151
|
Li S, Zhuge A, Wang K, Xia J, Wang Q, Han S, Shen J, Li L. Obeticholic acid and ferrostatin-1 differentially ameliorate non-alcoholic steatohepatitis in AMLN diet-fed ob/ob mice. Front Pharmacol 2022; 13:1081553. [PMID: 36588706 PMCID: PMC9800415 DOI: 10.3389/fphar.2022.1081553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are common chronic liver diseases with limited treatment options. Methods: Ob/ob mice (6 weeks old) were fed with the Control diet or amylin liver NASH (AMLN) diet for 24 weeks to establish the NASH, the AMLN diet-fed mice were treated with obeticholic acid (OCA), ferrostatin-1 (Fer-1) or their combination for 7 weeks. Finally, various clinical profiles were assessed. Results: Our results indicate that Fer-1 exerts better effects on improving body weight, blood glucose levels, transaminase levels and insulin resistance than OCA. OCA has a profound effect on ameliorating lipid accumulation. OCA and Fer-1 differentially inhibit the activation of hepatic Kupffer cells and HSCs. The combination of OCA and Fer-1 significantly reduces inflammation and protects mice against liver oxidative stress. OCA and Fer-1 differentially reshape the intestinal microbiota and affect the hepatic lipidome. Discussion: Our study compares the effects of OCA, Fer-1 and their combination on various clinical profiles in NASH. These data demonstrate that different drug combinations results in different improvements, and these discoveries provide a reference for the use of the OCA, Fer-1 and their combination in the clinical treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China,*Correspondence: Lanjuan Li,
| |
Collapse
|
152
|
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, Chen X, Wang N. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28:130. [PMID: 36335331 PMCID: PMC9636637 DOI: 10.1186/s10020-022-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.
Collapse
|
153
|
Bai J, Liu F. The Yin-Yang functions of macrophages in metabolic disorders. LIFE MEDICINE 2022; 1:319-332. [PMID: 39872753 PMCID: PMC11749365 DOI: 10.1093/lifemedi/lnac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2025]
Abstract
Macrophages are widely distributed in various metabolic tissues/organs and play an essential role in the immune regulation of metabolic homeostasis. Macrophages have two major functions: adaptive defenses against invading pathogens by triggering inflammatory cytokine release and eliminating damaged/dead cells via phagocytosis to constrain inflammation. The pro-inflammatory role of macrophages in insulin resistance and related metabolic diseases is well established, but much less is known about the phagocytotic function of macrophages in metabolism. In this review, we review our current understanding of the ontogeny, tissue distribution, and polarization of macrophages in the context of metabolism. We also discuss the Yin-Yang functions of macrophages in the regulation of energy homeostasis. Third, we summarize the crosstalk between macrophages and gut microbiota. Lastly, we raise several important but remain to be addressed questions with respect to the mechanisms by which macrophages are involved in immune regulation of metabolism.
Collapse
Affiliation(s)
- Juli Bai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
154
|
Li L, Yu XJ, Gao L, Cheng L, Sun B, Wang G. Diabetic Ferroptosis and Pancreatic Cancer: Foe or Friend? Antioxid Redox Signal 2022; 37:1206-1221. [PMID: 35996983 DOI: 10.1089/ars.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Pancreatic cancer and diabetes have a reciprocal causation relationship. As a potential risk factor, diabetes increases morbidity and promotes pancreatic cancer progression. The main mechanisms include islet dysfunction-induced systemic metabolic disorder, pancreatic stellate cell activation, and immunosuppression. Ferroptosis is regarded as regulated cell death, which participates in chemotherapy resistance and is refractory to radiation therapy and immunotherapy. Diabetes-induced ferroptosis causes many complications, but the underlying mechanism of diabetes-related ferroptosis in pancreatic cancer has not been discussed. Recent Advances: Ferroptosis alleviates pancreatic intraepithelial neoplasia (PanIN) progression by activating chronic inflammation. The specific drugs that cause ferroptosis achieve tumor suppression by inducing lipid peroxidation. Ferroptosis plays pro and con roles in cancer. Both the ferroptosis inhibitor and inducer exhibit antitumor effects through killing cancer cells or directly affecting tumor growth. Diabetes-induced ferroptosis contributes to tumor cell death by different components, including tumor cells, fibroblasts, immune cells, and adipocytes. A better understanding of its role in modulating the tumor microenvironment will reveal diabetes-associated ferroptotic features in cancer development, which can be used to figure out possible treatment strategies for cancer patients with hyperglycemia. Critical Issues: We demonstrate the potential roles of diabetes-related ferroptosis in pancreatic cancer progression and discuss ferroptosis-related antitumor effects and therapeutics for pancreatic cancer treatment. Future Directions: Further studies are required to highlight mechanisms of diabetes-mediated ferroptosis in pancreatic cancer tumorigenesis and progression. The antitumor effects of ferroptosis regulators combined with chemotherapy, targeted therapy, or immunotherapy in diabetic patients should be investigated. We hope that pancreatic cancer patients with diabetes will benefit from ferroptosis-related therapies. Antioxid. Redox Signal. 37, 1206-1221.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Jia Yu
- Department of Centric Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
155
|
He H, Liao S, Zeng Y, Liang L, Chen J, Tao C. Causal relationships between metabolic-associated fatty liver disease and iron status: Two-sample Mendelian randomization. Liver Int 2022; 42:2759-2768. [PMID: 36226474 DOI: 10.1111/liv.15455] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Dysregulated iron homeostasis plays an important role in the hepatic manifestation of metabolic-associated fatty liver disease (MAFLD). We investigated the causal effects of five iron metabolism markers, regular iron supplementation and MAFLD risk. METHODS Genetic summary statistics were obtained from open genome-wide association study databases. Two-sample bidirectional Mendelian randomization analysis was performed to estimate the causal effect between iron status and MAFLD, including Mendelian randomization inverse-variance weighted, weighted median methods and Mendelian randomization-Egger regression. The Mendelian randomization-PRESSO outlier test, Cochran's Q test and Mendelian randomization-Egger regression were used to assess outliers, heterogeneity and pleiotropy respectively. RESULTS Mendelian randomization inverse-variance weighted results showed that the genetically predicted per standard deviation increase in liver iron (Data set 2: odds ratio 1.193, 95% confidence interval [CI] 1.074-1.326, p = .001) was associated with an increased MAFLD risk, consistent with the weighted median estimates and Mendelian randomization-Egger regression, although Data set 1 was not significant. Mendelian randomization inverse-variance weighted analysis showed that genetically predicted MAFLD was significantly associated with increased serum ferritin levels in both datasets (Dataset 1: β = .038, 95% CI = .014 to .062, p = .002; Dataset 2: β = .081, 95% CI = .025 to .136, p = .004), and a similar result was observed with the weighted median methods for Dataset 2 instead of Mendelian randomization-Egger regression. CONCLUSIONS This study uncovered genetically predicted causal associations between iron metabolism status and MAFLD. These findings underscore the need for improved guidelines for managing MAFLD risk by emphasizing hepatic iron levels as a risk factor and ferritin levels as a prognostic factor.
Collapse
Affiliation(s)
- He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Shenling Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Yuping Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Libo Liang
- Department of International Medical Centre, West China Hospital, Sichuan University, Sichuan, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
156
|
Shi H, Wang X, Li F, Gerlach BD, Yurdagul A, Moore MP, Zeldin S, Zhang H, Cai B, Zheng Z, Valenti L, Tabas I. CD47-SIRPα axis blockade in NASH promotes necroptotic hepatocyte clearance by liver macrophages and decreases hepatic fibrosis. Sci Transl Med 2022; 14:eabp8309. [PMID: 36417485 PMCID: PMC10199725 DOI: 10.1126/scitranslmed.abp8309] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Necroptosis contributes to hepatocyte death in nonalcoholic steatohepatitis (NASH), but the fate and roles of necroptotic hepatocytes (necHCs) in NASH remain unknown. We show here that the accumulation of necHCs in human and mouse NASH liver is associated with an up-regulation of the "don't-eat-me" ligand CD47 on necHCs, but not on apoptotic hepatocytes, and an increase in the CD47 receptor SIRPα on liver macrophages, consistent with impaired macrophage-mediated clearance of necHCs. In vitro, necHC clearance by primary liver macrophages was enhanced by treatment with either anti-CD47 or anti-SIRPα. In a proof-of-concept mouse model of inducible hepatocyte necroptosis, anti-CD47 antibody treatment increased necHC uptake by liver macrophages and inhibited markers of hepatic stellate cell (HSC) activation, which is responsible for liver fibrogenesis. Treatment of two mouse models of diet-induced NASH with anti-CD47, anti-SIRPα, or AAV8-H1-shCD47 to silence CD47 in hepatocytes increased the uptake of necHC by liver macrophages and decreased markers of HSC activation and liver fibrosis. Anti-SIRPα treatment avoided the adverse effect of anemia found in anti-CD47-treated mice. These findings provide evidence that impaired clearance of necHCs by liver macrophages due to CD47-SIRPα up-regulation contributes to fibrotic NASH, and suggest therapeutic blockade of the CD47-SIRPα axis as a strategy to decrease the accumulation of necHCs in NASH liver and dampen the progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fang Li
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brennan D. Gerlach
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arif Yurdagul
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mary P. Moore
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sharon Zeldin
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bishuang Cai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano and Fondazione Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano 20122, Italy
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
157
|
Yang X, Xia M, Chang X, Zhu X, Sun X, Yang Y, Wang L, Liu Q, Zhang Y, Xu Y, Lin H, Liu L, Yao X, Hu X, Gao J, Yan H, Gao X, Bian H. A novel model for detecting advanced fibrosis in patients with nonalcoholic fatty liver disease. Diabetes Metab Res Rev 2022; 38:e3570. [PMID: 35938229 PMCID: PMC9788169 DOI: 10.1002/dmrr.3570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
AIMS The study aimed to develop a novel noninvasive model to detect advanced fibrosis based on routinely available clinical and laboratory tests. MATERIALS AND METHODS A total of 309 patients who underwent liver biopsy were randomly divided into the estimation group (n = 201) and validation group (n = 108). The model was developed using multiple regression analysis in the estimation group and further verified in the validation group. Diagnostic accuracy was evaluated using the receiver operating characteristic (ROC) curve. RESULTS The model was named NAFLD Fibrosis Index (NFI): -10.844 + 0.046 × age - 0.01 × platelet count + 0.19 × 2h postprandial plasma glucose (PG) + 0.294 × conjugated bilirubin - 0.015 × ALT + 0.039 × AST + 0.109 × total iron binding capacity -0.033 × parathyroid hormone (PTH). The area under the ROC curve (AUC) of NFI was 0.86 (95% CI: 0.79-0.93, p < 0.001) in the estimation group and 0.80 (95% CI: 0.69-0.91, p < 0.001) in the validation group, higher than NFS, FIB4, APRI, and BARD, and similar to FibroScan (NFI AUC = 0.77, 95% CI: 0.66-0.89, p = 0.001 vs. FibroScan AUC = 0.76, 95% CI: 0.62-0.90, p = 0.002). By applying the low cut-off value (-2.756), advanced fibrosis could be excluded among 49.3% and 48% of patients in the estimation group (sensitivity: 93.1%, NPV: 97.9%, specificity: 55.2%, and PPV: 26.0%) and validation group (sensitivity: 81.3%, NPV: 94.2%, specificity: 53.3%, and PPV: 23.2%), respectively, allowing them to avoid liver biopsy. CONCLUSIONS The study has established a novel model for advanced fibrosis, the diagnostic accuracy of which is superior to the current clinical scoring systems and is similar to FibroScan.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Mingfeng Xia
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Xinxia Chang
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Xiaopeng Zhu
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Xiaoyang Sun
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Yinqiu Yang
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Liu Wang
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
- Second Affiliated Hospital of Army Military Medical UniversityChongqingChina
| | - Qiling Liu
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Yuying Zhang
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Yanlan Xu
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
- Department of GeriatricsQingpu Branch of Zhongshan HospitalFudan UniversityShanghaiChina
| | - Huandong Lin
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Lin Liu
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Xiuzhong Yao
- Department of RadiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiqi Hu
- Department of PathologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jian Gao
- Department of Clinical NutritionZhongshan HospitalCenter of Clinical EpidemiologyEBM of Fudan UniversityFudan UniversityShanghaiChina
| | - Hongmei Yan
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Xin Gao
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
| | - Hua Bian
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghaiChina
- Department of Endocrinology and MetabolismWusong Branch of Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
158
|
Ferroptosis: Shedding Light on Mechanisms and Therapeutic Opportunities in Liver Diseases. Cells 2022; 11:cells11203301. [PMID: 36291167 PMCID: PMC9600232 DOI: 10.3390/cells11203301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell death is a vital physiological or pathological phenomenon in the development process of the organism. Ferroptosis is a kind of newly-discovered regulated cell death (RCD), which is different from other RCD patterns, such as apoptosis, necrosis and autophagy at the morphological, biochemical and genetic levels. It is a kind of iron-dependent mode of death mediated by lipid peroxides and lipid reactive oxygen species aggregation. Noteworthily, the number of studies focused on ferroptosis has been increasing exponentially since ferroptosis was first found in 2012. The liver is the organ that stores the most iron in the human body. Recently, it was frequently found that there are different degrees of iron metabolism disorder and lipid peroxidation and other ferroptosis characteristics in various liver diseases. Numerous investigators have discovered that the progression of various liver diseases can be affected via the regulation of ferroptosis, which may provide a potential therapeutic strategy for clinical hepatic diseases. This review aims to summarize the mechanism and update research progress of ferroptosis, so as to provide novel promising directions for the treatment of liver diseases.
Collapse
|
159
|
Wu Q, Chen Z, Ding Y, Tang Y, Cheng Y. Protective effect of traditional Chinese medicine on non-alcoholic fatty liver disease and liver cancer by targeting ferroptosis. Front Nutr 2022; 9:1033129. [PMID: 36330148 PMCID: PMC9623008 DOI: 10.3389/fnut.2022.1033129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with high incidence and is closely related to metabolic syndrome. If not controlled, it may eventually become hepatocellular carcinoma (HCC). Ferroptosis, a non-apoptotic form of programmed cell death (PCD), is closely related to NAFLD and HCC, and the mechanisms of action involved are more complex. Some studies have demonstrated that many drugs inhibit ferroptosis and protect liver steatosis or carcinogenesis. The role of Traditional Chinese Medicine (TCM), especially herbs or herbal extracts, has received increasing attention. However, there are relatively few review articles on the regulation of NAFLD by TCM through ferroptosis pathway. Here, we summarize the TCM intervention mechanism and application affecting NAFLD/NAFLD-HCC via regulation of ferroptosis. This article focuses on the relationship between ferroptosis and NAFLD or NAFLD-HCC and the protective effect of TCM on both by targeting ferroptosis. It not only summarizes the mechanism of early prevention and treatment of NAFLD, but also provides reference ideas for the development of TCM for the treatment of metabolic diseases and liver diseases.
Collapse
Affiliation(s)
- Qiongbo Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Zihao Chen
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Ding
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yunting Tang
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yawei Cheng
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng,
| |
Collapse
|
160
|
Attenuation by Time-Restricted Feeding of High-Fat and High-Fructose Diet-Induced NASH in Mice Is Related to Per2 and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8063897. [PMID: 36285301 PMCID: PMC9588383 DOI: 10.1155/2022/8063897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic and progressive disease whose treatment strategies are limited. Although time-restricted feeding (TRF) is beneficial for metabolic diseases without influencing caloric intake, the underlying mechanisms of TRF action in NASH and its efficacy have not yet been demonstrated. We herein showed that TRF effectively alleviated NASH, producing a reduction in liver enzymes and improvements in liver pathology. Regarding the mechanisms by which TRF mitigates NASH, we ascertained that TRF inhibited ferroptosis and the expression of the circadian gene Per2. By adopting a hepatocyte-specific Per2-knockout (Per2△hep) mice model, we clarified the critical role of Per2 in exacerbating NASH. According to the results of our RNA-Seq analysis, the knockout of Per2 ameliorated NASH by inhibiting the onset of ferroptosis; this was manifested by diminished lipid peroxidation levels, decreased mRNA and protein levels for ferroptosis-related genes, and alleviated morphologic changes in mitochondria. Furthermore, using a ferroptosis inhibitor, we showed that ferroptosis significantly aggravated NASH and noted that this was likely achieved by regulation of the expression of peroxisome proliferator activated receptor (PPAR)α. Finally, we discerned that TRF and hepatocyte-specific knockout of Per2 promoted the expression of PPARα. Our results revealed a potential for TRF to effectively alleviate high-fat and high-fructose diet-induced NASH via the inhibition of Per2 and depicted the participation of Per2 in the progression of NASH by promoting ferroptosis, which was ultimately related to the expression of PPARα.
Collapse
|
161
|
Lv J, Hou B, Song J, Xu Y, Xie S. The Relationship Between Ferroptosis and Diseases. J Multidiscip Healthc 2022; 15:2261-2275. [PMID: 36225859 PMCID: PMC9549801 DOI: 10.2147/jmdh.s382643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death. It can occur through two major pathways, exogenous (or transporter-dependent) and endogenous (or enzyme-regulated) pathways are activated by biological or chemical inducers, and glutathione peroxidase activity is inhibited, which causes intracellular iron accumulation and lipid Peroxidation. Ferroptosis is closely related to the pathological process of many diseases. How to intervene in the occurrence and development of related diseases by regulating ferroptosis has become a hot research topic. At present, studies have shown that ferroptosis is found in common diseases such as tumors, inflammatory diseases, bacterial infections, pulmonary fibrosis, hepatitis, inflammatory bowel disease, neurodegenerative diseases, kidney injury, ischemia-reperfusion injury and skeletal muscle injury. This article reviews the characteristics and mechanism of ferroptosis, and summarizes how ferroptosis participates in the pathophysiological process in various systemic diseases of the body, which may provide new references for the treatment of clinical diseases in the future.
Collapse
Affiliation(s)
- Jinchang Lv
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Jiangang Song
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Yunhua Xu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
- Correspondence: Songlin Xie, Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of the University of South China, Hengyang, People’s Republic of China, Tel +86 13975404959, Email
| |
Collapse
|
162
|
Maimaitizunong R, Wang K, Li H. Ferroptosis and its emerging role in esophageal cancer. Front Mol Biosci 2022; 9:1027912. [PMID: 36237575 PMCID: PMC9551460 DOI: 10.3389/fmolb.2022.1027912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
The occurrence and development of tumors involve a series of life activities of cells, among which cell death has always been a crucial part in the research of tumor mechanisms and treatment methods. Ferroptosis is a non-apoptotic form of cell death, which is characterized by lipid peroxidation accumulation and further cell membrane rupture caused by excessive production of intracellular oxygen free radicals dependent on iron ions. Esophageal cancer is one of the common digestive tract tumors. Patients in the early stage are mainly treated with surgery, and the curative effect is awe-inspiring. However, surgery is far from enough for terminal patients, and it is the best choice to combine radiotherapy and chemotherapy before the operation or during the perioperative period. Although the treatment plan for patients with advanced esophageal cancer is constantly being optimized, we are disappointed at the still meager 5-year survival rate of patients and the poor quality of life. A series of complex problems, such as increased chemotherapy drug resistance and decreased radiotherapy sensitivity of esophageal cancer cells, are waiting for us to tackle. Perhaps ferroptosis can provide practical and feasible solutions and bring new hope to patients with advanced esophageal cancer. The occurrence of ferroptosis is related to the dysregulation of iron metabolism, lipid metabolism, and glutamate metabolism. Therefore, these dysregulated metabolic participant proteins and signaling pathways are essential entry points for using cellular ferroptosis to resist the occurrence and development of cancer cells. This review first introduced the main regulatory mechanisms of ferroptosis. It then summarized the current research status of ferroptosis in esophageal cancer, expecting to provide ideas for the research related to ferroptosis in esophageal cancer.
Collapse
Affiliation(s)
- Rezeye Maimaitizunong
- Department of Biochemistry and Molecular Biology, Basic Medicine School, Xinjiang Medical University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, China
- *Correspondence: Hui Li,
| |
Collapse
|
163
|
Dou J, Liu X, Yang L, Huang D, Tan X. Ferroptosis interaction with inflammatory microenvironments: Mechanism, biology, and treatment. Biomed Pharmacother 2022; 155:113711. [PMID: 36126457 DOI: 10.1016/j.biopha.2022.113711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Ferroptosis is a newly discovered form of regulated cell death. Ferroptosis is an iron-dependent lipid peroxidation reaction of cell membrane lipids, and it is closely related to the occurrence and development of many inflammatory diseases, such as ischemia-reperfusion injury, nonalcoholic steatohepatitis, and tumors. Although the precise role of ferroptosis in these inflammatory diseases is still unclear, recent evidence indicates that the association between ferroptosis and inflammatory diseases is related to the interaction of ferroptosis and inflammatory microenvironments. In inflammatory microenvironments, ferroptosis can be regulated by metabolic changes or the secretion of related substances between microorganisms and host cells or between host cells. At the same time, ferroptotic cells can also recruit immune cells by releasing injury-related molecular patterns, which in turn induces the generation of inflammatory microenvironments. Molecular crosstalk between ferroptosis and other cell death types also exists in inflammatory microenvironments. In addition, the interaction of ferroptosis and the tumor microenvironment is also correlated with tumor growth. This article reviews the main metabolic processes of ferroptosis, describes the interaction mechanism between ferroptosis and inflammatory microenvironments, and summarizes the role of ferroptosis in the treatment of diseases.
Collapse
Affiliation(s)
- Jinge Dou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
164
|
Ferroptosis-Related Genes with Regard to CTLA-4 and Immune Infiltration in Hepatocellular Carcinoma. Biochem Genet 2022; 61:687-703. [PMID: 36094606 DOI: 10.1007/s10528-022-10279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Comprehensive analysis of ferroptosis in Hepatocellular Carcinoma (HCC) and its relation to the tumor immune microenvironment are needed. Data included HCC in The Cancer Genome Atlas and International Cancer Genome Consortium. And two datasets from Gene Expression Omnibus (GEO) were used as the validation set. Based on the expression of ferroptosis-related genes, HCC patients were divided into two subtypes. Cluster 1 showed lower tumor grade, lower CTLA-4, and a more favorable prognosis than Cluster 2. Patients with higher SLC7A11 (50%) had a poorer prognosis in HCC. SLC7A11 is characterized by more NK CD56bright cells, less DC, and neuroactive ligand-receptor interaction and cytokine receptor interaction. Ferroptosis-related genes especially SLC7A11 might be a valuable prognostic factor in HCC.
Collapse
|
165
|
Ma C, Han L, Zhu Z, Heng Pang C, Pan G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem Pharmacol 2022; 205:115242. [PMID: 36084708 DOI: 10.1016/j.bcp.2022.115242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide. Minerals including iron, copper, zinc, and selenium, fulfil an essential role in various biochemical processes. Moreover, the identification of ferroptosis and cuproptosis further underscores the importance of intracellular mineral homeostasis. However, perturbation of minerals has been frequently reported in patients with NAFLD and related diseases. Interestingly, studies have attempted to establish an association between mineral disorders and NAFLD pathological features, including oxidative stress, mitochondrial dysfunction, inflammatory response, and fibrogenesis. In this review, we aim to provide an overview of the current understanding of mineral metabolism (i.e., absorption, utilization, and transport) and mineral interactions in the pathogenesis of NAFLD. More importantly, this review highlights potential therapeutic strategies, challenges, future directions for targeting mineral metabolism in the treatment of NAFLD.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
166
|
Jiang L, Wang N, Cheng S, Liu Y, Chen S, Wang Y, Cai W. RNA-sequencing identifies novel transcriptomic signatures in intestinal failure-associated liver disease. J Pediatr Surg 2022; 57:158-165. [PMID: 35033352 DOI: 10.1016/j.jpedsurg.2021.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Total parenteral nutrition (TPN) dependence leads to development of intestinal failure-associated liver disease (IFALD). The spectrum of diseases ranges from cholestasis, steatosis, fibrosis, and cirrhosis that causes significant morbidity. Understanding the disease at molecular level helps us to develop therapeutic targets. We performed transcriptomic analysis on liver from rats with TPN administration, and we assessed the role of selected differentially expressed genes (DEGs), functional pathways, transcriptional factors, and their associations with pathological parameters of IFALD. METHODS Sprague-Dawley rats were subjected to TPN or standard chow with 0.9% saline for 7 days as controls. RNA-seq analysis was performed on liver samples. Correlations between transcriptional factor hairy and enhancer of split 6 (Hes6) and pathological parameters of IFALD were investigated. RESULTS We provided a comprehensive transcriptomic analysis to identify DEGs and functional pathways in liver from TPN-fed rats. We identified solute carrier family 7 member 11 (Slc7a11) as the most up-regulated mRNA, and ferroptosis-associated pathways were enriched in TPN group. Transcriptional factor (TF) analysis revealed that Hes6 interacted with Nr1d1, Tfdp2, Zbtb20, and Hmgb2l1. TF target gene prediction analysis suggested that Hes6 may regulate genes associated with bile acid secretion and fatty acid metabolism. Last, hepatic Hes6 expression was significantly decreased in TPN-fed rats, and was positively correlated with several taurine-conjugated bile acids and negatively correlated with hepatic triglyceride level. CONCLUSIONS RNA-seq analysis revealed unique transcriptomic signatures in the liver following TPN administration. Hes6 may be a critical regulator for IFALD pathogenesis.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Nan Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyang Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yang Liu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Shanshan Chen
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China.
| |
Collapse
|
167
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. Pharmacol Res 2022; 183:106386. [PMID: 35933006 DOI: 10.1016/j.phrs.2022.106386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Iron participates in myriad processes necessary to sustain life. During the past decades, great efforts have been made to understand iron regulation and function in health and disease. Indeed, iron is associated with both physiological (e.g., immune cell biology and function and hematopoiesis) and pathological (e.g., inflammatory and infectious diseases, ferroptosis and ferritinophagy) processes, yet few studies have addressed the potential functional link between iron, the aforementioned processes and extramedullary hematopoiesis, despite the obvious benefits that this could bring to clinical practice. Further investigation in this direction will shape the future development of individualized treatments for iron-linked diseases and chronic inflammatory disorders, including extramedullary hematopoiesis, metabolic syndrome, cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
168
|
Grube J, Woitok MM, Mohs A, Erschfeld S, Lynen C, Trautwein C, Otto T. ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression. Cell Death Dis 2022; 13:704. [PMID: 35963845 PMCID: PMC9376109 DOI: 10.1038/s41419-022-05137-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is a novel type of programmed cell death that differs from apoptosis in that it involves iron-dependent peroxidation of membrane phospholipids. Its role in a variety of human disorders, including cancer has been hypothesized in recent years. While it may function as an endogenous tumor suppressor in a variety of cancers, its role during initiation and progression of liver cancer, particularly hepatocellular carcinoma (HCC), is yet unknown. Because HCC is most commonly found in chronically injured livers, we utilized two well-established mouse models of chronic injury-dependent HCC formation: Treatment with streptozotocin and high-fat diet as metabolic injury model, as well as treatment with diethylnitrosamine and carbon tetrachloride as toxic injury model. We used mice with hepatocyte-specific deletion of Acsl4, a key mediator of ferroptosis, to explore the significance of ferroptotic cell death in hepatocytes, the cell type of origin for HCC. Surprisingly, preventing ferroptotic cell death in hepatocytes by deleting Acsl4 does not increase the formation of HCC. Furthermore, Acsl4-deficient livers display less fibrosis and proliferation, especially in the HCC model of toxic damage. Intriguingly, in this model, the absence of ACSL4-dependent processes such as ferroptosis significantly slow down the growth of HCC. These findings suggest that during HCC formation in a chronically injured liver, ferroptotic cell death is not an endogenous tumor-suppressive mechanism. Instead, we find that ACSL4-dependent processes have an unanticipated cancer-promoting effect during HCC formation, which is most likely due to aggravated liver damage as demonstrated by increased hepatic fibrosis. Previous studies suggested that ferroptosis might have beneficial effects for patients during HCC therapy. As a result, during HCC progression and therapy, ferroptosis may have both cancer-promoting and cancer-inhibitory effects, respectively.
Collapse
Affiliation(s)
- Julia Grube
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Marius Maximilian Woitok
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Antje Mohs
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Stephanie Erschfeld
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Celina Lynen
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Christian Trautwein
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Tobias Otto
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| |
Collapse
|
169
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
170
|
Protein Profiling of a Cellular Model of NAFLD by Advanced Bioanalytical Approaches. Int J Mol Sci 2022; 23:ijms23169025. [PMID: 36012291 PMCID: PMC9408868 DOI: 10.3390/ijms23169025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced quantitative bioanalytical approaches in combination with network analyses allow us to answer complex biological questions, such as the description of changes in protein profiles under disease conditions or upon treatment with drugs. In the present work, three quantitative proteomic approaches-either based on labelling or not-in combination with network analyses were applied to a new in vitro cellular model of nonalcoholic fatty liver disease (NAFLD) for the first time. This disease is characterized by the accumulation of lipids, inflammation, fibrosis, and insulin resistance. Hepatic G2 cells were used as model, and NAFLD was induced by a complex of oleic acid and bovine albumin. The development of the disease was verified by lipid vesicle staining and by the increase in the expression of perilipin-2-a protein constitutively present in the vesicles during NAFLD. The nLC-MS/MS analyses of peptide samples obtained from three different proteomic approaches resulted in accurate and reproducible quantitative data of protein fold-change expressed in NAFLD versus control cells. The differentially regulated proteins were used to evaluate the involved and statistically enriched pathways. Network analyses highlighted several functional and disease modules affected by NAFLD, such as inflammation, oxidative stress defense, cell proliferation, and ferroptosis. Each quantitative approach allowed the identification of similar modulated pathways. The combination of the three approaches improved the power of statistical network analyses by increasing the number of involved proteins and their fold-change. In conclusion, the application of advanced bioanalytical approaches in combination with pathway analyses allows the in-depth and accurate description of the protein profile of an in vitro cellular model of NAFLD by using high-resolution quantitative mass spectrometry data. This model could be extremely useful in the discovery of new drugs to modulate the equilibrium NAFLD health state.
Collapse
|
171
|
Ma TL, Chen JX, Zhu P, Zhang CB, Zhou Y, Duan JX. Focus on ferroptosis regulation: Exploring novel mechanisms and applications of ferroptosis regulator. Life Sci 2022; 307:120868. [DOI: 10.1016/j.lfs.2022.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
172
|
Chen Y, Xu Y, Zhang K, Shen L, Deng M. Ferroptosis in COVID-19-related liver injury: A potential mechanism and therapeutic target. Front Cell Infect Microbiol 2022; 12:922511. [PMID: 35967872 PMCID: PMC9363633 DOI: 10.3389/fcimb.2022.922511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 01/08/2023] Open
Abstract
The outbreak and worldwide spread of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a threat to global public health. SARS-CoV-2 infection not only impacts the respiratory system but also causes hepatic injury. Ferroptosis, a distinct iron-dependent form of non-apoptotic cell death, has been investigated in various pathological conditions, such as cancer, ischemia/reperfusion injury, and liver diseases. However, whether ferroptosis takes part in the pathophysiological process of COVID-19-related liver injury has not been evaluated yet. This review highlights the pathological changes in COVID-19-related liver injury and presents ferroptosis as a potential mechanism in the pathological process. Ferroptosis, as a therapeutic target for COVID-19-related liver injury, is also discussed. Discoveries in these areas will improve our understanding of strategies to prevent and treat hepatic injuries caused by COVID-19.
Collapse
Affiliation(s)
- Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Yunqing Chen,
| | - Yan Xu
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Kan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Min Deng
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
173
|
Wang S, Liu Z, Geng J, Li L, Feng X. An overview of ferroptosis in non-alcoholic fatty liver disease. Biomed Pharmacother 2022; 153:113374. [PMID: 35834990 DOI: 10.1016/j.biopha.2022.113374] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a public health problem associated with high mortality and high morbidity rates worldwide. Presently, its complex pathophysiology is still unclear, and there is no specific drug to reverse NAFLD. Ferroptosis is an iron-dependent and non-apoptotic form of cell death characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), which damage nucleic acids, proteins, and lipids; generate intracellular oxidative stress; and ultimately cause cell death. Emerging evidence indicates that ferroptosis is involved in the progression of NAFLD, although the mechanism of action of ferroptosis in NAFLD is still poorly understood. Herein, we summarize the mechanism of action of ferroptosis in certain diseases, especially in the pathogenesis of NAFLD, and discuss the potential therapeutic approaches currently used to treat NAFLD. This review also highlights further directions for the treatment and prevention of NAFLD and related diseases.
Collapse
Affiliation(s)
- Shendong Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jiafeng Geng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Liangge Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
174
|
Feng G, Byrne CD, Targher G, Wang F, Zheng MH. Ferroptosis and metabolic dysfunction-associated fatty liver disease: Is there a link? Liver Int 2022; 42:1496-1502. [PMID: 35007392 DOI: 10.1111/liv.15163] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently re-defined and re-classified as metabolic dysfunction-associated fatty liver disease (MAFLD), has become increasingly prevalent and emerged as a public health problem worldwide. To date, the precise pathogenic mechanisms underpinning MAFLD are not entirely understood, and there is no effective pharmacological therapy for NAFLD/MAFLD. As a newly discovered form of iron-dependent programmed cell death, ferroptosis can be involved in the development and progression of various chronic diseases, but the pathogenic connections and mechanisms that link MAFLD and ferroptosis have not been fully elucidated. The main characteristics of ferroptosis are the accumulation of lipid peroxides and reactive oxygen species. In this brief narrative review, the mechanisms of ferroptosis and its putative pathogenic role in MAFLD are discussed to highlight potential new research directions and ideas for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
175
|
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal 2022; 37:184-207. [PMID: 34465134 DOI: 10.1089/ars.2021.0120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nayaab Punjani
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nader Hejrati
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Mohammad-Masoud Zavvarian
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery and Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
176
|
Vetuschi A, Cappariello A, Onori P, Gaudio E, Latella G, Pompili S, Sferra R. Ferroptosis resistance cooperates with cellular senescence in the overt stage of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Eur J Histochem 2022; 66. [PMID: 35726536 PMCID: PMC9251610 DOI: 10.4081/ejh.2022.3391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cellular senescence and ferroptosis are the two main, fine-tuned processes in tissue damage restraint; however, they can be overactivated in pathologies such as nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH), becoming dangerous stimuli. Senescence is characterized by a decline in cell division and an abnormal release of reactive oxygen species (ROS), and ferroptosis is represented by iron deposition associated with an excessive accumulation of ROS. ROS and cellular stress pathways are also drivers of NAFLD/NASH development. The etiology of NAFLD/NASH lies in poor diets enriched in fat and sugar. This food regimen leads to liver steatosis, resulting in progressive degeneration of the organ, with a late onset of irreversible fibrosis and cirrhosis. Few studies have investigated the possible connection between senescence and ferroptosis in NAFLD/NASH progression, despite the two events sharing some molecular players. We hypothesized a possible link between senescence and ferroptosis in a NAFLD background. To thoroughly investigate this in the context of "Western-style" diet (WSD) abuse, we used an amylin-modified liver NASH mouse model. The main NASH hallmarks have been confirmed in this model, as well as an increase in apoptosis, and Ki67 and p53 expression in the liver. Senescent beta-galactosidase-positive cells were elevated, as well as the expression of the related secretory molecules Il-6 and MMP-1. Features of DNA damage and iron-overload were found in the livers of NASH mice. Gpx4 (glutathione peroxidase 4) expression, counteracting ferroptotic cell death, was increased. Notably, an increased number of senescent cells showing overexpression of gpx4 was also found. Our data seem to suggest that senescent cells acquire a gpx4-mediated mechanism of ferroptosis resistance and thus remain in the liver, fostering the deterioration of liver fitness.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila.
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| |
Collapse
|
177
|
Zhou X, Fu Y, Liu W, Mu Y, Zhang H, Chen J, Liu P. Ferroptosis in Chronic Liver Diseases: Opportunities and Challenges. Front Mol Biosci 2022; 9:928321. [PMID: 35720113 PMCID: PMC9205467 DOI: 10.3389/fmolb.2022.928321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
Ferroptosis, an iron-dependent non-apoptotic cell death characterized by lipid peroxidation, is a cell death pathway discovered in recent years. Ferroptosis plays an important role in tumors, ischemia-reperfusion injury, neurological diseases, blood diseases, etc. Recent studies have shown the importance of ferroptosis in chronic liver disease. This article summarizes the pathological mechanisms of ferroptosis involved in System Xc-, iron metabolism, lipid metabolism, and some GPX4-independent pathways, and the latest research on ferroptosis in chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, liver fibrosis, hepatocellular carcinoma. In addition, the current bottleneck issues that restrict the research on ferroptosis are proposed to provide ideas and strategies for exploring new therapeutic targets for chronic liver diseases.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yadong Fu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
178
|
The Regulatory Roles of Polysaccharides and Ferroptosis-Related Phytochemicals in Liver Diseases. Nutrients 2022; 14:nu14112303. [PMID: 35684103 PMCID: PMC9182636 DOI: 10.3390/nu14112303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health burden with high morbidity and mortality worldwide. Liver injuries can develop into severe end-stage diseases, such as cirrhosis or hepatocellular carcinoma, without valid treatment. Therefore, identifying novel drugs may promote liver disease treatment. Phytochemicals, including polysaccharides, flavonoids, alkaloids, and terpenes, are abundant in foods and medicinal plants and have various bioactivities, such as antioxidation, immunoregulation, and tumor killing. Recent studies have shown that many natural polysaccharides play protective roles in liver disease models in vitro and in vivo, such as fatty liver disease, alcoholic liver disease, drug-induced liver injury, and liver cancer. The mechanisms of liver disease are complex. Notably, ferroptosis, a new type of cell death driven by iron and lipid peroxidation, is considered to be the key mechanism in many hepatic pathologies. Therefore, polysaccharides and other types of phytochemicals with activities in ferroptosis regulation provide novel therapeutic strategies for ferroptosis-related liver diseases. This review summarizes our current understanding of the mechanisms of ferroptosis and liver injury and compelling preclinical evidence of natural bioactive polysaccharides and phytochemicals in treating liver disease.
Collapse
|
179
|
Mao X, Wang X, Jin M, Li Q, Jia J, Li M, Zhou H, Liu Z, Jin W, Zhao Y, Luo Z. Critical involvement of lysyl oxidase in seizure-induced neuronal damage through ERK-Alox5-dependent ferroptosis and its therapeutic implications. Acta Pharm Sin B 2022; 12:3513-3528. [PMID: 36176900 PMCID: PMC9513491 DOI: 10.1016/j.apsb.2022.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 02/08/2023] Open
Abstract
Recent insights collectively suggest the important roles of lysyl oxidase (LysOX) in the pathological processes of several acute and chronic neurological diseases, but the molecular regulatory mechanisms remain elusive. Herein, we explore the regulatory role of LysOX in the seizure-induced ferroptotic cell death of neurons. Mechanistically, LysOX promotes ferroptosis-associated lipid peroxidation in neurons via activating extracellular regulated protein kinase (ERK)-dependent 5-lipoxygenase (Alox5) signaling. In addition, overexpression of LysOX via adeno-associated viral vector (AAV)-based gene transfer enhances ferroptosis sensitivity and aggravates seizure-induced hippocampal damage. Our studies show that pharmacological inhibition of LysOX with β-aminopropionitrile (BAPN) significantly blocks seizure-induced ferroptosis and thereby alleviates neuronal damage, while the BAPN-associated cardiotoxicity and neurotoxicity could further be reduced through encapsulation with bioresponsive amorphous calcium carbonate-based nanocarriers. These findings unveil a previously unrecognized LysOX-ERK-Alox5 pathway for ferroptosis regulation during seizure-induced neuronal damage. Suppressing this pathway may yield therapeutic implications for restoring seizure-induced neuronal injury.
Collapse
|
180
|
Tsukahara Y, Ferran B, Minetti ET, Chong BSH, Gower AC, Bachschmid MM, Matsui R. Administration of Glutaredoxin-1 Attenuates Liver Fibrosis Caused by Aging and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2022; 11:867. [PMID: 35624731 PMCID: PMC9138033 DOI: 10.3390/antiox11050867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Liver fibrosis is a sign of non-alcoholic fatty liver disease progression towards steatohepatitis (NASH) and cirrhosis and is accelerated by aging. Glutaredoxin-1 (Glrx) controls redox signaling by reversing protein S-glutathionylation, induced by oxidative stress, and its deletion causes fatty liver in mice. Although Glrx regulates various pathways, including metabolism and apoptosis, the impact of Glrx on liver fibrosis has not been studied. Therefore, we evaluated the role of Glrx in liver fibrosis induced by aging or by a high-fat, high-fructose diet. We found that: (1) upregulation of Glrx expression level inhibits age-induced hepatic apoptosis and liver fibrosis. In vitro studies indicate that Glrx regulates Fas-induced apoptosis in hepatocytes; (2) diet-induced NASH leads to reduced expression of Glrx and higher levels of S-glutathionylated proteins in the liver. In the NASH model, hepatocyte-specific adeno-associated virus-mediated Glrx overexpression (AAV-Hep-Glrx) suppresses fibrosis and apoptosis and improves liver function; (3) AAV-Hep-Glrx significantly inhibits transcription of Zbtb16 and negatively regulates immune pathways in the NASH liver. In conclusion, the upregulation of Glrx is a potential therapeutic for the reversal of NASH progression by attenuating inflammatory and fibrotic processes.
Collapse
Affiliation(s)
- Yuko Tsukahara
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Beatriz Ferran
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Erika T. Minetti
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Brian S. H. Chong
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Adam C. Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| |
Collapse
|
181
|
Du H, Ren X, Bai J, Yang W, Gao Y, Yan S. Research Progress of Ferroptosis in Adiposity-Based Chronic Disease (ABCD). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1052699. [PMID: 35502211 PMCID: PMC9056228 DOI: 10.1155/2022/1052699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Ferroptosis is a multistep regulated cell death process induced by iron accumulation and lipid peroxidation. Classical GPX4-dependent pathway and GPX4-independent pathways can independently and synergistically inhibit ferroptosis and jointly maintain the oxidative balance of the body. WHO defines obesity as "a condition of abnormal or excessive fat accumulation in adipose tissue, to the extent that health may be impaired," and obesity is also defined as an adiposity-based chronic disease (ABCD). Obesity is a systemic disease that leads to metabolic abnormalities in various systems, resulting in a series of complications including obesity cardiomyopathy, atherosclerosis, nonalcoholic fatty liver disease, and diabetes mellitus. Emerging evidence shows that ferroptosis is closely associated with the occurrence and progression of various diseases. In recent years, ferroptosis has been found to play critical roles in obesity and its complications. This review discusses the mechanisms of how ferroptosis is initiated and controlled and discusses the research progress of ferroptosis in obesity and its complications.
Collapse
Affiliation(s)
- Huijun Du
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Xiaoying Ren
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Juncai Bai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Yunan Gao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Shuang Yan
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| |
Collapse
|
182
|
Yang Y, Wang Y, Guo L, Gao W, Tang TL, Yan M. Interaction between macrophages and ferroptosis. Cell Death Dis 2022; 13:355. [PMID: 35429990 PMCID: PMC9013379 DOI: 10.1038/s41419-022-04775-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Abstract Ferroptosis, a newly discovered iron-dependent cell death pathway, is characterized by lipid peroxidation and GSH depletion mediated by iron metabolism and is morphologically, biologically and genetically different from other programmed cell deaths. Besides, ferroptosis is usually found accompanied by inflammatory reactions. So far, it has been found participating in the development of many kinds of diseases. Macrophages are a group of immune cells that widely exist in our body for host defense and play an important role in tissue homeostasis by mediating inflammation and regulating iron, lipid and amino acid metabolisms through their unique functions like phagocytosis and efferocytosis, cytokines secretion and ROS production under different polarization. According to these common points in ferroptosis characteristics and macrophages functions, it’s obvious that there must be relationship between macrophages and ferroptosis. Therefore, our review aims at revealing the interaction between macrophages and ferroptosis concerning three metabolisms and integrating the application of certain relationship in curing diseases, mostly cancer. Finally, we also provide inspirations for further studies in therapy for some diseases by targeting certain resident macrophages in distinct tissues to regulate ferroptosis. Facts Ferroptosis is considered as a newly discovered form characterized by its nonapoptotic and iron-dependent lipid hydroperoxide, concerning iron, lipid and amino acid metabolisms. Ferroptosis has been widely found playing a crucial part in various diseases, including hepatic diseases, neurological diseases, cancer, etc. Macrophages are phagocytic immune cells, widely existing and owning various functions such as phagocytosis and efferocytosis, cytokines secretion and ROS production. Macrophages are proved to participate in mediating metabolisms and initiating immune reactions to maintain balance in our body. Recent studies try to treat cancer by altering macrophages’ polarization which damages tumor microenvironment and induces ferroptosis of cancer cells.
Open questions How do macrophages regulate ferroptosis of other tissue cells specifically? Can we use the interaction between macrophages and ferroptosis in treating diseases other than cancer? What can we do to treat diseases related to ferroptosis by targeting macrophages? Is the use of the relationship between macrophages and ferroptosis more effective than other therapies when treating diseases?
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Gao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ting-Li Tang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
183
|
Wu J, Xue R, Wu M, Yin X, Xie B, Meng Q. Nrf2-Mediated Ferroptosis Inhibition Exerts a Protective Effect on Acute-on-Chronic Liver Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4505513. [PMID: 35480867 PMCID: PMC9036161 DOI: 10.1155/2022/4505513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Although massive hepatocyte cell death and oxidative stress constitute major events of acute-on-chronic liver failure (ACLF), the relationship of ferroptosis with ACLF has yet to be explored. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of ferroptosis. However, if Nrf2 modulates ACLF through ferroptosis remains unknown. Here, the liver tissues of ACLF patients were collected and murine models of ACLF using carbon tetrachloride, D-galactosamine, and lipopolysaccharide as well as an H2O2-induced hepatocyte injury model were established. Upon ACLF, livers exhibited key features of ferroptosis, including lipid peroxidation (increase in malondialdehyde whereas a decrease in glutathione and nicotinamide adenine dinucleotide phosphate), and increased mRNA expression of prostaglandin-endoperoxide synthase-2 (PTGS2). Ferroptosis inducer RSL-3 treatment aggravated liver damage, while ferroptosis inhibitor Ferrostatin-1 administration alleviated ACLF severity, manifesting with improved liver histopathological lesions and reduced serum ALT and AST. Compared with normal liver tissue, Nrf2 was upregulated in ACLF patients and murine models. Pharmacological activation of Nrf2 (Bardoxolone Methyl) attenuated liver damage, prevented lipid peroxidation, upregulated PTGS2 mRNA expression, and improved ferroptosis-specific mitochondrial morphology in vivo. In contrast, Nrf2 inhibitor ML385 exacerbated lipid peroxidation and liver injury. Collectively, Nrf2 plays a protective role in ACLF progression through repressing ferroptosis, which provides promising therapeutic cues for ACLF.
Collapse
Affiliation(s)
- Jing Wu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Ran Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100036, China
| | - Muchen Wu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Xuehong Yin
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Bangxiang Xie
- Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China
| | - Qinghua Meng
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
184
|
Imran M, Chalmel F, Sergent O, Evrard B, Le Mentec H, Legrand A, Dupont A, Bescher M, Bucher S, Fromenty B, Huc L, Sparfel L, Lagadic-Gossmann D, Podechard N. Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure. Cell Biol Toxicol 2022:10.1007/s10565-022-09706-4. [PMID: 35412187 DOI: 10.1007/s10565-022-09706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,Iqra University, Karachi, Pakistan
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Aurélien Dupont
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France
| | - Maëlle Bescher
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France
| | - Laurence Huc
- Université de Toulouse, Inrae, ENVT, INP-Purpan, UPS, Toxalim (Research Centre in Food Toxicology), 31027, Toulouse, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
185
|
Jiang JJ, Zhang GF, Zheng JY, Sun JH, Ding SB. Targeting Mitochondrial ROS-Mediated Ferroptosis by Quercetin Alleviates High-Fat Diet-Induced Hepatic Lipotoxicity. Front Pharmacol 2022; 13:876550. [PMID: 35496312 PMCID: PMC9039018 DOI: 10.3389/fphar.2022.876550] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The protective effect of quercetin on nonalcoholic fatty liver disease (NAFLD) has been reported, but its mechanism remains poorly understood. Recently, quercetin was reported to be capable of inhibiting ferroptosis, which is a recognized type of regulated cell death. Moreover, hepatic ferroptosis plays an important role in the progression of NAFLD, but experimental evidence is limited. Hence, our study aimed to investigate the effect of quercetin on hepatic ferroptosis in high-fat diet (HFD)-induced NAFLD and further elucidate the underlying molecular mechanism. Methods: C57BL/6J mice were fed either a normal diet (ND), an HFD, or an HFD supplemented with quercetin for 12 weeks. Hepatic lipid peroxidation, steatosis, ferroptosis and iron overload were examined. In vitro, steatotic L-02 cells was used to study the potential mechanism. Results: We found that the HFD caused lipid peroxidation, lipid accumulation and ferroptosis in the liver, which were rescued by quercetin supplementation. Consistent with the in vivo results, quercetin alleviated lipid droplet accumulation and reduced the levels of lipid reactive oxygen species (ROS) and ferroptosis in steatotic L-02 cells. Using a mitochondrial ROS (MtROS) scavenger (Mito-TEMPO) and ferroptosis specific inhibitor (Fer-1), we found that quercetin remarkably alleviated lipid droplet accumulation and lipid peroxidation by reducing MtROS-mediated ferroptosis in steatotic L-02 cells. Conclusion: Our data showed that HFD consumption induced lipid accumulation and triggered ferroptosis in liver, ultimately leading to hepatic lipotoxicity, which can be alleviated by quercetin. Findings from this study provide new insight into the mechanism by which quercetin can be used for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jin-Jin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Guo-Fu Zhang
- Department of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jia-Yi Zheng
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Ji-Hu Sun
- Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Shi-Bin Ding, ; Ji-Hu Sun,
| | - Shi-Bin Ding
- Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Shi-Bin Ding, ; Ji-Hu Sun,
| |
Collapse
|
186
|
Li G, Xie H, Cao X, Ma C, Li Y, Chen L. Ginsenoside Rg1 exerts anti‑apoptotic effects on non‑alcoholic fatty liver cells by downregulating the expression of SGPL1. Mol Med Rep 2022; 25:178. [PMID: 35322862 PMCID: PMC8972265 DOI: 10.3892/mmr.2022.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) has a high incidence, and can lead to liver cirrhosis and even hepatocellular carcinoma in severe cases. To the best of our knowledge, there is currently no safe and effective treatment for the management of this disease. Ginsenoside Rg1 (Rg1) is an active monomer derived from ginseng and notoginseng. In the present study, HHL‑5 hepatocytes were used to establish an in vitro cell model of NAFLD by medium‑ and long‑chain fat emulsion treatment, and the effects of Rg1 on adipose accumulation, apoptosis and the expression levels of apoptosis‑related proteins in HHL‑5 hepatocytes were examined. The results demonstrated that Rg1 inhibited the accumulation of fat in HHL‑5 cells, while inhibiting apoptosis, and Rg1 downregulated the expression levels of the pro‑apoptotic protein Bax and upregulated the expression levels of the anti‑apoptotic protein Bcl‑2, indicating that Rg1 could promote the stability or integrity of mitochondria and exert an anti‑apoptotic effect by regulating Bcl‑2 family proteins. In addition, Rg1 markedly downregulated the expression levels of sphingosine‑1‑phosphate lyase 1 (SGPL1), a key enzyme in the sphingosine signaling pathway, in HHL‑5 cells with steatosis, and increased the expression levels of the downstream pro‑survival signals phosphorylated (p‑)Akt and p‑Erk1/2. Furthermore, overexpression of SGPL1 abolished the anti‑apoptotic effect of Rg1 on SGPL1‑overexpressing HHL‑5 cells with steatosis, and downregulated the expression levels of pro‑survival proteins, such as Bcl‑2, p‑Akt and p‑Erk1/2, whereas the expression levels of pro‑apoptotic Bax were markedly increased. In conclusion, although there are some reports regarding the protective effect of Rg1 on fatty liver cells, to the best of our knowledge, the present study is the first to report that Rg1 may exert an anti‑apoptotic effect on fatty liver cells by regulating SGPL1 in the sphingosine signaling pathway. Rg1 is the main component of the prescription drug Xuesaitong in China; therefore, the findings of the present study may provide a theoretical molecular basis for the use of Rg1 or Xuesaitong in the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Guiming Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| | - Hongqing Xie
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| | - Xiaodie Cao
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Chong Ma
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yan Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| | - Li Chen
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| |
Collapse
|
187
|
Chen Y, Fan Z, Hu S, Lu C, Xiang Y, Liao S. Ferroptosis: A New Strategy for Cancer Therapy. Front Oncol 2022; 12:830561. [PMID: 35252001 PMCID: PMC8888853 DOI: 10.3389/fonc.2022.830561] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is a newly discovered form of iron-dependent cell death, which is different from other death forms. The main characteristics of ferroptosis are: (1) Amino acid metabolism. (2) Iron metabolism; (3) Lipid metabolism and Reactive oxygen species (ROS). Ferroptosis is related to the occurrence and development of a variety of cancers, especially in the drug resistance. This article reviews the research progress of iron death in tumors, and provides a theoretical reference for its further research and clinical application.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Yu Chen,
| | - Zhihua Fan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shen Hu
- Department of Obstetrics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengchao Lu
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yi Xiang
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuzhi Liao
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
188
|
Dai X, Zhang R, Wang B. Contribution of classification based on ferroptosis-related genes to the heterogeneity of MAFLD. BMC Gastroenterol 2022; 22:55. [PMID: 35144542 PMCID: PMC8830092 DOI: 10.1186/s12876-022-02137-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) is a highly heterogeneous disease and its heterogeneity might be associated with ferroptosis because ferroptosis plays an important role in the development of MAFLD. We aimed to perform integrative analysis of ferroptosis related genes and MAFLD subtypes using bioinformatics. Methods A differential expression analysis was performed to identify key ferroptosis-related genes associated with the clinical characteristics of MAFLD. Furthermore, consensus k clustering was utilized to distinguish ferroptosis-related clinical subtypes of MAFLD and assess the association of ferroptosis-related gene expression and clinical features between patients with different subtypes of MAFLD. Moreover, the variation in the immune status and regulatory relationship of ferroptosis-related genes in individuals with MAFLD was also explored using single sample gene set enrichment analysis, weighted gene coexpression network analysis and enrichment analyses. Results Eight ferroptosis-related genes were identified as closely associated with both the hepatic steatosis grade and non-alcoholic fatty liver disease activity score. Two subtypes of MAFLD based on ferroptosis-related genes were identified by consensus clustering. They exhibited significantly different clinical features, immune statuses, biological processes and outcomes. The progression of the two subtypes was associated with immunity. Conclusions Two highly heterogeneous subtypes of MAFLD with significantly distinct clinical features, biological processes and immune statuses were identified based on ferroptosis-associated genes, which strongly supports the hypothesis that ferroptosis plays an important role in the development of MAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02137-9.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Rui Zhang
- Department of Nosocomial Infection, The Forth Central Hospital of Tianjin, Tianjin, 300140, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
189
|
Onishchenko NA, Gonikova ZZ, Nikolskaya AO, Kirsanova LA, Sevastianov VI. Programmed cell death and liver diseases. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022; 24:72-88. [DOI: 10.15825/1995-1191-2022-1-72-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cell death represents the most critical pathologic entity in liver disease, which dictates pathologic consequences such as inflammation, fibrosis, and cell transformation. We analyzed the conclusions of studies on the involvement of different types of programmed cell death (PCD) in the pathogenesis of liver diseases. Three main forms of PCD (autophagy, apoptosis, necrosis) and five additional, still insufficiently studied PCD – necroptosis, ferroptosis, pyroptosis, partanatosis and entosis – observed in the liver in various acute and chronic diseases are considered. The involvement of several PCD at once in the development of any one pathology and one type of PCD in different pathologies was established. This indicates the existence of cross-regulation of metabolism in the liver cells with different levels of damage in the formation of the main dominant type of PCD. Available results indicate the possibility of attenuation (correction) of functional and morphological manifestations of PCD in the organ by controlled blocking of effector-mediated PCD pathways, as well as targeted induction of autophagy, anti-apoptotic and anti-necrotic mechanisms in liver cells.
Collapse
Affiliation(s)
- N. A. Onishchenko
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - Z. Z. Gonikova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - A. O. Nikolskaya
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - L. A. Kirsanova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
190
|
Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm Sin B 2022; 12:3650-3666. [PMID: 36176906 PMCID: PMC9513461 DOI: 10.1016/j.apsb.2022.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
|
191
|
The multifaceted role of ferroptosis in liver disease. Cell Death Differ 2022; 29:467-480. [PMID: 35075250 PMCID: PMC8901678 DOI: 10.1038/s41418-022-00941-0] [Citation(s) in RCA: 379] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by excessive lipid peroxidation and associated with a plethora of pathological conditions in the liver. Emerging evidence supports the notion that dysregulated metabolic pathways and impaired iron homeostasis play a role in the progression of liver disease via ferroptosis. Although the molecular mechanisms by which ferroptosis causes disease are poorly understood, several ferroptosis-associated genes and pathways have been implicated in liver disease. Here, we review the physiological role of the liver in processing nutrients, our current understanding of iron metabolism, the characteristics of ferroptosis, and the mechanisms that regulate ferroptosis. In addition, we summarize the role of ferroptosis in the pathogenesis of liver disease, including liver injury, non-alcoholic steatohepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Finally, we discuss the therapeutic potential of targeting ferroptosis for managing liver disease.
Collapse
|
192
|
Chen S, Zhu JY, Zang X, Zhai YZ. The Emerging Role of Ferroptosis in Liver Diseases. Front Cell Dev Biol 2022; 9:801365. [PMID: 34970553 PMCID: PMC8713249 DOI: 10.3389/fcell.2021.801365] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ferroptosis is a newly discovered type of cell death mediated by iron-dependent lipid peroxide. The disturbance of iron metabolism, imbalance of the amino acid antioxidant system, and lipid peroxide accumulation are considered distinct fingerprints of ferroptosis. The dysregulation of ferroptosis has been intensively studied in recent years due to its participation in various diseases, including cancer, kidney injury, and neurodegenerative diseases. Notably, increasing evidence indicates that ferroptosis plays different roles in a wide spectrum of liver diseases. On the one hand, inhibiting ferroptosis may counteract the pathophysiological progression of several liver diseases, such as alcoholic liver injury, nonalcoholic steatosis hepatitis and fibrosis. On the other hand, inducing ferroptosis may restrict the emergence of secondary resistance to current medicines, such as sorafenib, for hepatocellular carcinoma (HCC) therapy. Here, we summarize the biological characteristics and regulatory signalling pathways of ferroptosis involved in liver disease. The current available medical agents targeting ferroptosis, including inducers or inhibitors applied in liver diseases, are also reviewed. This work aims to provide new insight into the emerging role of pathogenesis and therapeutic approaches for liver diseases.
Collapse
Affiliation(s)
- Si Chen
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun-Yao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Zhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
193
|
Wu Y, Chen Y. Research progress on ferroptosis in diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:945976. [PMID: 36246888 PMCID: PMC9556825 DOI: 10.3389/fendo.2022.945976] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Ferroptosis is a newly discovered form of cell death that differs from other forms of regulated cell death at morphological, biochemical, and genetic levels, and is characterized by iron-dependent accumulation of lipid peroxides. Ferroptosis is closely related to intracellular metabolism of amino acids, lipids, and iron. Hence, its regulation may facilitate disease intervention and treatment. Diabetic kidney disease is one of the most serious complications of diabetes, which leads to serious psychological and economic burdens to patients and society when it progresses to end-stage renal disease. At present, there is no effective treatment for diabetic kidney disease. Ferroptosis has been recently identified in animal models of diabetic kidney disease. Herein, we systematically reviewed the regulatory mechanism of ferroptosis, its association with different forms of cell death, summarized its relationship with diabetic kidney disease, and explored its regulation to intervene with the progression of diabetic kidney disease or as a treatment.
Collapse
|
194
|
Hernández-Aguilera A, Casacuberta N, Castañé H, Fibla M, Fernández-Arroyo S, Fort-Gallifa I, París M, Sabench F, Del Castillo D, Baiges-Gaya G, Rodríguez-Tomàs E, Sans T, Camps J, Joven J. Nonalcoholic Steatohepatitis Modifies Serum Iron-Related Variables in Patients with Morbid Obesity. Biol Trace Elem Res 2021; 199:4555-4563. [PMID: 33559024 DOI: 10.1007/s12011-021-02610-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is frequently associated with severe obesity. The liver is the principal storage repository for iron, and the excessive accumulation of this metal may promote hepatic inflammation. Laparoscopic sleeve gastrectomy (LSG) results in weight loss and improvement in comorbidities such as NASH. The aim of this study was to assess the specific NASH-related changes in iron metabolism and to investigate whether these changes are reversed by LSG. We included 150 patients with morbid obesity who provided 12-h fasting blood samples immediately before LSG together with an intraoperative wedge-liver biopsy. Thirty-eight patients with NASH underwent a second blood extraction 12 months postsurgery. Serum samples were collected from a control group comprising 50 healthy volunteers. We found significantly higher serum iron and transferrin concentrations in patients with NASH along with the highest degrees of steatosis, fibrosis, hepatocellular ballooning, and lobular inflammation. However, we did not find any significant accumulation of iron in the hepatic biopsies. Presurgery serum iron concentrations were lower in the patient group than in the control group and increased 1 year postsurgery. Serum ferritin levels showed changes in the opposite direction. We did not observe any significant change in serum transferrin concentrations. These changes were reversed by LSG. We conclude that alterations in serum iron-related variables are related to the severity of NASH in patients with morbid obesity, and these alterations are reversed by LSG. We also found that severe forms of NASH can be found in the absence of increased iron stores.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Núria Casacuberta
- Laboratoris ICS Camp de Tarragona-Terres de l'Ebre, Universitat Rovira i Virgili, C. Esplanetes 14, 43500, Tortosa, Spain
| | - Helena Castañé
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Montserrat Fibla
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Salvador Fernández-Arroyo
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Isabel Fort-Gallifa
- Laboratoris ICS Camp de Tarragona-Terres de l'Ebre, Universitat Rovira i Virgili, C. Esplanetes 14, 43500, Tortosa, Spain
| | - Marta París
- Universitat Rovira i Virgili, Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Spain
| | - Fàtima Sabench
- Universitat Rovira i Virgili, Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Spain
| | - Daniel Del Castillo
- Universitat Rovira i Virgili, Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Spain
| | - Gerard Baiges-Gaya
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Teresa Sans
- Laboratoris ICS Camp de Tarragona-Terres de l'Ebre, Universitat Rovira i Virgili, C. Esplanetes 14, 43500, Tortosa, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain.
| | - Jorge Joven
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| |
Collapse
|
195
|
Iron Overload, Oxidative Stress, and Ferroptosis in the Failing Heart and Liver. Antioxidants (Basel) 2021; 10:antiox10121864. [PMID: 34942967 PMCID: PMC8698778 DOI: 10.3390/antiox10121864] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Iron accumulation is a key mediator of several cytotoxic mechanisms leading to the impairment of redox homeostasis and cellular death. Iron overload is often associated with haematological diseases which require regular blood transfusion/phlebotomy, and it represents a common complication in thalassaemic patients. Major damages predominantly occur in the liver and the heart, leading to a specific form of cell death recently named ferroptosis. Different from apoptosis, necrosis, and autophagy, ferroptosis is strictly dependent on iron and reactive oxygen species, with a dysregulation of mitochondrial structure/function. Susceptibility to ferroptosis is dependent on intracellular antioxidant capacity and varies according to the different cell types. Chemotherapy-induced cardiotoxicity has been proven to be mediated predominantly by iron accumulation and ferroptosis, whereas there is evidence about the role of ferritin in protecting cardiomyocytes from ferroptosis and consequent heart failure. Another paradigmatic organ for transfusion-associated complication due to iron overload is the liver, in which the role of ferroptosis is yet to be elucidated. Some studies report a role of ferroptosis in the initiation of hepatic inflammation processes while others provide evidence about an involvement in several pathologies including immune-related hepatitis and acute liver failure. In this manuscript, we aim to review the literature to address putative common features between the response to ferroptosis in the heart and liver. A better comprehension of (dys)similarities is pivotal for the development of future therapeutic strategies that can be designed to specifically target this type of cell death in an attempt to minimize iron-overload effects in specific organs.
Collapse
|
196
|
Zhang J, Liu Q, He J, Li Y. Novel Therapeutic Targets in Liver Fibrosis. Front Mol Biosci 2021; 8:766855. [PMID: 34805276 PMCID: PMC8602792 DOI: 10.3389/fmolb.2021.766855] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
197
|
Zhang H, Zhang E, Hu H. Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines 2021; 9:biomedicines9111660. [PMID: 34829889 PMCID: PMC8615581 DOI: 10.3390/biomedicines9111660] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the chronic liver disease with the highest incidence throughout the world, but its pathogenesis has not been fully elucidated. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Abnormal iron metabolism, lipid peroxidation, and accumulation of polyunsaturated fatty acid phospholipids (PUFA-PLs) can all trigger ferroptosis. Emerging evidence indicates that ferroptosis plays a critical role in the pathological progression of NAFLD. Because the liver is the main organ for iron storage and lipid metabolism, ferroptosis is an ideal target for liver diseases. Inhibiting ferroptosis may become a new therapeutic strategy for the treatment of NAFLD. In this article, we describe the role of ferroptosis in the progression of NAFLD and its related mechanisms. This review will highlight further directions for the treatment of NAFLD and the selection of corresponding drugs that target ferroptosis.
Collapse
Affiliation(s)
- Han Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
| | - Enxiang Zhang
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
- Correspondence: (E.Z.); (H.H.)
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
- Correspondence: (E.Z.); (H.H.)
| |
Collapse
|
198
|
Zhu Z, Zhang Y, Huang X, Can L, Zhao X, Wang Y, Xue J, Cheng M, Zhu L. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4. Eur J Pharmacol 2021; 908:174351. [PMID: 34280397 DOI: 10.1016/j.ejphar.2021.174351] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Thymosin beta 4 (Tβ4) can improve the liver fibrosis and reduce inflammation, while the role of Tβ4 in non-alcoholic fatty liver disease (NAFLD) whether mediated by ferroptosis remains unclear. A rat model of NAFLD was established on a high-fat diet (HFD), and rats were assigned ferroptosis inducer erastin and inhibitor Ferrostatin 1 (Fer-1). Subsequently, histopathology of the liver and the expression of ferroptosis-related genes in rat liver were detected. The steatosis of LO2 cells was induced by palmitic acid (PA) to reproduce the results of the rat experiment. The small interfering RNA (siRNA) was used to interfere with GPX4 expression to explore the influence on Tβ4 function. Tβ4 improved the inflammation, biochemical and lipid metabolism indexes, increased the antioxidant level, and inhibited abnormal accumulation of intracellular reactive oxygen species in HFD-induced NAFLD rats. Also, Tβ4 improved PA-induced LO2 damage and inhibited apoptosis of PA-induced LO2 cells. Both in vivo and in vitro, Tβ4 regulated expression of genes associated with ferroptosis, and Fer-1 treatment exaggerated the above effects of Tβ4, while erastin attenuated the protective effect of Tβ4. Moreover, siRNA GPX4 attenuated the protective effect of Tβ4 on the rat liver and on the mitochondrial membrane integrity of LO2 cells. Interfered expression of GPX4 with siRNA also regulated the expression of Bcl-2, Bax, Caspase-3 and SOD1, which attenuated therapeutic effect of Tβ4 on rat liver and LO2 cells. This study revealed that Tβ4 protects hepatocytes by inhibiting the GPX4-mediated ferroptosis pathway, which provides a new strategy and target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Zixin Zhu
- Department of Pathophysiology, Guizhou Medical University, Guiyang Guizhou Province, China; Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang Guizhou Province, China.
| | - Ya Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang Guizhou Province, China.
| | - Xinhao Huang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang, China.
| | - Li Can
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang Guizhou Province, China.
| | - Xueke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang Guizhou Province, China.
| | - Yinghui Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang Guizhou Province, China.
| | - Jing Xue
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang Guizhou Province, China.
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang Guizhou Province, China.
| | - Lili Zhu
- Department of Blood Transfusion, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
199
|
Jia M, Zhang H, Qin Q, Hou Y, Zhang X, Chen D, Zhang H, Chen Y. Ferroptosis as a new therapeutic opportunity for nonviral liver disease. Eur J Pharmacol 2021; 908:174319. [PMID: 34252441 DOI: 10.1016/j.ejphar.2021.174319] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Nonviral liver disease is a global public health problem due to its high mortality and morbidity. However, its underlying mechanism is unclear. Ferroptosis is a novel form of cell death that is involved in a variety of disease processes. Both abnormal iron metabolism (e.g., iron overload) and lipid peroxidation, which is induced by deletion of glutathione (GSH) or glutathione peroxidase 4 (GPX4), and the accumulation of polyunsaturated fatty acid-containing phospholipids (PUFA-PLs) trigger ferroptosis. Recently, ferroptosis has been involved in the pathological process of nonviral liver diseases [including alcohol-related liver disease (ALD); nonalcoholic fatty liver disease (NAFLD); hereditary hemochromatosis (HH); drug-, ischemia/reperfusion- or immune-induced liver injury; liver fibrosis; and liver cancer]. Hepatocyte ferroptosis is activated in ALD; NAFLD; HH; drug-, ischemia/reperfusion- or immune-induced liver injury; and liver fibrosis, whereas hepatic stellate cell and liver cancer cell ferroptosis are inhibited in liver fibrosis and liver cancer, respectively. Thus, ferroptosis is an ideal target for nonviral liver diseases. In the present review, we discuss the latest findings on ferroptosis and potential drugs targeting ferroptosis for nonviral liver diseases. This review will highlight further directions for the treatment and prevention of nonviral liver diseases.
Collapse
Affiliation(s)
- Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital (the Affiliated Hospital of Xi'an Medical University), Xi'an Medical University, Xi'an, Shaanxi, 710068, China.
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
200
|
Wu J, Wang Y, Jiang R, Xue R, Yin X, Wu M, Meng Q. Ferroptosis in liver disease: new insights into disease mechanisms. Cell Death Discov 2021; 7:276. [PMID: 34611144 PMCID: PMC8492622 DOI: 10.1038/s41420-021-00660-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Characterized by excessive iron accumulation and lipid peroxidation, ferroptosis is a novel form of iron-dependent cell death, which is morphologically, genetically, and biochemically distinct from other well-known cell death. In recent years, ferroptosis has been quickly gaining attention in the field of liver diseases, as the liver is predisposed to oxidative injury and generally, excessive iron accumulation is a primary characteristic of most major liver diseases. In the current review, we first delineate three cellular defense mechanisms against ferroptosis (GPx4 in the mitochondria and cytosol, FSP1 on plasma membrane, and DHODH in mitochondria), along with four canonical modulators of ferroptosis (system Xc-, nuclear factor erythroid 2-related factor 2, p53, and GTP cyclohydrolase-1). Next, we review recent progress of ferroptosis studies delineating molecular mechanisms underlying the pathophysiology of several common liver diseases including ischemia/reperfusion-related injury (IRI), nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), hemochromatosis (HH), drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). Furthermore, we also highlight both challenges and promises that emerged from recent studies that should be addressed and pursued in future investigations before ferroptosis regulation could be adopted as an effective therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Jing Wu
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ran Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100036, China
| | - Xuehong Yin
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Muchen Wu
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Qinghua Meng
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|