molecules modulates differently the circulating cortisol levels and innate immune responses in matrinxã (Brycon amazonicus). FISH & SHELLFISH IMMUNOLOGY 2018; 83:314-320. [PMID: 30219388 DOI: 10.1016/j.fsi.2018.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/29/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the effects of two β-glucan molecules with different purities and isolated by different biotechnological processes on the immune response of matrinxã (Brycon amazonicus) prior and after challenge with Aeromonas hydrophila. In this sense, we evaluated serum cortisol and plasma glucose levels, the number of leukocytes (lymphocytes, neutrophils and monocytes), as well as the respiratory activity of leukocytes prior to, 6 and 24 h post infection (hpi). During 15 days, fish were fed with diets containing 0.1% of two β-glucans (β-G 1 and β-G 2, with 71 and 62% of purity, respectively) and then submitted to challenge. Results were compared with a positive control group fed with a β-glucan-free diet. A negative control group, also fed with β-glucan-free diet but inoculated with PBS, was established to evaluate the effect of handling during injection. Our results showed that different β-glucans affected differently the biological responses of matrinxã. The βG 2 modulated the cortisol profile prior to and after the acute infection with A. hydrophila, and increased the mobilization and activity of leukocytes. The infection promoted lymphopenia at 6 hpi and both β-glucans increased the circulating lymphocyte population 24 hpi. Moreover, the β-G 2 prevented the infection-induced neutrophilia at 6 and 24 hpi. Finally, the β-G 2 caused a marked increase in the circulating monocytes prior to infection, and a reduction at 6 hpi that was reversed at 24 hpi. In summary, our study demonstrates that β-G 2 was more efficient on the induction of the cell-mediate immunity in matrinxã.
Collapse
Affiliation(s)
- Luz Natalia Franco Montoya
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil.
| | - Gisele Cristina Favero
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil.
| | - Fabio Sabbadin Zanuzzo
- Universidade Estadual Paulista (Unesp), Centro de Aquicultura da Unesp, Jaboticabal, São Paulo, Brazil.
| | - Elisabeth Criscuolo Urbinati
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil; Universidade Estadual Paulista (Unesp), Centro de Aquicultura da Unesp, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
157
|
Zhao H, Lai Q, Zhang J, Huang C, Jia L. Antioxidant and Hypoglycemic Effects of Acidic-Extractable Polysaccharides from Cordyceps militaris on Type 2 Diabetes Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9150807. [PMID: 30595798 PMCID: PMC6286747 DOI: 10.1155/2018/9150807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022]
Abstract
The present work was performed to evaluate the effect of acidic-extractable polysaccharides (AE-PS) from fruit bodies of Cordyceps militaris on type 2 diabetes mellitus (T2DM) and its structural characteristics. The T2DM mice induced by high-fat diet (HFD) and streptozotocin (STZ) were administered with 100 and 400 mg/kg AE-PS for 4 weeks. Our work proved that AE-PS decreased the levels of serum lipid, lipid peroxidation, and blood glucose; improved glucose and insulin resistance; enhanced antioxidant enzyme activities; and attenuated the injuries of the liver, kidney, and pancreas in T2DM mice. These results might offer references for the exploitation of AE-PS as functional foods or natural drug source for preventing and treating HFD- and STZ-induced T2DM. Moreover, gas chromatography (GC) results revealed that AE-PS was heterogeneous and composed of fucose, ribose, arabinose, xylose, mannose, galactose, and glucose with mass percentages of 1.23%, 0.57%, 0.29%, 2.12%, 2.73%, 4.66%, and 88.4%, respectively. Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) analysis indicated that AE-PS was a pyran-type polysaccharide with α- and β-configurations.
Collapse
Affiliation(s)
- Huajie Zhao
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China
- College of Life Science, Shandong Agricultural University, Tai'an 271018, China
| | - Qiangqiang Lai
- College of Life Science, Shandong Agricultural University, Tai'an 271018, China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Tai'an 271018, China
| | - Chunyan Huang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
158
|
Sun XY, Wang JM, Ouyang JM, Kuang L. Antioxidant Activities and Repair Effects on Oxidatively Damaged HK-2 Cells of Tea Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5297539. [PMID: 30584463 PMCID: PMC6280578 DOI: 10.1155/2018/5297539] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023]
Abstract
This study aims at investigating the antioxidant activity and repair effect of green tea polysaccharide (TPS) with different molecular weights (Mw) on damaged human kidney proximal tubular epithelial cells (HK-2). Scavenging activities on hydroxyl radical (·OH) and ABTS radical and reducing power of four kinds of TPS with Mw of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.31 kDa (TPS3) were detected. A damaged cell model was established using 2.6 mmol/L oxalate to injure HK-2 cells. Then, different concentrations of TPSs were used to repair the damaged cells. Index changes of subcellular organelles of HK-2 cells were detected before and after repair. The four kinds of TPSs possessed radical scavenging activity and reducing power, wherein TPS2 with moderate Mw presented the strongest antioxidant activity. After repair by TPSs, cell morphology of damaged HK-2 cells was gradually restored to normal conditions. Reactive oxygen species production decreased, and mitochondrial membrane potential (Δψm) of repaired cells increased. Cells of G1 phase arrest were inhibited, and cell proportion in the S phase increased. Lysosome integrity improved, and cell apoptotic rates significantly reduced in the repaired group. The four kinds of TPSs with varying Mw displayed antioxidant activity and repair effect on the mitochondria, lysosomes, and intracellular DNA. TPS2, with moderate Mw, showed the strongest antioxidant activity and repair effect; it may become a potential drug for prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Li Kuang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
159
|
Simple and effective purification approach to dissociate mixed water-insoluble α- and β-D-glucans and its application on the medicinal mushroom Fomitopsis betulina. Carbohydr Polym 2018; 200:353-360. [DOI: 10.1016/j.carbpol.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022]
|
160
|
Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages. Carbohydr Polym 2018; 200:408-415. [DOI: 10.1016/j.carbpol.2018.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
|
161
|
Silva AZ, Costa FP, Souza IL, Ribeiro MC, Giordani MA, Queiroz DA, Luvizotto RA, Nascimento AF, Bomfim GF, Sugizaki MM, Dekker RF, Barbosa-Dekker AM, Queiroz EA. Botryosphaeran reduces obesity, hepatic steatosis, dyslipidaemia, insulin resistance and glucose intolerance in diet-induced obese rats. Life Sci 2018; 211:147-156. [DOI: 10.1016/j.lfs.2018.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 01/11/2023]
|
162
|
Khan AA, Gani A, Khanday FA, Masoodi F. Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
163
|
Akhapkina IG, Antropova AB, Akhmatov EA, Zheltikova TM. Effects of the Linear Fragments of Beta-(1→3)-Glucans on Cytokine Production in vitro. BIOCHEMISTRY (MOSCOW) 2018; 83:1002-1006. [PMID: 30208836 DOI: 10.1134/s0006297918080114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beta-glucans, homopolysaccharides composed of 3,6-branching β-(1→3)-D-glucan chains, attract great interest as inducers of cytokine synthesis. In this work, we studied the ability of linear fragments of beta-glucan chains to activate cytokine synthesis. Synthetic nona-β-(1→3)-D-glucoside (SO) representing a linear fragment of beta-glucan chain, endotoxin (ED), and natural β-(1→3)-D-glucan (GL) were tested for their role as inducers of cytokines in whole peripheral blood cultures collected from 17 individuals. The concentrations of IL-12p70, IFN-γ, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1β, TNF-α, and TNF-β were measured in the supernatants after 2, 24, and 48 h of cell culturing. SO, ED, and GL stimulated production of pro-inflammatory IFN-γ, IL-1β, IL-2, IL-6, IL-8, TNF-α and anti-inflammatory IL-10. The highest levels of biosynthesis after stimulation with SO were registered for IL-6, IL-8, and TNF-α. SO stimulated production of all cytokines (except IFN-γ) to a lesser extent than ED and GL. The IFN-γ/IL-10 (Th1/Th2) ratios after 24 and 48 h of culturing were 3.1 and 7.5 for SO; 0.03 and 0.1 for GL; and 0.06 and 0.2 for ED, respectively. The results indicate that linear fragments of beta-glucans cause a more pronounced shift of immune response towards the pro-inflammatory (Th1) type than beta-glucan itself.
Collapse
Affiliation(s)
- I G Akhapkina
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064, Russia.
| | - A B Antropova
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064, Russia
| | - E A Akhmatov
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064, Russia
| | - T M Zheltikova
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064, Russia
| |
Collapse
|
164
|
Manmode S, Kato M, Ichiyanagi T, Nokami T, Itoh T. Automated Electrochemical Assembly of the β-(1,3)-β-(1,6)-Glucan Hexasaccharide Using Thioglucoside Building Blocks. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sujit Manmode
- Department of Chemistry and Technology, Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Moeko Kato
- Department of Chemistry and Technology, Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Tsuyoshi Ichiyanagi
- Faculty of Agriculture; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8553 Tottori Japan
| | - Toshiki Nokami
- Department of Chemistry and Technology, Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green Sustainable Chemistry, Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Technology, Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green Sustainable Chemistry, Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| |
Collapse
|
165
|
Liu F, Wang Z, Liu J, Li W. Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae. Int J Biol Macromol 2018; 115:572-579. [DOI: 10.1016/j.ijbiomac.2018.04.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
|
166
|
Polysaccharides from Diaphragma juglandis fructus: Extraction optimization, antitumor, and immune-enhancement effects. Int J Biol Macromol 2018; 115:835-845. [DOI: 10.1016/j.ijbiomac.2018.04.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 01/15/2023]
|
167
|
Zou M, Chen Y, Sun-Waterhouse D, Zhang Y, Li F. Immunomodulatory acidic polysaccharides from Zizyphus jujuba cv. Huizao : Insights into their chemical characteristics and modes of action. Food Chem 2018; 258:35-42. [DOI: 10.1016/j.foodchem.2018.03.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/10/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
|
168
|
Marchand G, Gardette M, Nguyen K, Amano V, Neesham-Grenon E, Debia M. Assessment of Workers' Exposure to Grain Dust and Bioaerosols During the Loading of Vessels' Hold: An Example at a Port in the Province of Québec. Ann Work Expo Health 2018. [PMID: 28637341 DOI: 10.1093/annweh/wxx045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Longshoremen are exposed to large amounts of grain dust while loading of grain into the holds of vessels. Grain dust inhalation has been linked to respiratory diseases such as chronic bronchitis, hypersensitivity, pneumonitis, and toxic pneumonitis. Our objective was to characterize the exposure of longshoremen to inhalable and total dust, endotoxins, and cultivable bacteria and fungi during the loading of grain in a vessel's hold at the Port of Montreal in order to assess the potential health risks. Sampling campaigns were conducted during the loading of two different types of grain (wheat and corn). Environmental samples of microorganisms (bacteria, fungus, and actinomycetes) were taken near the top opening of the ship's holds while personal breathing zone measurements of dust and endotoxins were sampled during the worker's 5-hour shifts. Our study show that all measurements are above the recommendations with concentration going up to 390 mg m-3 of total dust, 89 mg m-3 of inhalable fraction, 550 000 EU m-3 of endotoxins, 20 000 CFU m-3 of bacteria, 61 000 CFU m-3 of fungus and 2500 CFU m-3 of actinomycetes. In conclusion, longshoremen are exposed to very high levels of dust and of microorganisms and their components during grain loading work. Protective equipment needs to be enforced for all workers during such tasks in order to reduce their exposure.
Collapse
Affiliation(s)
- Geneviève Marchand
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), 505 Boul de Maisonneuve Ouest, Montréal, QC H3A 3C2, Canada.,Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Marie Gardette
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Kiet Nguyen
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Valérie Amano
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Eve Neesham-Grenon
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Maximilien Debia
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| |
Collapse
|
169
|
Liu Y, Tang Q, Zhang J, Xia Y, Yang Y, Wu D, Fan H, Cui SW. Triple helix conformation of β-d-glucan from Ganoderma lucidum and effect of molecular weight on its immunostimulatory activity. Int J Biol Macromol 2018; 114:1064-1070. [DOI: 10.1016/j.ijbiomac.2018.03.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/15/2023]
|
170
|
The silkrose of Bombyx mori effectively prevents vibriosis in penaeid prawns via the activation of innate immunity. Sci Rep 2018; 8:8836. [PMID: 29892000 PMCID: PMC5995915 DOI: 10.1038/s41598-018-27241-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
We previously identified novel bioactive polysaccharides from Bactrocera cucurbitae and Antheraea yamamai that activate innate immunity in RAW264 murine macrophages. However, in terms of potential applications in the cultivation of prawns, there were problems with the availability of these insects. However, we have now identified a polysaccharide from Bombyx mori that activates innate immunity in RAW264 cells and penaeid prawns. This purified polysaccharide, termed silkrose of B. mori (silkrose-BM), has a molecular weight of 1,150,000 and produces a single symmetrical peak on HPLC. Eight of nine constitutive monosaccharides of silkrose-BM are concomitant with dipterose of B. cucurbitae (dipterose-BC) and silkrose of A. yamamai (silkrose-AY). The major differences are found in the molar ratios of the monosaccharides. Silkrose-BM is approximately 500-fold less potent than silkrose-AY (EC50: 2.5 and 0.0043 μg/mL, respectively) in a nitrite oxide (NO) production assay using RAW264 cells. However, the maximum NO production for silkrose-BM and AY were comparable and higher than that of the lipopolysaccharide of Escherichia coli. The survival of penaeid prawns (Litopenaeus vannamei and Marsupenaeus japonicus) after infection with Vibrio penaecida was significantly improved by both dietary silkrose-BM and B. mori pupae. This suggests that silkrose-BM effectively prevents vibriosis in penaeid prawns via the activation of innate immunity.
Collapse
|
171
|
Naseri-Nosar M, Ziora ZM. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr Polym 2018; 189:379-398. [DOI: 10.1016/j.carbpol.2018.02.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
172
|
Zhu K, Chen X, Yu D, He Y, Song G. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β-glucan and its bio-release property for vitamin B 12 delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2617-2623. [PMID: 29064580 DOI: 10.1002/jsfa.8754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/25/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND This study investigates a novel hydrogel synthesis method and its bio-release property. This hydrogel, with a three-dimensional network structure based on Auricularia polytricha β-glucan, was characterised by means of Fourier transform infrared spectroscopy, 1 H NMR and scanning electron microscopy. Vitamin B12 (VB12 , cobalamin) as a hydrophilic functional food component was entrapped into these hydrogels. The in vitro release profile of VB12 was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). RESULTS The results showed that the hydrogel had medium pore size from 30 to 300 µm, and the swelling ratio increased with the degree of substitution. The hydrogel demonstrated good stability in SGF and bio-release capability in SIF for VB12 . The accumulated release rate is about 80% in SIF and below 20% in SGF, which indicated the significant different release property in stomach and intestine. CONCLUSION The Auricularia polytricha β-glucan-based hydrogel has a good swelling ratio, pepsin stability and pancrelipase-catalysed biodegradation property. The bio-release rate is significantly different in SIF and SGF, which indicated that this hydrogel could be a good intestinal target carrier of VB12 . © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiaoyuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Da Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yue He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Guanglei Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
173
|
Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7271509. [PMID: 29849725 PMCID: PMC5937616 DOI: 10.1155/2018/7271509] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
Since time immemorial, plants and their compounds have been used in the treatment and management of various ailments. Currently, most of conventional drugs used for treatment of diseases are either directly or indirectly obtained from plant sources. The fungal group of plants is of significance, which not only provides food directly to man but also has been source of important drugs. For instance, commonly used antibiotics are derived from fungi. Fungi have also been utilized in the food industry, baking, and alcohol production. Apart from the economic importance of the microfungi, macrofungi have been utilized directly as food, which is usually got from their fruiting bodies, commonly known as mushrooms. Due to their richness in proteins, minerals, and other nutrients, mushrooms have also been associated with boosting the immune system. This makes mushrooms an important food source, especially for vegetarians and immunosuppressed individuals including the HIV/AIDS persons. In complementary and alternative medicines (CAMs), mushrooms are increasingly being accepted for treatment of various diseases. Mushrooms have been shown to have the ability to stimulate the immune system, modulate humoral and cellular immunity, and potentiate antimutagenic and antitumorigenic activity, as well as rejuvenating the immune system weakened by radiotherapy and chemotherapy in cancer treatment. This potential of mushrooms, therefore, qualifies them as candidates for immunomodulation and immunotherapy in cancer and other diseases' treatment. However, a critical review on mushroom's immune modulating potential in cancer has not been sufficiently addressed. This review puts forward insights into the immune activities of mushroom associated with anticancer activities.
Collapse
Affiliation(s)
- Peter Amwoga Ayeka
- Department of Biological Sciences, Faculty of Science, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| |
Collapse
|
174
|
Majtan J, Jesenak M. β-Glucans: Multi-Functional Modulator of Wound Healing. Molecules 2018; 23:molecules23040806. [PMID: 29614757 PMCID: PMC6017669 DOI: 10.3390/molecules23040806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/27/2023] Open
Abstract
β-glucans are derived from a variety of sources including yeast, grain and fungus and belong to the class of drugs known as biological response modifiers. They possess a broad spectrum of biological activities that enhance immunity in humans. One promising area for β-glucans’ application is dermatology, including wound care. Topical applications of β-glucans are increasing, especially due to their pluripotent properties. Macrophages, keratinocytes and fibroblasts are considered the main target cells of β-glucans during wound healing. β-glucans enhance wound repair by increasing the infiltration of macrophages, which stimulates tissue granulation, collagen deposition and reepithelialization. β-glucan wound dressings represent a suitable wound healing agent, with great stability and resistance to wound proteases. This review summarizes the current knowledge and progress made on characterizing β-glucans’ wound healing properties in vitro and in vivo and their safety and efficacy in managing non-healing wounds or other chronic dermatological conditions and diseases.
Collapse
Affiliation(s)
- Juraj Majtan
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia.
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovakia.
| |
Collapse
|
175
|
Zymosan attenuates melanoma growth progression, increases splenocyte proliferation and induces TLR-2/4 and TNF-α expression in mice. JOURNAL OF INFLAMMATION-LONDON 2018; 15:5. [PMID: 29588627 PMCID: PMC5863857 DOI: 10.1186/s12950-018-0182-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/11/2018] [Indexed: 11/10/2022]
Abstract
Background Melanoma is one of the most common types of skin malignancies. Since current therapies are suboptimal, considerable interest has focused on novel natural-based treatments. Toll-like receptors (TLRs) play an important role in evoking innate immunity against cancer cells. Zymosan, a known TLR-2 agonist, is a glucan derived from yeast cell walls with promising immunomodulatory effects. The aim of this study was to evaluate whether Saccharomyces cerevisiae-derived zymosan-modulated skin melanoma progression by regulation of TLR-2 and TLR-4 expression in peritoneal macrophages and serum TNF-α level. Methods Male C57BL/6 mice were divided into four groups: i) zymosan-treated (Z), ii) Melanoma-bearing mice (M), iii) Melanoma-bearing mice treated with zymosan (ZM) and iv) a healthy control group (negative control). 15 days after melanoma induction, mice were injected i.p. with zymosan (10 μg) daily for 4 consecutive days. Mice were CO2-euthanized and serum TNF-α level, TLR-2 and TLR-4 expression in peritoneal macrophages and tumor growth measured. Splenocytes were treated ex-vivo with zymosan to determine viability and proliferation. Results Tumor weight significantly decreased following therapeutic dosing with zymosan (P < 0.05). This was associated with zymosan-induced upregulation of TLR-2, TLR-4 and TNF-α mRNA in peritoneal macrophages and enhanced serum TNF-α levels (P < 0.05). Splenocyte number and viability were increased in a concentration-dependent manner by zymosan. Conclusions Our study suggests that zymosan-induced upregulation of TLR-2, TLR-4 and TNF-α gene expression and of TNF-α release; together with increased level of lymphocyte proliferation may play a role in the inhibition of melanoma progression.
Collapse
|
176
|
Zhang M, Kim JA, Huang AYC. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles. Front Immunol 2018; 9:341. [PMID: 29535722 PMCID: PMC5834761 DOI: 10.3389/fimmu.2018.00341] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy is revolutionizing cancer treatment. Recent clinical success with immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and adoptive immune cellular therapies has generated excitement and new hopes for patients and investigators. However, clinically efficacious responses to cancer immunotherapy occur only in a minority of patients. One reason is the tumor microenvironment (TME), which potently inhibits the generation and delivery of optimal antitumor immune responses. As our understanding of TME continues to grow, strategies are being developed to change the TME toward one that augments the emergence of strong antitumor immunity. These strategies include eliminating tumor bulk to provoke the release of tumor antigens, using adjuvants to enhance antigen-presenting cell function, and employ agents that enhance immune cell effector activity. This article reviews the development of β-glucan and β-glucan-based nanoparticles as immune modulators of TME, as well as their potential benefit and future therapeutic applications. Cell-wall β-glucans from natural sources including plant, fungi, and bacteria are molecules that adopt pathogen-associated molecular pattern (PAMP) known to target specific receptors on immune cell subsets. Emerging data suggest that the TME can be actively manipulated by β-glucans and their related nanoparticles. In this review, we discuss the mechanisms of conditioning TME using β-glucan and β-glucan-based nanoparticles, and how this strategy enables future design of optimal combination cancer immunotherapies.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Seidman Cancer Center, University Hospitals, Cleveland, OH, United States
| | - Julian A. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Seidman Cancer Center, University Hospitals, Cleveland, OH, United States
- Division of Surgical Oncology, Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alex Yee-Chen Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
177
|
Li Q, Niu Y, Xing P, Wang C. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chin Med 2018; 13:7. [PMID: 29445417 PMCID: PMC5802060 DOI: 10.1186/s13020-018-0166-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Functional polysaccharides can be derived from plants (including herbs), animals and microorganisms. They have been widely used in a broad of biomedical applications, such as immunoregulatory agents or drug delivery vehicles. In the past few years, increasing studies have started to develop natural polysaccharides-based biomaterials for various applications in tissue engineering and regenerative medicine. MAIN BODY We discuss in this article the emerging applications of natural polysaccharides-particularly those derived from Chinese medicine-for wound healing. First, we introduce natural polysaccharides of three natural sources and their biological activities. Then, we focus on certain natural polysaccharides with growth factor-binding affinities and their inspired polymeric tools, with an emphasis on how these polysaccharides could possibly benefit wound healing. Finally, we report the latest progress in the discovery of polysaccharides from Chinese medicinal herbs with identified activities favouring tissue repair. CONCLUSION Natural polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential to serve as therapeutic tools for tissue regeneration.
Collapse
Affiliation(s)
- Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Panfei Xing
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|
178
|
In vivo antimutagenic and antiatherogenic effects of the (1 → 3)(1 → 6)-β-d- glucan botryosphaeran. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:6-14. [DOI: 10.1016/j.mrgentox.2017.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 12/03/2017] [Accepted: 12/15/2017] [Indexed: 11/20/2022]
|
179
|
Mohan SC, Kumar PMR, Kumar MS, Manivel A. Structural Characterization and Anti-Diabetic Activity of Polysaccharides from Agaricus bisporus Mushroom. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/rjphyto.2018.14.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
180
|
Serpunja S, Sankar K, Kim JK, Kim IH. Impacts of dietary β-glucan ( Morus Alba and Curcuma Longa) supplementation on growth performance, apparent total tract digestibility, fecal microbial, fecal characteristics, and blood profiles in weanling pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1546583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Subin Serpunja
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Kathannan Sankar
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Toxicological Evaluation Laboratory, Veterinary Drugs and Biologic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Jong Keun Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
181
|
NAKASHIMA A, YAMADA K, IWATA O, SUGIMOTO R, ATSUJI K, OGAWA T, ISHIBASHI-OHGO N, SUZUKI K. β-Glucan in Foods and Its Physiological Functions. J Nutr Sci Vitaminol (Tokyo) 2018; 64:8-17. [DOI: 10.3177/jnsv.64.8] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
182
|
Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym 2017; 183:91-101. [PMID: 29352896 DOI: 10.1016/j.carbpol.2017.12.009] [Citation(s) in RCA: 860] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy. As biological macromolecules, polysaccharide together with protein and polynucleotide, are extremely important biomacromoleules which play important roles in the growth and development of living organism. Polysaccharide is important component of higher plants, membrane of the animal cell and the cell wall of microbes. It is also closely related to the physiological functions. Recently, increasing attention has been paid on polysaccharides as an important class of bioactive natural products. Numerous researches have demonstrated the bioactivities of natural polysaccharides, which lead to the application of polysaccharides in the treatment of disease. In this paper, the various aspects of the investigation results of the bioactivities of polysaccharides were summarized, including its diversity pharmacological applications, such as immunoregulatory, anti-tumor, anti-virus, antioxidation, and hypoglycemic activity, and their application of polysaccharides in the treatment of disease are also discussed. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of polysaccharides.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qianqian Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
183
|
Jamshidian H, Shojaosadati SA, Mohammad Mousavi S, Reza Soudi M, Vilaplana F. Implications of recovery procedures on structural and rheological properties of schizophyllan produced from date syrup. Int J Biol Macromol 2017; 105:36-44. [DOI: 10.1016/j.ijbiomac.2017.06.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
|
184
|
Fortin O, Aguilar-Uscanga B, Vu KD, Salmieri S, Lacroix M. Cancer Chemopreventive, Antiproliferative, and Superoxide Anion Scavenging Properties ofKluyveromyces marxianusandSaccharomyces cerevisiae var. boulardiiCell Wall Components. Nutr Cancer 2017; 70:83-96. [DOI: 10.1080/01635581.2018.1380204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Blanca Aguilar-Uscanga
- Department of Pharmacobiology, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh Dang Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| |
Collapse
|
185
|
Korolenko TA, Johnston TP, Machova E, Bgatova NP, Lykov AP, Goncharova NV, Nescakova Z, Shintyapina AB, Maiborodin IV, Karmatskikh OL. Hypolipidemic effect of mannans from C. albicans serotypes a and B in acute hyperlipidemia in mice. Int J Biol Macromol 2017; 107:2385-2394. [PMID: 29074085 DOI: 10.1016/j.ijbiomac.2017.10.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
Mannans, which are biological macromolecules of polysaccharide origin and function as immunomodulators, have been shown to stimulate macrophages in vivo by interaction with the mannose receptor. Thus, they can be used to stimulate macrophages in order to effectively remove circulating atherogenic lipoproteins. Our primary aim was to evaluate the hypolipidemic potential of mannans from C. albicans serotype A (mannan A) and serotype B (mannan B) in a murine model of hyperlipidemia. Mannan A and mannan B were shown to significantly (p<0.05) stimulate both the proliferation (p <0.05) and nitric oxide production of murine peritoneal macrophages in vitro. Pre-treatment of CBA/Lac mice with mannan A prior to induction of hyperlipidemia significantly (p<0.001) reduced serum atherogenic LDL-cholesterol, total cholesterol, and triglycerides. Mannan B exhibited a similar, but more potent, hypolipidemic effect. Electron microscopic analysis of liver revealed a significant (p<0.001) decrease in the volume of lipid droplets when hyperlipidemic mice were pretreated by both mannans. In conclusion, our findings would suggest that both polysaccharide-based biological macromolecules evaluated in the present study, specifically, the natural immunomodulators (mannans A and B), appeared to function as effective lipid-lowering macromolecules, which could potentially serve as adjunct therapy to more conventional hypolipidemic medications such as a statin drug.
Collapse
Affiliation(s)
- T A Korolenko
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.
| | - T P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States.
| | - E Machova
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - N P Bgatova
- Scientific Institute of Clinical and Experimental Lymphology-filial of the Institute of Cytology and Genetic Siberian Branch of Russian Academy of Science, Novosibirsk, Russia.
| | - A P Lykov
- Scientific Institute of Clinical and Experimental Lymphology-filial of the Institute of Cytology and Genetic Siberian Branch of Russian Academy of Science, Novosibirsk, Russia.
| | - N V Goncharova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.
| | - Z Nescakova
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - A B Shintyapina
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.
| | - I V Maiborodin
- The Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - O L Karmatskikh
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.
| |
Collapse
|
186
|
Kono H, Kondo N, Hirabayashi K, Ogata M, Totani K, Ikematsu S, Osada M. NMR spectroscopic structural characterization of a water-soluble β-(1 → 3, 1 → 6)-glucan from Aureobasidium pullulans. Carbohydr Polym 2017; 174:876-886. [DOI: 10.1016/j.carbpol.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
187
|
Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
188
|
Ullah MI, Akhtar M, Awais MM, Anwar MI, Khaliq K. Evaluation of immunostimulatory and immunotherapeutic effects of tropical mushroom (Lentinus edodes) against eimeriasis in chicken. Trop Anim Health Prod 2017; 50:97-104. [DOI: 10.1007/s11250-017-1407-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
189
|
Salgado M, Rodríguez-Rojo S, Reis RL, Cocero MJ, Duarte ARC. Preparation of barley and yeast β-glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
190
|
Mohamed SIA, Jantan I, Haque MA. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. Int Immunopharmacol 2017; 50:291-304. [PMID: 28734166 DOI: 10.1016/j.intimp.2017.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/13/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
|
191
|
Chethan GE, Garkhal J, Sircar S, Malik YPS, Mukherjee R, Sahoo NR, Agarwal RK, De UK. Immunomodulatory potential of β-glucan as supportive treatment in porcine rotavirus enteritis. Vet Immunol Immunopathol 2017; 191:36-43. [PMID: 28895864 DOI: 10.1016/j.vetimm.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 01/26/2023]
Abstract
A non-blinded randomized clinical trial was conducted to assess the immunomodulatory potential of β-glucan (BG) in piglet diarrhoea associated with type A rotavirus infection. A total of 12 rotavirus-infected diarrheic piglets were randomly divided into two groups: wherein six rotavirus-infected piglets were treated with supportive treatment (ST) and other six rotavirus-infected piglets were treated with BG along with ST (ST-BG). Simultaneously, six healthy piglets were also included in the study which served as control. In rotavirus-infected piglets, marked increase of Intestinal Fatty Acid Binding Protein-2 (I-FABP2), nitric oxide (NOx), Interferon-γ (IFN-γ) concentrations and decrease of immunoglobulin G (IgG) were noticed compared to healthy piglets. The faecal consistency and dehydration scores were significantly higher in rotavirus-infected piglets than healthy piglets. The ST-BG treatment progressively reduced the I-FABP2 and increased the IgG concentrations over the time in rotavirus-infected piglets compared to piglets received only ST. A pronounced enhancement of NOx and IFN-γ concentrations was observed initially on day 3 and thereafter the values reduced on day 5 in ST-BG treated piglets in comparison to piglets which received only ST. Additionally, ST-BG treatment significantly reduced faecal consistency and dehydration scores on day 3 compared to ST in rotavirus-infected piglets. These findings point that BG represents a potential additional therapeutic option to improve the health condition and reduce the piglet mortality from rotavirus associated diarrhoea where porcine rotavirus vaccine is not available.
Collapse
Affiliation(s)
- Gollahalli Eregowda Chethan
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Jugal Garkhal
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Shubhankar Sircar
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Yash Pal Singh Malik
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Reena Mukherjee
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Nihar Ranjan Sahoo
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Rajesh Kumar Agarwal
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ujjwal Kumar De
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
192
|
Zhang ZP, Shen CC, Gao FL, Wei H, Ren DF, Lu J. Isolation, Purification and Structural Characterization of Two Novel Water-Soluble Polysaccharides from Anredera cordifolia. Molecules 2017; 22:E1276. [PMID: 28769023 PMCID: PMC6152394 DOI: 10.3390/molecules22081276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 01/01/2023] Open
Abstract
Anredera cordifolia, a climber and member of the Basellaceae family, has long been a traditional medicine used for the treatment of hyperglycemia in China. Two water-soluble polysaccharides, ACP1-1 and ACP2-1, were isolated from A. cordifolia seeds by hot water extraction. The two fractions, ACP1-1 and ACP2-1 with molecular weights of 46.78 kDa ± 0.03 and 586.8 kDa ± 0.05, respectively, were purified by chromatography. ACP1-1 contained mannose, glucose, galactose in a molar ratio of 1.08:4.65:1.75, whereas ACP2-1 contained arabinose, ribose, galactose, glucose, mannose in a molar ratio of 0.9:0.4:0.5:1.2:0.9. Based on methylation analysis, ultraviolet and Fourier transform-infrared spectroscopy, and periodate oxidation the main backbone chain of ACP1-1 contained (1→3,6)-galacturonopyranosyl residues interspersed with (1→4)-residues and (1→3)-mannopyranosyl residues. The main backbone chain of ACP2-1 contained (1→3)-galacturonopyranosyl residues interspersed with (1→4)-glucopyranosyl residues.
Collapse
Affiliation(s)
- Zhi-Peng Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, 100015 Beijing, China.
| | - Can-Can Shen
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Fu-Li Gao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Hui Wei
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, 100015 Beijing, China.
| |
Collapse
|
193
|
Chen Y, Du XJ, Zhang Y, Liu XH, Wang XD. Ultrasound extraction optimization, structural features, and antioxidant activity of polysaccharides from Tricholoma matsutake. J Zhejiang Univ Sci B 2017; 18:674-684. [PMID: 28786242 PMCID: PMC5565515 DOI: 10.1631/jzus.b1600239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/12/2016] [Indexed: 01/12/2023]
Abstract
An ultrasonic-assisted technique was employed to extract crude polysaccharide from Tricholoma matsutake fruiting bodies. Single-factor tests and orthogonal experimental design (L9(33)) were used to obtain the optimal extraction conditions. Results showed that the optimal parameters were as follows: ultrasonic temperature, 40 °C; ultrasonic time, 50 min; water to raw material ratio, 25 ml/g; ultrasonic frequency, 45 kHz; and ultrasonic power, 100 W. Three novel T. matsutake polysaccharide (TMP) fractions (TMP30, TMP60, and TMP80) were isolated and purified from TMP by stepwise alcohol precipitation. Their preliminary structural features were determined by high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD) and Fourier transform infrared spectrophotometer (FT-IR) analyses. Furthermore, their in vitro antioxidant activity was investigated in terms of a reducing power assay and the scavenging rates of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals. The order of the various fractions based on their antioxidant activity was TMP80>TMP>TMP60>TMP30. These findings suggested that novel polysaccharide fractions from T. matsutake, especially TMP80, could be promising active macromolecules for biomedical use.
Collapse
Affiliation(s)
- Yun Chen
- College of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Xiu-ju Du
- College of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Yang Zhang
- College of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Xin-hua Liu
- Agricultural Science Institute of Liaocheng, Liaocheng 252000, China
| | - Xuan-dong Wang
- College of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
194
|
Galactomannan from Schizolobium amazonicum seed and its sulfated derivatives impair metabolism in HepG2 cells. Int J Biol Macromol 2017; 101:464-473. [DOI: 10.1016/j.ijbiomac.2017.03.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
|
195
|
Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention. Nutrients 2017; 9:nu9070779. [PMID: 28726737 PMCID: PMC5537893 DOI: 10.3390/nu9070779] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).
Collapse
|
196
|
Camara M, Fernandez-Ruiz V, Morales P, Sanchez-Mata MC. Fiber Compounds and Human Health. Curr Pharm Des 2017; 23:2835-2849. [DOI: 10.2174/1381612823666170216123219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Montana Camara
- Dpto. Nutrición y Bromatología II. Facultad de Farmacia. Universidad Complutense de Madrid (UCM). Pza Ramón y Cajal, s/n. E-28040 Madrid, Spain
| | - Virginia Fernandez-Ruiz
- Dpto. Nutrición y Bromatología II. Facultad de Farmacia. Universidad Complutense de Madrid (UCM). Pza Ramón y Cajal, s/n. E-28040 Madrid, Spain
| | - Patricia Morales
- Dpto. Nutrición y Bromatología II. Facultad de Farmacia. Universidad Complutense de Madrid (UCM). Pza Ramón y Cajal, s/n. E-28040 Madrid, Spain
| | - Maria Cortes Sanchez-Mata
- Dpto. Nutrición y Bromatología II. Facultad de Farmacia. Universidad Complutense de Madrid (UCM). Pza Ramón y Cajal, s/n. E-28040 Madrid, Spain
| |
Collapse
|
197
|
Cao R, Yang X, Shang W, Zhou Z, Strappe P, Blanchard C. Functional enrichment of mannanase-treated spent brewer yeast. Prep Biochem Biotechnol 2017. [DOI: 10.1080/10826068.2017.1342261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ruge Cao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin, China
| | - Xingyue Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld, Australia
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
198
|
Rheology of Laponite-scleroglucan hydrogels. Carbohydr Polym 2017; 168:290-300. [DOI: 10.1016/j.carbpol.2017.03.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022]
|
199
|
Wang Y, Liu Y, Yu H, Zhou S, Zhang Z, Wu D, Yan M, Tang Q, Zhang J. Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydr Polym 2017; 167:337-344. [DOI: 10.1016/j.carbpol.2017.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
|
200
|
Abstract
BACKGROUND The impact of the intestinal microbiome is increasing steadily with regard to the immune function und the defense against pathogens. The medicinal yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) has been used as probiotic for the prevention and treatment of infectious diarrhea since more than 50 years. Meta-analyses confirm the clinical efficacy of S. boulardii to treat diarrhea of various origins in children and adults. METHOD This review article summarizes experimental studies on molecular and immunological mechanisms which explain the proven clinical efficacy of S. boulardii. Thereby the focus is on the gut-associated immune system. RESULTS S. boulardii stimulates the release of immunoglobulins and cytokines and also induces the maturation of immune cells. This suggests that S. boulardii is capable of activating the unspecific immune system. In case of an infection, S. boulardii is able to bind pathogenic bacteria and to neutralize their toxins. Moreover, the medicinal yeast can attenuate the overreacting inflammatory immune response, by interfering with the signaling cascade, which is induced by the infection, and that way influences the innate and adaptive immune system. Thanks to these mechanisms the pathogens' potential of adhesion is lessened. Thus the intestinal epithelial layer is protected and diarrhea-induced fluid loss is reduced. CONCLUSION The different molecular and immunological mechanisms investigated in the experimental studies prove the already confirmed very good clinical efficacy of S. boulardii in infectious diarrhea caused by pathogens such as bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Heike Stier
- analyze & realize GmbH, Waldseeweg 6, 13467, Berlin, Deutschland.
| | - Stephan C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| |
Collapse
|