151
|
Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain. Immunol Cell Biol 2014; 92:650-8. [DOI: 10.1038/icb.2014.49] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/09/2014] [Accepted: 05/23/2014] [Indexed: 12/18/2022]
|
152
|
The phagocytes of neonate rat primary mixed glial cultures. Int J Dev Neurosci 2014; 3:531-9. [PMID: 24874962 DOI: 10.1016/0736-5748(85)90042-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/1985] [Indexed: 11/21/2022] Open
Abstract
The phagocytes present in mechanically dissociated neonate rat cerebral hemispheres have been cultured and characterized both qualitatively and quantitatively. They comprise about 10% of the starting cell suspension and persist but do not proliferate in culture. They do not possess neuronal or neuroglial antigens but do express the leukocyte common antigen and readily ingest both latex beads and opsonized erythrocytes. the latter by an Fc receptor-mediated process. Evidence is presented that these cells are a bona fida component of the neonate central nervous system.
Collapse
|
153
|
Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 2014; 21:169-84. [PMID: 24722525 PMCID: PMC4412879 DOI: 10.1177/1073858414530512] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study of the dynamics and functions of microglia in the healthy and diseased brain is a matter of intense scientific activity. The application of new techniques and new experimental approaches has allowed the identification of novel microglial functions and the redefinition of classic ones. In this review, we propose the study of microglial functions, rather than their molecular profiles, to better understand and define the roles of these cells in the brain. We review current knowledge on the role of surveillant microglia, proliferating microglia, pruning/neuromodulatory microglia, phagocytic microglia, and inflammatory microglia and the molecular profiles that are associated with these functions. In the remodeling scenario of microglial biology, the analysis of microglial functional states will inform about the roles in health and disease and will guide us to a more precise understanding of the multifaceted roles of this never-resting cells.
Collapse
Affiliation(s)
- Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - V Hugh Perry
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
154
|
Walker FR, Beynon SB, Jones KA, Zhao Z, Kongsui R, Cairns M, Nilsson M. Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms. Brain Behav Immun 2014; 37:1-14. [PMID: 24412599 DOI: 10.1016/j.bbi.2013.12.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023] Open
Abstract
Microglia are unique cells within the central nervous system because of their biophysical independence. As a result of this unusual property the cells must undergo significant structural remodelling in order to engage and connect with other elements within the central nervous system. Efficient remodelling is required for all activities that microglia are involved in ranging from monitoring synaptic information flow through to phagocytosis of tissue debris. Despite the fact that morphological remodelling is a pre-requisite to all microglial activities, relatively little research has been undertaken on the topic. This review examines what is known about how microglia transform themselves during development, under physiological conditions in response to changes in neuronal activity, and under pathological circumstances. Specific attention is given to exploring a variety of models that have been proposed to account for microglial transformation as well as the signals that are known to trigger these transformations.
Collapse
Affiliation(s)
- F Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Sarah B Beynon
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kimberley A Jones
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Zidan Zhao
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ratchaniporn Kongsui
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
155
|
Thomas J, Hutchinson MR. Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids. Expert Rev Neurother 2014; 12:1311-24. [DOI: 10.1586/ern.12.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
156
|
Protein markers of cerebrovascular disruption of neurovascular unit: immunohistochemical and imaging approaches. Rev Neurosci 2014; 25:481-507. [DOI: 10.1515/revneuro-2013-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/22/2014] [Indexed: 12/15/2022]
|
157
|
Mallard C, Davidson JO, Tan S, Green CR, Bennet L, Robertson NJ, Gunn AJ. Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatr Res 2014; 75:234-40. [PMID: 24336433 PMCID: PMC11908707 DOI: 10.1038/pr.2013.188] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023]
Abstract
Cerebral palsy is one of the most devastating consequences of brain injury around the time of birth, and nearly a third of cases are now associated with premature birth. Compared with term babies, preterm babies have an increased incidence of complications that may increase the risk of disability, such as intraventricular hemorrhage, periventricular leukomalacia, sepsis, and necrotizing enterocolitis. The response to injury is highly dependent on brain maturity, and although cellular vulnerability is well documented, there is now evidence that premyelinating axons are also particularly sensitive to ischemic injury. In this review, we will explore recent evidence highlighting a central role for glia in mediating increased risk of disability in premature infants, including excessive activation of microglia and opening of astrocytic gap junction hemichannels in spreading injury after brain ischemia, in part likely involving release of adenosine triphosphate (ATP) and overactivation of purinergic receptors, particularly in white matter. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious circle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing effective neuroprotective strategies for preterm infants requires a detailed understanding of glial responses.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sidhartha Tan
- Department of Pediatrics, NorthShore University Health System and University of Chicago, Evanston, Illinois
| | - Colin R Green
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Alistair Jan Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
158
|
Drew PD, Kane CJM. Fetal alcohol spectrum disorders and neuroimmune changes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:41-80. [PMID: 25175861 DOI: 10.1016/b978-0-12-801284-0.00003-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The behavioral consequences of fetal alcohol spectrum disorders (FASD) are serious and persist throughout life. The causative mechanisms underlying FASD are poorly understood. However, much has been learned about FASD from human structural and functional studies as well as from animal models, which have provided a greater understanding of the mechanisms underlying FASD. Using animal models of FASD, it has been recently discovered that ethanol induces neuroimmune activation in the developing brain. The resulting microglial activation, production of proinflammatory molecules, and alteration in expression of developmental genes are postulated to alter neuron survival and function and lead to long-term neuropathological and cognitive defects. It has also been discovered that microglial loss occurs, reducing microglia's ability to protect neurons and contribute to neuronal development. This is important, because emerging evidence demonstrates that microglial depletion during brain development leads to long-term neuropathological and cognitive defects. Interestingly, the behavioral consequences of microglial depletion and neuroimmune activation in the fetal brain are particularly relevant to FASD. This chapter reviews the neuropathological and behavioral abnormalities of FASD and delineates correlates in animal models. This serves as a foundation to discuss the role of the neuroimmune system in normal brain development, the consequences of microglial depletion and neuroinflammation, the evidence of ethanol induction of neuroinflammatory processes in animal models of FASD, and the development of anti-inflammatory therapies as a new strategy for prevention or treatment of FASD. Together, this knowledge provides a framework for discussion and further investigation of the role of neuroimmune processes in FASD.
Collapse
Affiliation(s)
- Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
159
|
The inflammatory cellular constituents of foetal and infant leptomeninges: a survey of hospital-based autopsies without trauma. Childs Nerv Syst 2014; 30:911-7. [PMID: 24402186 PMCID: PMC3983874 DOI: 10.1007/s00381-013-2348-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Notwithstanding the lack of definitive evidence from studies conducted to date, inflammatory infiltrates and iron deposition in the leptomeninges are routinely used as forensic markers of traumatic brain injury. We investigated the presence of these forensic markers of trauma in neonates and infants, with the objective of determining their suitability for use in forensic cases. METHODS Leptomeninges derived from non-traumatic deaths were studied. Thirty-three cases were divided into groups 1 and 2, according to set age groups. Inflammatory cells and iron in these groups were quantified. RESULTS CD45, CD68 and CD163 positive inflammatory cells were identified in the leptomeninges of sections of the cerebellum, brain stem and cortex of all 33 cases of non-traumatic infant deaths surveyed in this study. There were no significant differences between the two groups. Iron was found in the leptomeninges in several cases, even those without recent haemorrhage. Overall within the two subgroups, the numbers of inflammatory cells and iron containing cells were not significantly different. CONCLUSION These findings demonstrate that inflammatory cells and iron in the leptomeninges can be found in natural and non-traumatic conditions. Further, two cases with no reported neuropathology demonstrated the presence of inflammatory cells and iron. Thus, cautious interpretation of the presence of inflammatory cells and iron containing cells in forensic paediatric cases is recommended.
Collapse
|
160
|
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 2013; 17:131-43. [PMID: 24316888 PMCID: PMC4066672 DOI: 10.1038/nn.3599] [Citation(s) in RCA: 1915] [Impact Index Per Article: 159.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Microglia are myeloid cells of the central nervous system (CNS) that participate both in normal CNS function and disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia vs. myeloid and other immune cells. Out of 239 genes, 106 were enriched in microglia as compared to astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS and was also observed in human microglia. Based on this signature, we found a crucial role for TGF-β in microglial biology that included: 1) the requirement of TGF-β for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia; and 2) the absence of microglia in CNS TGF-β1 deficient mice. Our results identify a unique microglial signature that is dependent on TGF-β signaling which provides insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease.
Collapse
Affiliation(s)
- Oleg Butovsky
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig S Moore
- Neuroimmunology Unit, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Ron Cialic
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda J Lanser
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Galina Gabriely
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Koeglsperger
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Dake
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pauline M Wu
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Camille E Doykan
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zain Fanek
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liping Liu
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhuoxun Chen
- Brain Science Institute and Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey D Rothstein
- Brain Science Institute and Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack P Antel
- Neuroimmunology Unit, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Howard L Weiner
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
161
|
Abstract
The skin provides an effective physical and biological barrier against environmental and pathogenic insults whilst ensuring tolerance against commensal microbes. This protection is afforded by the unique anatomy and cellular composition of the skin, particularly the vast network of skin-associated immune cells. These include the long-appreciated tissue-resident macrophages, dendritic cells, and mast cells, as well as the more recently described dermal γδ T cells and innate lymphoid cells. Collectively, these cells orchestrate the defense against a wide range of pathogens and environmental challenges, but also perform a number of homeostatic functions. Here, we review recent developments in our understanding of the various roles that leukocyte subsets play in cutaneous immunobiology, and introduce the newer members of the skin immune system. Implications for human disease are discussed.
Collapse
|
162
|
Hayashi Y, Nakanishi H. [Microglia and synaptic reorganization: focus on the movement and functions of microglial processes]. Nihon Yakurigaku Zasshi 2013; 142:231-235. [PMID: 24212592 DOI: 10.1254/fpj.142.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
163
|
Rd8 mutation in the Crb1 gene of CD11c-eYFP transgenic reporter mice results in abnormal numbers of CD11c-positive cells in the retina. J Neuropathol Exp Neurol 2013; 72:782-90. [PMID: 23860032 DOI: 10.1097/nen.0b013e31829e8375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There has been considerable debate about whether dendritic cells (DCs), which are potent antigen-presenting cells pivotal to adaptive immune responses, are present in CNS parenchyma. In studies aimed at answering this issue, we discovered that while the neural retina of young naive transgenic C57BL/6 CD11c-eYFP reporter mice contained more than 800 CD11c-positive cells/retina, these cells were virtually absent in C57BL/6 CD11c-DTR/GFP mice. Clinical fundus examination, confocal imaging of retinal whole mounts, and sections revealed colocalization of CD11c-positive cells with classic mild to severe retinal dystrophic lesions. Immunophenotypic analysis revealed that CD11c-positive cells in the neural retina of these mice had the characteristic profile of activated microglia and not DCs. Genotypic analysis confirmed that the cause of the retinal dystrophic lesions in CD11c-eYFP transgenic mice was the occurrence of the Crb1(rd8) mutation, which affects all mice of the C57BL/6N strain but not the C57BL/6J strain. Comparison of 2 different types of CD11c reporter transgenic mice revealed that a mutation in the Crb1 gene leads to retinal degeneration resulting in the activation of large numbers of local microglia that could be readily mistaken for CD11c-positive putative DCs.
Collapse
|
164
|
Abstract
Microglia are critical nervous system-specific cells influencing brain development, maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, and axonal degeneration. Changes in microglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microglia potentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, MD C1-04, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
165
|
Chertoff M, Shrivastava K, Gonzalez B, Acarin L, Giménez-Llort L. Differential modulation of TREM2 protein during postnatal brain development in mice. PLoS One 2013; 8:e72083. [PMID: 23977213 PMCID: PMC3747061 DOI: 10.1371/journal.pone.0072083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/04/2013] [Indexed: 01/25/2023] Open
Abstract
During postnatal development, microglia, the resident innate immune cells of the central nervous system are constantly monitoring the brain parenchyma, cleaning the cell debris, the synaptic contacts overproduced and also maintaining the brain homeostasis. In this context, the postnatal microglia need some control over the innate immune response. One such molecule recently described to be involved in modulation of immune response is TREM2 (triggering receptor expressed on myeloid cells 2). Although some studies have observed TREM2 mRNA in postnatal brain, the regional pattern of the TREM2 protein has not been described. We therefore characterized the distribution of TREM2 protein in mice brain from Postnatal day (P) 1 to 14 by immunostaining. In our study, TREM2 protein was expressed only in microglia/macrophages and is developmentally downregulated in a region-dependent manner. Its expression persisted in white matter, mainly in caudal corpus callosum, and the neurogenic subventricular zone for a longer time than in grey matter. Additionally, the phenotypes of the TREM2+ microglia also differ; expressing CD16/32, MHCII and CD86 (antigen presentation markers) and CD68 (phagocytic marker) in different regions as well as with different intensity till P7. The mannose receptor (CD206) colocalized with TREM2 only at P1–P3 in the subventricular zone and cingulum, while others persisted at low intensities till P7. Furthermore, the spatiotemporal expression pattern and characterization of TREM2 indicate towards its other plausible roles in phagocytosis, progenitor’s fate determination or microglia phenotype modulation during postnatal development. Hence, the increase of TREM2 observed in pathologies may recapitulate their function during postnatal development, as a better understanding of this period may open new pathway for future therapies.
Collapse
Affiliation(s)
- Mariela Chertoff
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat Autonoma Barcelona, Barcelona, Spain
- * E-mail:
| | - Kalpana Shrivastava
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Berta Gonzalez
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Laia Acarin
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat Autonoma Barcelona, Barcelona, Spain
| |
Collapse
|
166
|
Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 2013; 31:105-14. [PMID: 23261775 PMCID: PMC4426992 DOI: 10.1016/j.bbi.2012.12.008] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022] Open
Abstract
Stress is a common occurrence in everyday life and repeated or traumatic stress can be a precipitating factor for illnesses of the central nervous system, as well as peripheral organ systems. For example, severe or long-term psychological stress can not only induce depression, a leading illness worldwide, but can also cause psychosomatic diseases such as asthma and rheumatoid arthritis. Related key questions include how psychological stress influences both brain and peripheral systems, and what detection mechanisms underlie these effects? A clue is provided by the discovery of the pathways underlying the responses to host "danger" substances that cause systemic diseases, but can also contribute to depression. The inflammasome is a protein complex that can detect diverse danger signals and produce the accompanying immune-inflammatory reactions. Interestingly, the inflammasome can detect not only pathogen-associated molecules, but also cell damage-associated molecules such as ATP. Here, we propose a new inflammasome hypothesis of depression and related comorbid systemic illnesses. According to this hypothesis, the inflammasome is a central mediator by which psychological and physical stressors can contribute to the development of depression, and as well as a bridge to systemic diseases. This hypothesis includes an explanation for how psychological stress can influence systemic diseases, and conversely how systemic diseases can lead to psychiatric illnesses. The evidence suggests that the inflammasome may be a new target for the development of treatments for depression, as well as psychosomatic and somato-psycho diseases.
Collapse
Affiliation(s)
| | | | - Ronald S. Duman
- Corresponding author. Address: Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, United States. (R.S. Duman)
| |
Collapse
|
167
|
Arnold T, Betsholtz C. Correction: The importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 2013; 5:12. [PMID: 23809768 PMCID: PMC3695819 DOI: 10.1186/2045-824x-5-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022] Open
Abstract
CORRECTION After the publication of this work 1 it was brought to our attention that citations in the article were not correspondingly numbered in the reference list. To avoid confusion, the article is republished here in its entirety, with the citations referenced correctly.The Publisher and authors apologize to the readers for the inconvenience caused. ABSTRACT The body's vascular system is thought to have developed in order to supply oxygen and nutrients to cells beyond the reach of simple diffusion. Hence, relative hypoxia in the growing central nervous system (CNS) is a major driving force for the ingression and refinement of the complex vascular bed that serves it. However, even before the establishment of this CNS vascular system, CNS-specific macrophages (microglia) migrate into the brain. Recent studies in mice point to the fundamental importance of microglia in shaping CNS vasculature during development, and re-shaping these vessels during pathological insults. In this review, we discuss the origin of CNS microglia and their localization within the brain based on data obtained in mice. We then review evidence supporting a functional role of these microglia in developmental angiogenesis. Although pathologic processes such as CNS ischemia may subvert the developmental functions of microglia/macrophages with significant effects on brain neo-angiogenesis, we have left this topic to other recent reviews 23.
Collapse
Affiliation(s)
- Tom Arnold
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm 17177, Sweden.
| | | |
Collapse
|
168
|
Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 2013; 35:601-12. [PMID: 23732506 PMCID: PMC3742955 DOI: 10.1007/s00281-013-0382-8] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play an important role in CNS homeostasis during development, adulthood and ageing. Their phenotype and function have been widely studied, but most studies have focused on their local interactions in the CNS. Microglia are derived from a particular developmental niche, are long-lived, locally replaced and form a significant part of the communication route between the peripheral immune system and the CNS; all these components of microglia biology contribute to maintaining homeostasis. Microglia function is tightly regulated by the CNS microenvironment, and increasing evidence suggests that disturbances, such as neurodegeneration and ageing, can have profound consequences for microglial phenotype and function. We describe the possible biological mechanisms underlying the altered threshold for microglial activation, also known as 'microglial priming', seen in CNS disease and ageing and consider how priming may contribute to turning immune-to-brain communication from a homeostatic pathway into a maladaptive response that contributes to symptoms and progression of diseases of the CNS.
Collapse
Affiliation(s)
- V Hugh Perry
- Centre for Biological Sciences, Southampton General Hospital, University of Southampton, Mail Point 840, LD80B, South Lab and Path Block, SO16 6YD Southampton, UK.
| | | |
Collapse
|
169
|
Bilbo SD. Frank A. Beach award: programming of neuroendocrine function by early-life experience: a critical role for the immune system. Horm Behav 2013; 63:684-91. [PMID: 23474365 PMCID: PMC3667966 DOI: 10.1016/j.yhbeh.2013.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
Many neuropsychiatric disorders are associated with a strong dysregulation of the immune system, and several have a striking etiology in development as well. Our recent evidence using a rodent model of neonatal Escherichia coli infection has revealed novel insight into the mechanisms underlying cognitive deficits in adulthood, and suggests that the early-life immune history of an individual may be critical to understanding the relative risk of developing later-life mental health disorders in humans. A single neonatal infection programs the function of immune cells within the brain, called microglia, for the life of the rodent such that an adult immune challenge results in exaggerated cytokine production within the brain and associated cognitive deficits. I describe the important role of the immune system, notably microglia, during brain development, and discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke Institute for Brain Sciences (DIBS), Duke University, Durham, NC 27708, USA.
| |
Collapse
|
170
|
Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci 2013; 7:45. [PMID: 23616747 PMCID: PMC3627983 DOI: 10.3389/fncel.2013.00045] [Citation(s) in RCA: 583] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/30/2013] [Indexed: 12/30/2022] Open
Abstract
Microglia are the resident macrophage population of the central nervous system (CNS). Adequate microglial function is crucial for a healthy CNS. Microglia are not only the first immune sentinels of infection, contributing to both innate and adaptive immune responses locally, but are also involved in the maintenance of brain homeostasis. Emerging data are showing new and fundamental roles for microglia in the control of neuronal proliferation and differentiation, as well as in the formation of synaptic connections. While microglia have been studied for decades, a long history of experimental misinterpretation meant that their true origins remained debated. However, recent studies on microglial origin indicate that these cells in fact arise early during development from progenitors in the embryonic yolk sac (YS) that seed the brain rudiment and, remarkably, appear to persist there into adulthood. Here, we review the history of microglial cells and discuss the latest advances in our understanding of their origin, differentiation, and homeostasis, which provides new insights into their roles in health and disease.
Collapse
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and ResearchSingapore
| | - Shawn Lim
- Genome Institute Singapore, Agency for Science, Technology, and ResearchSingapore
| | - Guillaume Hoeffel
- Singapore Immunology Network, Agency for Science, Technology, and ResearchSingapore
| | - Donovan Low
- Singapore Immunology Network, Agency for Science, Technology, and ResearchSingapore
| | - Tara Huber
- Genome Institute Singapore, Agency for Science, Technology, and ResearchSingapore
- Department of Biological Science, National University of SingaporeSingapore
| |
Collapse
|
171
|
Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 2013; 36:209-17. [DOI: 10.1016/j.tins.2012.11.007] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 11/17/2022]
|
172
|
Bajic D, Commons KG, Soriano SG. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci 2013; 31:258-66. [PMID: 23499314 DOI: 10.1016/j.ijdevneu.2013.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/09/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022] Open
Abstract
Prolonged neonatal opioid exposure has been associated with: antinociceptive tolerance, long-term neurodevelopmental delay, cognitive, and motor impairment. Morphine has also been shown to induce apoptotic cell death in vitro studies, but its in vivo effect in developing rat brain is unknown. Thus, we hypothesized that prolongued morphine administration in neonatal rats in a model of antinociceptive tolerance and dependence is associated with increased neuroapoptosis. We analyzed neonatal rats from the following groups (1) naïve group (n=6); (2) control group (normal saline (NS), n=5), and (3) morphine group (n=8). Morphine sulfate or equal volume of NS was injected subcutaneously twice daily for 6½ days starting on postnatal day (PD) 1. Development of antinociceptive tolerance was previously confirmed by Hot Plate test on the 7th day. Evidence of neuronal and glial apoptosis was determined by cleaved caspase-3 immunofluorescence combined with specific markers. At PD7, morphine administration after 6½ days significantly increased the density of apoptotic cells in the cortex and amygdala, but not in the hippocampus, hypothalamus, or periaqueductal gray. Apoptotic cells exhibited morphology analogous to neurons. Irrespective of the treatment, only a very few individual microglia but not astrocytes were caspase-3 positive. In summary, repeated morphine administration in neonatal rats (PD1-7) is associated with increased supraspinal apoptosis in distinct anatomical regions known to be important for sensory (cortex) and emotional memory processing (amygdala). Brain regions important for learning (hippocampus), and autonomic and nociceptive processing (hypothalamus and periaqueductal gray) were not affected. Lack of widespread glial apoptosis or robust glial activation following repeated morphine administration suggests that glia might not be affected by chronic morphine at this early age. Future studies should investigate long-term behavioral sequelae of demonstrated enhanced apoptosis associated with prolonged morphine administration in a neonatal rat model.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Bader 3, Boston, MA 02115, USA.
| | | | | |
Collapse
|
173
|
Arnold T, Betsholtz C. The importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 2013; 5:4. [PMID: 23422217 PMCID: PMC3583711 DOI: 10.1186/2045-824x-5-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/12/2013] [Indexed: 12/21/2022] Open
Abstract
The body’s vascular system is thought to have developed in order to supply oxygen and nutrients to cells beyond the reach of simple diffusion. Hence, relative hypoxia in the growing central nervous system (CNS) is a major driving force for the ingression and refinement of the complex vascular bed that serves it. However, even before the establishment of this CNS vascular system, CNS-specific macrophages (microglia) migrate into the brain. Recent studies in mice point to the fundamental importance of microglia in shaping CNS vasculature during development, and re-shaping these vessels during pathological insults. In this review, we discuss the origin of CNS microglia and their localization within the brain based on data obtained in mice. We then review evidence supporting a functional role of these microglia in developmental angiogenesis. Although pathologic processes such as CNS ischemia may subvert the developmental functions of microglia/macrophages with significant effects on brain neo-angiogenesis, we have left this topic to other recent reviews (Nat Rev Immunol 9:259–270, 2009 and Trends Mol Med 17:743–752, 2011).
Collapse
Affiliation(s)
- Tom Arnold
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | | |
Collapse
|
174
|
Kobylecki C, Counsell SJ, Cabanel N, Wächter T, Turkheimer FE, Eggert K, Oertel W, Brooks DJ, Gerhard A. Diffusion-weighted imaging and its relationship to microglial activation in parkinsonian syndromes. Parkinsonism Relat Disord 2013; 19:527-32. [PMID: 23425503 DOI: 10.1016/j.parkreldis.2013.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 11/26/2022]
Abstract
Microglial activation has been implicated in the pathogenesis of Parkinson's disease (PD) and atypical parkinsonian syndromes, and regional microstructural changes have been identified using diffusion-weighted MR imaging. It is not known how these two phenomena might be connected. We hypothesized that changes in regional apparent diffusion coefficient (rADC) in atypical parkinsonian syndromes would correlate with microglial activation. In our study we have evaluated changes in rADC in 11 healthy controls, 9 patients with PD and 11 with either multiple system atrophy or progressive supranuclear palsy. The patients also underwent [(11)C]-(R)-PK11195 positron emission tomography, a marker of microglial activation. Increased rADC was found compared to controls in the thalamus and midbrain of all parkinsonian patients, and in the putamen, frontal and deep white matter of patients with atypical parkinsonian syndromes. Putaminal rADC alone did not reliably differentiate PD from atypical parkinsonism. There was no correlation between [(11)C]-(R)-PK11195 binding potential and rADC in the basal ganglia in atypical parkinsonian syndromes. However, pontine PK11195 binding and rADC were positively correlated in atypical parkinsonism (r = 0.794, p = 0.0007), but not PD patients. In conclusion, microglial activation does not appear to contribute to the changes in putaminal water diffusivity associated with atypical parkinsonian syndromes, but may correlate with tissue damage in brainstem regions.
Collapse
Affiliation(s)
- Christopher Kobylecki
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Bidirectional neuro-glial signaling modalities in the hypothalamus: role in neurohumoral regulation. Auton Neurosci 2013; 175:51-60. [PMID: 23375650 DOI: 10.1016/j.autneu.2012.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/17/2012] [Accepted: 12/26/2012] [Indexed: 12/20/2022]
Abstract
Maintenance of bodily homeostasis requires concerted interactions between the neuroendocrine and the autonomic nervous systems, which generate adaptive neurohumoral outflows in response to a variety of sensory inputs. Moreover, an exacerbated neurohumoral activation is recognized to be a critical component in numerous disease conditions, including hypertension, heart failure, stress, and the metabolic syndrome. Thus, the study of neurohumoral regulation in the brain is of critical physiological and pathological relevance. Most of the work in the field over the last decades has been centered on elucidating neuronal mechanisms and pathways involved in neurohumoral control. More recently however, it has become increasingly clear that non-neuronal cell types, particularly astrocytes and microglial cells, actively participate in information processing in areas of the brain involved in neuroendocrine and autonomic control. Thus, in this work, we review recent advances in our understanding of neuro-glial interactions within the hypothalamic supraoptic and paraventricular nuclei, and their impact on neurohumoral integration in these nuclei. Major topics reviewed include anatomical and functional properties of the neuro-glial microenvironment, neuron-to-astrocyte signaling, gliotransmitters, and astrocyte regulation of signaling molecules in the extracellular space. We aimed in this review to highlight the importance of neuro-glial bidirectional interactions in information processing within major hypothalamic networks involved in neurohumoral integration.
Collapse
|
176
|
Ahn SI, Ohn YH, Park TK. Expression Profiles of F4/80 and Nestin in Ocular Immune Cells Following Pharmaceutically Induced Retinal Degeneration in Adult Mice. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2013. [DOI: 10.3341/jkos.2013.54.6.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sang Il Ahn
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Hoon Ohn
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
177
|
Takahashi N, Sakurai T. Roles of glial cells in schizophrenia: possible targets for therapeutic approaches. Neurobiol Dis 2012; 53:49-60. [PMID: 23146995 DOI: 10.1016/j.nbd.2012.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/30/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022] Open
Abstract
Glial cells consisting of oligodendrocytes, astrocytes, microglia, and NG2 positive cells are major cell populations in the central nervous system, number-wise. They function as effectors and modulators of neurodevelopment through a wide variety of neuron-glial cell interactions in brain development and functions. Glial cells can be affected by both genetic and environmental factors, leading to their dysfunctions in supporting neuronal development and functions. These in turn can affect neuronal cells, causing alterations at the circuitry level that manifest as behavioral characteristics associated with schizophrenia in late teens-early twenties. Glial cells are also involved in neuroinflammatory processes, which sometimes have deleterious effects on the normal brain development. If the glial involvement plays significant roles in schizophrenia, the processes involving glial cells can become possible therapeutic targets for schizophrenia. A number of known antipsychotics are shown to have beneficial effects on glial cells, but other drugs targeting glial cell functions may also have therapeutic effects on schizophrenia. The latter can be taken into consideration for future drug development for schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | |
Collapse
|
178
|
Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 2012; 35:369-89. [PMID: 22715882 DOI: 10.1146/annurev-neuro-061010-113810] [Citation(s) in RCA: 778] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An unexpected role for the classical complement cascade in the elimination of central nervous system (CNS) synapses has recently been discovered. Complement proteins are localized to developing CNS synapses during periods of active synapse elimination and are required for normal brain wiring. The function of complement proteins in the brain appears analogous to their function in the immune system: clearance of cellular material that has been tagged for elimination. Similarly, synapses tagged with complement proteins may be eliminated by microglial cells expressing complement receptors. In addition, developing astrocytes release signals that induce the expression of complement components in the CNS. In the mature brain, early synapse loss is a hallmark of several neurodegenerative diseases. Complement proteins are profoundly upregulated in many CNS diseases prior to signs of neuron loss, suggesting a reactivation of similar developmental mechanisms of complement-mediated synapse elimination potentially driving disease progression.
Collapse
Affiliation(s)
- Alexander H Stephan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA.
| | | | | |
Collapse
|
179
|
Teeling JL, Carare RO, Glennie MJ, Perry VH. Intracerebral immune complex formation induces inflammation in the brain that depends on Fc receptor interaction. Acta Neuropathol 2012; 124:479-90. [PMID: 22618994 PMCID: PMC3444701 DOI: 10.1007/s00401-012-0995-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/06/2012] [Indexed: 12/28/2022]
Abstract
In this study, we investigate the underlying mechanisms of antibody-mediated inflammation in the brain. We show that immune complexes formed in the brain parenchyma generate a robust and long-lasting inflammatory response, characterized by increased expression of the microglia markers CD11b, CD68 and FcRII/III, but no neutrophil recruitment. In addition to these histological changes, we observed transient behavioural changes that coincided with the inflammatory response in the brain. The inflammatory and behavioural changes were absent in Fc-gamma chain (Fcγ)-deficient mice, while C1q-deficient mice were not different from wild-type mice. We conclude that, in the presence of antigen, antibodies can lead to a local immune complex-mediated inflammatory reaction in the brain parenchyma and indirectly induce neuronal tissue damage through recruitment and activation of microglia via Fcγ receptors. These observations may have important implications for the development of therapeutic antibodies directed against neuronal antigens used for therapeutic intervention in neurological diseases.
Collapse
Affiliation(s)
- Jessica L Teeling
- Centre for of Biological Sciences, University of Southampton, Southampton General Hospital, UK.
| | | | | | | |
Collapse
|
180
|
Abstract
The resident macrophages of the brain--the microglia--are morphologically activated during the progression of Parkinson's disease. Observational studies in human postmortem material and studies in animal models seek to define the contribution that this innate immune response might make to the pathogenesis and rate of progression of Parkinson's disease. We review here some of the key conceptual issues that need to be considered when performing these studies. We highlight the fact that most postmortem studies have not given due consideration to common comorbidities present in patients with Parkinson's disease and also the limitations of attempting to extrapolate from animal models to a chronic progressive neurodegenerative disease in humans that lasts for many years.
Collapse
Affiliation(s)
- V Hugh Perry
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
181
|
Kane CJM, Phelan KD, Drew PD. Neuroimmune mechanisms in fetal alcohol spectrum disorder. Dev Neurobiol 2012; 72:1302-16. [PMID: 22623427 DOI: 10.1002/dneu.22035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is a major health concern worldwide and results from maternal consumption of alcohol during pregnancy. It produces tremendous individual, social, and economic losses. This review will first summarize the structural, functional, and behavior changes seen in FASD. The development of the neuroimmune system will be then be described with particular emphasis on the role of microglial cells in the normal regulation of homeostatic function in the central nervous system (CNS) including synaptic transmission. The impact of alcohol on the neuroimmune system in the developing CNS will be discussed in the context of several key immune molecules and signaling pathways involved in neuroimmune mechanisms that contribute to FASD. This review concludes with a summary of the development of early therapeutic approaches utilizing immunosuppressive drugs to target alcohol-induced pathologies. The significant role played by neuroimmune mechanisms in alcohol addiction and pathology provides a focus for future research aimed at understanding and treating the consequences of FASD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
182
|
Kwok YH, Hutchinson MR, Gentgall MG, Rolan PE. Increased responsiveness of peripheral blood mononuclear cells to in vitro TLR 2, 4 and 7 ligand stimulation in chronic pain patients. PLoS One 2012; 7:e44232. [PMID: 22937165 PMCID: PMC3429430 DOI: 10.1371/journal.pone.0044232] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/30/2012] [Indexed: 01/23/2023] Open
Abstract
Glial activation via Toll-like receptor (TLR) signaling has been shown in animals to play an important role in the initiation and establishment of chronic pain. However, our ability to assess this central immune reactivity in clinical pain populations is currently lacking. Peripheral blood mononuclear cells (PBMCs) are an accessible source of TLR expressing cells that may mirror similarities in TLR responsiveness of the central nervous system. The aim of this study was to characterize the IL-1β response to various TLR agonists in isolated PBMCs from chronic pain sufferers (on and not on opioids) and pain-free controls. Venous blood was collected from 11 chronic pain sufferers on opioids (≥ 20 mg of morphine / day), 8 chronic pain sufferers not on opioids and 11 pain-free controls. PBMCs were isolated and stimulated in vitro with a TLR2 (Pam3CSK4), TLR4 (LPS) or TLR7 (imiquimod) agonist. IL-1β released into the supernatant was measured with ELISA. Significantly increased IL-1β expression was found in PBMCs from chronic pain sufferers (on and not on opioids) compared with pain-free controls for TLR2 (F((6, 277)) = 15, P<0.0001), TLR4 (F((8, 263)) = 3, P = 0.002) and TLR7 (F((2,201)) = 5, P = 0.005) agonists. These data demonstrate that PBMCs from chronic pain sufferers were more responsive to TLR agonists compared with controls, suggesting peripheral cells may have the potential to become a source of biomarkers for chronic pain.
Collapse
Affiliation(s)
- Yuen H Kwok
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
183
|
Cabrera-Salazar MA, Deriso M, Bercury SD, Li L, Lydon JT, Weber W, Pande N, Cromwell MA, Copeland D, Leonard J, Cheng SH, Scheule RK. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease. PLoS One 2012; 7:e43310. [PMID: 22912851 PMCID: PMC3422338 DOI: 10.1371/journal.pone.0043310] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
Neuropathic Gaucher disease (nGD), also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC). This deficiency impairs the degradation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph), leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate accumulation is evident at birth in both nGD mouse models and humans affected with the most severe type of the disease. Current treatment of non-nGD relies on the intravenous delivery of recombinant human glucocerebrosidase to replace the missing enzyme or the administration of glucosylceramide synthase inhibitors to attenuate GluCer production. However, the currently approved drugs that use these mechanisms do not cross the blood brain barrier, and thus are not expected to provide a benefit for the neurological complications in nGD patients. Here we report the successful reduction of substrate accumulation and CNS pathology together with a significant increase in lifespan after systemic administration of a novel glucosylceramide synthase inhibitor to a mouse model of nGD. To our knowledge this is the first compound shown to cross the blood brain barrier and reduce substrates in this animal model while significantly enhancing its lifespan. These results reinforce the concept that systemically administered glucosylceramide synthase inhibitors could hold enhanced therapeutic promise for patients afflicted with neuropathic lysosomal storage diseases.
Collapse
|
184
|
Schwarz JM, Bilbo SD. Sex, glia, and development: interactions in health and disease. Horm Behav 2012; 62:243-53. [PMID: 22387107 PMCID: PMC3374064 DOI: 10.1016/j.yhbeh.2012.02.018] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 12/14/2022]
Abstract
Microglia and astrocytes are the primary immune cells within the central nervous system. Microglia influence processes including neural development, synaptic plasticity and cognition; while their activation and production of immune molecules can induce stereotyped sickness behaviors or pathologies including cognitive dysfunction. Given their role in health and disease, we propose that glia may also be a critical link in understanding the etiology of many neuropsychiatric disorders that present with a strong sex-bias in their symptoms or prevalence. Specifically, males are more likely to be diagnosed with disorders that have distinct developmental origins such as autism or schizophrenia. In contrast, females are more likely to be diagnosed with disorders that present later in life, after the onset of adolescence, such as depression and anxiety disorders. In this review we will summarize the evidence suggesting that sex differences in the colonization and function of glia within the normal developing brain may contribute to distinct windows of vulnerability between males and females. We will also highlight the current gaps in our knowledge as well as the future directions and considerations of research aimed at understanding the link between neuroimmune function and sex differences in mental health disorders.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Department of Psychology and Neuroscience, Duke University, 572 Research Dr. Rm 3017, Durham, NC 27705, USA.
| | | |
Collapse
|
185
|
Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 2012; 33:267-86. [PMID: 22982535 PMCID: PMC3484177 DOI: 10.1016/j.yfrne.2012.08.006] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022]
Abstract
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Box 91050, Durham, NC 27708, USA.
| | | |
Collapse
|
186
|
Gomez Perdiguero E, Schulz C, Geissmann F. Development and homeostasis of "resident" myeloid cells: the case of the microglia. Glia 2012; 61:112-20. [PMID: 22847963 DOI: 10.1002/glia.22393] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022]
Abstract
Microglia, macrophages of the central nervous system, play an important role in brain homeostasis. Their origin has been unclear. Recent fate-mapping experiments have established that microglia mostly originate from Myb-independent, FLT3-independent, but PU.1-dependent precursors that express the CSF1-receptor at E8.5 of embryonic development. These precursors are presumably located in the yolk sac (YS) at this time before invading the embryo between E9.5 and E10.5 and colonizing the fetal liver. Indeed, the E14.5 fetal liver contains a large population of Myb-independent YS-derived myeloid cells. This myeloid lineage is distinct from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development and maintenance. This "yolky" beginning and the independence from conventional HSCs are not unique to microglia. Indeed, several other populations of F4/80-positive macrophages develop also from YS Myb-independent precursors, such as Kupffer cells in the liver, Langerhans cells in the epidermis, and macrophages in the spleen, kidney, pancreas, and lung. Importantly, microglia and the other Myb-independent macrophages persist, at least in part, in adult mice and likely self-renew within their respective tissues of residence, independently of bone marrow HSCs. This suggests the existence of tissue resident macrophage "stem cells" within tissues such as the brain, and opens a new era for the molecular and cellular understanding of myeloid cells responses during acute and chronic inflammation.
Collapse
Affiliation(s)
- Elisa Gomez Perdiguero
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, Great Maze Pond, London, United Kingdom
| | | | | |
Collapse
|
187
|
Beynon SB, Walker FR. Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 2012; 225:162-71. [PMID: 22824429 DOI: 10.1016/j.neuroscience.2012.07.029] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Recently it has become apparent that microglia play a role not only in responding to insults within the central nervous system but also in responding to changes in synaptic activity and potentially modulating synaptic function. This has led to an enormous expansion of interest in how microglia respond to both pathological and nonpathological challenges, with activities that are associated with unique morphological transformations. Examining changes in microglial morphology can provide direct insight into the cells' functional activities, as morphological status is recognized to be tightly coupled with function. Despite these advances in knowledge, many of the image-based morphometric procedures used to investigate changes in microglial morphology have not kept pace. This has created a situation in which morphometric approaches that have been extensively employed in the past can no longer provide accurate information on the complex transformations that microglia can undergo, particularly under non-pathological conditions. This review critically examines the strengths and weaknesses of existing morphometric analysis procedures. This review further examines efforts to improve the utility of existing approaches and discusses new developments, such as digital reconstruction, that yield more accurate and specific information on how microglia remodel themselves. Ultimately, an improved understanding of the strengths and limitations of existing, and emerging, morphometric approaches will greatly facilitate efforts to understand how microglia remodel themselves in response to the full spectrum of challenges that they are known to encounter.
Collapse
Affiliation(s)
- S B Beynon
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
188
|
Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G, Lin H, Mehler MF, Stanley ER. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol 2012; 367:100-113. [PMID: 22542597 PMCID: PMC3388946 DOI: 10.1016/j.ydbio.2012.03.026] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/11/2023]
Abstract
The CSF-1 receptor (CSF-1R) regulates CNS microglial development. However, the localization and developmental roles of this receptor and its ligands, IL-34 and CSF-1, in the brain are poorly understood. Here we show that compared to wild type mice, CSF-1R-deficient (Csf1r-/-) mice have smaller brains of greater mass. They further exhibit an expansion of lateral ventricle size, an atrophy of the olfactory bulb and a failure of midline crossing of callosal axons. In brain, IL-34 exhibited a broader regional expression than CSF-1, mostly without overlap. Expression of IL-34, CSF-1 and the CSF-1R were maximal during early postnatal development. However, in contrast to the expression of its ligands, CSF-1R expression was very low in adult brain. Postnatal neocortical expression showed that CSF-1 was expressed in layer VI, whereas IL-34 was expressed in the meninges and layers II-V. The broader expression of IL-34 is consistent with its previously implicated role in microglial development. The differential expression of CSF-1R ligands, with respect to CSF-1R expression, could reflect their CSF-1R-independent signaling. Csf1r-/- mice displayed increased proliferation and apoptosis of neocortical progenitors and reduced differentiation of specific excitatory neuronal subtypes. Indeed, addition of CSF-1 or IL-34 to microglia-free, CSF-1R-expressing dorsal forebrain clonal cultures, suppressed progenitor self-renewal and enhanced neuronal differentiation. Consistent with a neural developmental role for the CSF-1R, ablation of the Csf1r gene in Nestin-positive neural progenitors led to a smaller brain size, an expanded neural progenitor pool and elevated cellular apoptosis in cortical forebrain. Thus our results also indicate novel roles for the CSF-1R in the regulation of corticogenesis.
Collapse
Affiliation(s)
- Sayan Nandi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Solen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Neuroscience and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine. New York, NY 10461, USA
| | - Xu-Ming Dai
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Suwen Wei
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Haishan Lin
- Five Prime Therapeutics, Inc., 2 Corporate Dr., South San Francisco, CA 94080
| | - Mark F. Mehler
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Neuroscience and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine. New York, NY 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
189
|
Hume DA. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes. J Leukoc Biol 2012; 92:433-44. [PMID: 22773680 DOI: 10.1189/jlb.0312166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the set of genes that distinguishes macrophages from other cell types and the ways in which thousands of genes are regulated in response to pathogen challenge. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than one-half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophage biology require the development of new analytical tools and ways of presenting information in an accessible form.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
190
|
Blank T, Prinz M. Microglia as modulators of cognition and neuropsychiatric disorders. Glia 2012; 61:62-70. [PMID: 22740320 DOI: 10.1002/glia.22372] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/24/2012] [Indexed: 12/12/2022]
Abstract
It has become evident recently only that microglia are not only responsible for immunomodulatory functions in the brain but represent vital components of the larger synaptic formation, which also includes pre and postsynaptic neurones as well as astrocytes. Microglia critically contribute to CNS homeostasis by their actions in phagocytosis of cellular debris, release of a variety of cell signaling factors including neurotrophins and extracellular matrix components and direct contact with neurons. The purpose of this review is to summarize our current understanding of the involvement of microglia in cognitive processes and neuropsychiatric disorders including schizophrenia, bipolar disorder, depression, and Rett syndrome and to outline their potential signaling mechanisms in this context.
Collapse
Affiliation(s)
- Thomas Blank
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
191
|
Doorn KJ, Lucassen PJ, Boddeke HW, Prins M, Berendse HW, Drukarch B, van Dam AM. Emerging roles of microglial activation and non-motor symptoms in Parkinson's disease. Prog Neurobiol 2012; 98:222-38. [PMID: 22732265 DOI: 10.1016/j.pneurobio.2012.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Recent data has indicated that the traditional view of Parkinson's disease (PD) as an isolated disorder of the nigrostriatal dopaminergic system alone is an oversimplification of its complex symptomatology. Aside from classical motor deficits, various non-motor symptoms including autonomic dysfunction, sensory and cognitive impairments as well as neuropsychiatric alterations and sleep disturbances are common in PD. Some of these non-motor symptoms can even antedate the motor problems. Many of them are associated with extranigral neuropathological changes, such as extensive α-synuclein pathology and also neuroinflammatory responses in specific brain regions, i.e. microglial activation, which has been implicated in several aspects of PD pathogenesis and progression. However, microglia do not represent a uniform population, but comprise a diverse group of cells with brain region-specific phenotypes that can exert beneficial or detrimental effects, depending on the local phenotype and context. Understanding how microglia can be neuroprotective in one brain region, while promoting neurotoxicity in another, will improve our understanding of the role of microglia in neurodegeneration in general, and of their role in PD pathology in particular. Since neuroinflammatory responses are in principle modifiable, such approaches could help to identify new targets or adjunctive therapies for the full spectrum of PD-related symptoms.
Collapse
Affiliation(s)
- Karlijn J Doorn
- University of Amsterdam, Swammerdam Institute for Life Sciences, Center for Neuroscience, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
192
|
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74:691-705. [PMID: 22632727 PMCID: PMC3528177 DOI: 10.1016/j.neuron.2012.03.026] [Citation(s) in RCA: 2871] [Impact Index Per Article: 220.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2012] [Indexed: 02/06/2023]
Abstract
Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Madhusudan A, Vogel P, Knuesel I. Impact of prenatal immune system disturbances on brain development. J Neuroimmune Pharmacol 2012; 8:79-86. [PMID: 22580757 DOI: 10.1007/s11481-012-9374-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/27/2012] [Indexed: 12/30/2022]
Abstract
As research into various aging-associated neurodegenerative disorders reveals their immense pathophysiological complexity, the focus is currently shifting from studying changes in an advanced disease state to investigations involving pre-symptomatic periods, possible aberrations in early life, and even abnormalities in brain development. Recent studies on the etiology of schizophrenia and autism spectrum disorders revealed a profound impact of neurodevelopmental disturbances on disease predisposition, onset and progression. Here, we discuss how a prenatal immune challenge can affect the developing brain-with a selective focus on the impact on microglia, the brain's immune cells-and the implications for brain aging and its associated risk of developing Alzheimer's disease.
Collapse
Affiliation(s)
- Amrita Madhusudan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
194
|
Abstract
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.
Collapse
|
195
|
Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol 2012; 8:66-78. [PMID: 22367679 DOI: 10.1007/s11481-012-9347-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/09/2012] [Indexed: 12/14/2022]
Abstract
Amoeboid microglial cells (AMCs) in the developing brain display surface receptors and antigens shared by the monocyte-derived tissue macrophages. Activation of AMCs in the perinatal brain has been associated with periventricular white matter damage in hypoxic-ischemic conditions. The periventricular white matter, where the AMCs preponderate, is selectively vulnerable to hypoxia as manifested by death of premyelinating oligodendrocytes and degeneration of axons leading to neonatal mortality and long-term neurodevelopmental deficits. AMCs respond vigorously to hypoxia by producing excess amounts of inflammatory cytokines e.g. the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) along with glutamate, nitric oxide (NO) and reactive oxygen species which collectively cause oligodendrocyte death, axonal degeneration as well as disruption of the immature blood brain barrier. A similar phenomenon is observed in the hypoxic developing cerebellum in which activated AMCs induced Purkinje neuronal death through production of TNF-α and IL-1β via their respective receptors. Hypoxia is also implicated in retinopathy of prematurity in which activation of AMCs has been shown to cause retinal ganglion cell death through production of TNF-α and IL-1β and NO. Because AMCs play a pivotal role in hypoxic injuries in the developing brain affecting both neurons and oligodendrocytes, a fuller understanding of the underlying molecular mechanisms of microglial activation under such conditions would be desirable for designing of a novel therapeutic strategy for management of hypoxic damage.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117597, Singapore.
| | | | | |
Collapse
|
196
|
Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 2012; 33:191-206. [PMID: 22322212 DOI: 10.1016/j.neuro.2012.01.012] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/15/2022]
Abstract
Microglia are a heterogenous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
197
|
Abstract
Microglia were recently shown to play unexpected roles in normal brain development and adult physiology. This has begun to dramatically change our view of these resident "immune" cells. Here, we briefly review topics covered in our 2011 Society for Neuroscience minisymposium "The Role of Microglia in the Healthy Brain." This summary is not meant to be a comprehensive review of microglia physiology, but rather to share new results and stimulate further research into the cellular and molecular mechanisms by which microglia influence postnatal development, adult neuronal plasticity, and circuit function.
Collapse
|
198
|
Pfrieger FW, Slezak M. Genetic approaches to study glial cells in the rodent brain. Glia 2011; 60:681-701. [PMID: 22162024 DOI: 10.1002/glia.22283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/18/2011] [Indexed: 01/02/2023]
Abstract
The development, function, and pathology of the brain depend on interactions of neurons and different types of glial cells, namely astrocytes, oligodendrocytes, microglia, and ependymal cells. Understanding neuron-glia interactions in vivo requires dedicated experimental approaches to manipulate each cell type independently. In this review, we first summarize techniques that allow for cell-specific gene modification including targeted mutagenesis and viral transduction. In the second part, we describe the genetic models that allow to target the main glial cell types in the central nervous system. The existing arsenal of approaches to study glial cells in vivo and its expansion in the future are key to understand neuron-glia interactions under normal and pathologic conditions.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg, France.
| | | |
Collapse
|
199
|
Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 2011; 6:e26317. [PMID: 22046273 PMCID: PMC3203114 DOI: 10.1371/journal.pone.0026317] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/23/2011] [Indexed: 01/01/2023] Open
Abstract
The brain contains numerous mononuclear phagocytes called microglia. These cells express the transmembrane tyrosine kinase receptor for the macrophage growth factor colony stimulating factor-1 (CSF-1R). Using a CSF-1R-GFP reporter mouse strain combined with lineage defining antibody staining we show in the postnatal mouse brain that CSF-1R is expressed only in microglia and not neurons, astrocytes or glial cells. To study CSF-1R function we used mice homozygous for a null mutation in the Csflr gene. In these mice microglia are >99% depleted at embryonic day 16 and day 1 post-partum brain. At three weeks of age this microglial depletion continues in most regions of the brain although some contain clusters of rounded microglia. Despite the loss of microglia, embryonic brain development appears normal but during the post-natal period the brain architecture becomes perturbed with enlarged ventricles and regionally compressed parenchyma, phenotypes most prominent in the olfactory bulb and cortex. In the cortex there is increased neuronal density, elevated numbers of astrocytes but reduced numbers of oligodendrocytes. Csf1r nulls rarely survive to adulthood and therefore to study the role of CSF-1R in olfaction we used the viable null mutants in the Csf1 (Csf1(op)) gene that encodes one of the two known CSF-1R ligands. Food-finding experiments indicate that olfactory capacity is significantly impaired in the absence of CSF-1. CSF-1R is therefore required for the development of microglia, for a fully functional olfactory system and the maintenance of normal brain structure.
Collapse
Affiliation(s)
- Bryna Erblich
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Liyin Zhu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Anne M. Etgen
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
- Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Kostantin Dobrenis
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Jeffrey W. Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, New York, United States of America
| |
Collapse
|
200
|
Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol 2011; 234:316-29. [PMID: 22001158 DOI: 10.1016/j.expneurol.2011.09.038] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022]
Abstract
Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed.
Collapse
Affiliation(s)
- Lauren Nicotra
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|