151
|
Di Martile M, Farini V, Consonni FM, Trisciuoglio D, Desideri M, Valentini E, D'Aguanno S, Tupone MG, Buglioni S, Ercolani C, Gallo E, Amadio B, Terrenato I, Foddai ML, Sica A, Del Bufalo D. Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages. J Immunother Cancer 2021; 8:jitc-2019-000489. [PMID: 32269145 PMCID: PMC7254128 DOI: 10.1136/jitc-2019-000489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background A bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression. Methods THP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice. Results Higher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+ and CD8+IFNγ+ effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+ macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment. Conclusions Taken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Farini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Marianna Desideri
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Tupone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Amadio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Biostatistics and Bioinformatic Unit-Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Foddai
- Immunohematology and Transfusional Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Sica
- Molecular Immunology Lab, Humanitas Clinical and Research Center, Milan, Italy .,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
152
|
Shackleton EG, Ali HY, Khan M, Pockley GA, McArdle SE. Novel Combinatorial Approaches to Tackle the Immunosuppressive Microenvironment of Prostate Cancer. Cancers (Basel) 2021; 13:1145. [PMID: 33800156 PMCID: PMC7962457 DOI: 10.3390/cancers13051145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the second-most common cancer in men worldwide and treatment options for patients with advanced or aggressive prostate cancer or recurrent disease continue to be of limited success and are rarely curative. Despite immune checkpoint blockade (ICB) efficacy in some melanoma, lung, kidney and breast cancers, immunotherapy efforts have been remarkably unsuccessful in PCa. One hypothesis behind this lack of efficacy is the generation of a distinctly immunosuppressive prostate tumor microenvironment (TME) by regulatory T cells, MDSCs, and type 2 macrophages which have been implicated in a variety of pathological conditions including solid cancers. In PCa, Tregs and MDSCs are attracted to TME by low-grade chronic inflammatory signals, while tissue-resident type 2 macrophages are induced by cytokines such as IL4, IL10, IL13, transforming growth factor beta (TGFβ) or prostaglandin E2 (PGE2) produced by Th2 cells. These then drive tumor progression, therapy resistance and the generation of castration resistance, ultimately conferring a poor prognosis. The biology of MDSC and Treg is highly complex and the development, proliferation, maturation or function can each be pharmacologically mediated to counteract the immunosuppressive effects of these cells. Herein, we present a critical review of Treg, MDSC and M2 involvement in PCa progression but also investigate a newly recognized type of immune suppression induced by the chronic stimulation of the sympathetic adrenergic signaling pathway and propose targeted strategies to be used in a combinatorial modality with immunotherapy interventions such as ICB, Sipuleucel-T or antitumor vaccines for an enhanced anti-PCa tumor immune response. We conclude that a strategic sequence of therapeutic interventions in combination with additional holistic measures will be necessary to achieve maximum benefit for PCa patients.
Collapse
Affiliation(s)
- Erin G. Shackleton
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Haleema Yoosuf Ali
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Masood Khan
- Department of Urology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK;
| | - Graham A. Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
153
|
Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-042120-105240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immature myeloid cells at varied stages of differentiation, known as myeloid-derived suppressor cells (MDSC), are present in virtually all cancer patients. MDSC are profoundly immune-suppressive cells that impair adaptive and innate antitumor immunity and promote tumor progression through nonimmune mechanisms. Their widespread presence combined with their multitude of protumor activities makes MDSC a major obstacle to cancer immunotherapies. MDSC are derived from progenitor cells in the bone marrow and traffic through the blood to infiltrate solid tumors. Their accumulation and suppressive potency are driven by multiple tumor- and host-secreted proinflammatory factors and adrenergic signals that act via diverse but sometimes overlapping transcriptional pathways. MDSC also accumulate in response to the chronic inflammation and lipid deposition characteristic of obesity and contribute to the more rapid progression of cancers in obese individuals. This article summarizes the key aspects of tumor-induced MDSC with a focus on recent progress in the MDSC field.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute (HCI), University of Utah, Salt Lake City, Utah 84112, USA
- Emeritus at: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
154
|
Zhang J, Fan J, Zeng X, Nie M, Luan J, Wang Y, Ju D, Yin K. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharm Sin B 2021; 11:609-620. [PMID: 33777671 PMCID: PMC7982428 DOI: 10.1016/j.apsb.2020.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog (HH) signaling pathway plays important roles in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment (TME). Aberrant HH signaling activation may accelerate the growth of gastrointestinal tumors and lead to tumor immune tolerance and drug resistance. The interaction between HH signaling and the TME is intimately involved in these processes, for example, tumor growth, tumor immune tolerance, inflammation, and drug resistance. Evidence indicates that inflammatory factors in the TME, such as interleukin 6 (IL-6) and interferon-γ (IFN-γ), macrophages, and T cell-dependent immune responses, play a vital role in tumor growth by affecting the HH signaling pathway. Moreover, inhibition of proliferating cancer-associated fibroblasts (CAFs) and inflammatory factors can normalize the TME by suppressing HH signaling. Furthermore, aberrant HH signaling activation is favorable to both the proliferation of cancer stem cells (CSCs) and the drug resistance of gastrointestinal tumors. This review discusses the current understanding of the role and mechanism of aberrant HH signaling activation in gastrointestinal carcinogenesis, the gastrointestinal TME, tumor immune tolerance and drug resistance and highlights the underlying therapeutic opportunities.
Collapse
Key Words
- 5-Fu, 5-fluorouracil
- ALK5, TGF-β receptor I kinase
- ATO, arsenic trioxide
- BCC, basal cell carcinoma
- BCL-2, B cell lymphoma 2
- BMI-1, B cell-specific moloney murine leukemia virus insertion region-1
- CAFs, cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer stem cells
- Carcinogenesis
- DHH, Desert Hedgehog
- Drug resistance
- EGF, epidermal growth factor
- FOLFOX, oxaliplatin
- G protein coupled receptor kinase 2, HH
- Gastrointestinal cancer
- Hedgehog
- Hedgehog, HIF-1α
- IHH, Indian Hedgehog
- IL-10/6, interleukin 10/6
- ITCH, itchy E3 ubiquitin ligase
- MDSCs, myeloid-derived suppressor cells
- NK, natural killer
- NOX4, NADPH Oxidase 4
- PD-1, programmed cell death-1
- PD-L1, programmed cell death ligand-1
- PKA, protein kinase A
- PTCH, Patched
- ROS, reactive oxygen species
- SHH, Sonic Hedgehog
- SMAD3, mothers against decapentaplegic homolog 3
- SMO, Smoothened
- SNF5, sucrose non-fermenting 5
- STAT3, signal transducer and activator of transcription 3
- SUFU, Suppressor of Fused
- TAMs, tumor-related macrophages
- TGF-β, transforming growth factor β
- TME, tumor microenvironment
- Tumor microenvironment
- VEGF, vascular endothelial growth factor
- WNT, Wingless/Integrated
- and leucovorin, GLI
- ch5E1, chimeric monoclonal antibody 5E1
- glioma-associated oncogene homologue, GRK2
- hypoxia-inducible factor 1α, IFN-γ: interferon-γ
- βArr2, β-arrestin2
Collapse
Affiliation(s)
- Jinghui Zhang
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Xian Zeng
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingyun Luan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Yichen Wang
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| |
Collapse
|
155
|
Kawai H, Oo MW, Tsujigiwa H, Nakano K, Takabatake K, Sukegawa S, Nagatsuka H. Potential role of myeloid-derived suppressor cells in transition from reaction to repair phase of bone healing process. Int J Med Sci 2021; 18:1824-1830. [PMID: 33746599 PMCID: PMC7976590 DOI: 10.7150/ijms.51946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 11/07/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with immunosuppressive functions; these cells play a key role in infection, immunization, chronic inflammation, and cancer. Recent studies have reported that immunosuppression plays an important role in the healing process of tissues and that Treg play an important role in fracture healing. MDSCs suppress active T cell proliferation and reduce the severity of arthritis in mice and humans. Together, these findings suggest that MDSCs play a role in bone biotransformation. In the present study, we examined the role of MDSCs in the bone healing process by creating a bone injury at the tibial epiphysis in mice. MDSCs were identified by CD11b and GR1 immunohistochemistry and their role in new bone formation was observed by detection of Runx2 and osteocalcin expression. Significant numbers of MDSCs were observed in transitional areas from the reactionary to repair stages. Interestingly, MDSCs exhibited Runx2 and osteocalcin expression in the transitional area but not in the reactionary area. And at the same area, cllagene-1 and ALP expression level increased in osteoblast progenitor cells. These data is suggesting that MDSCs emerge to suppress inflammation and support new bone formation. Here, we report, for the first time (to our knowledge), the role of MDSCs in the initiation of bone formation. MDSC appeared at the transition from inflammation to bone making and regulates bone healing by suppressing inflammation.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
156
|
Groth C, Arpinati L, Shaul ME, Winkler N, Diester K, Gengenbacher N, Weber R, Arkhypov I, Lasser S, Petrova V, Augustin HG, Altevogt P, Utikal J, Fridlender ZG, Umansky V. Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression. Cancers (Basel) 2021; 13:cancers13040726. [PMID: 33578808 PMCID: PMC7916588 DOI: 10.3390/cancers13040726] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myeloid-derived suppressor cells (MDSC) represent a heterogeneous myeloid cell population that is expanded in tumor bearing hosts and substantially contributes to immunosuppression, representing thereby a valuable therapeutic target. Our study analyzes polymorphonuclear (PMN) and monocytic (M) MDSC subsets regarding their immunosuppressive capacity and recruitment mechanisms in murine melanoma. The immunosuppressive activity of both subsets was comparable. We identified the C-X-C Motif Chemokine Receptor (CXCR) 2/chemokine C-X-C motif ligand (CXCL) 1 axis as an important mediator of PMN-MDSC recruitment. Inhibition of CXCR2 resulted in a decreased infiltration of tumors with PMN-MDSC and increased survival of melanoma bearing mice. Furthermore, adjuvant treatment of mice with resected tumors reduced the infiltration of pre-metastatic sites with PMN-MDSC and the occurrence of distant metastasis. The decrease in PMN-MDSC infiltration was accompanied by an increase in natural killer (NK) cell frequency, suggesting an important role of PMN-MDSC in suppressing the NK cell-mediated anti-tumor response. Abstract Background: Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC subsets to melanoma progression is not clear. Here, we compared both subsets regarding their immunosuppressive capacity and recruitment mechanisms. Furthermore, we inhibited PMN-MDSC migration in vivo to determine its effect on tumor progression. Methods: Using the RET transgenic melanoma mouse model, we investigated the immunosuppressive function of MDSC subsets and chemokine receptor expression on these cells. The effect of CXCR2 inhibition on PMN-MDSC migration and tumor progression was studied in RET transgenic mice and in C57BL/6 mice after surgical resection of primary melanomas. Results: Immunosuppressive capacity of intratumoral M- and PMN-MDSC was comparable in melanoma bearing mice. Anti-CXCR2 therapy prolonged survival of these mice and decreased the occurrence of distant metastasis. Furthermore, this therapy reduced the infiltration of melanoma lesions and pre-metastatic sites with PMN-MDSC that was associated with the accumulation of natural killer (NK) cells. Conclusions: We provide evidence for the tumor−promoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice.
Collapse
Affiliation(s)
- Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ludovica Arpinati
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Merav E. Shaul
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Nina Winkler
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Klara Diester
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Nicolas Gengenbacher
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Zvi G. Fridlender
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-3833773
| |
Collapse
|
157
|
Ferrant J, Lhomme F, Le Gallou S, Irish JM, Roussel M. Circulating Myeloid Regulatory Cells: Promising Biomarkers in B-Cell Lymphomas. Front Immunol 2021; 11:623993. [PMID: 33603754 PMCID: PMC7884747 DOI: 10.3389/fimmu.2020.623993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
The monocyte/macrophage lineage has been shown to be involved in the promotion of a protumoral tumor microenvironment and resistance to treatment in B cell lymphomas. However, it is still poorly described at the single cell level, and tissue samples are not easily accessible. Thus, a detailed analysis of the circulating myeloid cell compartment in the different B lymphomas is needed to better understand the mechanisms of resistance to treatment and identify at risk patients. In this Perspective, we review current knowledge on the phenotypic and functional description of the circulating monocytic lineage in B cell lymphomas and provide first insights into the heterogeneity of these cell populations in health and lymphoma, using mass cytometry. Indeed, the monocytic compartment is a continuum more than distinct subpopulations, as demonstrated by our high-resolution approach, explaining the sometimes confusing and contradictory conclusions on the prognostic impact of the different populations, including monocytes and monocytic myeloid derived suppressor cells (M-MDSC). By identifying S100A9high monocytic cells as a potential biomarker in diffuse large B cell lymphoma (DLBCL) in this proof-of-concept preliminary study including a limited number of samples, we underline the potential of circulating myeloid regulatory cells as diagnostic and prognostic biomarkers in B-cell lymphomas.
Collapse
Affiliation(s)
| | - Faustine Lhomme
- Centre Hospitalier Universitaire de Rennes, Service Hématologie, Rennes, France
| | - Simon Le Gallou
- UMR_S_1236, Univ Rennes, Inserm, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratoire Hématologie, Pôle Biologie, Rennes, France
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Mikael Roussel
- UMR_S_1236, Univ Rennes, Inserm, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratoire Hématologie, Pôle Biologie, Rennes, France
| |
Collapse
|
158
|
Dorhoi A, Kotzé LA, Berzofsky JA, Sui Y, Gabrilovich DI, Garg A, Hafner R, Khader SA, Schaible UE, Kaufmann SH, Walzl G, Lutz MB, Mahon RN, Ostrand-Rosenberg S, Bishai W, du Plessis N. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. J Clin Invest 2021; 130:2789-2799. [PMID: 32420917 DOI: 10.1172/jci136288] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The critical role of suppressive myeloid cells in immune regulation has come to the forefront in cancer research, with myeloid-derived suppressor cells (MDSCs) as a main oncology immunotherapeutic target. Recent improvement and standardization of criteria classifying tumor-induced MDSCs have led to unified descriptions and also promoted MDSC research in tuberculosis (TB) and AIDS. Despite convincing evidence on the induction of MDSCs by pathogen-derived molecules and inflammatory mediators in TB and AIDS, very little attention has been given to their therapeutic modulation or roles in vaccination in these diseases. Clinical manifestations in TB are consequences of complex host-pathogen interactions and are substantially affected by HIV infection. Here we summarize the current understanding and knowledge gaps regarding the role of MDSCs in HIV and Mycobacterium tuberculosis (co)infections. We discuss key scientific priorities to enable application of this knowledge to the development of novel strategies to improve vaccine efficacy and/or implementation of enhanced treatment approaches. Building on recent findings and potential for cross-fertilization between oncology and infection biology, we highlight current challenges and untapped opportunities for translating new advances in MDSC research into clinical applications for TB and AIDS.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Leigh A Kotzé
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Ankita Garg
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, and.,Leibniz Research Alliance INFECTIONS'21, Research Center Borstel, Borstel, Germany
| | - Stefan He Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Gerhard Walzl
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - William Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nelita du Plessis
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
159
|
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13020210. [PMID: 33430105 PMCID: PMC7827203 DOI: 10.3390/cancers13020210] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Immunotherapy improved the therapeutic landscape for patients with advanced cancer diseases. However, many patients do not benefit from immunotherapy. The bidirectional crosstalk between myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) contributes to immune evasion, limiting the success of immunotherapy by checkpoint inhibitors. This review aims to outline the current knowledge of the role and the immunosuppressive properties of MDSC and Treg within the tumor microenvironment (TME). Furthermore, we will discuss the importance of the functional crosstalk between MDSC and Treg for immunosuppression, issuing particularly the role of cell adhesion molecules. Lastly, we will depict the impact of this interaction for cancer research and discuss several strategies aimed to target these pathways for tumor therapy. Abstract Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), contributes to the development of immune resistance. MDSC and Treg expand systematically in tumor patients and inhibit T cell activation and T effector cell function. Numerous studies have shown that the immunosuppressive mechanisms exerted by those inhibitory cell populations comprise soluble immunomodulatory mediators and receptor interactions. The latter are also required for the crosstalk of MDSC and Treg, raising questions about the relevance of cell–cell contacts for the establishment of their inhibitory properties. This review aims to outline the current knowledge on the crosstalk between these two cell populations, issuing particularly the potential role of cell adhesion molecules. In this regard, we further discuss the relevance of β2 integrins, which are essential for the differentiation and function of leukocytes as well as for MDSC–Treg interaction. Lastly, we aim to describe the impact of such bidirectional crosstalk for basic and applied cancer research and discuss how the targeting of these pathways might pave the way for future approaches in immunotherapy.
Collapse
|
160
|
Wei F, Wang D, Wei J, Tang N, Tang L, Xiong F, Guo C, Zhou M, Li X, Li G, Xiong W, Zhang S, Zeng Z. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cell Mol Life Sci 2021; 78:173-193. [PMID: 32654036 PMCID: PMC11072448 DOI: 10.1007/s00018-020-03581-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/23/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The successful treatment of human cancers by immunotherapy has been made possible by breakthroughs in the discovery of immune checkpoint regulators, including CTLA-4 and PD-1/PD-L1. However, the immunosuppressive effect of the tumor microenvironment still represents an important bottleneck that limits the success of immunotherapeutic approaches. The tumor microenvironment influences the metabolic crosstalk between tumor cells and tumor-infiltrating immune cells, creating competition for the utilization of nutrients and promoting immunosuppression. In addition, tumor-derived metabolites regulate the activation and effector function of immune cells through a variety of mechanisms; in turn, the metabolites and other factors secreted by immune cells can also become accomplices to cancer development. Immune-metabolic checkpoint regulation is an emerging concept that is being studied with the aim of restoring the immune response in the tumor microenvironment. In this review, we summarize the metabolic reprogramming of various cell types present in the tumor microenvironment, with a focus on the interaction between the metabolic pathways of these cells and antitumor immunosuppression. We also discuss the main metabolic checkpoints that could provide new means of enhancing antitumor immunotherapy.
Collapse
Affiliation(s)
- Fang Wei
- Center for Aging Biomedicine, Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Junyuan Wei
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650031, China
| | - Niwen Tang
- Center for Aging Biomedicine, Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Xiong
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shanshan Zhang
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Zhaoyang Zeng
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
161
|
Gebhardt C, Simon SCS, Weber R, Gries M, Mun DH, Reinhard R, Holland-Letz T, Umansky V, Utikal J. Potential therapeutic effect of low-dose paclitaxel in melanoma patients resistant to immune checkpoint blockade: A pilot study. Cell Immunol 2020; 360:104274. [PMID: 33383383 DOI: 10.1016/j.cellimm.2020.104274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
The low dose application of chemotherapeutic agents such as paclitaxel was previously shown to initiate anti-tumor activity by neutralizing myeloid-derived suppressor cells (MDSCs) in melanoma mouse models. Here, we investigated immunomodulating effects of low-dose paclitaxel in 9 metastatic melanoma patients resistant to prior treatments. Three patients showed response to therapy (two partial responses and one stable disease). In responding patients, paclitaxel decreased the frequency and immunosuppressive pattern of MDSCs in the peripheral blood and skin metastases. Furthermore, paclitaxel modulated levels of inflammatory mediators in the serum. In addition, responders displayed enhanced frequencies of tumor-infiltrating CD8+ T cells and their activity indicated by the upregulation of CD25 and TCR ζ-chain expression. Our study suggests that low-dose paclitaxel treatment could improve clinical outcome of some advanced melanoma patients by enhancing anti-tumor immunity and might be proposed for combined melanoma immunotherapy.
Collapse
Affiliation(s)
- Christoffer Gebhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Sonja C S Simon
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Mirko Gries
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Dong Hun Mun
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Raphael Reinhard
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
162
|
Singh L, Muise ES, Bhattacharya A, Grein J, Javaid S, Stivers P, Zhang J, Qu Y, Joyce-Shaikh B, Loboda A, Zhang C, Meehl M, Chiang DY, Ranganath SH, Rosenzweig M, Brandish PE. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells. Mol Cancer Res 2020; 19:702-716. [PMID: 33372059 DOI: 10.1158/1541-7786.mcr-20-0622] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells that accumulate in the tumor microenvironment (TME). MDSCs have been shown to dampen antitumor immune responses and promote tumor growth; however, the mechanisms of MDSC induction and their role in promoting immune suppression in cancer remain poorly understood. Here, we characterized the phenotype and function of monocytic MDSCs (M-MDSC) generated by coculture of human peripheral blood mononuclear cells with SK-MEL-5 cancer cells in vitro. We selected the SK-MEL-5 human melanoma cell line to generate M-MDSCs because these cells form subcutaneous tumors rich in myeloid cells in humanized mice. M-MDSCs generated via SK-MEL-5 coculture expressed low levels of human leukocyte antigen (HLA)-DR, high levels of CD33 and CD11b, and suppressed both CD8+ T-cell proliferation and IFNγ secretion. M-MDSCs also expressed higher levels of immunoglobulin-like transcript 3 (ILT3, also known as LILRB4) and immunoglobulin-like transcript 4 (ILT4, also known as LILRB2) on the cell surface compared with monocytes. Therefore, we investigated how ILT3 targeting could modulate M-MDSC cell function. Treatment with an anti-ILT3 antibody impaired the acquisition of the M-MDSC suppressor phenotype and reduced the capacity of M-MDSCs to cause T-cell suppression. Finally, in combination with anti-programmed cell death protein 1 (PD1), ILT3 blockade enhanced T-cell activation as assessed by IFNγ secretion. IMPLICATIONS: These results suggest that ILT3 expressed on M-MDSCs has a role in inducing immunosuppression in cancer and that antagonism of ILT3 may be useful to reverse the immunosuppressive function of M-MDSCs and enhance the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Latika Singh
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts.
| | - Eric S Muise
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | | | - Jeff Grein
- Genetics and Pharmacogenomics, Merck & Co., Inc., South San Francisco, California
| | - Sarah Javaid
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | - Peter Stivers
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts
| | - Jun Zhang
- Immunology, Merck & Co., Inc., Boston, Massachusetts
| | - Yujie Qu
- Immunology, Merck & Co., Inc., Boston, Massachusetts
| | | | - Andrey Loboda
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | - Chunsheng Zhang
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | - Michael Meehl
- Biologics Discovery, Merck & Co., Inc., Boston, Massachusetts
| | - Derek Y Chiang
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | | | | | | |
Collapse
|
163
|
Chaudhary A, Bag S, Arora N, Radhakrishnan VS, Mishra D, Mukherjee G. Hypoxic Transformation of Immune Cell Metabolism Within the Microenvironment of Oral Cancers. FRONTIERS IN ORAL HEALTH 2020; 1:585710. [PMID: 35047983 PMCID: PMC8757756 DOI: 10.3389/froh.2020.585710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) includes tumors of the lips, tongue, gingivobuccal complex, and floor of the mouth. Prognosis for OSCC is highly heterogeneous, with overall 5-year survival of ~50%, but median survival of just 8-10 months for patients with locoregional recurrence or metastatic disease. A key feature of OSCC is microenvironmental oxygen depletion due to rapid growth of constituent tumor cells, which triggers hypoxia-associated signaling events and metabolic adaptations that influence subsequent tumor progression. Better understanding of leukocyte responses to tissue hypoxia and onco-metabolite expression under low-oxygen conditions will therefore be essential to develop more effective methods of diagnosing and treating patients with OSCC. This review assesses recent literature on metabolic reprogramming, redox homeostasis, and associated signaling pathways that mediate crosstalk of OSCC with immune cells in the hypoxic tumor microenvironment. The likely functional consequences of this metabolic interface between oxygen-starved OSCC and infiltrating leukocytes are also discussed. The hypoxic microenvironment of OSCC modifies redox signaling and alters the metabolic profile of tumor-infiltrating immune cells. Improved understanding of heterotypic interactions between host leukocytes, tumor cells, and hypoxia-induced onco-metabolites will inform the development of novel theranostic strategies for OSCC.
Collapse
Affiliation(s)
- Amrita Chaudhary
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Swarnendu Bag
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Neeraj Arora
- Department of Laboratory Hematology and Molecular Genetics, Tata Medical Center, Kolkata, India
| | | | - Deepak Mishra
- Department of Laboratory Hematology and Molecular Genetics, Tata Medical Center, Kolkata, India
| | | |
Collapse
|
164
|
Yin K, Xia X, Rui K, Wang T, Wang S. Myeloid-Derived Suppressor Cells: A New and Pivotal Player in Colorectal Cancer Progression. Front Oncol 2020; 10:610104. [PMID: 33384962 PMCID: PMC7770157 DOI: 10.3389/fonc.2020.610104] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) remains a devastating human malignancy with poor prognosis. Of the various factors, immune evasion mechanisms play pivotal roles in CRC progression and impede the effects of cancer therapy. Myeloid-derived suppressor cells (MDSCs) constitute an immature population of myeloid cells that are typical during tumor progression. These cells have the ability to induce strong immunosuppressive effects within the tumor microenvironment (TME) and promote CRC development. Indeed, MDSCs have been shown to accumulate in both tumor-bearing mice and CRC patients, and may therefore become an obstacle for cancer immunotherapy. Consequently, numerous studies have focused on the characterization of MDSCs and their immunosuppressive capacity, as well as developing novel approaches to suppress MDSCs function with different approaches. Current therapeutic strategies that target MDSCs in CRC include inhibition of their recruitment and alteration of their function, alone or in combination with other therapies including chemotherapy, radiotherapy and immunotherapy. Herein, we summarize the recent roles and mechanisms of MDSCs in CRC progression. In addition, a brief review of MDSC-targeting approaches for potential CRC therapy is presented.
Collapse
Affiliation(s)
- Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
165
|
Dai S, Lv Y, Xu W, Yang Y, Liu C, Dong X, Zhang H, Prabhakar BS, Maker AV, Seth P, Wang H. Oncolytic adenovirus encoding LIGHT (TNFSF14) inhibits tumor growth via activating anti-tumor immune responses in 4T1 mouse mammary tumor model in immune competent syngeneic mice. Cancer Gene Ther 2020; 27:923-933. [PMID: 32307442 DOI: 10.1038/s41417-020-0173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
LIGHT, also known as tumor-necrosis factor (TNF) superfamily member 14 (TNFSF14), is predominantly expressed on activated immune cells and some tumor cells. LIGHT is a pivotal regulator both for recruiting and activating immune cells in the tumor lesions. In this study, we armed human telomerase reverse transcriptase (TERT) promoter controlled oncolytic adenovirus with LIGHT to generate rAd.Light. rAd.Light effectively transduced both human and mouse breast tumor cell lines in vitro, and expressed LIGHT protein on the surface of tumor cells. Both rAd.Null, and rAd.Light could replicate in human breast cancer cells, and produced cytotoxicity to human and mouse mammary tumor cells. rAd.Light induced apoptosis resulting in tumor cell death. Using a subcutaneous model of 4T1 cells in BALB/c mice, rAd.Light was delivered intratumorally to evaluate the anti-tumor responses. Both rAd.Light and rAd.Null significantly inhibited the tumor growth, but rAd.Light produced much stronger anti-tumor effects. Histopathological analysis showed the infiltration of T lymphocytes in the tumor tissues. rAd.Light also induced stronger cellular apoptosis than rAd.Null in the tumors. Interestingly, on day 15, compared to rAd.Null, there was a significant reduction of Tregs following rAd.Light treatment. rAd.Light significantly increased Th1 cytokine interleukin (IL)-2 expression, and reduced Th2 cytokines expression, such as transforming growth factor β (TGF-β) and IL-10 in the tumors. These results suggest rAd.Light induced activation of anti-tumor immune responses. In conclusion, rAd.Light produced anti-tumor effect in a subcutaneous model of breast cancer via inducing tumor apoptosis and evoking strong anti-tumor immune responses. Therefore, rAd.Light has great promise to be developed as an effective therapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shiyun Dai
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yun Lv
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
| | - Yuefeng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
- Department of Experimental Medical Science & Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, PR China
| | - Chao Liu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiwen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Huan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois, Chicago, IL, USA
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA.
| | - Hua Wang
- Anhui Medical University, Hefei, 230032, Anhui, PR China.
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
166
|
Kumar SU, Telichko AV, Wang H, Hyun D, Johnson EG, Kent MS, Rebhun RB, Dahl JJ, Culp WTN, Paulmurugan R. Acoustically Driven Microbubbles Enable Targeted Delivery of microRNA-Loaded Nanoparticles to Spontaneous Hepatocellular Neoplasia in Canines. ADVANCED THERAPEUTICS 2020; 3:2000120. [PMID: 33415184 PMCID: PMC7784952 DOI: 10.1002/adtp.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/16/2023]
Abstract
Spatially localized microbubble cavitation by ultrasound offers an effective means of altering permeability of natural barriers (i.e. blood vessel and cell membrane) in favor of nanomaterials accumulation in the target site. In this study, a clinically relevant, minimally invasive ultrasound guided therapeutic approach is investigated for targeted delivery of anticancer microRNA loaded PLGA-b-PEG nanoparticles to spontaneous hepatocellular neoplasia in a canine model. Quantitative assessment of the delivered microRNAs revealed prominent and consistent increase in miRNAs levels (1.5-to 2.3-fold increase (p<0.001)) in ultrasound treated tumor regions compared to untreated control regions. Immunohistology of ultrasound treated tumor tissue presented a clear evidence for higher amount of nanoparticles extravasation from the blood vessels. A distinct pattern of cytokine expression supporting CD8+ T cells mediated "cold-to-hot" tumor transition was evident in all patients. On the outset, proposed platform can enhance delivery of miRNA-loaded nanoparticles to deep seated tumors in large animals to enhance chemotherapy.
Collapse
Affiliation(s)
- Sukumar Uday Kumar
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Arsenii V Telichko
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Huaijun Wang
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Dongwoon Hyun
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jeremy J Dahl
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - William T N Culp
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
167
|
Husain K, Williamson TT, Nelson N, Ghansah T. Protein kinase 2 (CK2): a potential regulator of immune cell development and function in cancer. Immunol Med 2020; 44:159-174. [PMID: 33164702 DOI: 10.1080/25785826.2020.1843267] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CK2, formally known as casein kinase II, is ubiquitously expressed and highly conserved serine/threonine or tyrosine kinase enzyme that regulates diverse signaling pathways responsible for cellular processes (i.e., cell proliferation and apoptosis) via interactions with over 500 known substrates. The enzyme's physiological interactions and cellular functions have been widely studied, most notably in the blood and solid malignancies. CK2 has intrinsic role in carcinogenesis as overexpression of CK2 subunits (α, α`, and β) and deregulation of its activity have been linked to various forms of cancers. CK2 also has extrinsic role in cancer stroma or in the tumor microenvironment (TME) including the immune cells. However, very few research studies have focused on extrinsic role of CK2 in regulating immune responses as a therapeutic alternative for cancer. The following review discusses CK2's regulation of key signaling events [Nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activators of transcription (JAK/STAT), Hypoxia inducible factor-1alpha (HIF-1α), Cyclooygenase-2 (COX-2), Extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), Notch, Protein kinase B/AKT, Ikaros and Wnt] that can influence the development and function of immune cells in cancer. Potential clinical trials using potent CK2 inhibitors will facilitate and improve the treatment of human malignancies.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tanika T Williamson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Nadine Nelson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tomar Ghansah
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
168
|
Jøntvedt Jørgensen M, Jenum S, Tonby K, Mortensen R, Walzl G, Du Plessis N, Dyrhol-Riise AM. Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors. J Leukoc Biol 2020; 110:177-186. [PMID: 33155730 PMCID: PMC8359170 DOI: 10.1002/jlb.4a0720-409rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid‐derived suppressor cells (MDSCs) increase in tuberculosis (TB) and may be targets for host‐directed therapy (HDT). In this study, we use flow cytometry to analyze the effects of cyclooxygenase‐2 inhibitors (COX‐2i) on monocytic (M)‐MDSCs in blood from TB patients attending a clinical trial of COX‐2i. The effects of COX‐2i on M‐MDSCs and mycobacterial uptake were also studied by an in vitro mycobacterial infection model. We found that M‐MDSC frequencies correlated with TB disease severity. Reduced M‐MDSC (P = 0.05) and IDO (P = 0.03) expression was observed in the COX‐2i group. We show that peripheral blood‐derived M‐MDSCs successfully internalized Mycobacterium bovis and that in vitro mycobacterial infection increased COX‐2 (P = 0.002), PD‐L1 (P = 0.01), and Arginase‐1 (P = 0.002) expression in M‐MDSCs. Soluble IL‐1β, IL‐10, and S100A9 were reduced in COX‐2i‐treated M‐MDSCs cultures (P < 0.05). We show novel data that COX‐2i had limited effect in vivo but reduced M‐MDSC cytokine production in vitro. The relevance of COX‐2i in a HDT strategy needs to be further explored.
Collapse
Affiliation(s)
- Marthe Jøntvedt Jørgensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nelita Du Plessis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
169
|
Salvador-Coloma C, Santaballa A, Sanmartín E, Calvo D, García A, Hervás D, Cordón L, Quintas G, Ripoll F, Panadero J, Font de Mora J. Immunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Cancer 2020; 139:119-134. [DOI: 10.1016/j.ejca.2020.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
|
170
|
Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation. Front Immunol 2020; 11:572323. [PMID: 33133086 PMCID: PMC7562789 DOI: 10.3389/fimmu.2020.572323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute an important component in regulating immune responses in several abnormal physiological conditions such as cancer. Recently, novel regulatory tumor MDSC biology modulating mechanisms, including differentiation, expansion and function, were defined. There is growing evidence that miRNAs and long non-coding RNAs (lncRNA) are involved in modulating transcriptional factors to become complex regulatory networks that regulate the MDSCs in the tumor microenvironment. It is possible that aberrant expression of miRNAs and lncRNA contributes to MDSC biological characteristics under pathophysiological conditions. This review provides an overview on miRNAs and lncRNAs epiregulation of MDSCs development and immunosuppressive functions in cancer.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Francesco Giovannelli
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO)-University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
171
|
Qi X, Jiang H, Liu P, Xie N, Fu R, Wang H, Liu C, Zhang T, Wang H, Shao Z. Increased myeloid-derived suppressor cells in patients with myelodysplastic syndromes suppress CD8+ T lymphocyte function through the STAT3-ARG1 pathway. Leuk Lymphoma 2020; 62:218-223. [PMID: 32985300 DOI: 10.1080/10428194.2020.1817431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MDSCs, which are defined as a kind of negatively regulatory cells, could suppress T cell immune response in many tumor-bearing animal models and cancer patients. We supposed that MDSCs also contributed to the impaired antitumor immunity in MDS. Here we demonstrated that STAT3-ARG1 pathway could be a critical signal transduction pathway that regulated MDSCs-mediated immunosuppression. Increased MDSCs was revealed in MDS patients when compared to healthy controls. Especially, MDSCs performed higher activated STAT3 and CCR2 expression in high-risk MDS patients. The CCL2 and IL-6 levels in MDS patients were also higher than in healthy controls, which could drive recruitment and activation of MDSCs. Meanwhile, lower expression levels of CD3ζ chain, perforin and granzyme B were demonstrated in MDS patients, which were associated with downregulated activation of CD8+ T lymphocytes. The results were supported by the decreased perforin, granzyme B and IFN-γ levels in the mixed-culture system of MDSCs and CD8+ T lymphocytes in vitro. Notably, targeting STAT3 pathway by selective inhibitor could decrease ARG1 expression in MDSCs and partially reverse the lower expression levels of effector molecules on CD8+ T lymphocytes. Therefore, this study revealed the potential STAT3-ARG1 mechanism behind MDSCs and provided a promising STAT3 targeting strategy in MDS.
Collapse
Affiliation(s)
- Xiao Qi
- Department of Hematology and Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Huijuan Jiang
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Pei Liu
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Xie
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Liu
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian Zhang
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaqing Wang
- Department of Hematology and Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Zonghong Shao
- Hematology Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
172
|
Grigolato R, Bizzoca ME, Calabrese L, Leuci S, Mignogna MD, Lo Muzio L. Leukoplakia and Immunology: New Chemoprevention Landscapes? Int J Mol Sci 2020; 21:ijms21186874. [PMID: 32961682 PMCID: PMC7555729 DOI: 10.3390/ijms21186874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Oral potentially malignant disorders (OPMDs) comprise a range of clinical-pathological alterations frequently characterized by an architectural and cytological derangements upon histological analysis. Among them, oral leukoplakia is the most common type of these disorders. This work aims to analyze the possible use of drugs such as immunochemopreventive agents for OPMDs. Chemoprevention is the use of synthetic or natural compounds for the reversal, suppression, or prevention of a premalignant lesion conversion to malignant form. Experimental and in vivo data offer us the promise of molecular prevention through immunomodulation; however, currently, there is no evidence for the efficacy of these drugs in the chemoprevention action. Alternative ways to deliver drugs, combined use of molecules with complementary antitumor activities, diet influence, and better definition of individual risk factors must also be considered to reduce toxicity, improve compliance to the protocol treatment and offer a better individualized prevention. In addition, we must carefully reconsider the mode of action of many traditional cancer chemoprevention agents on the immune system, such as enhancing immunosurveillance and reversing the immune evasion. Several studies emphasize the concept of green chemoprevention as an alternative approach to accent healthy lifestyle changes in order to decrease the incidence of HNSCC.
Collapse
Affiliation(s)
- Roberto Grigolato
- Division of Prevention, San Maurizio Hospital, 39100 Bolzano, Italy;
| | - Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Luca Calabrese
- Division of Otorhinolaryngology, “San Maurizio” Hospital, 39100 Bolzano, Italy;
| | - Stefania Leuci
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Oral Medicine Unit, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (M.D.M.)
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Oral Medicine Unit, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (M.D.M.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0881-588-090
| |
Collapse
|
173
|
Yan L, Liang M, Yang T, Ji J, Jose Kumar Sreena GS, Hou X, Cao M, Feng Z. The Immunoregulatory Role of Myeloid-Derived Suppressor Cells in the Pathogenesis of Rheumatoid Arthritis. Front Immunol 2020; 11:568362. [PMID: 33042149 PMCID: PMC7522347 DOI: 10.3389/fimmu.2020.568362] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of cells that regulate the immune response and exert immunosuppressive effects on various immune cells. Current studies indicate that MDSCs have both anti-inflammatory effects and proinflammatory effects on rheumatoid arthritis (RA) and RA animal models. MDSCs inhibit CD4+ T cells, which secrete proinflammatory factors such as IFN-γ, IL-2, IL-6, IL-17, and TNF-α, by inhibiting iNOS, ROS, and IFN-γ and promoting the production of the anti-inflammatory factor IL-10. MDSCs can suppress dendritic cells by reducing MHC-II and CD86 expression, expand Treg cells in vitro through the action of IL-10, inhibit B cells through NO and PGE2, and promote Th17 cell responses by secreting IL-1β. As a type of osteoclast precursor cell, MDSCs can differentiate into osteoclasts through activation of the NF-κB pathway via IL-1α. Overall, our study reviews the research progress related to MDSCs in RA, focusing on the effects of MDSCs on various types of cells and aiming to provide ideas to help reveal the important role of MDSCs in RA.
Collapse
Affiliation(s)
- Lan Yan
- Medical College of China Three Gorges University, Yichang, China
| | - Mingge Liang
- Medical College of China Three Gorges University, Yichang, China
| | - Tong Yang
- Medical College of China Three Gorges University, Yichang, China
| | - Jinyu Ji
- Medical College of China Three Gorges University, Yichang, China
| | | | - Xiaoqiang Hou
- The Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Meiqun Cao
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhitao Feng
- Medical College of China Three Gorges University, Yichang, China
- The Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
174
|
Liu J, Sun Y, Liu X, Yang Y, Widjaya AS, Long Z, Jiang Y. Efficiency of Different Treatment Regimens Combining Anti-tumor and Anti-inflammatory Liposomes for Metastatic Breast Cancer. AAPS PharmSciTech 2020; 21:259. [PMID: 32914285 DOI: 10.1208/s12249-020-01792-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Nanomedicines such as liposomes have been widely exploited in the treatment of tumors, and are also involved in combination therapies to enhance anti-tumor efficacy and reduce side effects. However, few studies have systematically discussed the significance and optimized regimens for nanomedicine-based combination therapy. In this study, we used anti-inflammatory and anti-tumor liposomes for co-administration, and compared three regimens: intermittent, metronomic, or sequential administration (IA, MA, and SA). The anti-inflammatory liposome HA/TN-CCLP was constructed in our previous research, which co-loaded curcumin (CUR) and celecoxib (CXB), modified with TAT-NBD peptide (TN) and finally coated with hyaluronic acid (HA), thereby inhibiting NF-κB and STAT3 pathways in the treatment of metastatic breast cancer. Furthermore, doxorubicin liposomes with and without TN modification (namely TN-DOXLP and DOXLP) were constructed and administrated with HA/TN-CCLP. The anti-tumor and anti-metastasis efficacy of different regimens was investigated. Results showed that in vitro cytotoxicity of DOXLP and TN-DOXLP was significantly enhanced when combined with HA/TN-CCLP. In vivo experiments also revealed the superiority of three combination therapies in inhibiting tumor growth, prolonging the survival of tumor-bearing mice, inducing apoptosis, and reducing lung metastases. In particular, the combination therapy could reduce MDSCs (Gr-1+/CD11b+) and CSCs (CD44+/CD24+) infiltration, which are two important factors in tumor metastasis and recurrence. Among three regimens, sequential administration (SA) showed the best therapeutic outcome and was especially effective for the inhibition of CSCs. In general, the results demonstrated that combination therapy, particularly the sequential administration of anti-inflammatory and anti-tumor liposome, was superior to monotherapy in inhibiting the development and metastasis of inflammation-related tumors.
Collapse
|
175
|
Juin SK, Ghosh S, Majumdar S. Glycyrrhizic acid facilitates anti-tumor immunity by attenuating Tregs and MDSCs: An immunotherapeutic approach. Int Immunopharmacol 2020; 88:106932. [PMID: 32890791 DOI: 10.1016/j.intimp.2020.106932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Melanoma is one of the most aggressive malignancies and its treatment remains challenging due to its highly metastatic property and availability of limited effective drugs. In addition, immunosuppresive tumor microenvironment (TME) has been identified as major barrier to evoke anti-tumor response in melanoma. Recent studies revealed that immunosuppressive TME is directly correlated with heightened activations of T regulatory cells (Tregs) and Myeloid derived suppressor cells (MDSCs) functions. In this study, we investigated the anti-cancer effect of a triterpenoid, glycyrrhizic acid (GA) on melanoma. Our study revealed that GA not only exhibited anti-proliferative effects on melanoma cells it significantly restricted progression of melanoma tumor. However, the therapeutic efficacy of GA in impressive regression of tumor was found to be directly correlated with induction of apoptosis and modulation of cytokines from Th2 to Th1 type. To unravel the mechanism of anti-melanoma effect of GA, it has been delineated that GA inhibits pSTAT3 to evade anti-tumor suppressive function of Tregs and MDSCs. Downregulation of FOXP3, GITR and CTLA4 in tumor-infiltrating Tregs and inhibition of Cox2, PGE2 and Arginase 1 in intra-tumoral MDSC were evidenced as some of the key events during therapeutic intervention of GA in melanoma management. Moreover, GA effectively restricted advanced stage solid tumor while used in combination with Mycobacterium indicus pranii, a known immunomodulator, which alone is reported to be ineffective to restrict advanced stage solid tumor. Thus, our findings may open up a novel insight of GA as a promising agent in cancer immunotherapy or adjuvant therapy in future.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sweta Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
176
|
Jia Y, Liu L, Shan B. Future of immune checkpoint inhibitors: focus on tumor immune microenvironment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1095. [PMID: 33145314 PMCID: PMC7575936 DOI: 10.21037/atm-20-3735] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapy has become a powerful clinical strategy in cancer treatment. Immune checkpoint inhibitors (ICIs) have opened a new era for cancer immunotherapy. Nowadays, the number of immunotherapy drug approvals has increased, with numerous treatment options in clinical and preclinical development. However, there remain some obstacles to improve the efficacy of ICIs further. The tumor immune microenvironment (TIME) consists of cancer cell, immune cells and cytokines, et cetera. The dynamics of TIME determine the efficacies of ICIs. Although the ICIs showed manageable toxicity, immune-related adverse effects (irAEs) are still unignorable for clinicians. Since some primary resistance mechanisms exist in TIME, ICIs can only show effects in individual cancer patients. Even for the patients who responded, acquired resistance will occur to neutralize the effect of ICIs. Understanding how to increase the response rates and overcome the resistance to various classes of ICIs is the key to improving clinical efficacy. Besides the novel ICIs in development, there are some approaches to establish combination therapies are underway to improve further the efficacies of ICIs in treating cancer patients. Here, we describe the complicated TIME and state quo of ICIs to prospect the future of ICIs in cancer treatment.
Collapse
Affiliation(s)
- Yunlong Jia
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
177
|
Ringgaard L, Melander F, Eliasen R, Henriksen JR, Jølck RI, Engel TB, Bak M, Fliedner FP, Kristensen K, Elema DR, Kjaer A, Hansen AE, Andresen TL. Tumor repolarization by an advanced liposomal drug delivery system provides a potent new approach for chemo-immunotherapy. SCIENCE ADVANCES 2020; 6:6/36/eaba5628. [PMID: 32917608 PMCID: PMC7473747 DOI: 10.1126/sciadv.aba5628] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/16/2020] [Indexed: 05/16/2023]
Abstract
Immunosuppressive cells in the tumor microenvironment allow cancer cells to escape immune recognition and support cancer progression and dissemination. To improve therapeutic efficacy, we designed a liposomal oxaliplatin formulation (PCL8-U75) that elicits cytotoxic effects toward both cancer and immunosuppressive cells via protease-mediated, intratumoral liposome activation. The PCL8-U75 liposomes displayed superior therapeutic efficacy across all syngeneic cancer models in comparison to free-drug and liposomal controls. The PCL8-U75 depleted myeloid-derived suppressor cells and tumor-associated macrophages in the tumor microenvironment. The combination of improved cancer cell cytotoxicity and depletion of immunosuppressive populations of immune cells is attractive for combination with immune-activating therapy. Combining the PCL8-U75 liposomes with a TLR7 agonist induced immunological rejection of established tumors. This combination therapy increased intratumoral numbers of cancer antigen-specific cytotoxic T cells and Foxp3- T helper cells. These results are encouraging toward advancing liposomal drug delivery systems with anticancer and immune-modulating properties into clinical cancer therapy.
Collapse
Affiliation(s)
- L Ringgaard
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - F Melander
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - R Eliasen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - J R Henriksen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - R I Jølck
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - T B Engel
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M Bak
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - F P Fliedner
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - K Kristensen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - D R Elema
- The Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark, Roskilde, Denmark
| | - A Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - A E Hansen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - T L Andresen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
178
|
Zeng D, Long H, Zhu B. Antitumor effects of targeting myeloid-derived suppressive cells. Transl Cancer Res 2020; 9:5787-5797. [PMID: 35117939 PMCID: PMC8798346 DOI: 10.21037/tcr.2020.01.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with major regulatory functions, which are expanded in pathological conditions, including cancers, infections and autoimmune diseases. Evidence has identified MDSCs as critical cells driving immune suppression in tumor microenvironments. Treatments targeting MDSCs have shown promising results in preclinical studies and some clinical trials. In this review, we discuss therapeutic approaches targeting MDSCs, which may benefit future study.
Collapse
Affiliation(s)
- Dong Zeng
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
179
|
Wu C, Du X, Tang L, Wu J, Zhao W, Guo X, Liu D, Hu W, Helmby H, Chen G, Wang Z. Schistosoma japonicum SjE16.7 Protein Promotes Tumor Development via the Receptor for Advanced Glycation End Products (RAGE). Front Immunol 2020; 11:1767. [PMID: 32973746 PMCID: PMC7472961 DOI: 10.3389/fimmu.2020.01767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Schistosome infection contributes to cancer development, but the mechanisms are still not well-understood. SjE16.7 is an EF-hand calcium-binding protein secreted from Schistosoma japonicum eggs. It is a neutrophil attractant and macrophage activator and, as such, plays an important role in the inflammatory granuloma response in schistosomiasis. Here, we show that SjE16.7 binds to host cells by interacting with receptors for advanced glycation end products (RAGE). This ligation leads to activation of the NF-κB signaling pathway, an increase in the generation of reactive oxygen species, and production of the pro-inflammatory cytokines IL-6 and TNF-α. Using a mouse model of colorectal cancer, we demonstrate that intraperitoneal injection of SjE16.7 promotes colorectal cancer progression along with systemic myeloid cell accumulation. Thus, our results identify a new helminth antigen contributing to tumor development in the mammalian host.
Collapse
Affiliation(s)
- Chenyun Wu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Du
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Tang
- Department of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Jianhua Wu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhao
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengyu Liu
- Department of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Wei Hu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Helena Helmby
- Department for Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
180
|
Hong EH, Cho J, Ahn JH, Kwon BE, Kweon MN, Seo SU, Yoon BI, Chang SY, Ko HJ. Plasmacytoid dendritic cells regulate colitis-associated tumorigenesis by controlling myeloid-derived suppressor cell infiltration. Cancer Lett 2020; 493:102-112. [PMID: 32810576 DOI: 10.1016/j.canlet.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Toll-like receptor (TLR)3 and TLR7 are important for stimulating plasmacytoid dendritic cells (pDCs), which secrete type I interferon. Mice deficient for TLR3 and TLR7 (TLR3-/-TLR7-/-) reportedly exhibit deteriorated colitis because of impaired pDCs. However, the role of pDCs in tumorigenesis-associated inflammation progression has not been studied. We treated wild-type or TLR3-/-TLR7-/- mice with dextran sulfate sodium (DSS) and/or azoxymethane (AOM) and examined colon mucosa, measured body weight and colon length of mice, and examined pDC and myeloid-derived suppressor cell (MDSC) accumulation. Further, we depleted pDCs in AOM/DSS-treated wild-type mice by treating them with anti-PDCA-1 antibodies. We found that MDSCs significantly increased, while pDCs decreased in TLR3-/-TLR7-/- mice. Moreover, TLR3-/-TLR7-/- mice developed colitis-associated colon cancer following AOM/DSS treatment. Additionally, we showed that a defect in TLR7 of pDCs is responsible for the aggravation of colitis-associated colon cancer. Further, we showed that TLR7 ligand mitigates colitis-associated colon cancer. Collectively, our results demonstrate that gut pDCs play a crucial role in reducing colorectal cancer development via the regulation of infiltrating MDSCs.
Collapse
Affiliation(s)
- Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, 05505, South Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 05505, South Korea
| | - Byung-Il Yoon
- Laboratory of Histology and Molecular Pathogenesis, College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
181
|
Li S, Wang N, Tan HY, Chueng F, Zhang ZJ, Yuen MF, Feng Y. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease. Clin Transl Med 2020; 10:e112. [PMID: 32790968 PMCID: PMC7438809 DOI: 10.1002/ctm2.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Berberine is an isoquinoline alkaloid compound derived from many herbs, which has been used extensively to improve liver function. But action mechanism of its hepatoprotection in alcoholic liver disease (ALD) is far from being clear. Aim To investigate the underlying mechanism of berberine's therapeutic effect on ALD associated with gut microbiota‐immune system axis. Method An animal model fed with ethanol that mimics drinking pattern ideally in ALD patients was established. Liver function was evaluated by biochemical test and histological examination. Immune cells were detected by flow cytometry and feces samples were collected for 16S rRNA gene amplicon sequencing. Results We first reported the promising beneficial effect of berberine on ameliorating acute‐on‐chronic alcoholic hepatic damage and explored the underlying mechanism involving gut microbiota‐immune system axis. Notably, berberine activated a population with immune suppressive function, defined as granulocytic‐ myeloid‐derived suppressor cell (G‐MDSC)‐like population, in the liver of mice with alleviating alcohol‐induced hepatic injury. Berberine remarkably enhanced the increase of G‐MDSC‐like cells in blood and liver and decreased cytotoxic T cells correspondingly. Suppression of G‐MDSC‐like population significantly attenuated the protective effect of berberine against alcohol. Berberine activated IL6/STAT3 signaling in in vitro culture of G‐MSDCs‐like population, while inhibition of STAT3 activity attenuated the activation of this population by berberine. Moreover, berberine changed the overall gut microbial community, primarily increased the abundance of Akkermansia muciniphila. Of note, depletion of gut microbiota abolished the inducing effect of berberine on G‐MDSC‐like population, and attenuated its hepatoprotective effect against alcohol in mice, suggesting intestinal flora might be involved in mediating the expansion of this protective population. Conclusion Collectively, this study delivered insight into the role of immunosuppressive response in ALD, and facilitated the understanding of the pharmacological effects and action mechanisms of berberine.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Fan Chueng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| |
Collapse
|
182
|
Sieminska I, Baran J. Myeloid-Derived Suppressor Cells in Colorectal Cancer. Front Immunol 2020; 11:1526. [PMID: 32849517 PMCID: PMC7426395 DOI: 10.3389/fimmu.2020.01526] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies diagnosed worldwide. The pathogenesis of CRC is complex and involves, among others, accumulation of genetic predispositions and epigenetic factors, dietary habits, alterations in gut microbiota, and lack of physical activity. A growing body of evidence suggests that immune cells play different roles in CRC, comprising both pro- and anti-tumorigenic functions. Immunosuppression observed during cancer development and progression is a result of the orchestration of many cell types, including myeloid-derived suppressor cells (MDSCs). MDSCs, along with other cells, stimulate tumor growth, angiogenesis, and formation of metastases. This article focuses on MDSCs in relation to their role in the initiation and progression of CRC. Possible forms of immunotherapies targeting MDSCs in CRC are also discussed.
Collapse
Affiliation(s)
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
183
|
Qi J, Tang X, Li W, Chen W, Yao G, Sun L. Mesenchymal stem cells inhibited the differentiation of MDSCs via COX2/PGE2 in experimental sialadenitis. Stem Cell Res Ther 2020; 11:325. [PMID: 32727564 PMCID: PMC7391592 DOI: 10.1186/s13287-020-01837-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) can regulate innate and adaptive immune systems through interacting with immune cells directly and secreting multiple soluble factors. Due to their immunosuppressive properties, MSC transplantation has been applied to treat many clinical and experimental autoimmune diseases. However, the therapeutic effects and mechanisms by which MSCs regulate myeloid cells in Sjögren’s syndrome (SS) still remain elusive. Methods The number and immune-suppressive activity of myeloid-derived suppressor cells (MDSCs), polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-MDSCs) were determined in non-obese diabetic (NOD) mice with sialadenitis and in NOD mice with human umbilical cord-derived MSC (UC-MSC) transplantation. Bone marrow cells were cultured with MSC-conditioned medium (MSC-CM) for 4 days. The number and immune-suppressive gene of MDSCs were detected by flow cytometry or qRT-PCR. Results The results showed that the number of MDSCs and PMN-MDSCs was higher and M-MDSCs were lower in NOD mice with sialadenitis. UC-MSCs ameliorated SS-like syndrome by reducing MDSCs, PMN-MDSCs, and M-MDSCs and promoting the suppressive ability of MDSCs significantly in NOD mice. UC-MSCs inhibited the differentiation of MDSCs. In addition, UC-MSCs enhanced the suppressive ability of MDSCs in vitro. Mechanistically, MSCs inhibited the differentiation of MDSCs and PMN-MDSCs via secreting prostaglandin E2 (PGE2) and inhibited the differentiation of M-MDSCs through secreting interferon-β (IFN-β). Conclusions Our findings suggested that MSCs alleviated SS-like symptoms by suppressing the aberrant accumulation and improving the suppressive function of MDSCs in NOD mice with sialadenitis.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.,Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
184
|
Jiang HH, Wang KX, Bi KH, Lu ZM, Zhang JQ, Cheng HR, Zhang MY, Su JJ, Cao YX. Sildenafil might impair maternal-fetal immunotolerance by suppressing myeloid-derived suppressor cells in mice. J Reprod Immunol 2020; 142:103175. [PMID: 32682164 DOI: 10.1016/j.jri.2020.103175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) as an important population of immune cells were found to restrain T cell function, polarize T-helper cells (Th) 1/Th2 toward Th2 response and induce regulatory T cells (Tregs), therefore enhancing the immunotolerance during pregnancy. Sildenafil has been applied for poor endometrial quality in implantation failure patients. Nevertheless, investigations have shown that sildenafil could reduce MDSCs-dependent immunosuppression. Whether sildenafil affects embryo implantation by suppressing MDSCs? To address this question, using the mice model, we investigated the amounts of immune cells in peripheral blood and endometrial cells from control group (CG), sildenafil low-dose group (LDG) and high-dose group (HDG). We found that both treatment groups displayed a marked deficiency in polymorphonuclear (PMN)-MDSCs and Th2 from mice blood and endometrium as compared to these from CG. The frequency of Tregs in endometrium from HDG was lower than those from CG. Th1/Th2 ratio in both periphery and uterus from study groups showed a significant increase as compared to those from CG. By relevance analysis, we found that the level of Tregs positively correlated with the level of PMN-MDSCs, whereas the Th1/Th2 ratio negatively correlated with the frequency of PMN-MDSCs in uterus. Moreover, there was a positive relationship between the amount of blood PMN-MDSCs and endometrial PMN-MDSCs. These results suggest that we should carefully weigh the pros and cons of using sildenafil when applied to patients with poor endometrial receptivity.
Collapse
Affiliation(s)
- H H Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - K X Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - K H Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Z M Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - J Q Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - H R Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - M Y Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - J J Su
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Y X Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
185
|
Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020; 53:100715. [PMID: 32679188 DOI: 10.1016/j.drup.2020.100715] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor relapses. Pro-thrombotic microenvironment created by inflammatory cytokines and chemokines from TAMs, MDSCs and CAFs is also involved in EMT and MDR. MDSCs are the most common mediators of immunosuppression and are also involved in resistance to targeted therapies, e.g. BRAF inhibitors and oncolytic viruses-based therapies. Expansion of both cancer and stroma cells causes hypoxia by hypoxia-inducible transcription factors (e.g. HIF-1α) resulting in drug resistance. TME factors induce the expression of transcriptional EMT factors, MDR and metabolic adaptation of cancer cells. Promoters of several ATP-binding cassette (ABC) transporter genes contain binding sites for canonical EMT transcription factors, e.g. ZEB, TWIST and SNAIL. Changes in glycolysis, oxidative phosphorylation and autophagy during EMT also promote MDR. Conclusively, EMT signaling simultaneously increases MDR. Owing to the multifactorial nature of MDR, targeting one mechanism seems to be non-sufficient to overcome resistance. Targeting inflammatory processes by immune modulatory compounds such as mTOR inhibitors, demethylating agents, low-dosed histone deacetylase inhibitors may decrease MDR. Targeting EMT and metabolic adaptation by small molecular inhibitors might also reverse MDR. In this review, we summarize evidence for TME components as causative factors of EMT and anticancer drug resistance.
Collapse
|
186
|
Myeloid Cells in Circulation and Tumor Microenvironment of Colorectal Cancer Patients with Early and Advanced Disease Stages. J Immunol Res 2020; 2020:9678168. [PMID: 32626789 PMCID: PMC7306094 DOI: 10.1155/2020/9678168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of cells that have been implicated in the development of an immunosuppressive environment, which promotes tumorigenesis and tumor progression. Numerous studies have reported expansion of MDSCs in circulation and the tumor microenvironment (TME) of cancer patients. However, due to the heterogenic nature of MDSCs and the different approaches for their identification, their detailed characterization and impact on disease progression in cancer patients are warranted. In this study, we investigated the levels of different myeloid cell subsets and antigen-presenting cells (APCs) using flow cytometry in unfractionated whole blood (WB), peripheral blood mononuclear cells (PBMCs), tumor tissue (TT), and adjacent normal tissue (NT) of colorectal cancer (CRC) patients. We found high levels of granulocytic myeloid cells (GMCs) in whole blood, but their levels were significantly lower in PBMCs. Importantly, we found significantly higher levels of GMCs in the TME compared to NT. In addition, monocytic myeloid cells (MMCs) showed significantly higher levels in PBMCs of CRC patients, compared to healthy donors (HDs). Notably, patients with advanced disease stages showed significantly higher levels of GMCs compared to early stages in whole blood, but PBMCs and tumor-infiltrating myeloid cells did not show any significant differences. Lastly, we found that levels of GMCs decreased, while IMCs increased in the TME with tumor budding. Our results highlight the importance of investigating the levels of different myeloid cell subsets in PBMCs versus whole blood of cancer patients and improve current knowledge on the potential prognostic significance of myeloid cells in CRC patients.
Collapse
|
187
|
Neophytou CM, Pierides C, Christodoulou MI, Costeas P, Kyriakou TC, Papageorgis P. The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Front Oncol 2020; 10:899. [PMID: 32656079 PMCID: PMC7325995 DOI: 10.3389/fonc.2020.00899] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells include various cellular subtypes that are distinguished into mononuclear and polymorphonuclear cells, derived from either common myeloid progenitor cells (CMPs) or myeloid stem cells. They play pivotal roles in innate immunity since, following invasion by pathogens, myeloid cells are recruited and initiate phagocytosis and secretion of inflammatory cytokines into local tissues. Moreover, mounting evidence suggests that myeloid cells may also regulate cancer development by infiltrating the tumor to directly interact with cancer cells or by affecting the tumor microenvironment. Importantly, mononuclear phagocytes, including macrophages and dendritic cells (DCs), can have either a positive or negative impact on the efficacy of chemotherapy, radiotherapy as well as targeted anti-cancer therapies. Tumor-associated macrophages (TAMs), profusely found in the tumor stroma, can promote resistance to chemotherapeutic drugs, such as Taxol and Paclitaxel, whereas the suppression of TAMs can lead to an improved radiotherapy outcome. On the contrary, the presence of TAMs may be beneficial for targeted therapies as they can facilitate the accumulation of large quantities of nanoparticles carrying therapeutic compounds. Tumor infiltrating DCs, however, are generally thought to enhance cytotoxic therapies, including those using anthracyclines. This review focuses on the role of tumor-infiltrating and stroma myeloid cells in modulating tumor responses to various treatments. We herein report the impact of myeloid cells in a number of therapeutic approaches across a wide range of malignancies, as well as the efforts toward the elimination of myeloid cells or the exploitation of their presence for the enhancement of therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Christiana M Neophytou
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Chryso Pierides
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
| | | | - Paul Costeas
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus.,The Cyprus Cancer Research Institute, Nicosia, Cyprus
| | | | - Panagiotis Papageorgis
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
188
|
Shi R, Tang Y, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm (Beijing) 2020; 1:47-68. [PMID: 34766109 PMCID: PMC8489668 DOI: 10.1002/mco2.6] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment is a special environment for tumor survival, which is characterized by hypoxia, acidity, nutrient deficiency, and immunosuppression. The environment consists of the vasculature, immune cells, extracellular matrix, and proteins or metabolic molecules. A large number of recent studies have shown that not only tumor cells but also the immune cells in the tumor microenvironment have undergone metabolic reprogramming, which is closely related to tumor drug resistance and malignant progression. Tumor immunotherapy based on T cells gives patients new hope, but faces the dilemma of low response rate. New strategies sensitizing cancer immunotherapy are urgently needed. Metabolic reprogramming can directly affect the biological activity of tumor cells and also regulate the differentiation and activation of immune cells. The authors aim to review the characteristics of tumor microenvironment, the metabolic changes of tumor‐associated immune cells, and the regulatory role of metabolic reprogramming in cancer immunotherapy.
Collapse
Affiliation(s)
- Rongchen Shi
- Department of Biochemistry and Molecular BiologyThird Military Medical University (Army Medical University) Chongqing People's Republic of China
| | - Yi‐Quan Tang
- MRC Laboratory of Molecular BiologyCambridge Biomedical Campus Cambridge UK
| | - Hongming Miao
- Department of Biochemistry and Molecular BiologyThird Military Medical University (Army Medical University) Chongqing People's Republic of China
| |
Collapse
|
189
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
190
|
Alvero AB, Hanlon D, Pitruzzello M, Filler R, Robinson E, Sobolev O, Tedja R, Ventura A, Bosenberg M, Han P, Edelson RL, Mor G. Transimmunization restores immune surveillance and prevents recurrence in a syngeneic mouse model of ovarian cancer. Oncoimmunology 2020; 9:1758869. [PMID: 32566387 PMCID: PMC7302442 DOI: 10.1080/2162402x.2020.1758869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer accounts for most deaths from gynecologic malignancies. Although more than 80% of patients respond to first-line standard of care, most of these responders present with recurrence and eventually succumb to carcinomatosis and chemotherapy-resistant disease. To improve patient survival, new modalities must, therefore, target or prevent recurrent disease. Here we describe for the first time a novel syngeneic mouse model of recurrent high-grade serous ovarian cancer (HGSOC), which allows immunotherapeutic interventions in a time course relevant to human carcinomatosis and disease course. Using this model, we demonstrate the efficacy of Transimmunization (TI), a dendritic cell (DC) vaccination strategy that uses autologous and physiologically derived DC loaded with autologous whole tumor antigens. TI has been proven successful in the treatment of human cutaneous T cell lymphoma and we report for the first time its in vivo efficacy against an intra-peritoneal solid tumor. Given as a single therapy, TI is able to elicit an effective anti-tumor immune response and inhibit immune-suppressive crosstalks with sufficient power to curtail tumor progression and establishment of carcinomatosis and recurrent disease. Specifically, TI is able to inhibit the expansion of tumor-associated macrophages as well as myeloid-derived suppressive cells consequently restoring T cell immune-surveillance. These results demonstrate the possible value of TI in the management of ovarian cancer and other intra-peritoneal tumors.
Collapse
Affiliation(s)
- Ayesha B Alvero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas Hanlon
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary Pitruzzello
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Renata Filler
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Eve Robinson
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Olga Sobolev
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Roslyn Tedja
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Alessandra Ventura
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Han
- Department of Chemical & Environmental Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| | - Richard L Edelson
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
191
|
Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, Sarkar D, Landry J, Guo C, Wang XY, Cavenee WK, Emdad L, Fisher PB. MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155:104695. [PMID: 32061839 PMCID: PMC7551653 DOI: 10.1016/j.phrs.2020.104695] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Joseph Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, CA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
192
|
Peng M, Zhang Q, Liu Y, Guo X, Ju J, Xu L, Gao Y, Chen D, Mu D, Zhang R. Apolipoprotein A-I Mimetic Peptide L-4F Suppresses Granulocytic-Myeloid-Derived Suppressor Cells in Mouse Pancreatic Cancer. Front Pharmacol 2020; 11:576. [PMID: 32425796 PMCID: PMC7204910 DOI: 10.3389/fphar.2020.00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
L-4F is an apolipoprotein A-I (ApoA-I) mimetic peptide, it was engineered to imitate the anti-inflammatory and anti-oxidative activity of ApoA-I. In this paper, H7 cell was used to construct a mouse model of pancreatic cancer in situ, and the mice were treated with L-4F. Then, the development of pancreatic cancer and myeloid-derived suppressor cells (MDSCs) infiltration were investigated in vivo. After L-4F treatment, the differentiation, proliferation and apoptosis of MDSCs were detected in vitro. Moreover, we test its effects on the immunosuppressive function of MDSCs ex vivo. The results show that L-4F significantly reduced the tumorigenicity of H7 cells. L-4F suppressed granulocytic myeloid-derived suppressor cells (PMN-MDSCs) differentiation and inhibited the accumulation of PMN-MDSCs in the mouse spleen and tumor tissue. L-4F weakened the immunosuppressive function of MDSCs, resulting in decreased production of ROS and H2O2 by MDSCs, and increased T cell proliferation, interferon γ and tumor necrosis factor β secretion, and CD3+CD4+ T and CD3+CD8+ T cell infiltration into the mouse spleen and pancreatic cancer tissue. Furthermore, L-4F significantly down regulated the STAT3 signaling pathway in PMN-MDSCs. These results indicated that L-4F exerts an effective anti-tumor and immunomodulatory effect in pancreatic cancer by inhibiting PMN-MDSCs.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yanqing Liu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Medical University, Tianjin, China
| | - Jiyu Ju
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyuan Gao
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Dongzhen Mu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
193
|
Ademe M. Paradoxes in the Phenotype, Frequency and Roles of Myeloid-Derived Suppressor Cells During HIV Infection. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2020; 12:151-156. [PMID: 32341663 PMCID: PMC7166052 DOI: 10.2147/hiv.s248642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/01/2020] [Indexed: 11/23/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous groups of pathologically activated myeloid cells with potent immunosuppressive function. Due to their role in negatively regulating the immune system, MDSCs have been strongly correlated with disease progression during HIV. However, findings vary considerably between studies. The dominant phenotype of MDSC subsets during HIV is not well ascertained. Moreover, there is no clear understanding on the clinical significance of MDSCs during HIV infection. The existing evidences showed the double-sided roles of MDSCs in HIV. On the one hand, MDSCs are linked to deleterious effects during HIV infection as they inhibit proliferation of protective T cell response. On the other hand, the immunosuppressive abilities of MDSCs were shown to be beneficial in curbing the damaging effects of persistent immune activation associated with chronic HIV infection. Therefore, this review aimed to describe the differences in the existing literatures pertaining to the phenotype, frequency and roles of MDSCs during HIV infection.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
194
|
Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, Jin W, Gao X. The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment. Front Immunol 2020; 11:737. [PMID: 32391020 PMCID: PMC7193311 DOI: 10.3389/fimmu.2020.00737] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid progenitor and precursor cells at different stages of differentiation, which play an important role in tumor immunosuppression. Glioma is the most common and deadliest primary malignant tumor of the brain, and ample evidence supports key contributions of MDSCs to the immunosuppressive tumor microenvironment, which is a key factor stimulating glioma progression. In this review, we summarize the source and characterization of MDSCs, discuss their immunosuppressive functions, and current approaches that target MDSCs for tumor control. Overall, the review provides insights into the roles of MDSC immunosuppression in the glioma microenvironment and suggests that MDSC control is a powerful cellular therapeutic target for currently incurable glioma tumors.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Zhifang Hu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
195
|
Ma Z, Zhen Y, Hu C, Yi H. Myeloid-Derived Suppressor Cell-Derived Arginase-1 Oppositely Modulates IL-17A and IL-17F Through the ESR/STAT3 Pathway During Colitis in Mice. Front Immunol 2020; 11:687. [PMID: 32391010 PMCID: PMC7188946 DOI: 10.3389/fimmu.2020.00687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) play a crucial role in regulating the intestinal immune response during colitis. We previously revealed an essential role of MDSC in promoting TH17 cell polarization, which was found to be arginase-1 (Arg-1)-dependent; however, the underlying mechanism remains obscure. Here we report that percentage of MDSC decreased in ArgmyeKO mice during DSS-induced colitis. IL-17A levels reduced but IL-17F levels increased significantly in the colorectum of ArgmyeKO mice, leading to severe tissue damage and high risk of mortality rate. Activation of estrogen receptor (ESR) increased pSTAT3 level in MDSC and consequently led to elevated percentage of MDSC and more Arg-1 and inducible nitric oxide synthase expression in MDSC. Increased level of IL-17A and reduced level of IL-17F alleviated colitis in mice consequently. Together, these findings demonstrate a protective role of MDSC-derived Arg-1 during colitis after activates ESR/STAT3 signaling in MDSC. High level of Arg-1 favors accumulation of IL-17A, but reduced IL-17F expression in the colorectum of mice and ultimately leading to relief of colitis, indicating a potential clinical impact of MDSC-derived Arg-1 for controlling inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Cong Hu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| |
Collapse
|
196
|
Green Tea Polyphenol EGCG Attenuates MDSCs-mediated Immunosuppression through Canonical and Non-Canonical Pathways in a 4T1 Murine Breast Cancer Model. Nutrients 2020; 12:nu12041042. [PMID: 32290071 PMCID: PMC7230934 DOI: 10.3390/nu12041042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023] Open
Abstract
Several studies in the past decades have reported anti-tumor activity of the bioactive compounds extracted from tea leaves, with a focus on the compound epigallocatechin-3-gallate (EGCG). However, further investigations are required to unravel the underlying mechanisms behind the anti-tumor activity of EGCG. In this study, we demonstrate that EGCG significantly inhibits the growth of 4T1 breast cancer cells in vitro and in vivo. EGCG ameliorated immunosuppression by significantly decreasing the accumulation of myeloid-derived suppressor cells (MDSCs) and increasing the proportions of CD4+ and CD8+ T cells in spleen and tumor sites in 4T1 breast tumor-bearing mice. Surprisingly, a low dose of EGCG (0.5-5 μg/mL) effectively reduced the cell viability and increased the apoptosis rate of MDSCs in vitro. EGCG down-regulated the canonical pathways in MDSCs, mainly through the Arg-1/iNOS/Nox2/NF-κB/STAT3 signaling pathway. Moreover, transcriptomic analysis suggested that EGCG also affected the non-canonical pathways in MDSCs, such as ECM-receptor interaction and focal adhesion. qRT-PCR further validated that EGCG restored nine key genes in MDSCs, including Cxcl3, Vcan, Col4a1, Col8a1, Oasl2, Mmp12, Met, Itsnl and Acot1. Our results provide new insight into the mechanism of EGCG-associated key pathways/genes in MDSCs in the murine breast tumor model.
Collapse
|
197
|
Shu C, Sun P, Xie H, Huang W, Qi J, Ma Y. Virus-Like Particles Presenting the FGF-2 Protein or Identified Antigenic Peptides Promoted Antitumor Immune Responses in Mice. Int J Nanomedicine 2020; 15:1983-1996. [PMID: 32308382 PMCID: PMC7146011 DOI: 10.2147/ijn.s237182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/25/2020] [Indexed: 01/29/2023] Open
Abstract
Background Fibroblast growth factor (FGF)-2 is overexpressed in various tumor tissues. It affects tumor cell proliferation, invasion and survival, promotes tumor angiogenesis and is tightly involved in the development of systemic and local immunosuppressive tumor mechanisms. Purpose This study aimed to develop an effective vaccine against FGF-2 and to investigate the effects of anti-FGF-2 immunization on tumor growth and antitumor immune responses. Methods A set of thirteen synthesized overlapping peptides covering all possible linear B-cell epitopes of murine FGF-2 and a recombinant FGF-2 protein were conjugated to virus-like particles (VLPs) of recombinant hepatitis B core antigen (HBcAg). The VLPs were immunized through a preventive or therapeutic strategy in a TC-1 or 4T1 grafted tumor model. Results Immunization with FGF-2 peptides or full-length protein-coupled VLPs produced FGF-2-specific antibodies with a high titer. Peptide 12, which is located in the heparin-binding site of FGF-2, or protein-conjugated VLPs presented the most significant effects on the suppression of TC-1 tumor growth. The levels of IFN-γ-expressing splenocytes and serum IFN-γ were significantly elevated; further, the immune effector cells CD8+ IFN-γ+ cytotoxic T lymphocytes (CTLs) and CD4+ IFN-γ+ Th1 cells were significantly increased, whereas the immunosuppressive cells CD4+ CD25+ FOXP3+ Treg cells and Gr-1+ CD11b+ myeloid-derived suppressor cells (MDSCs) were decreased in the immunized mice. In addition, VLP immunization significantly suppressed tumor vascularization and promoted tumor cell apoptosis. In mice bearing 4T1 breast tumor, preventive immunization with FGF-2-conjugated VLPs suppressed tumor growth and lung metastasis, and increased effector cell responses. Conclusion Active immunization against FGF-2 is a new possible strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Congyan Shu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, People's Republic of China.,Sichuan Institute for Food and Drug Control, Chengdu 611731, People's Republic of China
| | - Pengyan Sun
- Yunnan Center for Disease Control and Prevention, Kunming 650022, People's Republic of China
| | - Hanghang Xie
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Weiwei Huang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Jialong Qi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yanbing Ma
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, People's Republic of China
| |
Collapse
|
198
|
Xu J, Luo Y, Yuan C, Han L, Wu Q, Xu L, Gao Y, Sun Y, Ma S, Tang G, Li S, Sun W, Gong Y, Xie C. Downregulation of Nitric Oxide Collaborated with Radiotherapy to Promote Anti-Tumor Immune Response via Inducing CD8+ T Cell Infiltration. Int J Biol Sci 2020; 16:1563-1574. [PMID: 32226302 PMCID: PMC7097922 DOI: 10.7150/ijbs.41653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
The production of nitric oxide (NO) is a key feature of immunosuppressive myeloid cells, which impair T cell activation and proliferation via reversibly blocking interleukin-2 receptor signaling. NO is mainly produced from L-arginine by inducible NO synthase (iNOS). Moreover, L-arginine is an essential element for T cell proliferation and behaviors. Impaired T cell function further inhibits anti-tumor immunity and promotes tumor progression. Previous studies indicated that radiotherapy activated anti-tumor immune responses in multiple tumors. However, myeloid-derived cells in the tumor microenvironment may neutralize these responses. We hypothesized that iNOS, as an important regulator of the immunosuppressive effects in myeloid-derived cells, mediated radiation resistance of cancer cells. In this study, we used 1400W dihydrochloride, a potent small-molecule inhibitor of iNOS, to explore the regulatory roles of NO in anti-tumor immunity. Radiotherapy and iNOS inhibition by 1400W collaboratively suppressed tumor growth and increased survival time, as well as increased tumor-infiltrating CD8+ T cells and specific inflammatory cytokine levels, in both lung and breast cancer cells in vivo. Our results also suggested that myeloid cell-mediated inhibition of T cell proliferation was effectively counteracted by radiation and 1400W-mediated NO blockade in vitro. Thus, these results demonstrated that iNOS was an important regulator of radiotherapy-induced antitumor immune responses. The combination of radiotherapy with iNOS blockade might be an effective therapy to improve the response of tumors to clinical radiation.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liexi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuke Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
199
|
Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR. Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Transl Oncol 2020; 13:100738. [PMID: 32114384 PMCID: PMC7047187 DOI: 10.1016/j.tranon.2019.12.010] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.
Collapse
Affiliation(s)
- Luisa Barrueto
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Francheska Caminero
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Lindsay Cash
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Courtney Makris
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Purushottam Lamichhane
- Lake Erie College of Osteopathic Medicine, Florida School of Dental Medicine, Bradenton, FL.
| | - Rahul R Deshmukh
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Bradenton, FL.
| |
Collapse
|
200
|
Garg SK, Ott MJ, Mostofa AGM, Chen Z, Chen YA, Kroeger J, Cao B, Mailloux AW, Agrawal A, Schaible BJ, Sarnaik A, Weber JS, Berglund AE, Mulé JJ, Markowitz J. Multi-Dimensional Flow Cytometry Analyses Reveal a Dichotomous Role for Nitric Oxide in Melanoma Patients Receiving Immunotherapy. Front Immunol 2020; 11:164. [PMID: 32161584 PMCID: PMC7052497 DOI: 10.3389/fimmu.2020.00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Phenotyping of immune cell subsets in clinical trials is limited to well-defined phenotypes, due to technological limitations of reporting flow cytometry multi-dimensional phenotyping data. We developed a multi-dimensional phenotyping analysis tool and applied it to detect nitric oxide (NO) levels in peripheral blood immune cells before and after adjuvant ipilimumab co-administration with a peptide vaccine in melanoma patients. We analyzed inhibitory and stimulatory markers for immune cell phenotypes that were felt to be important in the NO analysis. The pipeline allows visualization of immune cell phenotypes without knowledge of clustering techniques and to categorize cells by association with relapse-free survival (RFS). Using this analysis, we uncovered the potential for a dichotomous role of NO as a pro- and anti-melanoma factor. NO was found in subsets of immune-suppressor cells associated with shorter-term (≤ 1 year) RFS, whereas NO was also present in immune-stimulatory effector cells obtained from patients with significant longer-term (> 1 year) RFS. These studies provide insights into the cell-specific immunomodulatory role of NO. The methods presented herein can be applied to monitor the pro- and anti-tumor effects of a variety of immune-based therapeutics in cancer patients. Clinical Trial Registration Number: NCT00084656 (https://clinicaltrials.gov/ct2/show/NCT00084656).
Collapse
Affiliation(s)
- Saurabh K Garg
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Matthew J Ott
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - A G M Mostofa
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Zhihua Chen
- Cancer Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Y Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jodi Kroeger
- Flow Cytometry Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Adam W Mailloux
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Alisha Agrawal
- Department of Oncologic Sciences, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Braydon J Schaible
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Amod Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jeffrey S Weber
- Department of Medicine, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - James J Mulé
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|