151
|
DeKruyff RH, Yu S, Kim HY, Umetsu DT. Innate immunity in the lung regulates the development of asthma. Immunol Rev 2015; 260:235-48. [PMID: 24942693 DOI: 10.1111/imr.12187] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lung, while functioning as a gas exchange organ, encounters a large array of environmental factors, including particulate matter, toxins, reactive oxygen species, chemicals, allergens, and infectious microbes. To rapidly respond to and counteract these elements, a number of innate immune mechanisms have evolved that can lead to lung inflammation and asthma, which is the focus of this review. These innate mechanisms include a role for two incompletely understood cell types, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs), which together produce a wide range of cytokines, including interleukin-4 (IL-4), IL-5, IL-13, interferon-γ, IL-17, and IL-22, independently of adaptive immunity and conventional antigens. The specific roles of iNKT cells and ILCs in immunity are still being defined, but both cell types appear to play important roles in the lungs, particularly in asthma. As we gain a better understanding of these innate cell types, we will acquire great insight into the mechanisms by which allergic and non-allergic asthma phenotypes develop.
Collapse
Affiliation(s)
- Rosemarie H DeKruyff
- Division of Immunology and Allergy, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
152
|
Kaur G, STS C, Nimker C, Bansal A. rIL-22 as an adjuvant enhances the immunogenicity of rGroEL in mice and its protective efficacy against S. Typhi and S. Typhimurium. Cell Mol Immunol 2015; 12:96-106. [PMID: 24858422 PMCID: PMC4654370 DOI: 10.1038/cmi.2014.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/28/2014] [Accepted: 04/16/2014] [Indexed: 01/05/2023] Open
Abstract
Salmonella infection, ranging from mild, self-limiting diarrhea to severe gastrointestinal, septicemic disease and enteric fever, is a global health problem both in humans and animals. Rapid development of microbial drug resistance has led to a need for efficacious and affordable vaccines against Salmonella. Microbial heat shock proteins (HSPs), including HSP60 and HSP70, are the dominant antigens that promote the host immune response. Co-administration of these antigens with cytokines, such as IL-22, which plays an important role in antimicrobial defense, can enhance the immune response and protection against pathogens. Therefore, the aim of the present study was to determine the immunogenicity of rGroEL (Hsp60) of S. Typhi, alone or administered in combination with murine rIL-22, and its protective efficacy against lethal infection with Salmonella, in mice. There was appreciable stimulation of the humoral and cell-mediated immune responses in mice immunized with rGroEL alone. However, co-administration of rGroEL with rIL-22 further boosted the antibody titers (IgG, IgG1 and IgG2a), T-cell proliferative responses and the secretion of both Th1 and Th2 cytokines. Additionally, rGroEL alone accorded 65%-70% protection against lethal challenge with S. Typhi and S. Typhimurium, which increased to 90% when co-administered with rIL-22.
Collapse
|
153
|
Requirement for Serratia marcescens cytolysin in a murine model of hemorrhagic pneumonia. Infect Immun 2014; 83:614-24. [PMID: 25422267 DOI: 10.1128/iai.01822-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 10(6) CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 10(6) CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen.
Collapse
|
154
|
Li JR, Zhou WX, Huang KW, Jin Y, Gao JM. Interleukin-22 exacerbates airway inflammation induced by short-term exposure to cigarette smoke in mice. Acta Pharmacol Sin 2014; 35:1393-401. [PMID: 25345745 PMCID: PMC4220081 DOI: 10.1038/aps.2014.91] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022]
Abstract
AIM Interleukin-22 (IL-22) exhibits both proinflammatory and anti-inflammatory properties in various biological processes. In this study we explored the effects of exogenous recombinant IL-22 (rIL-22) on cigarette smoke (CS)-induced airway inflammation in mice. METHODS Male C57BL/6 mice were divided into groups: (1) CS group exposed to tobacco smoke for 3 consecutive days, (2) rIL-22 group received rIL-22 (100 mg/kg, ip), and (3) CS plus rIL-22 group, received rIL-22 (100 mg/kg, ip) before the CS exposure. The airway resistance (Rn), lung morphology, inflammatory cells in the airways, and inflammatory cytokines and CXCR3 ligands in both bronchoalveolar lavage (BAL) fluids and lung tissues were analyzed. RESULTS CS alone significantly elevated IL-22 level in the BAL fluid. Both CS and rIL-22 significantly augmented airway resistance, an influx of inflammatory cells into the airways and lung parenchyma, and significantly elevated levels of pro-inflammatory cytokines (TGFβ1 and IL-17A) and CXCR3 chemokines (particularly CXCL10) at the mRNA and/or protein levels. Furthermore, the effects of rIL-22 on airway resistance and inflammation were synergistic with those of CS, as demonstrated by a further increased Rn value, infiltration of greater numbers of inflammatory cells into the lung, higher levels of inflammatory cytokines and chemokines, and more severe pathological changes in CS plus rIL-22 group as compared to those in CS group. CONCLUSION Exogenous rIL-22 exacerbates the airway inflammatory responses to CS exposure in part by inducing expression of several proinflammatory cytokines and CXCR3 ligands.
Collapse
Affiliation(s)
- Jiu-rong Li
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei-xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ke-wu Huang
- Division of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jin-ming Gao
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
155
|
Fang P, Zhou L, Zhou Y, Kolls JK, Zheng T, Zhu Z. Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation. PLoS One 2014; 9:e107454. [PMID: 25254361 PMCID: PMC4177833 DOI: 10.1371/journal.pone.0107454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022] Open
Abstract
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.
Collapse
Affiliation(s)
- Ping Fang
- Respiratory Department, The Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi, China
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Li Zhou
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuqi Zhou
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jay K. Kolls
- Division of Pediatric Rheumatology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tao Zheng
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhou Zhu
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
156
|
Ely KH, Matsuoka M, DeBerge MP, Ruby JA, Liu J, Schneider MJ, Wang Y, Hahn YS, Enelow RI. Tissue-protective effects of NKG2A in immune-mediated clearance of virus infection. PLoS One 2014; 9:e108385. [PMID: 25251060 PMCID: PMC4177548 DOI: 10.1371/journal.pone.0108385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022] Open
Abstract
Virus infection triggers a CD8+ T cell response that aids in virus clearance, but also expresses effector functions that may result in tissue injury. CD8+ T cells express a variety of activating and inhibiting ligands, though regulation of the expression of inhibitory receptors is not well understood. The ligand for the inhibitory receptor, NKG2A, is the non-classical MHC-I molecule Qa1b, which may also serve as a putative restricting element for the T cell receptors of purported regulatory CD8+ T cells. We have previously shown that Qa1b-null mice suffer considerably enhanced immunopathologic lung injury in the context of CD8+ T cell-mediated clearance of influenza infection, as well as evidence in a non-viral system that failure to ligate NKG2A on CD8+ effector T cells may represent an important component of this process. In this report, we examine the requirements for induction of NKG2A expression, and show that NKG2A expression by CD8+ T cells occurs as a result of migration from the MLN to the inflammatory lung environment, irrespective of peripheral antigen recognition. Further, we confirmed that NKG2A is a mediator in limiting immunopathology in virus infection using mice with a targeted deletion of NKG2A, and infecting the mutants with two different viruses, influenza and adenovirus. In neither infection is virus clearance altered. In influenza infection, the enhanced lung injury was associated with increased chemoattractant production, increased infiltration of inflammatory cells, and significantly enhanced alveolar hemorrhage. The primary mechanism of enhanced injury was the loss of negative regulation of CD8+ T cell effector function. A similar effect was observed in the livers of mutant mice infected intravenously with adenovirus. These results demonstrate the immunoregulatory role of CD8+ NKG2A expression in virus infection, which negatively regulates T cell effector functions and contributes to protection of tissue integrity during virus clearance.
Collapse
Affiliation(s)
- Kenneth H. Ely
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail: (KHE); (MM)
| | - Mitsuo Matsuoka
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail: (KHE); (MM)
| | - Matthew P. DeBerge
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jessica A. Ruby
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jun Liu
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mark J. Schneider
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Yan Wang
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Richard I. Enelow
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
157
|
Quinton LJ, Mizgerd JP. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu Rev Physiol 2014; 77:407-30. [PMID: 25148693 DOI: 10.1146/annurev-physiol-021014-071937] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.
Collapse
|
158
|
Abstract
Respiratory infections and diseases are among the leading causes of death worldwide, and effective treatments probably require manipulating the inflammatory response to pathogenic microbes or allergens. Here, we review mechanisms controlling the production and functions of interleukin-17 (IL-17) and IL-22, cytokines that direct several aspects of lung immunity. Innate lymphocytes (γδ T cells, natural killer cells, innate lymphoid cells) are the major source of IL-17 and IL-22 during acute infections, while CD4(+) T-helper 17 (Th17) cells contribute to vaccine-induced immunity. The characterization of dendritic cell (DC) subsets has revealed their central roles in T-cell activation. CD11b(+) DCs stimulated with bacteria or fungi secrete IL-1β and IL-23, potent inducers of IL-17 and IL-22. On the other hand, recognition of viruses by plasmacytoid DCs inhibits IL-1β and IL-23 release, increasing susceptibility to bacterial superinfections. IL-17 and IL-22 primarily act on the lung epithelium, inducing antimicrobial proteins and neutrophil chemoattractants. Recent studies found that stimulation of macrophages and DCs with IL-17 also contributes to antibacterial immunity, while IL-22 promotes epithelial proliferation and repair following injury. Chronic diseases such as asthma and chronic obstructive pulmonary disease have been associated with IL-17 and IL-22 responses directed against innocuous antigens. Future studies will evaluate the therapeutic efficacy of targeting the IL-17/IL-22 pathway in pulmonary inflammation.
Collapse
Affiliation(s)
- Jeremy P. McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| |
Collapse
|
159
|
Wozniak KL, Hole CR, Yano J, Fidel PL, Wormley FL. Characterization of IL-22 and antimicrobial peptide production in mice protected against pulmonary Cryptococcus neoformans infection. MICROBIOLOGY (READING, ENGLAND) 2014; 160:1440-1452. [PMID: 24760968 PMCID: PMC4076872 DOI: 10.1099/mic.0.073445-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
Cryptococcus neoformans is a significant cause of fungal meningitis in patients with impaired T cell-mediated immunity (CMI). Experimental pulmonary infection with a C. neoformans strain engineered to produce IFN-γ, H99γ, results in the induction of Th1-type CMI, resolution of the acute infection, and protection against challenge with WT Cryptococcus. Given that individuals with suppressed CMI are highly susceptible to pulmonary C. neoformans infection, we sought to determine whether antimicrobial peptides were produced in mice inoculated with H99γ. Thus, we measured levels of antimicrobial peptides lipocalin-2, S100A8, S100A9, calprotectin (S100A8/A9 heterodimer), serum amyloid A-3 (SAA3), and their putative receptors Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE) in mice during primary and recall responses against C. neoformans infection. Results showed increased levels of IL-17A and IL-22, cytokines known to modulate antimicrobial peptide production. We also observed increased levels of lipocalin-2, S100A8, S100A9 and SAA3 as well as TLR4(+) and RAGE(+) macrophages and dendritic cells in mice inoculated with H99γ compared with WT H99. Similar results were observed in the lungs of H99γ-immunized, compared with heat-killed C. neoformans-immunized, mice following challenge with WT yeast. However, IL-22-deficient mice inoculated with H99γ demonstrated antimicrobial peptide production and no change in survival rates compared with WT mice. These studies demonstrate that protection against cryptococcosis is associated with increased production of antimicrobial peptides in the lungs of protected mice that are not solely in response to IL-17A and IL-22 production and may be coincidental rather than functional.
Collapse
Affiliation(s)
- Karen L. Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Camaron R. Hole
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Junko Yano
- Department of Oral and Craniofacial Biology, Dental School, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Paul L. Fidel
- Department of Oral and Craniofacial Biology, Dental School, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Floyd L. Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
160
|
Yu S, Kim HY, Chang YJ, DeKruyff RH, Umetsu DT. Innate lymphoid cells and asthma. J Allergy Clin Immunol 2014; 133:943-50; quiz 51. [PMID: 24679467 DOI: 10.1016/j.jaci.2014.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/21/2023]
Abstract
Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma.
Collapse
Affiliation(s)
- Sanhong Yu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Hye Young Kim
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rosemarie H DeKruyff
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | | |
Collapse
|
161
|
Lim C, Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev 2014; 25:257-71. [PMID: 24856143 DOI: 10.1016/j.cytogfr.2014.04.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
Interleukin-22 (IL-22) is an IL-10 family cytokine produced by T cells and innate lymphoid cells. The IL-22 signaling pathway orchestrates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia and angiogenesis. While these functions can prevent initial establishment of tumors, they can also be hijacked by aggressive cancers to enhance tumor growth and metastasis. Thus, the role of the IL-22/IL-22R1 axis in cancer is complex and context-specific. Evidence of IL-22 involvement manifests as dysregulation of IL-22 expression and signaling in patients with many common cancers including those of the gut, skin, lung and liver. Unlike other cancer-associated cytokines, IL-22 has restricted tissue specificity as its unique receptor IL-22R1 is exclusively expressed on epithelial and tissue cells, but not immune cells. This makes it an attractive target for therapy as there is potential achieve anti-tumor immunity with fewer side effects. This review summarizes current findings on functions of IL-22 in association with general mechanisms for tumorigenesis as well as specific contributions to particular cancers, and ponders how best to approach further research in the field.
Collapse
Affiliation(s)
- Chrissie Lim
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
162
|
Weathington NM, Snavely CA, Chen BB, Zhao J, Zhao Y, Mallampalli RK. Glycogen synthase kinase-3β stabilizes the interleukin (IL)-22 receptor from proteasomal degradation in murine lung epithelia. J Biol Chem 2014; 289:17610-9. [PMID: 24742671 DOI: 10.1074/jbc.m114.551747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling through the interleukin (IL)-22 cytokine axis provides essential immune protection in the setting of extracellular infection as part of type 17 immunity. Molecular regulation of IL-22 receptor (IL-22R) protein levels is unknown. In murine lung epithelia, IL-22R is a relatively short-lived protein (t½ ∼1.5 h) degraded by the ubiquitin proteasome under normal unstimulated conditions, but its degradation is accelerated by IL-22 treatment. Lys(449) within the intracellular C-terminal domain of the IL-22R serves as a ubiquitin acceptor site as disruption of this site by deletion or site-directed mutagenesis creates an IL-22R variant that, when expressed in cells, is degradation-resistant and not ubiquitinated. Glycogen synthase kinase (GSK)-3β phosphorylates the IL-22R within a consensus phosphorylation signature at Ser(410) and Ser(414), and IL-22 treatment of cells triggers GSK-3β inactivation. GSK-3β overexpression results in accumulation of IL-22R protein, whereas GSK-3β depletion in cells reduces levels of the receptor. Mutagenesis of IL-22R at Ser(410) and Ser(414) results in receptor variants that display reduced phosphorylation levels and are more labile as compared with wild-type IL-22R when expressed in cells. Further, the cytoskeletal protein cortactin, which is important for epithelial spreading and barrier formation, is phosphorylated and activated at the epithelial cell leading edge after treatment with IL-22, but this effect is reduced after GSK-3β knockdown. These findings reveal the ability of GSK-3β to modulate IL-22R protein stability that might have significant implications for cytoprotective functions and therapeutic targeting of the IL-22 signaling axis.
Collapse
Affiliation(s)
| | - Courtney A Snavely
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Bill B Chen
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Jing Zhao
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Yutong Zhao
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and the Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 and
| | - Rama K Mallampalli
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and the Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 and the Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| |
Collapse
|
163
|
Kim WK, Jain D, Sánchez MD, Koziol-White CJ, Matthews K, Ge MQ, Haczku A, Panettieri RA, Frieman MB, López CB. Deficiency of melanoma differentiation-associated protein 5 results in exacerbated chronic postviral lung inflammation. Am J Respir Crit Care Med 2014; 189:437-48. [PMID: 24417465 DOI: 10.1164/rccm.201307-1338oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Respiratory viral infections can result in the establishment of chronic lung diseases. Understanding the early innate immune mechanisms that participate in the development of chronic postviral lung disease may reveal new targets for therapeutic intervention. The intracellular viral sensor protein melanoma differentiation-associated protein 5 (MDA5) sustains the acute immune response to Sendai virus, a mouse pathogen that causes chronic lung inflammation, but its role in the development of postviral chronic lung disease is unknown. OBJECTIVES To establish the role of MDA5 in the development of chronic lung disease. METHODS MDA5-deficient or control mice were infected with Sendai virus. The acute inflammatory response was evaluated by profiling chemokine and cytokine expression and by characterizing the composition of the cellular infiltrate. The impact of MDA5 on chronic lung pathology and function was evaluated through histological studies, degree of oxygen saturation, and responsiveness to carbachol. MEASUREMENTS AND MAIN RESULTS MDA5 deficiency resulted in normal virus replication and in a distinct profile of chemokines and cytokines that associated with acute lung neutropenia and enhanced accumulation of alternatively activated macrophages. Diminished expression of neutrophil-recruiting chemokines was also observed in cells infected with influenza virus, suggesting a key role of MDA5 in driving the early accumulation of neutrophils at the infection site. The biased acute inflammatory response of MDA5-deficient mice led to an enhanced chronic lung inflammation, epithelial cell hyperplasia, airway hyperreactivity, and diminished blood oxygen saturation. CONCLUSIONS MDA5 modulates the development of chronic lung inflammation by regulating the early inflammatory response in the lung.
Collapse
Affiliation(s)
- Won-Keun Kim
- 1 Department of Pathobiology, School of Veterinary Medicine, and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Strutt TM, McKinstry KK, Marshall NB, Vong AM, Dutton RW, Swain SL. Multipronged CD4(+) T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol Rev 2014; 255:149-64. [PMID: 23947353 DOI: 10.1111/imr.12088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decade, the known spectrum of CD4(+) T-cell effector subsets has become much broader, and it has become clear that there are multiple dimensions by which subsets with a particular cytokine commitment can be further defined, including their stage of differentiation, their location, and, most importantly, their ability to carry out discrete functions. Here, we focus on our studies that highlight the synergy among discrete subsets, especially those defined by helper and cytotoxic function, in mediating viral protection, and on distinctions between CD4(+) T-cell effectors located in spleen, draining lymph node, and in tissue sites of infection. What emerges is a surprising multiplicity of CD4(+) T-cell functions that indicate a large arsenal of mechanisms by which CD4(+) T cells act to combat viruses.
Collapse
Affiliation(s)
- Tara M Strutt
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
165
|
Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, McColl SR. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 2014; 10:e1003905. [PMID: 24586147 PMCID: PMC3930558 DOI: 10.1371/journal.ppat.1003905] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Collapse
Affiliation(s)
- Ervin E. Kara
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Comerford
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kevin A. Fenix
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cameron R. Bastow
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carly E. Gregor
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Duncan R. McKenzie
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R. McColl
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
166
|
Abstract
The Th17 pathway has recently been shown to play a critical role in host defense, allergic responses and autoimmune inflammation. Th17 cells predominantly produce IL-17 and IL-22, which are two cytokines with broad effects in the lung and other tissues. This review summarizes not only what is currently known about the molecular regulation of this pathway and Th17-related cytokine signaling, but also the roles of these cytokines in pathogen immunity and asthma. In the last 5 years, the Th17 field has rapidly grown and research has revealed that the Th17 pathway is essential in lung pathogenesis in response to exogenous stimuli. As work in the field continues, it is expected that many exciting therapeutic advances will be made for a broad range of diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| | - Keven M Robinson
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Alcorn
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
167
|
Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 2014; 380:213-36. [PMID: 25004820 DOI: 10.1007/978-3-662-43492-5_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines, which, besides IL-10, contains seven additional cytokines. Although the founding member IL-10 is an important immunoregulatory cytokine that represses both innate and adaptive immunity, the other family members preferentially target epithelial cells and enhance innate host defense mechanisms against various pathogens such as bacteria, yeast, and viruses. Based on their functions, the IL-10 family can be further divided into three subgroups, IL-10 itself, the IL-20 subfamily, and the IFNλ subfamily. IL-22 is the best-studied member of the IL-20 subfamily, and exemplifies the diverse biological effects of this subfamily. IL-22 elicits various innate immune responses from epithelial cells and is essential for host defense against several invading pathogens, including Citrobacter rodentium and Klebsiella pneumonia. IL-22 also protects tissue integrity and maintains the mucosal homeostasis. On the other hand, IL-22 is a proinflammatory cytokine with the capacity to amplify inflammatory responses, which might result in tissue damage, e.g., the IL-22-dependent necrosis of the small intestine during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA,
| | | | | | | |
Collapse
|
168
|
Abstract
Interleukin-22 (IL-22) is a key effector molecule that is produced by activated T cells, including T helper 22 (TH22) cells, TH17 cells and TH1 cells, as well as subsets of innate lymphoid cells. Although IL-22 can act synergistically with IL-17 or tumour necrosis factor, some important functions of IL-22 are unique to this cytokine. Data obtained over the past few years indicate that the IL-22-IL-22 receptor subunit 1 (IL-22R1) system has a high potential clinical relevance in psoriasis, ulcerative colitis, graft-versus-host disease, certain infections and tumours, as well as in liver and pancreas damage. This Review highlights current knowledge of the biology of the IL-22-IL-22R1 system, its role in inflammation, tissue protection, regeneration and antimicrobial defence, as well as the positive and potentially negative consequences of its therapeutic modulation.
Collapse
Affiliation(s)
- Robert Sabat
- 1] Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Department of Dermatology and Allergy, University Medicine Charité, Charitéplatz 1, D-10117 Berlin, Germany. [2] Research Center Immunosciences, University Hospital Charité, Hessische Strasse 3-4, D-10115 Berlin, Germany
| | - Wenjun Ouyang
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Kerstin Wolk
- 1] Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Department of Dermatology and Allergy, University Medicine Charité, Charitéplatz 1, D-10117 Berlin, Germany. [2] Research Center Immunosciences, University Hospital Charité, Hessische Strasse 3-4, D-10115 Berlin, Germany
| |
Collapse
|
169
|
McHugh KJ, Mandalapu S, Kolls JK, Ross TM, Alcorn JF. A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity. PLoS One 2013; 8:e82865. [PMID: 24324838 PMCID: PMC3855784 DOI: 10.1371/journal.pone.0082865] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022] Open
Abstract
Influenza viruses pose a significant health risk and annually impose a great cost to patients and the health care system. The molecular determinants of influenza severity, often exacerbated by secondary bacterial infection, are largely unclear. We generated a novel outbred mouse model of influenza virus, Staphylococcus aureus, and co-infection utilizing influenza A/CA/07/2009 virus and S. aureus (USA300). Outbred mice displayed a wide range of pathologic phenotypes following influenza virus or co-infection ranging broadly in severity. Influenza viral burden positively correlated with weight loss although lung histopathology did not. Inflammatory cytokines including IL-6, TNF-α, G-CSF, and CXCL10 positively correlated with both weight loss and viral burden. In S. aureus infection, IL-1β, G-CSF, TNF-α, and IL-6 positively correlated with weight loss and bacterial burden. In co-infection, IL-1β production correlated with decreased weight loss suggesting a protective role. The data demonstrate an approach to identify biomarkers of severe disease and to understand pathogenic mechanisms in pneumonia.
Collapse
Affiliation(s)
- Kevin J. McHugh
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Sivanarayana Mandalapu
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jay K. Kolls
- Richard K. Mellon Foundation Institute, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Ted M. Ross
- Department of Microbiology & Molecular Genetics, University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
170
|
Frazer LC, Scurlock AM, Zurenski MA, Riley MM, Mintus M, Pociask DA, Sullivan JE, Andrews CW, Darville T. IL-23 induces IL-22 and IL-17 production in response to Chlamydia muridarum genital tract infection, but the absence of these cytokines does not influence disease pathogenesis. Am J Reprod Immunol 2013; 70:472-84. [PMID: 24238108 PMCID: PMC3852156 DOI: 10.1111/aji.12171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Chlamydia trachomatis infections are a significant cause of reproductive tract pathology. Protective and pathological immune mediators must be differentiated to design a safe and effective vaccine. METHODS Wild-type mice and mice deficient in IL-22 and IL-23 were infected intravaginally with Chlamydia muridarum, and their course of infection and oviduct pathology were compared. Local genital tract and draining lymph node immune responses were also examined in IL-23-deficient mice. RESULTS IL-22- and IL-23-deficient mice exhibited normal susceptibility to infection and oviduct pathology. IL-23 was required for the development of a Chlamydia-specific Th17 response in the lymph nodes and for production of IL-22 and IL-17 in the genital tract. However, influx of Th1 and innate immune cells was not compromised in the absence of IL-23. CONCLUSION IL-22 and IL-23 play either redundant or minimal roles in the pathogenesis of Chlamydia infection in the mouse model. Induction of Th17-associated cytokines by a Chlamydia vaccine should be avoided as these responses are not central to resolution of infection and have pathologic potential.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Amy M. Scurlock
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas 72202
| | - Matthew A. Zurenski
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Melissa M. Riley
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Margaret Mintus
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Derek A. Pociask
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Jeanne E. Sullivan
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | - Toni Darville
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
171
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
172
|
Way EE, Chen K, Kolls JK. Dysregulation in lung immunity - the protective and pathologic Th17 response in infection. Eur J Immunol 2013; 43:3116-24. [PMID: 24130019 DOI: 10.1002/eji.201343713] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/16/2013] [Accepted: 09/18/2013] [Indexed: 01/08/2023]
Abstract
Th17 cytokines can play both protective and pathologic roles in the airways. An emerging theme in Th17 cytokine biology is that these responses can mediate tissue pathology when downstream effector cells are dysfunctional, such as neutrophils lacking functional NADPH oxidase in the case of chronic granulomatous disease, or epithelial cells lacking appropriate ion transport as in the case of cystic fibrosis. In this Mini-Review we highlight recent advances in the protective and pathologic roles of Th17 cytokines in the context of infection at the pulmonary barrier.
Collapse
Affiliation(s)
- Emily E Way
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
173
|
Chang YJ, DeKruyff RH, Umetsu DT. The role of type 2 innate lymphoid cells in asthma. J Leukoc Biol 2013; 94:933-40. [PMID: 23801654 DOI: 10.1189/jlb.0313127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype, characterized by Th2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes that require innate rather than adaptive immunity. These innate pathways to asthma involve macrophages, neutrophils, as well as ILCs, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding ILCs and their role in asthma.
Collapse
Affiliation(s)
- Ya-Jen Chang
- 1.Harvard Medical School, Karp Labs, Room 10127, One Blackfan Circle, Boston, MA 02115, USA. ; Ya-Jen Chang, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan. E-mail:
| | | | | |
Collapse
|