151
|
Leslie E, Liu H, Carlson J, Shaffer J, Feingold E, Wehby G, Laurie C, Jain D, Laurie C, Doheny K, McHenry T, Resick J, Sanchez C, Jacobs J, Emanuele B, Vieira A, Neiswanger K, Standley J, Czeizel A, Deleyiannis F, Christensen K, Munger R, Lie R, Wilcox A, Romitti P, Field L, Padilla C, Cutiongco-de la Paz E, Lidral A, Valencia-Ramirez L, Lopez-Palacio A, Valencia D, Arcos-Burgos M, Castilla E, Mereb J, Poletta F, Orioli I, Carvalho F, Hecht J, Blanton S, Buxó C, Butali A, Mossey P, Adeyemo W, James O, Braimah R, Aregbesola B, Eshete M, Deribew M, Koruyucu M, Seymen F, Ma L, de Salamanca J, Weinberg S, Moreno L, Cornell R, Murray J, Marazita M. A Genome-wide Association Study of Nonsyndromic Cleft Palate Identifies an Etiologic Missense Variant in GRHL3. Am J Hum Genet 2016; 98:744-54. [PMID: 27018472 DOI: 10.1016/j.ajhg.2016.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022] Open
Abstract
Cleft palate (CP) is a common birth defect occurring in 1 in 2,500 live births. Approximately half of infants with CP have a syndromic form, exhibiting other physical and cognitive disabilities. The other half have nonsyndromic CP, and to date, few genes associated with risk for nonsyndromic CP have been characterized. To identify such risk factors, we performed a genome-wide association study of this disorder. We discovered a genome-wide significant association with a missense variant in GRHL3 (p.Thr454Met [c.1361C>T]; rs41268753; p = 4.08 × 10(-9)) and replicated the result in an independent sample of case and control subjects. In both the discovery and replication samples, rs41268753 conferred increased risk for CP (OR = 8.3, 95% CI 4.1-16.8; OR = 2.16, 95% CI 1.43-3.27, respectively). In luciferase transactivation assays, p.Thr454Met had about one-third of the activity of wild-type GRHL3, and in zebrafish embryos, perturbed periderm development. We conclude that this mutation is an etiologic variant for nonsyndromic CP and is one of few functional variants identified to date for nonsyndromic orofacial clefting. This finding advances our understanding of the genetic basis of craniofacial development and might ultimately lead to improvements in recurrence risk prediction, treatment, and prognosis.
Collapse
|
152
|
Leslie EJ, Carlson JC, Shaffer JR, Feingold E, Wehby G, Laurie CA, Jain D, Laurie CC, Doheny KF, McHenry T, Resick J, Sanchez C, Jacobs J, Emanuele B, Vieira AR, Neiswanger K, Lidral AC, Valencia-Ramirez LC, Lopez-Palacio AM, Valencia DR, Arcos-Burgos M, Czeizel AE, Field LL, Padilla CD, Cutiongco-de la Paz EMC, Deleyiannis F, Christensen K, Munger RG, Lie RT, Wilcox A, Romitti PA, Castilla EE, Mereb JC, Poletta FA, Orioli IM, Carvalho FM, Hecht JT, Blanton SH, Buxó CJ, Butali A, Mossey PA, Adeyemo WL, James O, Braimah RO, Aregbesola BS, Eshete MA, Abate F, Koruyucu M, Seymen F, Ma L, de Salamanca JE, Weinberg SM, Moreno L, Murray JC, Marazita ML. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13. Hum Mol Genet 2016; 25:2862-2872. [PMID: 27033726 DOI: 10.1093/hmg/ddw104] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/04/2016] [Accepted: 03/24/2016] [Indexed: 12/27/2022] Open
Abstract
Orofacial clefts (OFCs), which include non-syndromic cleft lip with or without cleft palate (CL/P), are among the most common birth defects in humans, affecting approximately 1 in 700 newborns. CL/P is phenotypically heterogeneous and has a complex etiology caused by genetic and environmental factors. Previous genome-wide association studies (GWASs) have identified at least 15 risk loci for CL/P. As these loci do not account for all of the genetic variance of CL/P, we hypothesized the existence of additional risk loci. We conducted a multiethnic GWAS in 6480 participants (823 unrelated cases, 1700 unrelated controls and 1319 case-parent trios) with European, Asian, African and Central and South American ancestry. Our GWAS revealed novel associations on 2p24 near FAM49A, a gene of unknown function (P = 4.22 × 10-8), and 19q13 near RHPN2, a gene involved in organizing the actin cytoskeleton (P = 4.17 × 10-8). Other regions reaching genome-wide significance were 1p36 (PAX7), 1p22 (ARHGAP29), 1q32 (IRF6), 8q24 and 17p13 (NTN1), all reported in previous GWASs. Stratification by ancestry group revealed a novel association with a region on 17q23 (P = 2.92 × 10-8) among individuals with European ancestry. This region included several promising candidates including TANC2, an oncogene required for development, and DCAF7, a scaffolding protein required for craniofacial development. In the Central and South American ancestry group, significant associations with loci previously identified in Asian or European ancestry groups reflected their admixed ancestry. In summary, we have identified novel CL/P risk loci and suggest new genes involved in craniofacial development, confirming the highly heterogeneous etiology of OFCs.
Collapse
Affiliation(s)
- Elizabeth J Leslie
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jenna C Carlson
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Biostatistics
| | - John R Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Biostatistics.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - George Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA 52246, USA
| | - Cecelia A Laurie
- Department of Biostatistics, Genetic Coordinating Center, University of Washington, Seattle, WA 98195, USA
| | - Deepti Jain
- Department of Biostatistics, Genetic Coordinating Center, University of Washington, Seattle, WA 98195, USA
| | - Cathy C Laurie
- Department of Biostatistics, Genetic Coordinating Center, University of Washington, Seattle, WA 98195, USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Toby McHenry
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Judith Resick
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Carla Sanchez
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jennifer Jacobs
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Beth Emanuele
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alexandre R Vieira
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Katherine Neiswanger
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | - Dora Rivera Valencia
- Population Genetics and Mutacarcinogenesis Group, University of Antioquia, Medellin 050001, Colombia
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, ACT 0200, Australia
| | - Andrew E Czeizel
- Foundation for the Community Control of Hereditary Diseases, Budapest 1051, Hungary
| | - L Leigh Field
- Department of Medical Genetics, University of British Columbia, Vancouver V6H 3N1, Canada
| | - Carmencita D Padilla
- Department of Pediatrics, College of Medicine; and Institute of Human Genetics, National Institutes of Health; University of the Philippines Manila, Manilla, The Philippines 1000.,Philippine Genome Center, University of the Philippines System, Manilla, The Philippines 1101
| | - Eva Maria C Cutiongco-de la Paz
- Department of Pediatrics, College of Medicine; and Institute of Human Genetics, National Institutes of Health; University of the Philippines Manila, Manilla, The Philippines 1000.,Philippine Genome Center, University of the Philippines System, Manilla, The Philippines 1101
| | - Frederic Deleyiannis
- Department of Surgery, Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense DK-5230 Denmark
| | - Ronald G Munger
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT 84322, USA
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, NO-5020 Norway
| | - Allen Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Eduardo E Castilla
- CEMIC: Center for Medical Education and Clinical Research, Buenos Aires 1431, Argentina.,Laboratory of Congenital Malformation Epidemiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.,ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics)
| | - Juan C Mereb
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at Hospital de Area, El Bolson 8430, Argentina
| | - Fernando A Poletta
- CEMIC: Center for Medical Education and Clinical Research, Buenos Aires 1431, Argentina.,Laboratory of Congenital Malformation Epidemiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.,ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics)
| | - Iêda M Orioli
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics).,Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Flavia M Carvalho
- Laboratory of Congenital Malformation Epidemiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.,ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics)
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Susan H Blanton
- Dr. John T. Macdonald Foundation Department of Human Genetics, Hussman Institute for Human Genomics, Mailman School of Medicine, University of Miami, Miami, FL 33124, USA
| | - Carmen J Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico 00936
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, Dows Institute for Dental Research, College of Dentistry
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee DD1 4HN, Scotland
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery. College of Medicine, University of Lagos, Lagos P.M.B. 12003, Nigeria
| | - Olutayo James
- Department of Oral and Maxillofacial Surgery. College of Medicine, University of Lagos, Lagos P.M.B. 12003, Nigeria
| | - Ramat O Braimah
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ife-Ife P.M.B. 13, Nigeria
| | - Babatunde S Aregbesola
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ife-Ife P.M.B. 13, Nigeria
| | - Mekonen A Eshete
- Surgical Department, School of Medicine, Addis Ababa University, Addis Ababa, P.O. Box 26493, Ethiopia
| | - Fikre Abate
- Surgical Department, School of Medicine, Addis Ababa University, Addis Ababa, P.O. Box 26493, Ethiopia
| | - Mine Koruyucu
- Department of Pedodontics, Istanbul University, Istanbul 34116, Turkey
| | - Figen Seymen
- Department of Pedodontics, Istanbul University, Istanbul 34116, Turkey
| | - Lian Ma
- Peking University, School of Stomatology, Beijing 100081, China
| | | | - Seth M Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | - Jeffrey C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mary L Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA .,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
153
|
Clinical significance of GRHL3 expression in diffuse large B cell lymphoma. Tumour Biol 2016; 37:9657-61. [PMID: 26797800 DOI: 10.1007/s13277-015-4772-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023] Open
Abstract
In the present study, we assessed the GRHL3 expression in 967 patients with diffuse large B cell lymphomas to identify the potential prognostic value and the development of specific therapeutic strategies. All patients enrolled were from a previous study by Hao Zhang et al. (BMC Cancer 14:333, 2014). GRHL3 expression status was evaluated by immunohistochemical analysis. Survival analysis using the Kaplan-Meier method and multivariate analysis were conducted to adjust the effect of GRHL3 expression as a potential independent prognostic factor. In the enrolled 967 patients, GRHL3 expression was detected in 398 (41.16 %) patients under immunohistochemical analysis. The 5-year survival rate in patients with GRHL3 expression was significantly lower than that in those without GRHL3 expression (37.8 vs 52.8 %, P < 0.001). Multivariate analysis identified GRHL3 expression as an independent predictor of poor survival. The sensitivity and specificity of GRHL3 for the diagnosis of germinal center B cell (GCB)/non-GCB was 89.2 % (182/204) and 82.1 % (174/212), respectively. GRHL3 expression may be useful as a prognostic factor and for the diagnosis GCB/non-GCB of diffuse large B cell lymphoma.
Collapse
|
154
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
155
|
Wilson NR, Olm-Shipman AJ, Acevedo DS, Palaniyandi K, Hall EG, Kosa E, Stumpff KM, Smith GJ, Pitstick L, Liao EC, Bjork BC, Czirok A, Saadi I. SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination. Sci Rep 2016; 6:17735. [PMID: 26787558 PMCID: PMC4726231 DOI: 10.1038/srep17735] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022] Open
Abstract
Cranial neural crest cells (CNCCs) delaminate from embryonic neural folds and migrate to pharyngeal arches, which give rise to most mid-facial structures. CNCC dysfunction plays a prominent role in the etiology of orofacial clefts, a frequent birth malformation. Heterozygous mutations in SPECC1L have been identified in patients with atypical and syndromic clefts. Here, we report that in SPECC1L-knockdown cultured cells, staining of canonical adherens junction (AJ) components, β-catenin and E-cadherin, was increased, and electron micrographs revealed an apico-basal diffusion of AJs. To understand the role of SPECC1L in craniofacial morphogenesis, we generated a mouse model of Specc1l deficiency. Homozygous mutants were embryonic lethal and showed impaired neural tube closure and CNCC delamination. Staining of AJ proteins was increased in the mutant neural folds. This AJ defect is consistent with impaired CNCC delamination, which requires AJ dissolution. Further, PI3K-AKT signaling was reduced and apoptosis was increased in Specc1l mutants. In vitro, moderate inhibition of PI3K-AKT signaling in wildtype cells was sufficient to cause AJ alterations. Importantly, AJ changes induced by SPECC1L-knockdown were rescued by activating the PI3K-AKT pathway. Together, these data indicate SPECC1L as a novel modulator of PI3K-AKT signaling and AJ biology, required for neural tube closure and CNCC delamination.
Collapse
Affiliation(s)
- Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adam J Olm-Shipman
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kanagaraj Palaniyandi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edina Kosa
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kelly M Stumpff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Guerin J Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
156
|
Liu H, Leslie EJ, Jia Z, Smith T, Eshete M, Butali A, Dunnwald M, Murray J, Cornell RA. Irf6 directly regulates Klf17 in zebrafish periderm and Klf4 in murine oral epithelium, and dominant-negative KLF4 variants are present in patients with cleft lip and palate. Hum Mol Genet 2015; 25:766-76. [PMID: 26692521 PMCID: PMC4743694 DOI: 10.1093/hmg/ddv614] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
Non-syndromic (NS) cleft lip with or without cleft palate (CL/P) is a common disorder with a strong genetic underpinning. Genome-wide association studies have detected common variants associated with this disorder, but a large portion of the genetic risk for NSCL/P is conferred by unidentified rare sequence variants. Mutations in IRF6 (Interferon Regulatory Factor 6) and GRHL3 (Grainyhead-like 3) cause Van der Woude syndrome, which includes CL/P. Both genes encode members of a regulatory network governing periderm differentiation in model organisms. Here, we report that Krüppel-like factor 17 (Klf17), like Grhl3, acts downstream of Irf6 in this network in zebrafish periderm. Although Klf17 expression is absent from mammalian oral epithelium, a close homologue, Klf4, is expressed in this tissue and is required for the differentiation of epidermis. Chromosome configuration capture and reporter assays indicated that IRF6 directly regulates an oral-epithelium enhancer of KLF4. To test whether rare missense variants of KLF4 contribute risk for NSCL/P, we sequenced KLF4 in approximately 1000 NSCL/P cases and 300 controls. By one statistical test, missense variants of KLF4 as a group were enriched in cases versus controls. Moreover, two patient-derived KLF4 variants disrupted periderm differentiation upon forced expression in zebrafish embryos, suggesting that they have dominant-negative effect. These results indicate that rare NSCL/P risk variants can be found in members of the gene regulatory network governing periderm differentiation.
Collapse
Affiliation(s)
- Huan Liu
- Department of Anatomy and Cell Biology, College of Medicine, State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Elizabeth J Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhonglin Jia
- Department of Pediatrics, College of Medicine and, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China and
| | - Tiffany Smith
- Department of Anatomy and Cell Biology, College of Medicine
| | - Mekonen Eshete
- Department of Burns and Plastic Surgery, Addis Ababa University, Addis Ababa, Ethiopia
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
157
|
Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways. Dev Biol 2015; 409:489-501. [PMID: 26546114 DOI: 10.1016/j.ydbio.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 09/14/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
In humans, genetic diseases affecting skin integrity (genodermatoses) are generally caused by mutations in a small number of genes that encode structural components of the dermal-epidermal junctions. In this article, we first show that inactivation of both exosc9, which encodes a component of the RNA exosome, and ptbp1, which encodes an RNA-binding protein abundant in Xenopus embryonic skin, impairs embryonic Xenopus skin development, with the appearance of dorsal blisters along the anterior part of the fin. However, histological and electron microscopy analyses revealed that the two phenotypes are distinct. Exosc9 morphants are characterized by an increase in the apical surface of the goblet cells, loss of adhesion between the sensorial and peridermal layers, and a decrease in the number of ciliated cells within the blisters. Ptbp1 morphants are characterized by an altered goblet cell morphology. Gene expression profiling by deep RNA sequencing showed that the expression of epidermal and genodermatosis-related genes is also differentially affected in the two morphants, indicating that alterations in post-transcriptional regulations can lead to skin developmental defects through different routes. Therefore, the developing larval epidermis of Xenopus will prove to be a useful model for dissecting the post-transcriptional regulatory network involved in skin development and stability with significant implications for human diseases.
Collapse
|
158
|
Twigg SRF, Wilkie AOM. New insights into craniofacial malformations. Hum Mol Genet 2015; 24:R50-9. [PMID: 26085576 PMCID: PMC4571997 DOI: 10.1093/hmg/ddv228] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Development of the human skull and face is a highly orchestrated and complex three-dimensional morphogenetic process, involving hundreds of genes controlling the coordinated patterning, proliferation and differentiation of tissues having multiple embryological origins. Craniofacial malformations that occur because of abnormal development (including cleft lip and/or palate, craniosynostosis and facial dysostoses), comprise over one-third of all congenital birth defects. High-throughput sequencing has recently led to the identification of many new causative disease genes and functional studies have clarified their mechanisms of action. We present recent findings in craniofacial genetics and discuss how this information together with developmental studies in animal models is helping to increase understanding of normal craniofacial development.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
159
|
Abstract
Palatogenesis involves the initiation, growth, morphogenesis, and fusion of the primary and secondary palatal shelves from initially separate facial prominences during embryogenesis to form the intact palate separating the oral cavity from the nostrils. The palatal shelves consist mainly of cranial neural crest-derived mesenchymal cells covered by a simple embryonic epithelium. The growth and patterning of the palatal shelves are controlled by reciprocal epithelial-mesenchymal interactions regulated by multiple signaling pathways and transcription factors. During palatal shelf outgrowth, the embryonic epithelium develops a "teflon" coat consisting of a single, continuous layer of periderm cells that prevents the facial prominences and palatal shelves from forming aberrant interepithelial adhesions. Palatal fusion involves not only spatiotemporally regulated disruption of the periderm but also dynamic cellular and molecular processes that result in adhesion and intercalation of the palatal medial edge epithelia to form an intershelf epithelial seam, and subsequent dissolution of the epithelial seam to form the intact roof of the oral cavity. The complexity of regulation of these morphogenetic processes is reflected by the common occurrence of cleft palate in humans. This review will summarize major recent advances and discuss major remaining gaps in the understanding of cellular and molecular mechanisms controlling palatogenesis.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
160
|
Leslie EJ, Koboldt DC, Kang CJ, Ma L, Hecht JT, Wehby GL, Christensen K, Czeizel AE, Deleyiannis FWB, Fulton RS, Wilson RK, Beaty TH, Schutte BC, Murray JC, Marazita ML. IRF6 mutation screening in non-syndromic orofacial clefting: analysis of 1521 families. Clin Genet 2015; 90:28-34. [PMID: 26346622 DOI: 10.1111/cge.12675] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/12/2023]
Abstract
Van der Woude syndrome (VWS) is an autosomal dominant malformation syndrome characterized by orofacial clefting (OFC) and lower lip pits. The clinical presentation of VWS is variable and can present as an isolated OFC, making it difficult to distinguish VWS cases from individuals with non-syndromic OFCs. About 70% of causal VWS mutations occur in IRF6, a gene that is also associated with non-syndromic OFCs. Screening for IRF6 mutations in apparently non-syndromic cases has been performed in several modestly sized cohorts with mixed results. In this study, we screened 1521 trios with presumed non-syndromic OFCs to determine the frequency of causal IRF6 mutations. We identified seven likely causal IRF6 mutations, although a posteriori review identified two misdiagnosed VWS families based on the presence of lip pits. We found no evidence for association between rare IRF6 polymorphisms and non-syndromic OFCs. We combined our results with other similar studies (totaling 2472 families) and conclude that causal IRF6 mutations are found in 0.24-0.44% of apparently non-syndromic OFC families. We suggest that clinical mutation screening for IRF6 be considered for certain family patterns such as families with mixed types of OFCs and/or autosomal dominant transmission.
Collapse
Affiliation(s)
- E J Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D C Koboldt
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - C J Kang
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - L Ma
- Department of Oral Maxillofacial Surgery, Peking University School of Stomatology, Beijing, China
| | - J T Hecht
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - G L Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - K Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - A E Czeizel
- Foundation for the Community Control of Hereditary Diseases, Budapest, Hungary
| | - F W-B Deleyiannis
- Department of Surgery, Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Denver, CO, USA
| | - R S Fulton
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - R K Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - T H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - B C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - J C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
161
|
Kousa YA, Schutte BC. Toward an orofacial gene regulatory network. Dev Dyn 2015; 245:220-32. [PMID: 26332872 DOI: 10.1002/dvdy.24341] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in interferon regulatory factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude syndrome (1/35,000 live births) and popliteal pterygium syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world's population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (branchio-oculo-facial syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting.
Collapse
Affiliation(s)
- Youssef A Kousa
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan
| | - Brian C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| |
Collapse
|
162
|
Menke C, Cionni M, Siggers T, Bulyk ML, Beier DR, Stottmann RW. Grhl2 is required in nonneural tissues for neural progenitor survival and forebrain development. Genesis 2015; 53:573-582. [PMID: 26177923 PMCID: PMC4713386 DOI: 10.1002/dvg.22875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022]
Abstract
Grainyhead-like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft-face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. genesis 53:573-582, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chelsea Menke
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Megan Cionni
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Trevor Siggers
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biology, Boston University, Boston, MA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - David R. Beier
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Hospital, Seattle, WA
| | - Rolf W. Stottmann
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
163
|
Charzewska A, Obersztyn E, Hoffman-Zacharska D, Lenart J, Poznański J, Bal J. Novel Mutations in the IRF6 Gene on the Background of Known Polymorphisms in Polish Patients with Orofacial Clefting. Cleft Palate Craniofac J 2015; 52:e161-7. [DOI: 10.1597/14-030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective To examine the role of the IRF6 mutations in Polish families with Van der Woude syndrome and popliteal pterygium syndrome and to determine the effect of IRF6 single nucleotide polymorphisms (rs7552506, rs2013162, and rs2235375) on cleft lip and/or palate susceptibility. Design IRF6 mutation screening was performed by direct sequencing of all coding exons of the gene and their flanking intronic regions. Cosegregation analysis was performed to establish the relation of single nucleotide polymorphisms and cleft lip and/or palate phenotypes. Patients We screened the IRF6 gene in eight families with clinical recognition of Van der Woude syndrome and popliteal pterygium syndrome. Results In five families we identified pathogenic mutations, all affecting the DNA-binding or the protein-binding domain of IRF6. Two of the mutations were novel—a missense mutation Arg31Thr and a small deletion Trp40Glyfs∗23. In most cases we found also a haplotype of three single nucleotide polymorphisms—rs7552506, rs2013162, and rs2235375. The association of the single nucleotide polymorphisms and cleft lip and/or palate susceptibility has been previously published. The variants did not cosegregate with phenotype in examined families nor did they cosegregate with pathogenic mutations. The single nucleotide polymorphisms were deemed not causative, due to their presence in unaffected family members. Conclusions Two novel mutations (Arg31Thr and Trp40Glyfs∗23) in the IRF6 gene were identified to be causative for Van der Woude and popliteal pterygium syndromes. In the present study no association between the single nucleotide polymorphisms rs7552506, rs2013162, and rs2235375 and the cleft lip and/or palate phenotype was found. The hypothesis, whether the haplotype of the three single nucleotide polymorphisms was correlated with IRF6 expression level, demands further investigation.
Collapse
Affiliation(s)
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child
| | - Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw
| | - Jacek Lenart
- Department of Medical Genetics, Institute of Mother and Child
| | | | - Jerzy Bal
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
164
|
|
165
|
Disease-associated mutations in IRF6 and RIPK4 dysregulate their signalling functions. Cell Signal 2015; 27:1509-16. [PMID: 25784454 DOI: 10.1016/j.cellsig.2015.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/24/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
|
166
|
Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, Zarnegar BJ, Boxer LD, Rios EJ, Tao S, Kretz M, Khavari PA. A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell 2015; 32:693-706. [PMID: 25805135 DOI: 10.1016/j.devcel.2015.01.028] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 12/11/2014] [Accepted: 01/21/2015] [Indexed: 02/02/2023]
Abstract
Progenitor differentiation requires remodeling of genomic expression; however, in many tissues, such as epidermis, the spectrum of remodeled genes and the transcription factors (TFs) that control them are not fully defined. We performed kinetic transcriptome analysis during regeneration of differentiated epidermis and identified gene sets enriched in progenitors (594 genes), in early (159 genes), and in late differentiation (387 genes). Module mapping of 1,046 TFs identified MAF and MAFB as necessary and sufficient for progenitor differentiation. MAF:MAFB regulated 393 genes altered in this setting. Integrative analysis identified ANCR and TINCR lncRNAs as essential upstream MAF:MAFB regulators. ChIP-seq analysis demonstrated MAF:MAFB binding to known epidermal differentiation TF genes whose expression they controlled, including GRHL3, ZNF750, KLF4, and PRDM1. Each of these TFs rescued expression of specific MAF:MAFB target gene subsets in the setting of MAF:MAFB loss, indicating they act downstream of MAF:MAFB. A lncRNA-TF network is thus essential for epidermal differentiation.
Collapse
Affiliation(s)
| | - Kun Qu
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Jiajing Zhang
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Dan E Webster
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Brook C Barajas
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian J Zarnegar
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Lisa D Boxer
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Eon J Rios
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
167
|
Kerameddin S, Namipashaki A, Ebrahimi S, Ansari-Pour N. IRF6 Is a Marker of Severity in Nonsyndromic Cleft Lip/Palate. J Dent Res 2015; 94:226S-32S. [DOI: 10.1177/0022034515581013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nonsyndromic cleft lip with or without palate (CL/P) is thought to be caused by the interplay of genetic and environmental factors, and this has thus hindered the process of identifying genetic causative factors. Numerous studies in the past decade have implicated IRF6 in CL/P, but this has not often been replicated in other populations. In specific, the only etiologic single-nucleotide polymorphism (SNP) identified in the IRF6 locus (rs642961) has recently been shown not to be associated with CL/P in diverse populations. We therefore used a genewide tagging SNP (tagSNP) haplotyping approach (including rs642961 as a tagSNP) to detect all potential risk-conferring haplotypes and combined this with detailed subphenotyping of CL/P cases ( N = 150) according to severity. We observed a significant overrepresentation of a tagSNP haplotype carrying the rs642961 risk allele in the most severe subphenotype of CL/P (complete bilateral CL/P; P = 0.008, odds ratio = 4.97, 95% confidence interval = 1.33 to 18.46). It was recently shown that >80% of IRF6 mutations in syndromic CL/P occur on the same haplotype background. We therefore suggest that IRF6 is a marker of CL/P severity.
Collapse
Affiliation(s)
- S. Kerameddin
- Department of Plastic and Reconstructive Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - A. Namipashaki
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S. Ebrahimi
- Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - N. Ansari-Pour
- Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
168
|
Lemay P, Guyot MC, Tremblay É, Dionne-Laporte A, Spiegelman D, Henrion É, Diallo O, De Marco P, Merello E, Massicotte C, Désilets V, Michaud JL, Rouleau GA, Capra V, Kibar Z. Loss-of-function de novo mutations play an important role in severe human neural tube defects. J Med Genet 2015; 52:493-7. [PMID: 25805808 DOI: 10.1136/jmedgenet-2015-103027] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/04/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) are very common and severe birth defects that are caused by failure of neural tube closure and that have a complex aetiology. Anencephaly and spina bifida are severe NTDs that affect reproductive fitness and suggest a role for de novo mutations (DNMs) in their aetiology. METHODS We used whole-exome sequencing in 43 sporadic cases affected with myelomeningocele or anencephaly and their unaffected parents to identify DNMs in their exomes. RESULTS We identified 42 coding DNMs in 25 cases, of which 6 were loss of function (LoF) showing a higher rate of LoF DNM in our cohort compared with control cohorts. Notably, we identified two protein-truncating DNMs in two independent cases in SHROOM3, previously associated with NTDs only in animal models. We have demonstrated a significant enrichment of LoF DNMs in this gene in NTDs compared with the gene specific DNM rate and to the DNM rate estimated from control cohorts. We also identified one nonsense DNM in PAX3 and two potentially causative missense DNMs in GRHL3 and PTPRS. CONCLUSIONS Our study demonstrates an important role of LoF DNMs in the development of NTDs and strongly implicates SHROOM3 in its aetiology.
Collapse
Affiliation(s)
- Philippe Lemay
- CHU Ste-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Claude Guyot
- CHU Ste-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Élizabeth Tremblay
- CHU Ste-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | | | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Édouard Henrion
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Ousmane Diallo
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | | | - Christine Massicotte
- CHU Ste-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Valérie Désilets
- CHU Ste-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Jacques L Michaud
- CHU Ste-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | - Zoha Kibar
- CHU Ste-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
169
|
Leslie EJ, Taub MA, Liu H, Steinberg KM, Koboldt DC, Zhang Q, Carlson JC, Hetmanski JB, Wang H, Larson DE, Fulton RS, Kousa YA, Fakhouri WD, Naji A, Ruczinski I, Begum F, Parker MM, Busch T, Standley J, Rigdon J, Hecht JT, Scott AF, Wehby GL, Christensen K, Czeizel AE, Deleyiannis FWB, Schutte BC, Wilson RK, Cornell RA, Lidral AC, Weinstock GM, Beaty TH, Marazita ML, Murray JC. Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. Am J Hum Genet 2015; 96:397-411. [PMID: 25704602 PMCID: PMC4375420 DOI: 10.1016/j.ajhg.2015.01.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/09/2015] [Indexed: 11/21/2022] Open
Abstract
Although genome-wide association studies (GWASs) for nonsyndromic orofacial clefts have identified multiple strongly associated regions, the causal variants are unknown. To address this, we selected 13 regions from GWASs and other studies, performed targeted sequencing in 1,409 Asian and European trios, and carried out a series of statistical and functional analyses. Within a cluster of strongly associated common variants near NOG, we found that one, rs227727, disrupts enhancer activity. We furthermore identified significant clusters of non-coding rare variants near NTN1 and NOG and found several rare coding variants likely to affect protein function, including four nonsense variants in ARHGAP29. We confirmed 48 de novo mutations and, based on best biological evidence available, chose two of these for functional assays. One mutation in PAX7 disrupted the DNA binding of the encoded transcription factor in an in vitro assay. The second, a non-coding mutation, disrupted the activity of a neural crest enhancer downstream of FGFR2 both in vitro and in vivo. This targeted sequencing study provides strong functional evidence implicating several specific variants as primary contributory risk alleles for nonsyndromic clefting in humans.
Collapse
Affiliation(s)
- Elizabeth J Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Margaret A Taub
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Huan Liu
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA; State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430072 Wuhan, China
| | - Karyn Meltz Steinberg
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Daniel C Koboldt
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qunyuan Zhang
- Department of Statistical Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jenna C Carlson
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jacqueline B Hetmanski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hang Wang
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - David E Larson
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Robert S Fulton
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Youssef A Kousa
- Department of Biochemistry and Molecular Biology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ali Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ferdouse Begum
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Margaret M Parker
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tamara Busch
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Rigdon
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alan F Scott
- Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - George L Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, 5230 Odense, Denmark
| | - Andrew E Czeizel
- Foundation for the Community Control of Hereditary Diseases, Budapest 1148, Hungary
| | - Frederic W-B Deleyiannis
- Department of Surgery, Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Brian C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew C Lidral
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - George M Weinstock
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06117, USA
| | - Terri H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Human Genetics, Graduate School of Public Health, and Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jeffrey C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
170
|
Reiter R, Brosch S, Goebel I, Ludwig KU, Pickhard A, Högel J, Schlömer G, Mangold E, Kubisch C, Borck G. A post GWAS association study of SNPs associated with cleft lip with or without cleft palate in submucous cleft palate. Am J Med Genet A 2015; 167A:670-3. [DOI: 10.1002/ajmg.a.36891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Rudolf Reiter
- Section of Phoniatrics and Pedaudiology; Department of Otolaryngology - Head and Neck Surgery; University of Ulm; Ulm Germany
| | - Sibylle Brosch
- Section of Phoniatrics and Pedaudiology; Department of Otolaryngology - Head and Neck Surgery; University of Ulm; Ulm Germany
| | - Ingrid Goebel
- Institute of Human Genetics; University of Ulm; Ulm Germany
- Institute of Human Genetics; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life and Brain Center; University of Bonn; Bonn Germany
| | - Anja Pickhard
- Department of Otolaryngology - Head and Neck Surgery; Technical University Munich; Munich Germany
| | - Josef Högel
- Institute of Human Genetics; University of Ulm; Ulm Germany
| | - Guido Schlömer
- Department of Cranio-Maxillo-Facial Surgery; University of Ulm; Ulm Germany
| | | | - Christian Kubisch
- Institute of Human Genetics; University of Ulm; Ulm Germany
- Institute of Human Genetics; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guntram Borck
- Institute of Human Genetics; University of Ulm; Ulm Germany
| |
Collapse
|
171
|
Katsube M, Yoshiura KI, Kusumoto K. A Japanese family with popliteal pterygium syndrome. CASE REPORTS IN PLASTIC SURGERY AND HAND SURGERY 2015; 2:50-2. [PMID: 27252970 PMCID: PMC4793797 DOI: 10.3109/23320885.2015.1038347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 11/23/2022]
Abstract
We investigated a family in which the mother and a daughter suffered from popliteal pterygium syndrome (PPS). Mutation in the interferon regulatory factor 6 (IRF6) gene was detected in the mother and daughter. This is the second report of a family case with mutation in the IRF6 gene in Japanese patients with PPS.
Collapse
Affiliation(s)
- Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
172
|
Heliövaara A, Karhulahti R, Rautio J. Craniofacial morphology in children with van der Woude syndrome and isolated cleft palate. J Plast Surg Hand Surg 2014; 49:209-13. [PMID: 25516228 DOI: 10.3109/2000656x.2014.992904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To compare cephalometrically 6-year-old children with van der Woude syndrome and cleft palate (VWS) to children with isolated cleft palate alone (CP). DESIGN A retrospective case-control study. PATIENTS AND SETTING Forty-four children with VWS were compared to 73 children with CP using lateral cephalograms. The mean age of the children with VWS was 6.6 years (range = 5.9-8.2) and that of the children with CP, 6.2 years (range = 5.7-6.7). Palatal closure had been done at a mean age of 1.4 years (range = 0.8-2.2), mostly with the Veau-Wardill-Killner or the Cronin pushback surgical techniques. The data was collected over a 30-year period. MAIN OUTCOME MEASURE Linear and angular measurements were obtained from lateral cephalograms. A Student's t-test was used in the statistical analysis. RESULTS The craniofacial morphology in children with VWS and CP was similar, but those with VWS had slightly smaller diameters of the lower pharyngeal airway. The maxilla and mandible were well related to each other, although a little retrusive in relation to the cranial base. The soft tissue profile reflected the skeletal relationships, no significant protrusion of the lower lip was noted. CONCLUSIONS Six-year-old children with VWS and CP have similar craniofacial morphology.
Collapse
Affiliation(s)
- Arja Heliövaara
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Helsinki University Central Hospital , Helsinki , Finland
| | | | | |
Collapse
|
173
|
Tripathi A, Tiwari B, Gupta S, Patil R, Khanna V. A case of vander woude syndrome with rare phenotypic expressions. J Clin Diagn Res 2014; 8:PD03-5. [PMID: 25478421 DOI: 10.7860/jcdr/2014/10420.5008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/29/2014] [Indexed: 11/24/2022]
Abstract
Van der Woude syndrome (VWS) is a rare developmental disorder with an autosomal dominant inheritance. The prevalence of VWS varies from 1:100,000 to 1:40,000 still born or live births. It has variable expressivity and generally expressed as orofacial manifestations like lower lip pits, cleft lip and/or cleft palate, hypodontia, cleft or bifid uvula, ankyloglossia and some extraoral anomalies involving hand, foot and genitalia. Thorough family history, clinical examination and genetic counseling helps in correct diagnosis of VWS as Popliteal pterygium syndrome has overlapping clinical manifestations. Most cases of Van der Woude syndrome have been associated with mutations and genetic changes. The current case has classical features of VWS with some rare features like undescended small testis and unreported finding of syndactyly of second and third toe adds on to the existing knowledge of VWS presentation.
Collapse
Affiliation(s)
- Anurag Tripathi
- Assistant professor, Department of Oral Medicine and Radiology, King George Medical University , Lucknow,Uttar Pradesh,India
| | - Brijesh Tiwari
- Senior Research Fellow, Department of Dental Research & Implantology, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO) Ministry of Defence , Government of India, Timarpur, Delhi, India
| | - Shalini Gupta
- Associate Professor, Department of Oral Pathology, King George Medical University , Lucknow, Uttar Pradesh, India
| | - Ranjit Patil
- Professor & Head, Department of Oral Medicine and Radiology, King George Medical University , Lucknow, Uttar Pradesh, India
| | - Vikram Khanna
- Assistant Professor, Department of Oral Medicine and Radiology, King George Medical University , Lucknow,Uttar Pradesh,India
| |
Collapse
|
174
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
175
|
Fu X, Cheng Y, Yuan J, Huang C, Cheng H, Zhou R. Loss-of-function mutation in the X-linked TBX22 promoter disrupts an ETS-1 binding site and leads to cleft palate. Hum Genet 2014; 134:147-58. [PMID: 25373698 DOI: 10.1007/s00439-014-1503-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/20/2014] [Indexed: 11/28/2022]
Abstract
The cleft palate only (CPO) is a common congenital defect with complex etiology in humans. The molecular etiology of the CPO remains unknown. Here, we report a loss-of-function mutation in X-linked TBX22 gene (T-box 22) in a six-generation family of the CPO with obvious phenotypes of both cleft palate and hyper-nasal speech. We identify a functional -73G>A mutation in the promoter of TBX22, which is located at the core-binding site of transcription factor ETS-1 (v-ets avian erythroblastosis virus E26 oncogene homolog 1). Phylogenetic analysis showed that the sequence around the -73G>A mutation site is specific in primates. The mutation was detected in all five affected male members cosegregating with the affected phenotype and heterozygote occurred only in some unaffected females of the family, suggesting an X-linked transmission of the mutation in the family. The -73G>A variant is a novel single nucleotide mutation. Cell co-transfections indicated that ETS-1 could activate the TBX22 promoter. Moreover, EMSA and ChIP assays demonstrated that the allele A disrupts the binding site of ETS-1, thus markedly decreases the activity of the TBX22 promoter, which is likely to lead to the birth defect of the CPO without ankyloglossia. These results suggest that a loss-of-function mutation in the X-linked TBX22 promoter may cause the cleft palate through disruption of TBX22-ETS-1 pathway.
Collapse
Affiliation(s)
- Xiazhou Fu
- Department of Genetics and Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
176
|
Gordon WM, Zeller MD, Klein RH, Swindell WR, Ho H, Espetia F, Gudjonsson JE, Baldi PF, Andersen B. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. J Clin Invest 2014; 124:5205-18. [PMID: 25347468 DOI: 10.1172/jci77138] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/18/2014] [Indexed: 12/27/2022] Open
Abstract
Dermal infiltration of T cells is an important step in the onset and progression of immune-mediated skin diseases such as psoriasis; however, it is not known whether epidermal factors play a primary role in the development of these diseases. Here, we determined that the prodifferentiation transcription factor grainyhead-like 3 (GRHL3), which is essential during epidermal development, is dispensable for adult skin homeostasis, but required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we found that GRHL3 is upregulated in lesional skin and binds known epidermal differentiation gene targets. Using an imiquimod-induced model of immune-mediated epidermal hyperplasia, we found that mice lacking GRHL3 have an exacerbated epidermal damage response, greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti-IL-22 therapy compared with WT animals. ChIP-Seq and gene expression profiling of murine skin revealed that while GRHL3 regulates differentiation pathways both during development and during repair from immune-mediated damage, it targets distinct sets of genes in the 2 processes. In particular, GRHL3 suppressed a number of alarmin and other proinflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia.
Collapse
|
177
|
Richardson RJ, Hammond NL, Coulombe PA, Saloranta C, Nousiainen HO, Salonen R, Berry A, Hanley N, Headon D, Karikoski R, Dixon MJ. Periderm prevents pathological epithelial adhesions during embryogenesis. J Clin Invest 2014; 124:3891-900. [PMID: 25133425 DOI: 10.1172/jci71946] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/03/2014] [Indexed: 12/13/2022] Open
Abstract
Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in IKKA, revealed an absence of periderm. Together, these data indicate that periderm plays a transient but fundamental role during embryogenesis by acting as a protective barrier that prevents pathological adhesion between immature, adhesion-competent epithelia. Furthermore, this study suggests that failure of periderm formation underlies a series of devastating birth defects, including popliteal pterygium syndrome, cocoon syndrome, and Bartsocas-Papas syndrome.
Collapse
|
178
|
Genetics of cleft lip and/or cleft palate: Association with other common anomalies. Eur J Med Genet 2014; 57:381-93. [DOI: 10.1016/j.ejmg.2014.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
|
179
|
Biggs LC, Naridze RL, DeMali KA, Lusche DF, Kuhl S, Soll DR, Schutte BC, Dunnwald M. Interferon regulatory factor 6 regulates keratinocyte migration. J Cell Sci 2014; 127:2840-8. [PMID: 24777480 DOI: 10.1242/jcs.139246] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon regulatory factor 6 (Irf6) regulates keratinocyte proliferation and differentiation. In this study, we tested the hypothesis that Irf6 regulates cellular migration and adhesion. Irf6-deficient embryos at 10.5 days post-conception failed to close their wound compared with wild-type embryos. In vitro, Irf6-deficient murine embryonic keratinocytes were delayed in closing a scratch wound. Live imaging of the scratch showed deficient directional migration and reduced speed in cells lacking Irf6. To understand the underlying molecular mechanisms, cell-cell and cell-matrix adhesions were investigated. We show that wild-type and Irf6-deficient keratinocytes adhere similarly to all matrices after 60 min. However, Irf6-deficient keratinocytes were consistently larger and more spread, a phenotype that persisted during the scratch-healing process. Interestingly, Irf6-deficient keratinocytes exhibited an increased network of stress fibers and active RhoA compared with that observed in wild-type keratinocytes. Blocking ROCK, a downstream effector of RhoA, rescued the delay in closing scratch wounds. The expression of Arhgap29, a Rho GTPase-activating protein, was reduced in Irf6-deficient keratinocytes. Taken together, these data suggest that Irf6 functions through the RhoA pathway to regulate cellular migration.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Rachelle L Naridze
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Brian C Schutte
- Departments of Microbiology and Molecular Genetics and of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Martine Dunnwald
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|