151
|
Pisanello F, Mandelbaum G, Pisanello M, Oldenburg IA, Sileo L, Markowitz JE, Peterson RE, Della Patria A, Haynes TM, Emara MS, Spagnolo B, Datta SR, De Vittorio M, Sabatini BL. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat Neurosci 2017. [PMID: 28628101 PMCID: PMC5533215 DOI: 10.1038/nn.4591] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetics promises spatiotemporal precise control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons when compared to the standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.
Collapse
Affiliation(s)
- Ferruccio Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy
| | - Gil Mandelbaum
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Ian A Oldenburg
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonardo Sileo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy
| | - Jeffrey E Markowitz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph E Peterson
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Della Patria
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy
| | - Trevor M Haynes
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohamed S Emara
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | | | - Massimo De Vittorio
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
152
|
Garcia AF, Nakata KG, Ferguson SM. Viral strategies for targeting cortical circuits that control cocaine-taking and cocaine-seeking in rodents. Pharmacol Biochem Behav 2017; 174:33-41. [PMID: 28552825 DOI: 10.1016/j.pbb.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Addiction to cocaine is a chronic disease characterized by persistent drug-taking and drug-seeking behaviors, and a high likelihood of relapse. The prefrontal cortex (PFC) has long been implicated in the development of cocaine addiction, and relapse. However, the PFC is a heterogeneous structure, and understanding the role of PFC subdivisions, cell types and afferent/efferent connections is critical for gaining a comprehensive picture of the contribution of the PFC in addiction-related behaviors. Here we provide an update on the role of the PFC in cocaine addiction from recent work that used viral-mediated optogenetic and chemogenetic tools to study the role of the PFC in drug-taking and drug-seeking behavior in rodents. Following overviews of rodent PFC neuroanatomy and of viral-mediated optogenetic and chemogenetic techniques, we review studies of manipulations within the PFC, followed by a review of work that utilized targeted manipulations to PFC inputs and outputs.
Collapse
Affiliation(s)
- Aaron F Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - Kanichi G Nakata
- Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
153
|
Villalba RM, Smith Y. Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? J Neural Transm (Vienna) 2017; 125:431-447. [PMID: 28540422 DOI: 10.1007/s00702-017-1735-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA. .,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
154
|
Wild JM. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata). J Comp Neurol 2017; 525:1731-1742. [PMID: 28078738 DOI: 10.1002/cne.24174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 11/10/2022]
Abstract
The dorsal pallidum in birds is considered similar, if not homologous, to the globus pallidus (GP) of mammals. The dorsal pallidum projects to both thalamic and midbrain targets similar to the direct and indirect pathways arising from the internal and external segments of the GP. In the present study, retrograde and anterograde tracing studies revealed a previously undescribed projection of the avian dorsal pallidum. This arises from a specific dorsomedial component, which terminates in the intercollicular nucleus and partly surrounds the avian equivalent of the central nucleus of the inferior colliculus. The respiratory-vocal dorsomedial nucleus of the intercollicular complex, however, does not receive these projections. The somata of the pallidal neurons retrogradely labeled from injections in the intercollicular nucleus were large and generally multipolar and had extensive, sparsely branching central processes (presumptive dendrites) that together extended up to 2 mm dorsally into the intermediate and caudomedial nidopallium. The size and morphology of these neurons were similar to those of large pallidal neurons labeled by calretinin immunoreactivity, which could be co-localized to the same cells. Thus, rather than being directly involved in the control of movement, the large dorsomedial neurons of the caudal dorsal pallidum may be involved in sensory processing, in that they provide an unusual direct link between sensory (auditory/somatosensory) regions of the nidopallium and sensory regions of the intercollicular nucleus of the midbrain. J. Comp. Neurol. 525:1731-1742, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J Martin Wild
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
155
|
Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner. Neuron 2017; 94:855-865.e5. [DOI: 10.1016/j.neuron.2017.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023]
|
156
|
Chemogenetic Activation of Midbrain Dopamine Neurons Affects Attention, but not Impulsivity, in the Five-Choice Serial Reaction Time Task in Rats. Neuropsychopharmacology 2017; 42:1315-1325. [PMID: 27748741 PMCID: PMC5437879 DOI: 10.1038/npp.2016.235] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviors have been associated with aberrant dopamine (DA) signaling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats. We found that activation of DA neurons in both the VTA and SNc impaired attention by increasing trial omissions. In addition, SNc DA neuron activation decreased attentional accuracy. Surprisingly, enhanced DA neuron activity did not affect impulsive action in this task. These results show that enhanced midbrain DA neuronal activity induces deficits in attentional performance, but not impulsivity. Furthermore, DA neurons in the VTA and SNc have different roles in regulating attention. These findings contribute to our understanding of the neural substrates underlying attention deficits and impulsivity, and provide valuable insights to improve treatment of these symptoms.
Collapse
|
157
|
Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 2017; 222:1971-1988. [PMID: 27704219 PMCID: PMC5378696 DOI: 10.1007/s00429-016-1321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Behavioral flexibility is subserved in part by outputs from the cerebral cortex to telencephalic subcortical structures. In our earlier evaluation of the organization of the cortical-subcortical output system (Reynolds and Zahm, J Neurosci 25:11757-11767, 2005), retrograde double-labeling was evaluated in the prefrontal cortex following tracer injections into pairs of the following subcortical telencephalic structures: caudate-putamen, core and shell of the accumbens (Acb), bed nucleus of stria terminalis (BST) and central nucleus of the amygdala (CeA). The present study was done to assess patterns of retrograde labeling in the temporal lobe after similar paired tracer injections into most of the same telencephalic structures plus the lateral septum (LS). In contrast to the modest double-labeling observed in the prefrontal cortex in the previous study, up to 60-80 % of neurons in the basal and accessory basal amygdaloid nuclei and amygdalopiriform transition area exhibited double-labeling in the present study. The most abundant double-labeling was generated by paired injections into structures affiliated with the extended amygdala, including the CeA, BST and Acb shell. Injections pairing the Acb core with the BST or CeA produced significantly fewer double-labeled neurons. The ventral subiculum exhibited modest amounts of double-labeling associated with paired injections into the Acb, BST, CeA and LS. The results raise the issue of how an extraordinarily collateralized output from the temporal lobe may contribute to behavioral flexibility.
Collapse
Affiliation(s)
- Rhett A Reichard
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Suriya Subramanian
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mikiyas T Desta
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Tej Sura
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mary L Becker
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Comeron W Ghobadi
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
158
|
Chavez C, Zaborszky L. Basal Forebrain Cholinergic-Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb Cortex 2017; 27:2335-2347. [PMID: 27073229 DOI: 10.1093/cercor/bhw091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acetylcholine (ACh) release in the cortex is critical for learning, memory, attention, and plasticity. Here, we explore the cholinergic and noncholinergic projections from the basal forebrain (BF) to the auditory cortex using classical retrograde and monosynaptic viral tracers deposited in electrophysiologically identified regions of the auditory cortex. Cholinergic input to both primary (A1) and nonprimary auditory cortical (belt) areas originates in a restricted area in the caudal BF within the globus pallidus (GP) and in the dorsal part of the substantia innominata (SId). On the other hand, we found significant differences in the proportions of cholinergic and noncholinergic projection neurons to primary and nonprimary auditory areas. Inputs to A1 projecting cholinergic neurons were restricted to the GP, caudate-putamen, and the medial part of the medial geniculate body, including the posterior intralaminar thalamic group. In addition to these areas, afferents to belt-projecting cholinergic neurons originated from broader areas, including the ventral secondary auditory cortex, insular cortex, secondary somatosensory cortex, and the central amygdaloid nucleus. These findings support a specific BF projection pattern to auditory cortical areas. Additionally, these findings point to potential functional differences in how ACh release may be regulated in the A1 and auditory belt areas.
Collapse
Affiliation(s)
- Candice Chavez
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| |
Collapse
|
159
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
160
|
Rodrigues S, Salum C, Ferreira TL. Dorsal striatum D1-expressing neurons are involved with sensorimotor gating on prepulse inhibition test. J Psychopharmacol 2017; 31:505-513. [PMID: 28114835 DOI: 10.1177/0269881116686879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prepulse inhibition (PPI) is a behavioral test in which the startle reflex response to a high-intensity stimulus (pulse) is inhibited by the prior presentation of a weak stimulus (prepulse). The classic neural circuitry that mediates startle response is localized in the brainstem; however, recent studies point to the contribution of structures involved in higher cognitive functions in regulating the sensorimotor gating, particularly forebrain regions innervated by dopaminergic nuclei. The aim of the present study was to verify the role of dorsal striatum (DS) and dopaminergic transmitting mediated by D1 and D2 receptors on PPI test in rats. DS inactivation induced by muscimol injection did not affect PPI (%PPI and startle response), although it impaired the locomotor activity and caused catalepsy. Infusion of D1-like antagonist SCH23390 impaired %PPI but did not disturb the startle response and locomotor activity evaluated immediately after PPI test. D2 antagonist microinjection (sulpiride) did not affect %PPI and startle response, but impaired motor activity. These results point to an important role of DS, probably mediated by direct basal ganglia pathway, on modulation of sensorimotor gating, in accordance with clinical studies showing PPI deficits in schizophrenia, Tourette syndrome, and compulsive disorders - pathologies related to basal ganglia dysfunctions.
Collapse
Affiliation(s)
- Samanta Rodrigues
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Cristiane Salum
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Tatiana L Ferreira
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
161
|
Differential Arc protein expression in dorsal and ventral striatum after moderate and intense inhibitory avoidance training. Neurobiol Learn Mem 2017; 140:17-26. [DOI: 10.1016/j.nlm.2017.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/03/2017] [Indexed: 11/22/2022]
|
162
|
Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC. Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron 2017; 93:1451-1463.e4. [PMID: 28334608 PMCID: PMC5386608 DOI: 10.1016/j.neuron.2017.02.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 01/13/2023]
Abstract
The prevailing view is that striatal parvalbumin (PV)-positive interneurons primarily function to downregulate medium spiny projection neuron (MSN) activity via monosynaptic inhibitory signaling. Here, by combining in vivo neural recordings and optogenetics, we unexpectedly find that both suppressing and over-activating PV cells attenuates spontaneous MSN activity. To account for this, we find that, in addition to monosynaptic coupling, PV-MSN interactions are mediated by a competing disynaptic inhibitory circuit involving a variety of neuropeptide Y-expressing interneurons. Next we use optogenetic and chemogenetic approaches to show that dorsolateral striatal PV interneurons influence the initial expression of reward-conditioned responses but that their contribution to performance declines with experience. Consistent with this, we observe with large-scale recordings in behaving animals that the relative contribution of PV cells on MSN activity diminishes with training. Together, this work provides a possible mechanism by which PV interneurons modulate striatal output and selectively enhance performance early in learning.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin L Shobe
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie C Chong
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
163
|
Tanabe S, Inoue KI, Tsuge H, Uezono S, Nagaya K, Fujiwara M, Kato S, Kobayashi K, Takada M. The use of an optimized chimeric envelope glycoprotein enhances the efficiency of retrograde gene transfer of a pseudotyped lentiviral vector in the primate brain. Neurosci Res 2017; 120:45-52. [PMID: 28257798 DOI: 10.1016/j.neures.2017.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/22/2022]
Abstract
Lentiviral vectors have been used not only for various basic research experiments, but also for a wide range of gene therapy trials in animal models. The development of a pseudotyped lentiviral vector with the property of retrograde infection allows us to introduce foreign genes into neurons that are localized in regions innervating the site of vector injection. Here, we report the efficiency of retrograde gene transfer of a recently developed FuG-E pseudotyped lentiviral vector in the primate brain by comparing its transduction pattern with that of the parental FuG-C pseudotyped vector. After injection of the FuG-E vector encoding green fluorescent protein (GFP) into the striatum of macaque monkeys, many GFP-immunoreactive neurons were found in regions projecting to the striatum, such as the cerebral cortex, thalamus, and substantia nigra. Quantitative analysis revealed that in all regions, the number of neurons retrogradely transduced with the FuG-E vector was larger than in the FuG-C vector injection case. It was also confirmed that the FuG-E vector displayed explicit neuronal specificity to the same extent as the FuG-C vector. This vector might promote approaches to pathway-selective gene manipulation and provide a powerful tool for effective gene therapy trials against neurological disorders through enhanced retrograde delivery.
Collapse
Affiliation(s)
- Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.
| | - Hitomi Tsuge
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Shiori Uezono
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Kiyomi Nagaya
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Maki Fujiwara
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.
| |
Collapse
|
164
|
Gielow MR, Zaborszky L. The Input-Output Relationship of the Cholinergic Basal Forebrain. Cell Rep 2017; 18:1817-1830. [PMID: 28199851 PMCID: PMC5725195 DOI: 10.1016/j.celrep.2017.01.060] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.
Collapse
Affiliation(s)
- Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA.
| |
Collapse
|
165
|
Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE. Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control. Front Behav Neurosci 2017; 11:4. [PMID: 28174527 PMCID: PMC5258693 DOI: 10.3389/fnbeh.2017.00004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
Cockroaches are scavengers that forage through dark, maze-like environments. Like other foraging animals, for instance rats, they must continually asses their situation to keep track of targets and negotiate barriers. While navigating a complex environment, all animals need to integrate sensory information in order to produce appropriate motor commands. The integrated sensory cues can be used to provide the animal with an environmental and contextual reference frame for the behavior. To successfully reach a goal location, navigational cues continuously derived from sensory inputs have to be utilized in the spatial guidance of motor commands. The sensory processes, contextual and spatial mechanisms, and motor outputs contributing to navigation have been heavily studied in rats. In contrast, many insect studies focused on the sensory and/or motor components of navigation, and our knowledge of the abstract representation of environmental context and spatial information in the insect brain is relatively limited. Recent reports from several laboratories have explored the role of the central complex (CX), a sensorimotor region of the insect brain, in navigational processes by recording the activity of CX neurons in freely-moving insects and in more constrained, experimenter-controlled situations. The results of these studies indicate that the CX participates in processing the temporal and spatial components of sensory cues, and utilizes these cues in creating an internal representation of orientation and context, while also directing motor control. Although these studies led to a better understanding of the CX's role in insect navigation, there are still major voids in the literature regarding the underlying mechanisms and brain regions involved in spatial navigation. The main goal of this review is to place the above listed findings in the wider context of animal navigation by providing an overview of the neural mechanisms of navigation in rats and summarizing and comparing our current knowledge on the CX's role in insect navigation to these processes. By doing so, we aimed to highlight some of the missing puzzle pieces in insect navigation and provide a different perspective for future directions.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| | - Nicholas D Kathman
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| | | | - Peiyuan Guo
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| | - Roy E Ritzmann
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
166
|
Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 2016; 5. [PMID: 27892854 PMCID: PMC5207773 DOI: 10.7554/elife.19103] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/25/2016] [Indexed: 01/02/2023] Open
Abstract
The striatum integrates excitatory inputs from the cortex and the thalamus to control diverse functions. Although the striatum is thought to consist of sensorimotor, associative and limbic domains, their precise demarcations and whether additional functional subdivisions exist remain unclear. How striatal inputs are differentially segregated into each domain is also poorly understood. This study presents a comprehensive map of the excitatory inputs to the mouse striatum. The input patterns reveal boundaries between the known striatal domains. The most posterior striatum likely represents the 4th functional subdivision, and the dorsomedial striatum integrates highly heterogeneous, multimodal inputs. The complete thalamo-cortico-striatal loop is also presented, which reveals that the thalamic subregions innervated by the basal ganglia preferentially interconnect with motor-related cortical areas. Optogenetic experiments show the subregion-specific heterogeneity in the synaptic properties of striatal inputs from both the cortex and the thalamus. This projectome will guide functional studies investigating diverse striatal functions. DOI:http://dx.doi.org/10.7554/eLife.19103.001 To fully understand how the brain works, we need to understand how different brain structures are organized and how information flows between these structures. For example, the cortex and thalamus communicate with another structure known as the basal ganglia, which is essential for controlling voluntary movement, emotions and reward behaviour in humans and other mammals. Information from the cortex and the thalamus enters the basal ganglia at an area called the striatum. This area is further divided into smaller functional regions known as domains that sort sensorimotor, emotion and executive information into the basal ganglia to control different types of behaviour. Three such domains have been identified in the striatum of mice. However, the boundaries between these domains are vague and it is not clear whether any other domains exist or if the domains can actually be divided into even smaller areas with more precise roles. Information entering the striatum from other parts of the brain can either stimulate activity in the striatum (known as an “excitatory input”) or alter existing excitatory inputs. Now, Hunnicutt et al. present the first comprehensive map of excitatory inputs into the striatum of mice. The experiments show that while many of the excitatory inputs flowing into the striatum from the cortex and thalamus are sorted into the three known domains, a unique combination of the excitatory inputs are sorted into a new domain instead. One of the original three domains of the striatum is known to relay information related to associative learning, for example, linking an emotion to a person or place. Hunnicutt et al. show that this domain has a more complex architecture than the other domains, being made up of many distinct areas. This complexity may help it to process the various types of information required to make such associations. The findings of Hunnicutt et al. provide a framework for understanding how the striatum works in healthy and diseased brains. Since faulty information processing in the striatum is a direct cause of Parkinson’s disease, Huntington’s disease and other neurological disorders in humans, this framework may aid the development of new treatments for these disorders. DOI:http://dx.doi.org/10.7554/eLife.19103.002
Collapse
Affiliation(s)
- Barbara J Hunnicutt
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Bart C Jongbloets
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - William T Birdsong
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Katrina J Gertz
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
167
|
The Memory Trace Supporting Lose-Shift Responding Decays Rapidly after Reward Omission and Is Distinct from Other Learning Mechanisms in Rats. eNeuro 2016; 3:eN-NWR-0167-16. [PMID: 27896312 PMCID: PMC5112541 DOI: 10.1523/eneuro.0167-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022] Open
Abstract
The propensity of animals to shift choices immediately after unexpectedly poor reinforcement outcomes is a pervasive strategy across species and tasks. We report here that the memory supporting such lose-shift responding in rats rapidly decays during the intertrial interval and persists throughout training and testing on a binary choice task, despite being a suboptimal strategy. Lose-shift responding is not positively correlated with the prevalence and temporal dependence of win-stay responding, and it is inconsistent with predictions of reinforcement learning on the task. These data provide further evidence that win-stay and lose-shift are mediated by dissociated neural mechanisms and indicate that lose-shift responding presents a potential confound for the study of choice in the many operant choice tasks with short intertrial intervals. We propose that this immediate lose-shift responding is an intrinsic feature of the brain’s choice mechanisms that is engaged as a choice reflex and works in parallel with reinforcement learning and other control mechanisms to guide action selection.
Collapse
|
168
|
|
169
|
Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training. Proc Natl Acad Sci U S A 2016; 113:E6516-E6525. [PMID: 27698138 DOI: 10.1073/pnas.1613680113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence indicates that treatments that typically impair memory consolidation become ineffective when animals are given intense training. This effect has been obtained by treatments interfering with the neural activity of several brain structures, including the dorsal striatum. The mechanisms that mediate this phenomenon are unknown. One possibility is that intense training promotes the transfer of information derived from the enhanced training to a wider neuronal network. We now report that inhibitory avoidance (IA) induces mushroom spinogenesis in the medium spiny neurons (MSNs) of the dorsal striatum in rats, which is dependent upon the intensity of the foot-shock used for training; that is, the effect is seen only when high-intensity foot-shock is used in training. We also found that the relative density of thin spines was reduced. These changes were evident at 6 h after training and persisted for at least 24 h afterward. Importantly, foot-shock alone did not increase spinogenesis. Spine density in MSNs in the accumbens was also increased, but the increase did not correlate with the associative process involved in IA; rather, it resulted from the administration of the aversive stimulation alone. These findings suggest that mushroom spines of MSNs of the dorsal striatum receive afferent information that is involved in the integrative activity necessary for memory consolidation, and that intense training facilitates transfer of information from the dorsal striatum to other brain regions through augmented spinogenesis.
Collapse
|
170
|
Awake whole-brain functional connectivity alterations in the adolescent spontaneously hypertensive rat feature visual streams and striatal networks. Brain Struct Funct 2016; 222:1673-1683. [DOI: 10.1007/s00429-016-1301-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/01/2016] [Indexed: 01/08/2023]
|
171
|
Garas FN, Shah RS, Kormann E, Doig NM, Vinciati F, Nakamura KC, Dorst MC, Smith Y, Magill PJ, Sharott A. Secretagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons. eLife 2016; 5. [PMID: 27669410 PMCID: PMC5036963 DOI: 10.7554/elife.16088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called 'direct pathway', whereas PV+/Scgn- interneurons preferentially targeted 'indirect pathway' SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.
Collapse
Affiliation(s)
- Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rahul S Shah
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Federica Vinciati
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kouichi C Nakamura
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology, Emory University, Atlanta, United States.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, United States
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
172
|
Reig R, Silberberg G. Distinct Corticostriatal and Intracortical Pathways Mediate Bilateral Sensory Responses in the Striatum. Cereb Cortex 2016; 26:4405-4415. [PMID: 27664965 PMCID: PMC5193142 DOI: 10.1093/cercor/bhw268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/13/2023] Open
Abstract
Individual striatal neurons integrate somatosensory information from both sides of the body, however, the afferent pathways mediating these bilateral responses are unclear. Whereas ipsilateral corticostriatal projections are prevalent throughout the neocortex, contralateral projections provide sparse input from primary sensory cortices, in contrast to the dense innervation from motor and frontal regions. There is, therefore, an apparent discrepancy between the observed anatomical pathways and the recorded striatal responses. We used simultaneous in vivo whole-cell and extracellular recordings combined with focal cortical silencing, to dissect the afferent pathways underlying bilateral sensory integration in the mouse striatum. We show that unlike direct corticostriatal projections mediating responses to contralateral whisker deflection, responses to ipsilateral stimuli are mediated mainly by intracortical projections from the contralateral somatosensory cortex (S1). The dominant pathway is the callosal projection from contralateral to ipsilateral S1. Our results suggest a functional difference between the cortico-basal ganglia pathways underlying bilateral sensory and motor processes.
Collapse
Affiliation(s)
- Ramon Reig
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
173
|
Hood RL, Liguore WA, Moore C, Pflibsen L, Meshul CK. Exercise intervention increases spontaneous locomotion but fails to attenuate dopaminergic system loss in a progressive MPTP model in aged mice. Brain Res 2016; 1646:535-542. [DOI: 10.1016/j.brainres.2016.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 02/04/2023]
|
174
|
Dela Cruz JAD, Coke T, Bodnar RJ. Simultaneous Detection of c-Fos Activation from Mesolimbic and Mesocortical Dopamine Reward Sites Following Naive Sugar and Fat Ingestion in Rats. J Vis Exp 2016:53897. [PMID: 27583636 PMCID: PMC5091945 DOI: 10.3791/53897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents.
Collapse
Affiliation(s)
- Julie A D Dela Cruz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, CUNY, New York, NY
| | - Tricia Coke
- Department of Psychology, Queens College, CUNY, Flushing, NY
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, Flushing, NY; Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, CUNY, Flushing, NY;
| |
Collapse
|
175
|
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat 2016; 78:65-86. [PMID: 27562515 DOI: 10.1016/j.jchemneu.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.
Collapse
Affiliation(s)
- Laura L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha NE, 68178, USA.
| | | | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
176
|
Sasamoto K, Nagai J, Nakabayashi T, He X, Ohshima T. Cdk5 is required for the positioning and survival of GABAergic neurons in developing mouse striatum. Dev Neurobiol 2016; 77:483-492. [PMID: 27480591 DOI: 10.1002/dneu.22424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/07/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, and its activity is dependent upon an association with a neuron-specific activating subunit. It was previously reported that Cdk5-/- mice exhibit perinatal lethality and defective neuronal positioning. In this study, they focused on the analysis of neuronal positioning of GABAergic neurons in the forebrain. Defective formation of the ventral striatum, nucleus accumbens, and olfactory tubercles was found in Cdk5-/- embryos. To further study this abnormal development, we generated and analyzed Dlx5/6-Cre p35 conditional KO (cKO); p39-/- mice in which forebrain GABAergic neurons have lost their Cdk5 kinase activity. Defective formation of the nucleus accumbens and olfactory tubercles as well as neuronal loss in the striatum of Dlx5/6-Cre p35cKO; p39-/- mice was found. Elevated levels of phosphorylated JNK were observed in neonatal striatal samples from Dlx5/6-Cre p35cKO; p39-/- mice, suggestive of neuronal death. These results indicate that Cdk5 is required for the formation of the ventral striatum in a cell-autonomous manner, and loss of the kinase activity of Cdk5 causes GABAergic neuronal death in the developing mouse forebrain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kodai Sasamoto
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Jun Nagai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Takeru Nakabayashi
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Xiaojuan He
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
177
|
Berthet P, Lindahl M, Tully PJ, Hellgren-Kotaleski J, Lansner A. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Front Neural Circuits 2016; 10:53. [PMID: 27493625 PMCID: PMC4954853 DOI: 10.3389/fncir.2016.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
The brain enables animals to behaviorally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviors are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG) that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1) and the indirect (denoted D2) pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE), which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and post-synaptic activity, receptor type, and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson's disease (PD) by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1.
Collapse
Affiliation(s)
- Pierre Berthet
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Mikael Lindahl
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Philip J. Tully
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, UK
| | - Jeanette Hellgren-Kotaleski
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Department of Neuroscience, Karolinska InstituteStockholm, Sweden
| | - Anders Lansner
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
178
|
Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1. Neuron 2016; 91:652-65. [PMID: 27397517 DOI: 10.1016/j.neuron.2016.06.020] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023]
Abstract
The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment, while their counterparts in the deep sublayer provide a more flexible representation that is shaped by learning about salient features in the environment. VIDEO ABSTRACT.
Collapse
|
179
|
Abstract
Various biochemical and physiological processes that undergo maturational changes during human brain development can be now studied in vivo using PET. The distribution of local cerebral glucose utilization shows regional alterations in the first year of life in agreement with behavioral, neurophysiological, and anatomical changes known to occur during development of the infant. Measurement of the absolute rates of glucose utilization with PET reveals that during the major portion of the first decade, the human brain has a higher energy (glucose) demand compared with both the newborn and adult brains. With adolescence, glucose utilization rates decline to reach adult values by age 16-18 years. This nonlinear course of cerebral glucose 'metabolic' maturation is also seen in a number of animal models and coincides with the develop mental course of transient synaptic exuberance associated with enhanced brain plasticity and efficient learn ing. Evidence of brain reorganization detected with PET is discussed in children with unilateral brain injury and early sensory deprivation. NEUROSCIENTIST 5:29-40, 1999
Collapse
Affiliation(s)
- Harry T. Chugani
- Departments of Neurology, Pediatrics, and Radiology
Children's Hospital of Michigan Wayne State University School of Medicine
Detroit, Michigan
| |
Collapse
|
180
|
Bunner KD, Rebec GV. Corticostriatal Dysfunction in Huntington's Disease: The Basics. Front Hum Neurosci 2016; 10:317. [PMID: 27445757 PMCID: PMC4924423 DOI: 10.3389/fnhum.2016.00317] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022] Open
Abstract
The main input to the basal ganglia, the corticostriatal pathway, shows some of the earliest signs of neuropathology in Huntington’s disease (HD), an inherited neurodegenerative condition that typically strikes in mid-life with progressively deteriorating cognitive, emotional, and motor symptoms. Although an effective treatment remains elusive, research on transgenic animal models has implicated dysregulation of glutamate (Glu), the excitatory amino acid released by corticostriatal neurons, in HD onset. Abnormalities in the control of Glu transmission at the level of postsynaptic receptors and Glu transport proteins play a critical role in the loss of information flow through downstream circuits that set the stage for the HD behavioral phenotype. Parallel but less-well characterized changes in dopamine (DA), a key modulator of Glu activation, ensure further deficits in neuronal communication throughout the basal ganglia. Continued analysis of corticostriatal Glu transmission and its modulation by DA, including analysis at the neurobehavioral level in transgenic models, is likely to be an effective strategy in the pursuit of HD therapeutics.
Collapse
Affiliation(s)
- Kendra D Bunner
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, IN, USA
| | - George V Rebec
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, IN, USA
| |
Collapse
|
181
|
Ferbinteanu J. Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience. J Neurosci 2016; 36:6459-70. [PMID: 27307234 PMCID: PMC5015782 DOI: 10.1523/jneurosci.0840-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue-response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel "other" task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue-response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. SIGNIFICANCE STATEMENT Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex.
Collapse
Affiliation(s)
- Janina Ferbinteanu
- Departments of Physiology and Pharmacology and Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
182
|
Busse S, Schwarting RKW. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats. Front Behav Neurosci 2016; 10:118. [PMID: 27375453 PMCID: PMC4896910 DOI: 10.3389/fnbeh.2016.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
The present study is part of a series of experiments, where we analyze why and how damage of the rat's dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning.
Collapse
Affiliation(s)
- Sebastian Busse
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg Marburg, Germany
| |
Collapse
|
183
|
The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle. J Neurosci 2016; 36:548-60. [PMID: 26758844 DOI: 10.1523/jneurosci.3328-15.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we show that neurons in the olfactory tubercle subregion of the ventral striatum robustly encode the onset and progression of motivated behaviors, and discriminate the type and magnitude of a reward. Our findings are novel in showing that olfactory tubercle neurons participate in such coding schemes and are in accordance with the principle that ventral striatum substructures may cooperate to guide motivated behaviors.
Collapse
|
184
|
Klanker M, Fellinger L, Feenstra M, Willuhn I, Denys D. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning. Neuroscience 2016; 345:110-123. [PMID: 27185487 DOI: 10.1016/j.neuroscience.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/28/2022]
Abstract
Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a previous study, we showed that phasic DA release patterns in the ventromedial striatum (VMS) rapidly adapt during reversal learning. However, it is unknown how DA dynamics in the dorsolateral striatum (DLS) are modulated during such adaptive behavior. Here, we used fast-scan cyclic voltammetry to measure phasic DA release in the DLS during spatial reversal learning. In the DLS, we observed minor DA release after the onset of a visual cue signaling reward availability, followed by more pronounced DA release during more proximal reward cues (e.g., lever extension) and execution of the operant response (i.e., lever press), both in rewarded and non-rewarded trials. These release dynamics (minor DA after onset of the predictive visual cue, prominent DA during the operant response) did not change significantly during or following a reversal of response-reward contingencies. Notably, the DA increase to the lever press did not reflect a general signal related to the initiation of any motivated motor response, as we did not observe DA release when rats initiated nose pokes into the food receptacle during inter-trial intervals. This suggests that DA release in the DLS occurs selectively during the initiation and execution of a learned operant response. Together with our previous results obtained in the VMS, these findings reveal distinct phasic DA release patterns during adaptation of established behavior in DLS and VMS. The VMS DA signal, which is highly sensitive to reversal of response-reward contingences, may provide a teaching signal to guide reward-related learning and facilitate behavioral adaptation, whereas DLS DA may reflect a 'response execution signal' largely independent of outcome, that may be involved in initiation and energizing of operant behavior.
Collapse
Affiliation(s)
- Marianne Klanker
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands.
| | - Lisanne Fellinger
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Matthijs Feenstra
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Damiaan Denys
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
185
|
Magnusson JP, Frisén J. Stars from the darkest night: unlocking the neurogenic potential of astrocytes in different brain regions. Development 2016; 143:1075-86. [DOI: 10.1242/dev.133975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
In a few regions of the adult brain, specialized astrocytes act as neural stem cells capable of sustaining life-long neurogenesis. In other, typically non-neurogenic regions, some astrocytes have an intrinsic capacity to produce neurons when provoked by particular conditions but do not use this ability to replace neurons completely after injury or disease. Why do astrocytes display regional differences and why do they not use their neurogenic capacity for brain repair to a greater extent? In this Review, we discuss the neurogenic potential of astrocytes in different brain regions and ask what stimulates this potential in some regions but not in others. We discuss the transcriptional networks and environmental cues that govern cell identity, and consider how the activation of neurogenic properties in astrocytes can be understood as the de-repression of a latent neurogenic transcriptional program.
Collapse
Affiliation(s)
- Jens P. Magnusson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| |
Collapse
|
186
|
Neasta J, Valmalle C, Coyne A, Carnazzi E, Subra G, Galleyrand J, Gagne D, M'Kadmi C, Bernad N, Bergé G, Cantel S, Marin P, Marie J, Banères J, Kemel M, Daugé V, Puget K, Martinez J. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release. Br J Pharmacol 2016; 173:1314-28. [PMID: 27027724 PMCID: PMC4940823 DOI: 10.1111/bph.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/20/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Using an in-house bioinformatics programme, we identified and synthesized a novel nonapeptide, H-Pro-Pro-Thr-Thr-Thr-Lys-Phe-Ala-Ala-OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. EXPERIMENTAL APPROACH The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra-striatal injection of the peptide was investigated. A photoaffinity UV cross-linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. KEY RESULTS The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine-like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. CONCLUSION AND IMPLICATIONS The synthetic nonapeptide acein interacted with high affinity with brain membrane-bound ACE. This interaction occurs at a different site from the active site involved in the well-known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected.
Collapse
Affiliation(s)
- Jérémie Neasta
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Charlène Valmalle
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Anne‐Claire Coyne
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Eric Carnazzi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilles Subra
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Claude Galleyrand
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Didier Gagne
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Céline M'Kadmi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Nicole Bernad
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilbert Bergé
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, UMR5203, INSERM U661, Rue de la CardonilleUniversité de MontpellierMontpellierFrance
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Louis Banères
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marie‐Lou Kemel
- CIRB, Collège de France, 11, Place Marcelin BerthelotParisFrance
| | - Valérie Daugé
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Karine Puget
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean Martinez
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| |
Collapse
|
187
|
Atlan G, Terem A, Peretz-Rivlin N, Groysman M, Citri A. Mapping synaptic cortico-claustral connectivity in the mouse. J Comp Neurol 2016; 525:1381-1402. [DOI: 10.1002/cne.23997] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/27/2016] [Accepted: 03/04/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Gal Atlan
- Edmond and Lily Safra Center for Brain Sciences; Jerusalem Israel
| | - Anna Terem
- Department of Biological Chemistry; Institute of Life Sciences, Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram Jerusalem Israel
| | | | - Maya Groysman
- Edmond and Lily Safra Center for Brain Sciences; Jerusalem Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences; Jerusalem Israel
- Department of Biological Chemistry; Institute of Life Sciences, Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram Jerusalem Israel
| |
Collapse
|
188
|
Kerstetter KA, Wunsch AM, Nakata KG, Donckels E, Neumaier JF, Ferguson SM. Corticostriatal Afferents Modulate Responsiveness to Psychostimulant Drugs and Drug-Associated Stimuli. Neuropsychopharmacology 2016; 41:1128-37. [PMID: 26289144 PMCID: PMC4748437 DOI: 10.1038/npp.2015.253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 11/09/2022]
Abstract
The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) are both integral components of the corticobasal ganglia-thalamic circuitry that regulates addiction-related behaviors. However, the role of afferent inputs from mPFC to NAc in these behaviors is unclear. To address this, we used a Cre-recombinase-dependent viral vector approach to express G(i/o)-coupled DREADDs (designer receptors exclusively activated by designer drugs) selectively in mPFC neurons projecting to the NAc and examined the consequences of attenuating activity of these neurons on the induction of amphetamine sensitization and on drug taking and drug seeking during cocaine self-administration. Surprisingly, decreasing mPFC afferent activity to the NAc only transiently reduced locomotor sensitization and had no effect on drug taking during cocaine self-administration. However, inhibiting corticostriatal afferent activity during sensitization subsequently enhanced conditioned responding. In addition, this manipulation during drug self-administration resulted in slower rates of extinction and increased responding during drug prime-induced reinstatement-an effect that was normalized by inhibiting these corticostriatal afferents immediately before the drug prime. These results suggest that dampening cortical control over the NAc during drug exposure may lead to long-term changes in the ability of drugs and associated stimuli to drive behavior that has important implications for guiding treatments to prevent relapse.
Collapse
Affiliation(s)
- K A Kerstetter
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - A M Wunsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Neuroscience Graduate Program, University of Washington, Seattle, WA, USA
| | - K G Nakata
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Neuroscience Graduate Program, University of Washington, Seattle, WA, USA
| | - E Donckels
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - J F Neumaier
- Neuroscience Graduate Program, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Susan M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Neuroscience Graduate Program, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
189
|
Fiorentini C, Savoia P, Savoldi D, Bono F, Busi C, Barbon A, Missale C. Shp-2 knockdown prevents l-dopa-induced dyskinesia in a rat model of Parkinson's disease. Mov Disord 2016; 31:512-20. [PMID: 26898243 DOI: 10.1002/mds.26581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dyskinesia, the major side effect of l-dopa therapy in PD, is mainly associated with nonphysiological stimulation of denervated receptors in the striatum. In particular, DA D1 receptor-mediated aberrant extracellular signal-regulated protein kinases 1 and 2 activation have been associated with striatal changes leading to dyskinesia. We recently identified the tyrosine phosphatase Shp-2 as a crucial effector transmitting D1 receptor signaling to extracellular signal-regulated protein kinases 1 and 2 activation and reported the involvement of the D1 receptor/Shp-2/extracellular signal-regulated protein kinases 1 and 2 pathway in the development of l-dopa-induced dyskinesia. OBJECTIVES In this study, the role of Shp-2 in l-dopa-induced dyskinesia development was investigated by in vivo silencing of Shp-2 in the striatum of the 6-hydroxy-dopamine rat model of PD. METHODS Lentiviral particles delivering short hairpin RNA were used to obtain long-term striatal Shp-2 downregulation. Rats were then treated with l-dopa and analyzed for both the improvement of akinesia and the development of l-dopa-induced dyskinesia. RESULTS The results show that Shp-2 knockdown remarkably decreased extracellular signal-regulated protein kinases 1 and 2 phosphorylation and attenuated the severity of l-dopa-induced dyskinesia likely without compromising the therapeutic efficacy of l-dopa. CONCLUSION These data suggest that the striatal D1 receptor/Shp-2 complex may represent a promising novel target for the development of antidyskinetic drugs.
Collapse
Affiliation(s)
- Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Savoia
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daria Savoldi
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Busi
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Section of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
190
|
Coffey KR, Nader M, West MO. Single body parts are processed by individual neurons in the mouse dorsolateral striatum. Brain Res 2016; 1636:200-207. [PMID: 26827625 DOI: 10.1016/j.brainres.2016.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 12/29/2022]
Abstract
Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991).
Collapse
Affiliation(s)
- Kevin R Coffey
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Miles Nader
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Mark O West
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
191
|
Bakhurin KI, Mac V, Golshani P, Masmanidis SC. Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice. J Neurophysiol 2016; 115:1521-32. [PMID: 26763779 DOI: 10.1152/jn.01037.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
As the major input to the basal ganglia, the striatum is innervated by a wide range of other areas. Overlapping input from these regions is speculated to influence temporal correlations among striatal ensembles. However, the network dynamics among behaviorally related neural populations in the striatum has not been extensively studied. We used large-scale neural recordings to monitor activity from striatal ensembles in mice undergoing Pavlovian reward conditioning. A subpopulation of putative medium spiny projection neurons (MSNs) was found to discriminate between cues that predicted the delivery of a reward and cues that predicted no specific outcome. These cells were preferentially located in lateral subregions of the striatum. Discriminating MSNs were more spontaneously active and more correlated than their nondiscriminating counterparts. Furthermore, discriminating fast spiking interneurons (FSIs) represented a highly prevalent group in the recordings, which formed a strongly correlated network with discriminating MSNs. Spike time cross-correlation analysis showed the existence of synchronized activity among FSIs and feedforward inhibitory modulation of MSN spiking by FSIs. These findings suggest that populations of functionally specialized (cue-discriminating) striatal neurons have distinct network dynamics that sets them apart from nondiscriminating cells, potentially to facilitate accurate behavioral responding during associative reward learning.
Collapse
Affiliation(s)
- Konstantin I Bakhurin
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California
| | - Victor Mac
- Department of Neurobiology, University of California, Los Angeles, California
| | - Peyman Golshani
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California; Department of Neurology, University of California, Los Angeles, California; Integrative Center for Learning and Memory, University of California, Los Angeles, California; West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Sotiris C Masmanidis
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, California; Integrative Center for Learning and Memory, University of California, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, California; and
| |
Collapse
|
192
|
Schulz AL, Woldeit ML, Gonçalves AI, Saldeitis K, Ohl FW. Selective Increase of Auditory Cortico-Striatal Coherence during Auditory-Cued Go/NoGo Discrimination Learning. Front Behav Neurosci 2016; 9:368. [PMID: 26793085 PMCID: PMC4707278 DOI: 10.3389/fnbeh.2015.00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcement models, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functional coupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.
Collapse
Affiliation(s)
- Andreas L Schulz
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Marie L Woldeit
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Ana I Gonçalves
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Department Systems Biology, Institute of Biology, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Katja Saldeitis
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Department Systems Biology, Institute of Biology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
193
|
Memory Systems of the Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
194
|
Devan BD, Chaban N, Piscopello J, Deibel SH, McDonald RJ. Cognitive and Stimulus–Response Habit Functions of the Neo-(Dorsal) Striatum. INNOVATIONS IN COGNITIVE NEUROSCIENCE 2016. [DOI: 10.1007/978-3-319-42743-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
195
|
Murray JE, Belin-Rauscent A, Simon M, Giuliano C, Benoit-Marand M, Everitt BJ, Belin D. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat Commun 2015; 6:10088. [PMID: 26657320 PMCID: PMC4682035 DOI: 10.1038/ncomms10088] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
In the development of addiction, drug seeking becomes habitual and controlled by drug-associated cues, and the neural locus of control over behaviour shifts from the ventral to the dorsolateral striatum. The neural mechanisms underlying this functional transition from recreational drug use to drug-seeking habits are unknown. Here we combined functional disconnections and electrophysiological recordings of the amygdalo-striatal networks in rats trained to seek cocaine to demonstrate that functional shifts within the striatum are driven by transitions from the basolateral (BLA) to the central (CeN) amygdala. Thus, while the recruitment of dorsolateral striatum dopamine-dependent control over cocaine seeking is triggered by the BLA, its long-term maintenance depends instead on the CeN. These data demonstrate that limbic cortical areas both tune the function of cognitive territories of the striatum and thereby underpin maladaptive cocaine-seeking habits.
Collapse
Affiliation(s)
- Jennifer E. Murray
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
| | - Aude Belin-Rauscent
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Marine Simon
- Groupe de recherche en psychiatrie, Paris GDR3557, France
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
| | - Marianne Benoit-Marand
- Laboratoire de Neurosciences Expérimentales et Clinique, INSERM, U1084, Poitiers F-86022, France
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers F-86022, France
| | - Barry J. Everitt
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
196
|
Barker JM, Corbit LH, Robinson DL, Gremel CM, Gonzales RA, Chandler LJ. Corticostriatal circuitry and habitual ethanol seeking. Alcohol 2015; 49:817-24. [PMID: 26059221 PMCID: PMC4644517 DOI: 10.1016/j.alcohol.2015.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 01/01/2023]
Abstract
The development of alcohol-use disorders is thought to involve a transition from casual alcohol use to uncontrolled alcohol-seeking behavior. This review will highlight evidence suggesting that the shift toward inflexible alcohol seeking that occurs across the development of addiction consists, in part, of a progression from goal-directed to habitual behaviors. This shift in "response strategy" is thought to be largely regulated by corticostriatal network activity. Indeed, specific neuroanatomical substrates within the prefrontal cortex and the striatum have been identified as playing opposing roles in the expression of actions and habits. A majority of the research on the neurobiology of habitual behavior has focused on non-drug reward seeking. Here, we will highlight recent research identifying corticostriatal structures that regulate the expression of habitual alcohol seeking and a comparison will be made when possible to findings for non-drug rewards.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Laura H Corbit
- School of Psychology, University of Sydney, Sydney, Australia
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Christina M Gremel
- Department of Psychology, Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Rueben A Gonzales
- Department of Pharmacology, The University of Texas at Austin, Austin, TX, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
197
|
Sciamanna G, Ponterio G, Mandolesi G, Bonsi P, Pisani A. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons. Sci Rep 2015; 5:16742. [PMID: 26572101 PMCID: PMC4647205 DOI: 10.1038/srep16742] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Parvalbumin-containing fast-spiking interneurons (FSIs) exert a powerful feed-forward GABAergic inhibition on striatal medium spiny neurons (MSNs), playing a critical role in timing striatal output. However, how glutamatergic inputs modulate their firing activity is still unexplored. Here, by means of a combined optogenetic and electrophysiological approach, we provide evidence for a differential modulation of cortico- vs thalamo-striatal synaptic inputs to FSIs in transgenic mice carrying light-gated ion channels channelrhodopsin-2 (ChR2) in glutamatergic fibers. Corticostriatal synapses show a postsynaptic facilitation, whereas thalamostriatal synapses present a postsynaptic depression. Moreover, thalamostriatal synapses exhibit more prominent AMPA-mediated currents than corticostriatal synapses, and an increased release probability. Furthermore, during current-evoked firing activity, simultaneous corticostriatal stimulation increases bursting activity. Conversely, thalamostriatal fiber activation shifts the canonical burst-pause activity to a more prolonged, regular firing pattern. However, this change in firing pattern was accompanied by a significant rise in the frequency of membrane potential oscillations. Notably, the responses to thalamic stimulation were fully abolished by blocking metabotropic glutamate 1 (mGlu1) receptor subtype, whereas both acetylcholine and dopamine receptor antagonists were ineffective. Our findings demonstrate that cortical and thalamic glutamatergic input differently modulate FSIs firing activity through specific intrinsic and synaptic properties, exerting a powerful influence on striatal outputs.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- University of Rome “Tor Vergata”, Dept. of Systems Medicine, via Montpellier 1 -00133, Rome
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Giulia Ponterio
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Georgia Mandolesi
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Paola Bonsi
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Antonio Pisani
- University of Rome “Tor Vergata”, Dept. of Systems Medicine, via Montpellier 1 -00133, Rome
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| |
Collapse
|
198
|
Vitale C, Marcelli V, Abate T, Pianese A, Allocca R, Moccia M, Spina E, Barone P, Santangelo G, Cavaliere M. Speech discrimination is impaired in parkinsonian patients: Expanding the audiologic findings of Parkinson's disease. Parkinsonism Relat Disord 2015; 22 Suppl 1:S138-43. [PMID: 26421391 DOI: 10.1016/j.parkreldis.2015.09.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/13/2015] [Accepted: 09/19/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Hearing impairment (HI) has been previously demonstrated in patients with Parkinson's disease (PD). Pure Tone Audiometry (PTA) gives no information about patients' ability to hear and understand speech. To find out hearing ability and speech discrimination of PD patients, we expanded audiological evaluation by means of speech audiometry (SA). PATIENTS AND METHODS We screened a series of consecutive PD patients. Severity of motor symptoms and staging were measured by the UPDRS-III and the H&Y scales. Audiometric evaluation consisted of a standardized audiological examination, PTA and SA. Healthy age- and sex-matched subjects were selected as controls. RESULTS 45 PD patients and 45 healthy controls were enrolled. PTA confirmed our previous finding of high-frequency HI in PD patients. The mean values for the Speech Recognition Threshold were higher in PD patients as compared with controls. PD patients were more likely to have impaired speech discrimination profiles and higher disease stages. Neither the patients nor the controls showed a significant speech-tone dissociation and rollover phenomenon. CONCLUSION Our results confirmed sensorineural HI in PD patients. Moreover, SA showed impaired speech discrimination abilities in PD patients as compared with control group thus expanding the audiologic findings of PD.
Collapse
Affiliation(s)
- Carmine Vitale
- Department of Motor Sciences and Health, University of Naples "Parthenope", Naples, Italy; Institute of Diagnosis and Health, "Hermitage-Capodimonte", Naples, Italy.
| | - Vincenzo Marcelli
- Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples "Federico II", Naples, Italy
| | - Teresa Abate
- Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples "Federico II", Naples, Italy
| | - Annalisa Pianese
- Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberto Allocca
- Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples "Federico II", Naples, Italy
| | - Marcello Moccia
- Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples "Federico II", Naples, Italy
| | - Emanuele Spina
- Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples "Federico II", Naples, Italy
| | - Paolo Barone
- Neurodegenerative Diseases Center (CEMAND), University of Salerno, Salerno, Italy
| | - Gabriella Santangelo
- Institute of Diagnosis and Health, "Hermitage-Capodimonte", Naples, Italy; Department of Psychology, Second University of Naples, Caserta, Italy
| | - Michele Cavaliere
- Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
199
|
Pflibsen L, Stang KA, Sconce MD, Wilson VB, Hood RL, Meshul CK, Mitchell SH. Executive function deficits and glutamatergic protein alterations in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci Res 2015; 93:1849-64. [PMID: 26332770 DOI: 10.1002/jnr.23638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022]
Abstract
Changes in executive function are at the root of most cognitive problems associated with Parkinson's disease. Because dopaminergic treatment does not necessarily alleviate deficits in executive function, it has been hypothesized that dysfunction of neurotransmitters/systems other than dopamine (DA) may be associated with this decrease in cognitive function. We have reported decreases in motor function and dopaminergic/glutamatergic biomarkers in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinson's mouse model. Assessment of executive function and dopaminergic/glutamatergic biomarkers within the limbic circuit has not previously been explored in our model. Our results show progressive behavioral decline in a cued response task (a rodent model for frontal cortex cognitive function) with increasing weekly doses of MPTP. Although within the dorsolateral (DL) striatum mice that had been given MPTP showed a 63% and 83% loss of tyrosine hydroxylase and dopamine transporter expression, respectively, there were no changes in the nucleus accumbens or medial prefrontal cortex (mPFC). Furthermore, dopamine-1 receptor and vesicular glutamate transporter (VGLUT)-1 expression increased in the mPFC following DA loss. There were significant MPTP-induced decreases and increases in VGLUT-1 and VGLUT-2 expression, respectively, within the DL striatum. We propose that the behavioral decline following MPTP treatment may be associated with a change not only in cortical-cortical (VGLUT-1) glutamate function but also in striatal DA and glutamate (VGLUT-1/VGLUT-2) input.
Collapse
Affiliation(s)
- Lacey Pflibsen
- Research Services, VA Medical Center/Portland, Portland, Oregon
| | - Katherine A Stang
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Vanessa B Wilson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Rebecca L Hood
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Charles K Meshul
- Research Services, VA Medical Center/Portland, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon.,Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon.,Department of Psychiatry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
200
|
New neurons in the adult striatum: from rodents to humans. Trends Neurosci 2015; 38:517-23. [PMID: 26298770 DOI: 10.1016/j.tins.2015.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023]
Abstract
Most neurons are generated during development and are not replaced during adulthood, even if they are lost to injury or disease. However, it is firmly established that new neurons are generated in the dentate gyrus of the hippocampus of almost all adult mammals, including humans. Nevertheless, many questions remain regarding adult neurogenesis in other brain regions and particularly in humans, where standard birth-dating methods are not generally feasible. Exciting recent evidence indicates that calretinin-expressing interneurons are added to the adult human striatum at a substantial rate. The role of new neurons is unknown, but studies in rodents will be able to further elucidate their identity and origin and then we may begin to understand their regulation and function.
Collapse
|