151
|
Abstract
Expression of BMP- and GDF-related factors within the transforming growth factor-beta (TGF-beta) superfamily was examined in the rat and mouse brain by in situ hybridization. Strong signals were obtained in neurons for GDF-1 and GDF-10. GDF-1 is expressed at postnatal day 6 in the cerebral cortex, hippocampal CA1 through CA3 neurons, while only weakly expressed by cells in the dentate gyrus. Granule cells and neurons in the polymorph layer of the dentate gyrus are GDF-1-positive, as are the majority of neurons in the cortex. GDF-10 shows a distinct pattern of expression: At P6, strong labelling was seen in the superficial layers of cortex, notably in the posterior cingulate cortex, and in CA3 and dentate gyrus. From postnatal day 21, GDF-1 expression is strong in the hippocampus, cortex, and thalamic nuclei, while GDF-10 expression becomes restricted to the granule cell layer in the dentate gyrus. In contrast, OP-1 expression is restricted throughout development to cells of the medial habenular nucleus, choroid plexus, and leptomeninges. The markedly different expression patterns of these BMPs suggest they serve separate functions in the brain.
Collapse
Affiliation(s)
- S Söderström
- Department of Neuroscience, Biomedical Center, Uppsala University, Sweden
| | | |
Collapse
|
152
|
Kristufek D, Stocker E, Boehm S, Huck S. Somatic and prejunctional nicotinic receptors in cultured rat sympathetic neurones show different agonist profiles. J Physiol 1999; 516 ( Pt 3):739-56. [PMID: 10200422 PMCID: PMC2269288 DOI: 10.1111/j.1469-7793.1999.0739u.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The release of [3H]-noradrenaline ([3H]-NA) in response to nicotinic acetylcholine receptor (nAChR) agonists was compared with agonist-induced currents in cultured rat superior cervical ganglion (SCG) neurones. 2. [3H]-NA release in response to high concentrations of nicotinic agonists was reduced, but not fully inhibited, by the presence of either tetrodotoxin (TTX) or Cd2+ to block voltage-gated Na+ or Ca2+ channels, respectively. We used the component of transmitter release that remained in the presence of these substances (named TTX- or Cd2+-insensitive release) to pharmacologically characterize nAChRs in proximity to the sites of vesicular exocytosis (prejunctional receptors). Prejunctional nAChRs were activated by nicotinic agonists with a rank order of potency of dimethylphenylpiperazinium iodide (DMPP) > nicotine > cytisine > ACh, and with EC50 values ranging from 22 microM (DMPP) to 110 microM (ACh). 3. [3H]-NA release in response to low concentrations of nAChR agonists was fully inhibited by the presence of either TTX or Cd2+ (named TTX- or Cd2+-sensitive release). TTX-sensitive release was triggered by nicotinic agonists with a rank order of potency of DMPP > cytisine approximately nicotine approximately ACh, which due to its similarity to TTX-insensitive release indicates that it might also be triggered by prejunctional-type nAChRs. The EC50 values for TTX (Cd2+)-sensitive release were less than 10 microM for all four agonists. 4. By contrast to transmitter release, somatic nAChRs as seen by patch clamp recordings were most potently activated by cytisine, with a rank order of potency of cytisine > nicotine approximately DMPP > ACh. EC50 values for the induction of currents exceeded 20 microM for all four agonists. 5. The nicotinic antagonist mecamylamine potently inhibited all transmitter release in response to nicotine. alpha-Bungarotoxin (alpha-BuTX) was, on the other hand, without significant effect on nicotine-induced TTX-insensitive release. The competitive antagonist dihydro-beta-erythroidine (DHbetaE) caused rightward shifts of the dose-response curves for both TTX-sensitive and TTX-insensitive transmitter release as well as for currents in response to nicotine, with pA2 values ranging from 4.03 to 4.58. 6. Due to clear differences in the pharmacology of agonists we propose that nAChRs of distinct subunit composition are differentially targeted to somatic or axonal domains.
Collapse
Affiliation(s)
- D Kristufek
- Department of Neuropharmacology, University of Vienna, Wahringerstrasse 13A, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
153
|
Lee KJ, Jessell TM. The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 1999; 22:261-94. [PMID: 10202540 DOI: 10.1146/annurev.neuro.22.1.261] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of distinct classes of neurons at defined positions within the developing vertebrate nervous system depends on inductive signals provided by local cell groups that act as organizing centers. Genetic and embryological studies have begun to elucidate the processes that control the pattern and identity of neuronal cell types. Here we discuss the cellular interactions and molecular mechanisms that direct neuronal cell fates in the dorsal half of the vertebrate central nervous system. The specification of dorsal neuronal cell fates appears to depend on a cascade of inductive signals initiated by cells of the epidermal ectoderm that flank the neural plate and propagated by roof plate cells within the neural tube. Members of the transforming growth factor-beta (TGF beta) family of secreted proteins have a prominent role in mediating these dorsalizing signals. Additional signals involving members of the Wnt and fibroblast growth factor (FGF) families may also contribute to the proliferation and differentiation of dorsal neuronal cell types.
Collapse
Affiliation(s)
- K J Lee
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
154
|
Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons. J Neurosci 1999. [PMID: 10066264 DOI: 10.1523/jneurosci.19-06-02113.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic retraction occurs in many regions of the developing brain and also after neural injury. However, the molecules that regulate this important regressive process remain largely unknown. Our data indicate that leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) cause sympathetic neurons to retract their dendrites in vitro, ultimately leading to an approximately 80% reduction in the size of the arbor. The dendritic retraction induced by LIF exhibited substantial specificity because it was not accompanied by changes in cell number, in the rate of axonal growth, or in the expression of axonal cytoskeletal elements. An antibody to gp130 blocked the effects of LIF and CNTF, and both cytokines induced phosphorylation and nuclear translocation of stat3. Moreover, addition of soluble interleukin-6 (IL-6) receptor to the medium endowed IL-6 with the ability to cause dendritic regression. These data indicate that ligands activating the gp130 pathway have the ability to profoundly alter neuronal cell shape and polarity by selectively causing the retraction of dendrites.
Collapse
|
155
|
Ramírez-Ordóñez R, Barreto-Estrada JL, García-Arrarás JE. Growth factors effects on the expression of morphological and biochemical properties of avian embryonic sympathetic cells. Emphasis on NGF. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:27-36. [PMID: 10209239 DOI: 10.1016/s0165-3806(99)00012-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth factors are known to be important agents in the differentiation and modulation of neuronal phenotypes. We have analyzed the effect of several growth factors on the modulation of morphological and biochemical properties of avian embryonic sympathetic neurons. The growth factors studied include: nerve growth factor (NGF), neurotrophin-3 (NT-3), brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF) and transforming growth factor beta-1 (TGF-beta1). Morphological properties were analyzed by immunocytochemistry to neurofilament proteins and visualization of fibers after glyoxylic acid-induced fluorescence. Biochemical modulation was determined by radioimmunoanalysis for the peptides enkephalin (ENK), somatostatin (SS) and neuropeptide Y (NPY) and by HPLC-electrochemistry quantification of catecholamines. Similar to previous results using chromaffin cell cultures [R. Ramírez-Ordóñez, J.E. García-Arrarás, Peptidergic, catecholaminergic and morphological properties of avian chromaffin cells are modulated distinctively by growth factors, Dev. Brain Res., 87 (1995) 160-171], we found a dissociation in the modulation of biochemical and morphological properties, however, the effect of specific factors differed between the chromaffin and sympathetic cultures. We have focused on NGF to analyze its effect on the sympathetic peptide phenotypes and its lack of an effect on the chromaffin cell peptide phenotypes. The results presented here, establish interesting differences between chromaffin cells and sympathetic neurons that are of importance to studies of cell lineage and differentiation.
Collapse
Affiliation(s)
- R Ramírez-Ordóñez
- Department of Biology, University of Puerto Rico, Box 23360, Río Piedras Campus, Río Piedras, Puerto Rico 00931-3360, USA
| | | | | |
Collapse
|
156
|
Abstract
ATP is a fast transmitter in sympathetic ganglia and at the sympathoeffector junction. In primary cultures of dissociated rat superior cervical ganglion neurons, ATP elicits noradrenaline release in an entirely Ca2+-dependent manner. Nevertheless, ATP-evoked noradrenaline release was only partially reduced (by approximately 50%) when either Na+ or Ca2+ channels were blocked, which indicates that ATP receptors themselves mediated transmembrane Ca2+ entry. An "axonal" preparation was obtained by removing ganglia from explant cultures, which left a network of neurites behind; immunostaining for axonal and dendritic markers revealed that all of these neurites were axons. In this preparation, ATP raised intraaxonal Ca2+ and triggered noradrenaline release, and these actions were not altered when Ca2+ channels were blocked by Cd2+. Hence, Ca2+-permeable ATP-gated ion channels, i.e., P2X purinoceptors, are located at presynaptic sites and directly mediate Ca2+-dependent transmitter release. These presynaptic P2X receptors displayed a rank order of agonist potency of ATP >/= 2-methylthio-ATP > ATPgammaS >> alpha,beta-methylene-ATP approximately beta,gamma-methylene-L-ATP and were blocked by suramin or PPADS. ATP, 2-methylthio-ATP, and ATPgammaS also evoked inward currents measured at neuronal somata, but there these agonists were equipotent. Hence, presynaptic P2X receptors resemble the cloned P2X2 subtype, but they appear to differ from somatodendritic P2X receptors in terms of agonist sensitivity. Suramin reduced depolarization-evoked noradrenaline release by up to 20%, when autoinhibitory mechanisms were inactivated by pertussis toxin. These results indicate that presynaptic P2X purinoceptors mediate a positive, whereas G-protein-coupled P2Y purinoceptors mediate a negative, feedback modulation of sympathetic transmitter release.
Collapse
|
157
|
Reiriz J, Espejo M, Ventura F, Ambrosio S, Alberch J. Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(19990205)38:2<161::aid-neu1>3.0.co;2-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
158
|
Mehler MF, Kessler JA. Cytokines in brain development and function. ADVANCES IN PROTEIN CHEMISTRY 1999; 52:223-51. [PMID: 9917922 DOI: 10.1016/s0065-3233(08)60437-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M F Mehler
- Department of Neurology, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
159
|
Granholm AC, Sanders LA, Ickes B, Albeck D, Hoffer BJ, Young DA, Kaplan PL. Effects of osteogenic protein-1 (OP-1) treatment on fetal spinal cord transplants to the anterior chamber of the eye. Cell Transplant 1999; 8:75-85. [PMID: 10338277 DOI: 10.1177/096368979900800116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury represents a serious medical problem, and leads to chronic conditions that cannot be reversed at present. It has been suggested that trophic factor treatment may reduce the extent of damage and restore damaged neurons following the injury. We have tested the effects of osteogenic protein-1 (OP-1, also known as BMP-7), a member of the transforming growth factor-beta superfamily of growth factors, on developing spinal cord motor neurons in an intraocular transplantation model. Embryonic day 13 or 18 spinal cord tissue was dissected, incubated with OP-1 or vehicle, and injected into the anterior chamber of the eye of adult rats. Injections of additional doses of OP-1 were performed weekly, and the overall growth of the grafted tissue was assessed noninvasively. Four to 6 weeks postgrafting, animals were sacrificed and the tissue was processed for immunohistochemistry using antibodies directed against choline acetyltransferase, neurofilament, and the dendritic marker MAP-II. We found that OP-1 treatment stimulated overall growth of spinal cord tissue when dissected from embryonic day 18, but not from embryonic day 13. OP-1 treatment increased cell size and extent of cholinergic markers in motor neurons from both embryonic stages. The neurons also appeared to have a more extensive dendritic network in OP-1-treated grafts compared to controls. These findings indicate that OP-1 treatment may reduce the extent of axotomy-induced cell death of motor neurons, at least in the developing spinal cord.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
160
|
Lin SZ, Hoffer BJ, Kaplan P, Wang Y. Osteogenic protein-1 protects against cerebral infarction induced by MCA ligation in adult rats. Stroke 1999; 30:126-33. [PMID: 9880400 DOI: 10.1161/01.str.30.1.126] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Osteogenic protein-1 (OP1) not only possesses trophic activity on bone tissue but also influences neuronal survival and differentiation in vitro. Specific receptors for OP1 are present in brain and spinal cord and can be upregulated during cerebral contusion. OP1 is a member of the transforming growth factor-beta superfamily, several of whose members possess neuroprotective activity. In this study, the neuroprotective effect of OP1 in cerebral ischemia was evaluated in adult animals. METHODS Adult male Sprague-Dawley rats were anesthetized with chloral hydrate. OP1 or vehicle was administered intracortically or intracerebroventricularly to the rats. Thirty minutes, 24 hours, or 72 hours after OP1 injection, the right middle cerebral artery (MCA) was ligated for 90 minutes. Twenty-four hours after reperfusion, animals were tested for motor behavior. The animals were subsequently anesthetized with urethane and perfused intracardially with saline. Brain tissue was removed, sliced, and incubated with 2% triphenyltetrazolium chloride to localize the area of infarction. RESULTS Only animals pretreated with OP1 24 hours before MCA ligation showed a reduction in motor impairment. OP1, given 30 minutes or 72 hours before MCA ligation, did not reduce cortical infarction. In contrast, pretreatment with OP1 24 hours before MCA ligation significantly attenuated the volume of infarction in the cortex, in agreement with the behavioral findings. CONCLUSIONS Intracerebral administration of OP1 24 hours before MCA ligation reduces ischemia-induced injury in the cerebral cortex.
Collapse
Affiliation(s)
- S Z Lin
- Department of Pharmacology and Neurosurgery, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
161
|
Identification of a signaling pathway activated specifically in the somatodendritic compartment by a heparan sulfate that regulates dendrite growth. J Neurosci 1998. [PMID: 9822735 DOI: 10.1523/jneurosci.18-23-09751.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In two earlier reports we demonstrated that natural heparan sulfate, but not dermatan or chondroitin sulfate glycosaminoglycans, stimulate axonal elongation and inhibit dendrite growth in vitro (Lafont et al., 1992). The latter specific effect on dendrite elongation was reproduced by chemically synthesized heparan sulfates and by SR 80037A, a purified sulfated and hexanoylated heparin fragment (Lafont et al., 1994). Adding radioactive SR 80037A to purified neurons demonstrated the existence, at the neuronal surface, of heparan sulfate-specific and saturable binding sites, suggesting that SR 80037A activates specific signal transduction pathways. In the present study, using rat or mouse neurons from the embryonic cortex, we show that SR 80037A signaling involves one or several G-coupled receptor or receptors, small GTPases rhoA and/or rhoC, and one or several PKCs. We also demonstrate that the rapid soma rounding elicited by SR 80037A does not require protein synthesis but that the long-term effect on dendrite initiation requires protein synthesis in a short period after the addition of the heparan sulfate. Finally, by preparing membranes from the somatodendritic or axonal compartments we demonstrate that the identified signaling pathway is activated by SR 80037A primarily in the somatodendritic compartment and is not sensitive to the addition of a dermatan sulfate glycosaminoglycan that does not induce the axonal phenotype by impairing dendrite initiation and elongation.
Collapse
|
162
|
TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci 1998. [PMID: 9786964 DOI: 10.1523/jneurosci.18-21-08559.1998] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotrophins cooperate with neural activity to modulate CNS neuronal survival and dendritic differentiation. In a previous study, we demonstrated that a critical balance of neurotrophin and neural activity is required for Purkinje cell survival in cocultures of purified granule and Purkinje cells (Morrison and Mason, 1998). Here we investigate whether TrkB signaling regulates dendrite and spine development of Purkinje cells. BDNF treatment of purified Purkinje cells cultured alone did not elicit formation of mature dendrites or spines. In cocultures of granule and Purkinje cells, however, continuous treatment with BDNF over a 2 week postnatal culture period increased the density of Purkinje cell dendritic spines relative to controls without causing a shift in the proportions of headed and filopodia-like spines. The increase in spine number was blocked by adding TrkB-IgG to the medium together with BDNF. Although BDNF alone did not consistently modify the morphology of dendritic spines, treatment with TrkB-IgG alone yielded spines with longer necks than those in control cultures. None of these treatments altered Purkinje cell dendritic complexity. These analyses reveal a role for TrkB signaling in modulating spine development, consistent with recently reported effects of neurotrophins on synaptic function. Moreover, spine development can be uncoupled from dendrite outgrowth in this reductionist system of purified presynaptic and postsynaptic neurons.
Collapse
|
163
|
Abstract
Neocortical neurons begin to differentiate soon after they are generated by mitoses at the surface of the ventricular zone (VZ). We provide evidence here that bone morphogenetic protein (BMP) triggers neuronal differentiation of neocortical precursors within the VZ. In cultures of dissociated neocortical neuroepithelial cells, BMPs increase the number of MAP-2- and TUJ1-positive cells within 24 hr of treatment. In explant cultures, BMP-4 treatment leads to an increase in the number of TUJ1-positive cells within the ventricular zone. Furthermore, truncated, dominant-negative, BMP type I receptor, introduced into neocortical precursors by retrovirus-mediated gene transfer, blocks neurite elaboration and migration out of the VZ. Finally, immunocytochemistry indicates that BMP protein is present at the VZ surface. Together, these results indicate that BMP protein is present within the VZ, that BMP is capable of promoting neuronal differentiation, and that signaling through BMP receptors triggers neuronal precursors to differentiate and migrate out of the VZ.
Collapse
|
164
|
Tamaki K, Souchelnytskyi S, Itoh S, Nakao A, Sampath K, Heldin CH, ten Dijke P. Intracellular signaling of osteogenic protein-1 through Smad5 activation. J Cell Physiol 1998; 177:355-63. [PMID: 9766532 DOI: 10.1002/(sici)1097-4652(199811)177:2<355::aid-jcp17>3.0.co;2-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Smad proteins play pivotal roles in the intracellular signaling of the multifunctional transforming growth factor-beta (TGF-beta) family members downstream of serine/threonine kinase type I and type II receptors. Smad2 and Smad3 are specific mediators of TGF-beta and activin, while Smadl and Smad5 are involved in bone morphogenetic protein-2 (BMP-2) and BMP-4 signaling. Here we report that osteogenic protein-1 (OP-1), also termed BMP-7, binds predominantly to BMPR-IB in the rat osteoprogenitor-like cell line, ROB-C26. Smad1, Smad5, and Smad8, but not Smad2 and Smad3, were found to stably interact with the kinase-deficient BMPR-IB after it was phosphorylated by the BMPR-II kinase. In ROB-C26 cells, which express Smad2, Smad3, Smad4, and Smad5, OP-1 was found to stimulate the phosphorylation of Smad5. Whereas transfection of wild-type Smad5 enhanced the OP-1-induced response, transfection of wild-type Smad2 had no effect on OP-1 signaling. A Smad5-2SA mutant, in which the two most carboxy-terminal serine residues were mutated to alanine residues, was found to act as a dominant negative inhibitor of OP-1-induced responses upon its transfection into various cell types, including ROB-C26 cells, in contrast to ectopic expression of a Smad2-2SA mutant which was without effect. Smad5, therefore, is a key component in the intracellular signaling of OP-1.
Collapse
Affiliation(s)
- K Tamaki
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
165
|
Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J Neurosci 1998. [PMID: 9570788 DOI: 10.1523/jneurosci.18-10-03563.1998] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Granule neurons, presynaptic afferents of Purkinje cells, are potent regulators of Purkinje cell development. Purified Purkinje cells survive and differentiate poorly, whereas coculture with granule neurons enhances their survival and dendritic development. Here we investigate the role of neurotrophins in granule-Purkinje cell interactions. BDNF or NT-4 improves, but NT-3 or CNTF reduces, survival of isolated Purkinje cells. When granule neurons are present, however, BDNF or NT-4 treatment leads to Purkinje cell loss. This decrease is overcome by anti-BDNF or TrkB-IgG-blocking reagents or by CNQX, a non-NMDA glutamate receptor antagonist. Furthermore, BDNF increases the spine density on the surviving Purkinje cells. These results suggest that Purkinje cell survival and differentiation are context-dependent and require a balance between neurotrophin- and activity-dependent signaling.
Collapse
|
166
|
Affiliation(s)
- T Sakou
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagoshima University, Japan.
| |
Collapse
|
167
|
Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J Neurosci 1998. [PMID: 9547239 DOI: 10.1523/jneurosci.18-09-03314.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Characterization of bone morphogenetic protein receptor (BMPR) expression during development is necessary for understanding the role of these factors during neural maturation. In this study, in situ hybridization analyses demonstrate that BMP-specific type I (BMPR-IA and BMPR-IB) and type II (BMPR-II) receptor mRNAs are expressed at significant levels in multiple regions of the CNS, cranial ganglia, and peripheral sensory and autonomic ganglia during the embryonic and neonatal periods. All three BMP receptor subunits are expressed within periventricular generative zones. BMPR-IA is more abundant than the other receptor subtypes, with widespread expression in the brain, cranial ganglia, and peripheral ganglia. By contrast, BMPR-IB mRNA displays significant expression within more restricted regions, including the anterior olfactory nuclei. BMPR-II mRNA exhibits peak expression within the cerebellar Purkinje cell layer and the hippocampus, as well as within cranial ganglia. The distribution of BMP receptors within large neurons in adult dorsal root ganglia suggested a possible role in regulating expression of the neurotrophin receptor trkC. This hypothesis was tested in explant cultures of embryonic day 15 (E15) and postnatal day 1 (P1) sympathetic superior cervical ganglia (SCG). Treatment of the E15 or the P1 SCG with BMP-2 induced expression of trkC mRNA and responsiveness of sympathetic neurons to NT3 as measured by neurite outgrowth. The pattern of expression of BMP receptors in embryonic brain suggests several potentially novel areas for further developmental analysis and supports numerous recent studies that indicate that BMPs have a broad range of cellular functions during neural development and in adult life.
Collapse
|
168
|
Guo X, Rueger D, Higgins D. Osteogenic protein-1 and related bone morphogenetic proteins regulate dendritic growth and the expression of microtubule-associated protein-2 in rat sympathetic neurons. Neurosci Lett 1998; 245:131-4. [PMID: 9605473 DOI: 10.1016/s0304-3940(98)00192-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteogenic protein-1 (OP-1) is expressed in the developing nervous system and it has been found to induce dendritic growth in sympathetic neurons. To further characterize this phenomenon, the effects of OP-1 were compared to those of other members of the bone morphogenetic protein (BMP) family of growth factors. Recombinant human OP-1, BMP-6, BMP-2 and the Drosophila 60A protein induced dendritic growth in rat sympathetic neurons in a concentration-dependent manner with EC50-values of 1.8, 1.0, 1.7 and 2.7 ng/ml, respectively. In contrast, BMP-3 and cartilage-derived morphogenetic protein-2 (CDMP-2) as well as other classes of growth factors were inactive at concentrations up to 50 ng/ml. The dendritic growth induced by OP-1, BMP-6, BMP-2 and 60A was accompanied by increased expression of microtubule-associated protein-2 (MAP2) without changes in the expression of the phosphorylated forms of the M and H neurofilament subunits. These results suggest that several members of the BMP family have the capacity to regulate the morphological development of sympathetic neurons and that they may act by induction of specific cytoskeletal proteins.
Collapse
Affiliation(s)
- X Guo
- Department of Pharmacology and Toxicology, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
169
|
Varley JE, McPherson CE, Zou H, Niswander L, Maxwell GD. Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Dev Biol 1998; 196:107-18. [PMID: 9527884 DOI: 10.1006/dbio.1998.8853] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work has demonstrated that the bone morphogenetic proteins (BMP)-2, BMP-4, and BMP-7 can promote the development of tyrosine hydroxylase (TH)-positive and catecholamine-positive cells in quail trunk neural crest cultures. In the present work, we showed that mRNA for the type I bone morphogenetic protein receptor IA (BMPR-IA) was present in neural crest cells grown in the absence or presence of BMP-4. We have used a replication-competent avian retrovirus to express a constitutively active form of BMPR-IA in neural crest cells in culture. Cultures grown in the absence of BMP-4 and infected with retrovirus containing a construct encoding this activated BMPR-IA developed five times more TH-immunoreactive and catecholamine-positive cells than uninfected control cultures or cultures infected with virus bearing the wild-type BMPR-IA cDNA. The number of TH-positive cells which developed was dependent on the concentration of virus bearing the activated receptor cDNA used in the experiments. Most TH-positive cells which developed also contained viral p19 protein. Total cell number was not affected by infection with the virus containing the activated receptor construct. The effect of the activated receptor was phenotype-specific since infection with the virus bearing the activated receptor cDNA did not alter the number or morphology of microtubule-associated protein (MAP)2-immunoreactive cells, which are distinct from the TH-positive cell population. These findings are consistent with the observation that MAP2-positive cells are not affected by the presence of BMP-4. Taken together, these results suggest that activity of BMPR-IA is an important element in promoting the development of the adrenergic phenotype in neural crest cultures.
Collapse
Affiliation(s)
- J E Varley
- Department of Anatomy, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | | | | | | | | |
Collapse
|
170
|
Axonal versus dendritic outgrowth is differentially affected by radial glia in discrete layers of the retina. J Neurosci 1998. [PMID: 9465002 DOI: 10.1523/jneurosci.18-05-01774.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation of neural cell polarity defined by oriented extension of axons and dendrites is a crucial event during the development of the nervous system. Ganglion cells of the chicken retina extend axons exclusively into the inner retina, whereas their dendrites grow into the outer retina. To analyze guidance cues for specific neurite extension, novel in vitro systems were established. Ganglion cells were purified by enzymatically facilitated detachment of the ganglion cell layer. A newly developed retrograde labeling technique and the expression analysis of the cell type-specific 2A1 antigen were used to monitor ganglion cell purification. In highly purified ganglion cells explanted onto retinal cryosections (cryoculture), axon formation was induced when the cells were positioned on the inner retina. In contrast, on outer layers of the developing retina dendritic outgrowth was prevalent. Because radial glia have been demonstrated to be instructive in neuritogenesis, distinct glial cell compartments located in inner and outer retina, respectively, were isolated for functional assays. Glial end feet were purified by a physical detachment technique. Glial somata were purified by complement mediated cytolysis of all nonglial cells. When ganglion cells were cultured on different glial compartments, axon formation occurred on end feet but not on glial somata. In striking contrast, on glial somata dendrites were formed. The data support the notion that ganglion cell polarity is affected by the retinal microenvironment, which in turn is possibly influenced by radial glia, being themselves polarized.
Collapse
|
171
|
Ling ZD, Potter ED, Lipton JW, Carvey PM. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol 1998; 149:411-23. [PMID: 9500954 DOI: 10.1006/exnr.1998.6715] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat progenitor cells from the germinal region of the fetal mesencephalon were isolated and expanded in media containing the mitogen epidermal growth factor. These cells remained mitotically active (up to 8 months), were immunoreactive for the progenitor cell marker nestin, and were readily infected with the BAG alpha retrovirus. When incubated in complete media containing serum in poly-L-lysine-coated plates, these cells spontaneously converted to neurons and glia but rarely expressed the dopamine (DA) neuron phenotype. Nineteen different cytokines were screened for their ability to induce the DA phenotype and only interleukin (IL)-1 was found to induce the expression of the DA neuron marker tyrosine hydroxylase (TH). The addition of IL-1, IL-11, leukemia inhibitory factor (LIF), and glial cell line-derived neurotrophic factor (GDNF) were found to further increase the number of TH immunoreactive (TH-ir) cells. The addition of mesencephalic membrane fragments and striatal culture-conditioned media along with the cytokine mixture induced the expression of morphologically mature TH-ir cells that were also immunoreactive for dopa-decarboxylase, the DA transporter, and DA itself. The DA neuron cell counts were approximately 20-25% of the overall cell population and 50% of the neurofilament population. Astrocytes and oligodendrocytes were also present. These data suggest that hematopoietic cytokines participate in the development of the DA neuron phenotype. Parallels between the function of hematopoietic cytokines in bone marrow and the central nervous system may exist and be useful in understanding the factors which regulate the differentiation of neurons in the brain.
Collapse
Affiliation(s)
- Z D Ling
- Department of Pharmacology, Rush-Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
172
|
Abstract
Transforming growth factors-beta (TGF-betas), activins, and bone morphogenetic proteins (BMPs) comprise an evolutionarily well-conserved group of proteins controlling a number of cell differentiation, cell growth, and morphogentic processes during development. The superfamily of TGFbeta-related genes include over 25 members in mammals several of which are expressed in the growing nervous system and serve important functions in regionalizing the early CNS. Cultured nerve cells show different responses to these factors. Recent developments have revealed that TGFbetas, activins, and BMPs selectively signal to the responding cells via different hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. The adult brain exhibits specific expression patterns of some of these receptors suggesting neuronal functions not only during development but also in the mature brain. In particular, the brain is expressing high levels of bone morphogenetic protein receptor type II (BMPR-II), activin receptor type I (ActR-I), and activin receptor type IIA (ActR-II). This indicates that osteogenic protein-1 (OP-1/BMP-7), BMP-2, and BMP-4 as well as activins may serve functions for brain neurons. Expression of the receptors partially overlaps in populations of neurons and has been shown to be regulated by brain lesions. This suggests that brain neurons may use receptors BMPR-II and ActR-I to sense the presence of BMPs. This may form a system parallel to the neurotrophin Trk tyrosine kinase receptors regulating neuroplasticity and brain repair. The presence of BMPs in brain is not well studied, but preliminary in situ data indicate that the BMP relatives growth/differentiation factor (GDF)-1 and GDF-10 are distinctly but differentially expressed at high levels in neurons expressing BMPR-II and ActR-I. The receptors mediating responses to these two GDFs remain, however, to be defined. Finally, recent data show that the signal from the activated type I serine/threonine kinase receptor is directly transduced to the nucleus by Smad proteins that become incorporated into transcriptional complexes. Preliminary in situ hybridization observations demonstrate the existence of different Smad mRNAs. It is concluded that BMPs and their signaling systems may comprise a novel pathway for control of neural activity and offer means for pharmacological interventions rescuing brain neurons.
Collapse
Affiliation(s)
- T Ebendal
- Department of Developmental Neuroscience, Uppsala University, Sweden.
| | | | | |
Collapse
|
173
|
Abstract
In the mammalian central nervous system (CNS), each neuron receives signals from other neurons through numerous synapses located on its cell body and dendrites. Molecules involved in the postsynaptic signaling pathways need to be targeted to the appropriate subcellular domains at the right time during both synaptogenesis and the maintenance of synaptic functions. The presence of messenger RNAs (mRNAs) in dendrites offers a mechanism for synthesizing the appropriate molecules at the right place in response to local extracellular stimuli. Several dendritic mRNAs have been identified, and the mechanisms controlling their localization are beginning to be understood. In many cell types, controls on mRNA stability play an important role in the regulation of gene expression, but it is unclear to what extent this type of control operates in dendrites. The regulation of protein synthesis and the control of mRNA stability in dendrites could have important implications for neuronal function.
Collapse
Affiliation(s)
- F B Gao
- Medical Research Council Developmental Neurobiology Programme, University College London, United Kingdom
| |
Collapse
|
174
|
Kobayashi M, Fujii M, Kurihara K, Matsuoka I. Bone morphogenetic protein-2 and retinoic acid induce neurotrophin-3 responsiveness in developing rat sympathetic neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:206-17. [PMID: 9473674 DOI: 10.1016/s0169-328x(97)00291-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expression of the receptor tyrosine kinase, Trk, determines the specificity of neurotrophin responsiveness of different neuronal populations during development. Recently it has become apparent that sympathetic neurons of rat superior cervical ganglia (SCG) acquire sensitivity to neurotrophin-3 (NT3) before they become dependent on the target-derived nerve growth factor (NGF) for their survival by sequential induction of TrkC and TrkA. The mechanism controlling the expression of TrkC as well as the source of NT3 at their initial developmental stage has, however, not been clarified. Here we show that the treatment of the perinatal rat SCG neurons which express high levels of trkA mRNA with bone morphogenetic protein-2 (BMP2) induced the expression of trkC mRNA. Induction of the functional TrkC receptor by BMP2 was confirmed by the enhancement of the survival response of these neurons to NT3. Treatment of SCG neurons with retinoic acid (RA) promoted the effect of BMP2 on the induction of trkC mRNA levels. BMP2 treatment, on the other hand, promoted the effect of RA on the suppressions of trkA mRNA levels and the NGF-dependent survival of the SCG neurons. Furthermore, BMP2/RA treatment induced the endogenous expression of NT3. These results indicate that specific environmental signals can regulate neurotrophin responsiveness of developing sympathetic neurons by differential alteration of the trk and neurotrophin expressions.
Collapse
Affiliation(s)
- M Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo 060, Japan
| | | | | | | |
Collapse
|
175
|
Guo X, Metzler-Northrup J, Lein P, Rueger D, Higgins D. Leukemia inhibitory factor and ciliary neurotrophic factor regulate dendritic growth in cultures of rat sympathetic neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 104:101-10. [PMID: 9466712 DOI: 10.1016/s0165-3806(97)00142-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytokines such as leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) have previously been shown to regulate neurotransmitter and neuropeptide synthesis in sympathetic neurons [P.H. Patterson, Leukemia inhibitory factor, a cytokine at the interface between neurobiology and immunology, Proc. Natl. Acad. Sci. USA 91 (1994) 7833-7835]. We considered the possibility that these agents may also affect the development of neuronal cell shape. Intracellular dye injection and immunocytochemistry were used to assess dendritic growth in cultures of perinatal rat sympathetic neurons and the effects of LIF and CNTF were compared to those of osteogenic protein-1 (OP-1), a growth factor that induces profuse dendritic growth in these neurons [P. Lein, M. Johnson, X. Guo, D. Rueger, D. Higgins, Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons, Neuron 15 (1995) 597-605]. Under control conditions, sympathetic neurons formed only axons. Exposure to either LIF or OP-1 stimulated dendritic growth, but the magnitude of the response to LIF was much less than that obtained with OP-1 with respect to both dendritic number and length. Simultaneous exposure to LIF and OP-1 resulted in dendritic growth equivalent to that observed in the presence of LIF alone, suggesting that LIF inhibits the response of neurons to OP-1. Both the stimulatory and inhibitory effects of LIF were mimicked by CNTF, but not by other growth factors. These data suggest that LIF and CNTF regulate dendritic development in a complex manner that is dependent on both the morphological state of the neuron and the presence of other growth factors. However, the net effect of exposure to these cytokines appears to be the production of a population of neurons with rudimentary arbors consisting of only one or two short dendrites.
Collapse
Affiliation(s)
- X Guo
- Department of Pharmacology and Toxicology, State University of New York, Buffalo 14214, USA
| | | | | | | | | |
Collapse
|
176
|
Wang RX, Limbird LE. Distribution of mRNA encoding three alpha 2-adrenergic receptor subtypes in the developing mouse embryo suggests a role for the alpha 2A subtype in apoptosis. Mol Pharmacol 1997; 52:1071-80. [PMID: 9415717 DOI: 10.1124/mol.52.6.1071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
alpha 2-Adrenergic receptors (alpha 2-ARs) respond to norepinephrine and epinephrine to mediate diverse physiological effects. Using in situ hybridization, the expression pattern of the mRNA encoding the three alpha 2-AR subtypes (alpha 2A, alpha 2B, and alpha 2C) was examined in the mouse embryo. The mRNA encoding the three subtypes was first detected at stage 9.5 days postcoitus (d.p.c.) for the alpha 2A-AR (coincident with norepinephrine availability), 11.5 d.p.c. for the alpha 2B-AR, and 14.5 d.p.c. for the alpha 2C-AR subtype. The mRNA encoding the alpha 2A-AR subtype shows both the earliest and the most widespread expression pattern, including developing stomach and cecum, many craniofacial regions and areas in the central nervous system. Strikingly, the alpha 2A-AR mRNA is expressed in the interdigital mesenchyme between stage 12.5 and 14.5 d.p.c. in parallel with digit separation, raising the possibility that the alpha 2A-AR might contribute to the apoptotic events underlying this process. To test whether alpha 2A-AR can signal apoptotic events, the alpha 2A-AR subtype was introduced into two mouse mesenchymal cell lines, C3H/10t1/2 and NIH-3T3; expression of the alpha 2A-AR correlated with accelerated apoptosis, as detected both by the TUNEL assay and the loss of cell viability. In contrast to the wide distribution of mRNA encoding the alpha 2A-AR subtype, the alpha 2B-AR mRNA was detected only in the developing liver and was most readily detectable between 11.5 and 14.5 d.p.c., when the liver is the principal site of hematopoiesis. The alpha 2C-AR mRNA is detected in the nasal cavity and cerebellar primordium only at > or = 14.5 d.p.c. These studies represent the first characterization of the temporal and spatial expressions of the alpha 2A-AR, alpha 2B-AR, and alpha 2C-AR subtypes during embryogenesis and provide important insights concerning the loci and possible roles of alpha 2-AR-mediated regulation of physiological processes during the developmental program.
Collapse
Affiliation(s)
- R X Wang
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
177
|
Abstract
The mechanisms that permit neurons to establish axons and dendrites involve an interplay between a cell's genetic program and signals in its environment. Recent experiments have identified some of the important extracellular molecules that regulate dendritic development and have furthered our understanding of the endogenous cell biological mechanisms that underlie protein sorting. Some of the signaling pathways that allow extracellular cues to regulate neuronal morphogenesis are also being elucidated.
Collapse
Affiliation(s)
- D Higgins
- State University of New York School of Medicine, Department of Pharmacology 102 Farber Hall, Buffalo, New York, 14214, USA.
| | | | | | | |
Collapse
|
178
|
Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW. Identification of a microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 1997; 138:833-43. [PMID: 9265650 PMCID: PMC2138050 DOI: 10.1083/jcb.138.4.833] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1997] [Revised: 06/10/1997] [Indexed: 02/05/2023] Open
Abstract
The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polarity orientation. During the development of the dendrite, a population of plus end-distal microtubules first appears, and these microtubules are subsequently joined by a population of oppositely oriented microtubules. Studies from our laboratory indicate that the latter microtubules are intercalated within the microtubule array by their specific transport from the cell body of the neuron during a critical stage in development (Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol. 130:93- 104). In addition, we have established that the mitotic motor protein termed CHO1/MKLP1 has the appropriate properties to transport microtubules in this manner (Sharp, D.J., R. Kuriyama, and P.W. Baas. 1996. J. Neurosci. 16:4370-4375). In the present study we have sought to determine whether CHO1/MKLP1 continues to be expressed in terminally postmitotic neurons and whether it is required for the establishment of the dendritic microtubule array. In situ hybridization analyses reveal that CHO1/MKLP1 is expressed in postmitotic cultured rat sympathetic and hippocampal neurons. Immunofluorescence analyses indicate that the motor is absent from axons but is enriched in developing dendrites, where it appears as discrete patches associated with the microtubule array. Treatment of the neurons with antisense oligonucleotides to CHO1/MKLP1 suppresses dendritic differentiation, presumably by inhibiting the establishment of their nonuniform microtubule polarity pattern. We conclude that CHO1/MKLP1 transports microtubules from the cell body into the developing dendrite with their minus ends leading, thereby establishing the nonuniform microtubule polarity pattern of the dendrite.
Collapse
Affiliation(s)
- D J Sharp
- Department of Anatomy and Program in Neuroscience, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
179
|
Lochter A, Schachner M. Inhibitors of protein kinases abolish ECM-mediated promotion of neuronal polarity. Exp Cell Res 1997; 235:124-9. [PMID: 9281360 DOI: 10.1006/excr.1997.3655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different extracellular matrix (ECM) molecules, when presented to hippocampal neurons in culture in a substrate-bound form, exert strikingly similar effects on the establishment of neuronal polarity, i.e., the growth of axon-like major neurites is favored, whereas extension of dendrite-like minor neurites is inhibited. To gain insight into the underlying signal transduction processes, we have investigated the effects of modulators of protein kinase activity on the morphology of neurons cultured on tenascin-R, tenascin-C, and laminin-entactin substrates. We found differential effects of broad-spectrum protein kinase inhibitors: H-7 promoted the growth of minor neurites, whereas H-8 reduced the growth of major neurites on ECM but not control substrates. In contrast, chelerythrine, a specific inhibitor of protein kinase C, selectively affected growth of both minor and major neurites on control, but not on ECM substrates. Finally, reagents which elevate intracellular cAMP levels facilitated growth of minor neurites and inhibited growth of major neurites and thus interfered with the establishment of a polarized phenotype on both ECM and control substrates. Our results suggest that protein kinases mediate the effects of ECM molecules on neuronal polarity and that different kinases control extension of axons and dendrites.
Collapse
Affiliation(s)
- A Lochter
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg, D-20246, Germany
| | | |
Collapse
|
180
|
Parnas D, Linial M. Acceleration of neuronal maturation of P19 cells by increasing culture density. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:115-24. [PMID: 9263586 DOI: 10.1016/s0165-3806(97)00057-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
P19 embryonal carcinoma cells differentiate into neurons, astrocytes, and fibroblast-like cells following induction with retinoic acid. The mature neurons are capable of neurotransmitter release, and from functional synapses. We have previously shown that high culture density suppresses the cholinergic phenotype of P19 neurons. Here we demonstrate that increasing culture density accelerates the maturation of P19 neurons in a continuous manner. This is manifested by several criteria: increased efficiency of evoked [3H]aspartate release; decreased level of basal release; up-regulation of synaptic vesicle proteins; increased neurite outgrowth rate; and earlier segregation of axons and dendrites. While glutamate release is enhanced in dense cultures, the efficiency of [3H]GABA release is hardly affected, suggesting that P19 GABAergic neurons are not affected by culture density. The acceleration of neuronal maturation in dense cultures is also exhibited by the ability of dense, but not sparse cultures to release [3H]aspartate at an earlier day of differentiation. Furthermore, density effects are monitored already a few hours after plating the cultures, when neurite length in dense cultures is several fold higher than in sparse cultures. This indicates that commitment to a faster and coordinated maturation process occurs already very early during P19 neuronal differentiation.
Collapse
Affiliation(s)
- D Parnas
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
181
|
Abstract
Bone morphogenetic proteins (BMPs) are a rapidly expanding subclass of the transforming growth factor superfamily. BMP ligands and receptor subunits are present throughout neural development within discrete regions of the embryonic brain and within neural crest-derived pre- and post-migratory zones. BMPs initially inhibit the formation of neuroectoderm during gastrulation while, within the neural tube, they act as gradient morphogens to promote the differentiation of dorsal cell types and intermediate cell types throughout co-operative signaling. In the peripheral nervous system, BMPs act as instructive signals for neuronal lineage commitment and promote graded stages of neuronal differentiation. By contrast, within the CNS, these same factors promote astroglial lineage elaboration from embryonic subventricular zone progenitor cells, with concurrent suppression of the neuronal or oligodendroglial lineages, or both. In addition, BMPs act on more lineage-restricted embryonic CNS progenitor cells to promote regional neuronal survival and cellular differentiation. Furthermore, these versatile cytokines induce selective apoptosis of discrete rhombencephalic neural crest-associated cellular populations. These observations suggest that the BMPs exhibit a broad range of cellular and context-specific effects during multiple stages of neural development.
Collapse
Affiliation(s)
- M F Mehler
- Dept of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
182
|
Manier M, Cristina N, Chatellard-Causse C, Mouchet P, Herman JP, Feuerstein C. Striatal target-induced axonal branching of dopaminergic mesencephalic neurons in culture via diffusible factors. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970515)48:4<358::aid-jnr8>3.0.co;2-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
183
|
Yu W, Sharp DJ, Kuriyama R, Mallik P, Baas PW. Inhibition of a mitotic motor compromises the formation of dendrite-like processes from neuroblastoma cells. J Cell Biol 1997; 136:659-68. [PMID: 9024695 PMCID: PMC2134303 DOI: 10.1083/jcb.136.3.659] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1996] [Revised: 11/20/1996] [Indexed: 02/03/2023] Open
Abstract
Microtubules in the axon are uniformly oriented, while microtubules in the dendrite are nonuniformly oriented. We have proposed that these distinct microtubule polarity patterns may arise from a redistribution of molecular motor proteins previously used for mitosis of the developing neuroblast. To address this issue, we performed studies on neuroblastoma cells that undergo mitosis but also generate short processes during interphase. Some of these processes are similar to axons with regard to their morphology and microtubule polarity pattern, while others are similar to dendrites. Treatment with cAMP or retinoic acid inhibits cell division, with the former promoting the development of the axon-like processes and the latter promoting the development of the dendrite-like processes. During mitosis, the kinesin-related motor termed CHO1/MKLP1 is localized within the spindle midzone where it is thought to transport microtubules of opposite orientation relative to one another. During process formation, CHO1/ MKLP1 becomes concentrated within the dendrite-like processes but is excluded from the axon-like processes. The levels of CHO1/MKLP1 increase in the presence of retinoic acid but decrease in the presence of cAMP, consistent with a role for the protein in dendritic differentiation. Moreover, treatment of the cultures with antisense oligonucleotides to CHO1/MKLP1 compromises the formation of the dendrite-like processes. We speculate that a redistribution of CHO1/MKLP1 is required for the formation of dendrite-like processes, presumably by establishing their characteristic nonuniform microtubule polarity pattern.
Collapse
Affiliation(s)
- W Yu
- Department of Anatomy and Program in Neuroscience, The University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | |
Collapse
|
184
|
Causing CG, Gloster A, Aloyz R, Bamji SX, Chang E, Fawcett J, Kuchel G, Miller FD. Synaptic innervation density is regulated by neuron-derived BDNF. Neuron 1997; 18:257-67. [PMID: 9052796 DOI: 10.1016/s0896-6273(00)80266-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this report, we have examined the role of neuron-derived BDNF at an accessible synapse, that of preganglionic neurons onto their sympathetic neuron targets. Developing and mature sympathetic neurons synthesize BDNF, and preganglionic neurons express the full-length BDNF/TrkB receptor. When sympathetic neuron-derived BDNF is increased 2- to 4-fold in transgenic mice, preganglionic cell bodies and axons hypertrophy, and the synaptic innervation to sympathetic neurons is increased. Conversely, when BDNF synthesis is eliminated in BDNF -/- mice, preganglionic synaptic innervation to sympathetic neurons is decreased. Together these results indicate that variations in neuronal neurotrophin synthesis directly regulate neuronal circuitry by selectively modulating synaptic innervation density.
Collapse
Affiliation(s)
- C G Causing
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Canada
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Primary cultures of postganglionic sympathetic neurons were established more than 30 years ago. More recently, these cultures have been used to characterize various neurotransmitter receptors that govern sympathetic transmitter release. These receptors may be categorized into at least three groups: (1) receptors which evoke transmitter release: (2) receptors which facilitate; (3) receptors which inhibit, depolarization-evoked release. Group (1) comprises nicotinic and muscarinic acetylcholine receptors, P2X purinoceptors and pyrimidinoceptors. Group (2) currently harbours beta-adrenoceptors, P2 purinoceptors, receptors for PACAP and VIP, as well as prostanoid EP1 receptors. In group (3), muscarinic cholinoceptors, alpha 2- and beta-adrenoceptors, P2 purinoceptors, and receptors for the neuropeptides NPY, somatostatin (SRIF1) and LHRH, as well as opioid (delta and kappa) receptors can be found. Receptors which regulate transmitter release from neurons in cell culture may be located either at the somatodendritic region or at the sites of exocytosis, i.e. the presynaptic specializations of axons. Most of the receptors that evoke release are located at the soma. There ionotropic receptors cause depolarizations to generate action potentials which then trigger Ca(2+)-dependent exocytosis at axon terminals. The signalling mechanisms of metabotropic receptors which evoke release still remain to be identified. Receptors which facilitate depolarization-evoked release appear to be located preferentially at presynaptic sites and presumably act via an increase in cyclic AMP. Receptors which inhibit stimulation evoked release are also presynaptic origin and most commonly rely on a G protein-mediated blockade of voltage-gated Ca2+ channels. Results obtained with primary cell cultures of postganglionic sympathetic neurons have now supplemented previous data about neurotransmitter receptors involved in the regulation of ganglionic as well as sympatho-effector transmission. In the future, this technique may prove useful to identify yet unrecognized receptors which control the output of the sympathetic nervous system and to elucidate underlying signalling mechanisms.
Collapse
Affiliation(s)
- S Boehm
- Department of Neuropharmacology, University of Vienna, Austria.
| | | |
Collapse
|
186
|
Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996; 17:595-606. [PMID: 8893018 DOI: 10.1016/s0896-6273(00)80193-2] [Citation(s) in RCA: 527] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The epigenetic signals that regulate lineage development in the embryonic mammalian brain are poorly understood. Here we demonstrate that a specific subclass of the transforming growth factor beta superfamily, the bone morphogenetic proteins (BMPs), cause the selective, dose-dependent elaboration of the astroglial lineage from murine embryonic subventricular zone (SVZ) multipotent progenitor cells. The astroglial inductive effect is characterized by enhanced morphological complexity and expression of glial fibrillary acidic protein, with concurrent suppression of neuronal and oligodendroglial cell fates. SVZ progenitor cells express transcripts for the appropriate BMP-specific type I and II receptor subunits and selective BMP ligands, suggesting the presence of paracrine or autocrine developmental signaling pathways (or both). These observations suggest that the BMPs have a selective role in determining the cell fate of SVZ multipotent progenitor cells or their more developmentally restricted progeny.
Collapse
Affiliation(s)
- R E Gross
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
187
|
Zimmerman LB, De Jesús-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996; 86:599-606. [PMID: 8752214 DOI: 10.1016/s0092-8674(00)80133-6] [Citation(s) in RCA: 1219] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Signals released by the Spemann organizer of the amphibian gastrula can directly induce neural tissue from ectoderm and can dorsalize ventral mesoderm to form muscle. The secreted polypeptide noggin mimics these activities and is expressed at the appropriate time and place to participate in the organizer signal. Neural induction and mesoderm dorsalization are antagonized by bone morphogenetic proteins (BMPs), which induce epidermis and ventral mesoderm instead. Here we report that noggin protein binds BMP4 with high affinity and can abolish BMP4 activity by blocking binding to cognate cell-surface receptors. These data suggest that noggin secreted by the organizer patterns the embryo by interrupting BMP signaling.
Collapse
Affiliation(s)
- L B Zimmerman
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
188
|
Lein P, Guo X, Hedges AM, Rueger D, Johnson M, Higgins D. The effects of extracellular matrix and osteogenic protein-1 on the morphological differentiation of rat sympathetic neurons. Int J Dev Neurosci 1996; 14:203-15. [PMID: 8842799 DOI: 10.1016/0736-5748(96)00008-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The growth patterns of axons and dendrites differ with respect to their number, length, branching, and spatial orientation; therefore, it is likely that these processes differ in their growth requirements. To examine this hypothesis, we have been analyzing the responses of cultured rat sympathetic neurons to three types of stimuli: large structural proteins of the extracellular matrix, matrix-associated growth factors, and neurotrophins. Purified structural proteins such as laminin and collagen IV have been found to promote only axonal growth; whereas the matrix associated growth factor, osteogenic protein-1, selectively stimulates dendritic growth. In contrast, nerve growth factor modulates the growth of both types of processes. These data suggest that process-specific interactions with the extracellular environment may be critical determinants of cell shape in neurons. Perinatal rat sympathetic neurons grown in culture in the absence of serum or glial cells extend a single process which is axonal in nature. Exposure to osteogenic protein-1 causes the formation of additional processes which express the morphological, cytoskeletal, and ultrastructural characteristics of dendrites. Consistent with observations on the regulation of dendritic growth in sympathetic neurons in situ, the dendrite-promoting activity of osteogenic protein-1 is independent of synaptic or electrical activity, but is modulated by nerve growth factor. In the presence of optimal concentrations of osteogenic protein-1 and nerve growth factor, the size of the dendritic arbor extended by cultured sympathetic neurons approximates that seen in situ at comparable developmental stages. Osteogenic protein-1 does not promote dendritic growth in cultured neurons obtained from embryonic ciliary, dorsal root, trigeminal or nodose ganglia, suggesting that its morphogenetic effects are cell selective. Since mRNA for osteogenic protein-1 is expressed in mature as well as embryonic target tissues of the sympathetic nervous system, we also examined the effects of osteogenic protein-1 on cultures of sympathetic neurons derived from adult rats. Consistent with results obtained with perinatal neurons, osteogenic protein-1 selectively promoted dendritic growth in adult neurons. These data suggest that this matrix-associated growth factor could play a role not only in the morphogenesis of the developing nervous system, but also in the maintenance and remodeling of dendritic structures in the mature animal.
Collapse
Affiliation(s)
- P Lein
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | | | | | | | | | | |
Collapse
|
189
|
Kristensson K. Sorting signals and targeting of infectious agents through axons: an annotation to the 100 years' birth of the name "axon". Brain Res Bull 1996; 41:327-33. [PMID: 8973836 DOI: 10.1016/s0361-9230(96)00255-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A brief review is given on mechanisms by which axons may be initiated during development and by which the polarity of neurons is maintained by selective sorting and delivery of molecules to axons and dendrites. The use of viruses as tools to study targeting of newly synthesized proteins to axons is described. Emphasis is then given to the hazards that are presented to the individual by the retrograde transport of infectious agents in axons to the brain. Borna disease virus, prions, and Listeria monocytogenes are examined briefly as examples of these mechanisms. These agents have attracted interest previously in veterinary medicine for the most part, but they may present potential and substantial threats to human health. Such infectious agents also represent a new type of virus, a new principle for disease transmission, and a new mechanism for intracellular transport, respectively.
Collapse
Affiliation(s)
- K Kristensson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
190
|
Affiliation(s)
- F W Pfrieger
- Stanford University School of Medicine, Department of Neurobiology, California 94305-5401, USA
| | | |
Collapse
|
191
|
Abstract
Cytokines are well known as mediators of inflammation, and recent work has highlighted the role of these agents and inflammatory events in Alzheimer's disease and multiple sclerosis. The discovery of subclasses of T-helper cells has provided a critical framework to aid in understanding how the cytokine network regulates these diseases.
Collapse
Affiliation(s)
- P H Patterson
- Division of Biology 216-76, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
192
|
Affiliation(s)
- A Prochiantz
- Centre National de la Recherche Scientifique, Ecole Normale Supérieure, Paris, France
| |
Collapse
|