151
|
Shaterabadi Z, Nabiyouni G, Soleymani M. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111274. [PMID: 32919638 DOI: 10.1016/j.msec.2020.111274] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022]
|
152
|
Rangel-Muñoz N, González-Barrios AF, Pradilla D, Osma JF, Cruz JC. Novel Bionanocompounds: Outer Membrane Protein A and Lacasse Co-Immobilized on Magnetite Nanoparticles for Produced Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2278. [PMID: 33213016 PMCID: PMC7698600 DOI: 10.3390/nano10112278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/02/2023]
Abstract
The oil and gas industry generates large amounts of oil-derived effluents such as Heavy Crude Oil (HCO) in water (W) emulsions, which pose a significant remediation and recovery challenge due to their high stability and the presence of environmentally concerning compounds. Nanomaterials emerge as a suitable alternative for the recovery of such effluents, as they can separate them under mild conditions. Additionally, different biomolecules with bioremediation and interfacial capabilities have been explored to functionalize such nanomaterials to improve their performance even further. Here, we put forward the notion of combining these technologies for the simultaneous separation and treatment of O/W effluent emulsions by a novel co-immobilization approach where both OmpA (a biosurfactant) and Laccase (a remediation enzyme) were effectively immobilized on polyether amine (PEA)-modified magnetite nanoparticles (MNPs). The obtained bionanocompounds (i.e., MNP-PEA-OmpA, MNP-PEA-Laccase, and MNP-PEA-OmpA-Laccase) were successfully characterized via DLS, XRD, TEM, TGA, and FTIR. The demulsification of O/W emulsions was achieved by MNP-PEA-OmpA and MNP-PEA-OmpA-Laccase at 5000 ppm. This effect was further improved by applying an external magnetic field to approach HCO removal efficiencies of 81% and 88%, respectively. The degradation efficiencies with these two bionanocompounds reached levels of between 5% and 50% for the present compounds. Taken together, our results indicate that the developed nanoplatform holds significant promise for the efficient treatment of emulsified effluents from the oil and gas industry.
Collapse
Affiliation(s)
- Nathaly Rangel-Muñoz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
| | - Andres Fernando González-Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Diego Pradilla
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Johann F. Osma
- CMUA, Department of Electrical and Electronic Engineering, Universidad de Los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
153
|
Mondal P, Anweshan A, Purkait MK. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. CHEMOSPHERE 2020; 259:127509. [PMID: 32645598 DOI: 10.1016/j.chemosphere.2020.127509] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 05/28/2023]
Abstract
Green chemistry has been proven to be an efficient route for nanoparticle synthesis. Plant extract based green synthesis of various nanoparticles is extensively studied since the last decade. This paper "Green synthesis and environmental application of Iron-based nanomaterials and nanocomposite: A review" unveils all the possible greener techniques for the synthesis of iron-based nanoparticles and nanocomposites. The use of different plant sources, microorganisms, and various biocompatible green reagents such as biopolymers, cellulose, haemoglobin, and glucose for the synthesis of iron nanoparticles reported in the last decade are summarized. The microwave method, along with hydrothermal synthesis due to their lower energy consumption are also been referred to as a green route. Apart from different plant parts, waste leaves and roots used for the synthesis of iron nanoparticles are extensively briefed here. This review is thus compact in nature which covers all the broad areas of green synthesis of iron nanoparticles (NPs) and iron-based nanocomposites. Detailed discussion on environmental applications of the various green synthesized iron NPs and their composites with performance efficiency is provided in this review article. The advantages of bimetallic iron-based nanocomposites over iron NPs in various environmental applications are discussed in detail. The hazards and toxic properties of green synthesized iron-based NPs are compared with those obtained from chemical methods. The prospects and challenges section of this article provides a vivid outlook of adapting such useful technique into a more versatile process with certain inclusions which may encourage and provide a new direction to future research.
Collapse
Affiliation(s)
- Piyal Mondal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - A Anweshan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
154
|
Karami-Osboo R, Maham M, Nasrollahzadeh M. Rapid and sensitive extraction of aflatoxins by Fe3O4/zeolite nanocomposite adsorbent in rice samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
155
|
Wang Y, Shi Z, Sun Y, Wu X, Li S, Dong S, Lan T. Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research. Des Monomers Polym 2020; 23:197-206. [PMID: 33177950 PMCID: PMC7594732 DOI: 10.1080/15685551.2020.1837442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Currently, magnetic applications have great potential for development in the field of drug carriers. In this paper, Fe3O4-PVA@SH, an amphiphilic magnetically targeting drug carrier, was prepared by using Fe3O4 and PVA with thiohydrazide-iminopropyltriethoxysilane(TIPTS). The loading capacity of Fe3O4-PVA@SH on Aspirin and the drug release kinetics of loaded drugs were studied. The obtained Fe3O4-PVA@SH exhibits excellent drug release properties in simulating the human body fluid environment (pH 7.2). Since magnetically targeting drug carriers are readily available and have excellent biocompatibility and the characteristics of drug release. This work’s development, preparing amphiphilic magnetically targeting drug carriers in drug delivery and other fields, has great significance.
Collapse
Affiliation(s)
- Yazhen Wang
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Zhen Shi
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Yu Sun
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Xueying Wu
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Shuang Li
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Shaobo Dong
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Tianyu Lan
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| |
Collapse
|
156
|
Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4644. [PMID: 33080937 PMCID: PMC7603130 DOI: 10.3390/ma13204644] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Iron oxides are chemical compounds which have different polymorphic forms, including γ-Fe2O3 (maghemite), Fe3O4 (magnetite), and FeO (wustite). Among them, the most studied are γ-Fe2O3 and Fe3O4, as they possess extraordinary properties at the nanoscale (such as super paramagnetism, high specific surface area, biocompatible etc.), because at this size scale, the quantum effects affect matter behavior and optical, electrical and magnetic properties. Therefore, in the nanoscale, these materials become ideal for surface functionalization and modification in various applications such as separation techniques, magnetic sorting (cells and other biomolecules etc.), drug delivery, cancer hyperthermia, sensing etc., and also for increased surface area-to-volume ratio, which allows for excellent dispersibility in the solution form. The current methods used are partially and passively mixed reactants, and, thus, every reaction has a different proportion of all factors which causes further difficulties in reproducibility. Direct active and complete mixing and automated approaches could be solutions to this size- and shape-controlled synthesis, playing a key role in its exploitation for scientific or technological purposes. An ideal synthesis method should be able to allow reliable adjustment of parameters and control over the following: fluctuation in temperature; pH, stirring rate; particle distribution; size control; concentration; and control over nanoparticle shape and composition i.e., crystallinity, purity, and rapid screening. Iron oxide nanoparticle (IONP)-based available clinical applications are RNA/DNA extraction and detection of infectious bacteria and viruses. Such technologies are important at POC (point of care) diagnosis. IONPs can play a key role in these perspectives. Although there are various methods for synthesis of IONPs, one of the most crucial goals is to control size and properties with high reproducibility to accomplish successful applications. Using multiple characterization techniques to identify and confirm the oxide phase of iron can provide better characterization capability. It is very important to understand the in-depth IONP formation mechanism, enabling better control over parameters and overall reaction and, by extension, properties of IONPs. This work provides an in-depth overview of different properties, synthesis methods, and mechanisms of iron oxide nanoparticles (IONPs) formation, and the diverse range of their applications. Different characterization factors and strategies to confirm phase purity in the IONP synthesis field are reviewed. First, properties of IONPs and various synthesis routes with their merits and demerits are described. We also describe different synthesis strategies and formation mechanisms for IONPs such as for: wustite (FeO), hematite (α-Fe2O3), maghemite (ɤ-Fe2O3) and magnetite (Fe3O4). We also describe characterization of these nanoparticles and various applications in detail. In conclusion, we present a detailed overview on the properties, size-controlled synthesis, formation mechanisms and applications of IONPs.
Collapse
Affiliation(s)
- Nene Ajinkya
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Xuefeng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Poonam Kaithal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, SHUATS, Allahabad 211007, India;
| | - Hongrong Luo
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Prakash Somani
- Center for Grand Challenges and Green Technologies, Applied Science Innovations Pvt. Ltd., Pune 411041, India;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore;
| |
Collapse
|
157
|
Yadav KS, Upadhya A, Misra A. Targeted drug therapy in nonsmall cell lung cancer: clinical significance and possible solutions-part II (role of nanocarriers). Expert Opin Drug Deliv 2020; 18:103-118. [PMID: 33017541 DOI: 10.1080/17425247.2021.1832989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Nonsmall cell lung cancer (NSCLC) accounts for 80-85% of the cases of lung cancer. The conventional therapeutic effective dosage forms used to treat NSCLC are associated with rigid administration schedules, adverse effects, and may be associated with acquired resistance to therapy. Nanocarriers may provide a suitable alternative to regular formulations to overcome inherent drawbacks and provide better treatment modalities for the patient. AREAS COVERED The article explores the application of drug loaded nanocarriers for lung cancer treatment. Drug-loaded nanocarriers can be modified to achieve controlled delivery at the desired tumor infested site. The type of nanocarriers employed are diverse based on polymers, liposomes, metals and a combination of two or more different base materials (hybrids). These may be designed for systemic delivery or local delivery to the lung compartment (via inhalation). EXPERT OPINION Nanocarriers can improve pharmacokinetics of the drug payload by improving its delivery to the desired location and can reduce associated systemic toxicities. Through nanocarriers, a wide variety of therapeutics can be administered and targeted to the cancerous site. Some examples of the utilities of nanocarriers are codelivery of drugs, gene delivery, and delivery of other biologics. Overall, the nanocarriers have promising potential in improving therapeutic efficacy of drugs used in NSCLC.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Ambikanandan Misra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| |
Collapse
|
158
|
Micro Magnetic Field Produced by Fe 3O 4 Nanoparticles in Bone Scaffold for Enhancing Cellular Activity. Polymers (Basel) 2020; 12:polym12092045. [PMID: 32911730 PMCID: PMC7570298 DOI: 10.3390/polym12092045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
The low cellular activity of poly-l-lactic acid (PLLA) limits its application in bone scaffold, although PLLA has advantages in terms of good biocompatibility and easy processing. In this study, superparamagnetic Fe3O4 nanoparticles were incorporated into the PLLA bone scaffold prepared by selective laser sintering (SLS) for continuously and steadily enhancing cellular activity. In the scaffold, each Fe3O4 nanoparticle was a single magnetic domain without a domain wall, providing a micro-magnetic source to generate a tiny magnetic field, thereby continuously and steadily generating magnetic stimulation to cells. The results showed that the magnetic scaffold exhibited superparamagnetism and its saturation magnetization reached a maximum value of 6.1 emu/g. It promoted the attachment, diffusion, and interaction of MG63 cells, and increased the activity of alkaline phosphatase, thus promoting the cell proliferation and differentiation. Meanwhile, the scaffold with 7% Fe3O4 presented increased compressive strength, modulus, and Vickers hardness by 63.4%, 78.9%, and 19.1% compared with the PLLA scaffold, respectively, due to the addition of Fe3O4 nanoparticles, which act as a nanoscale reinforcement in the polymer matrix. All these positive results suggested that the PLLA/Fe3O4 scaffold with good magnetic properties is of great potential for bone tissue engineering applications.
Collapse
|
159
|
Synthesis and enhanced antioxidant and membrane-protective activity of curcumin@AlOOH nanoparticles. J Inorg Biochem 2020; 210:111168. [DOI: 10.1016/j.jinorgbio.2020.111168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 01/15/2023]
|
160
|
Green magnetic nanomaterial as antibiotic release vehicle: The release of pefloxacin and ofloxacin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111439. [PMID: 33255032 DOI: 10.1016/j.msec.2020.111439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
The increased efflux of fluoroquinolone antibiotics to the environment has become of worldwide concern due to their potential to disturb aquatic ecosystems. How to improve the antibiotic release is a challenge. In this work, magnetic Fe3O4 nanoparticles as a drug release vehicle were prepared using the green synthesis method. It is a simple and environmental friendly technique that employs the plant extract as a reducing and coating agent during the preparation process. Antibiotics ofloxacin and pefloxacin served as the drug model and the drug release behavior was tested at various pH levels. The release efficiency of ofloxacin from Fe3O4 reached 99.6% and for pefloxacin it was 57.0% at 310 K after 120 h (pH 10.5). The scanning electron microscope images show that Fe3O4 particles ranged in size from 10 to 40 nm and magnetism testing indicated that saturation magnetization was 58.7 emu/g. Furthermore, zeta potential, FTIR, UV-VIS, XRD and XPS were used to provide the evidence to support the release mechanism, where was based on the pH control. Our work clearly demonstrated that Fe3O4 nanoparticles were a potential as a targeted drug delivery system.
Collapse
|
161
|
Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications. Nanotechnol Sci Appl 2020; 13:47-59. [PMID: 32801669 PMCID: PMC7399455 DOI: 10.2147/nsa.s260374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, suspensions of several nanoparticles or nanocomposites have attained a vast field of application in biomedical research works in some specified conditions and clinical trials. These valuable suspensions, which allow the nanoparticles to disperse and act in homogenous and stable media, are named as nanofluids. Several studies have introduced the advantages of nanofluids in biomedical approaches in different fields. Few review articles have been reported for presenting an overview of the wide biomedical applications of nanofluids, such as diagnosis and therapy. The review is focused on nanosuspensions, as the nanofluids with solid particles. Major applications are focused on nanosuspension, which is the main type of nanofluids. So, concise content about major biomedical applications of nanofluids in drug delivery systems, imaging, and antibacterial activities is presented in this paper. For example, applying magnetic nanofluid systems is an important route for targeted drug delivery, hyperthermia, and differential diagnosis. Also, nanofluids could be used as a potential antibacterial agent to overcome antibiotic resistance. This study could be useful for presenting the novel and applicable methods for success in current medical practice.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohadeseh Arabi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ali Rokn Rabei
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Taherian
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
162
|
Yadav VK, Ali D, Khan SH, Gnanamoorthy G, Choudhary N, Yadav KK, Thai VN, Hussain SA, Manhrdas S. Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1551. [PMID: 32784715 PMCID: PMC7466584 DOI: 10.3390/nano10081551] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Nanoparticles have gained huge attention in the last decade due to their applications in electronics, medicine, and environmental clean-up. Iron oxide nanoparticles (IONPs) are widely used for the wastewater treatment due to their recyclable nature and easy manipulation by an external magnetic field. Here, in the present research work, iron oxide nanoparticles were synthesized by the sonochemical method by using precursors of ferrous sulfate and ferric chloride at 70 °C for one hour in an ultrasonicator. The synthesized iron oxide nanoparticles were characterized by diffraction light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), electron diffraction spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The FTIR analysis exhibits characteristic absorption bands of IONPs at 400-800 cm-1, while the Raman spectra showed three characteristic bands at 273, 675, and 1379 cm-1 for the synthesized IONPs. The XRD data revealed three major intensity peaks at two theta, 33°, 35°, and 64° which indicated the presence of maghemite and magnetite phase. The size of the spherical shaped IONPs was varying from 9-70 nm with an average size of 38.9 nm while the size of cuboidal shaped particle size was in microns. The purity of the synthesized IONPs was confirmed by the EDS attached to the FESEM, which clearly show sharp peaks for Fe and O, while the magnetic behavior of the IONPs was confirmed by the VSM measurement and the magnetization was 2.43 emu/g. The batch adsorption study of lead (Pb) and chromium (Cr) from 20% fly ash aqueous solutions was carried out by using 0.6 mg/100 mL IONPs, which exhibited maximum removal efficiency i.e., 97.96% and 82.8% for Pb2+ and Cr ions, respectively. The fly ash are being used in making cements, tiles, bricks, bio fertilizers etc., where the presence of fly ash is undesired property which has to be either removed or will be brought up to the value of acceptable level in the fly ash. Therefore, the synthesized IONPs, can be applied in the elimination of heavy metals and other undesired elements from fly ash with a short period of time. Moreover, the IONPs that have been used as a nanoadsorbent can be recovered from the reaction mixture by applying an external magnetic field that can be recycled and reused. Therefore, this study can be effective in all the fly ash-based industries for elimination of the undesired elements, while recyclability and reusable nature of IONPs will make the whole adsorption or elimination process much economical.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- School of Lifesciences, Jaipur National University, Jaipur, Rajasthan 302017, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| | - Samreen Heena Khan
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; (S.H.K.); (N.C.)
| | - Govindhan Gnanamoorthy
- Department of inorganic chemistry, University of Madras, Guindy Campus, Chennai T.N. 600025, India;
| | - Nisha Choudhary
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; (S.H.K.); (N.C.)
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India;
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City 700000, Vietnam
| | - Seik Altaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| | - Salim Manhrdas
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| |
Collapse
|
163
|
Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01229-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
164
|
Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates. NANOMATERIALS 2020; 10:nano10061018. [PMID: 32471021 PMCID: PMC7352639 DOI: 10.3390/nano10061018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
An investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nucleic acid-magnetic nanoparticle» type constructs are being developed to carry out the highly efficient detection of pathogens, create express systems for genotyping and sequencing, and detect siRNA. However, the data available on the impact of nanoparticles on the behavior of siRNA are insufficient. In this work, using nanoparticles of two classical oxides of inorganic chemistry (magnetite (Fe3O4) and silica (SiO2) nanoparticles), and widely used gold nanoparticles, we show their effect on the rate of siRNA hybridization. It has been determined that magnetite nanoparticles with a positive charge on the surface increase the rate of siRNA hybridization, while negatively charged magnetite and silica nanoparticles, or positively charged gold nanoparticles, do not affect hybridization rates (HR).
Collapse
|
165
|
Kusyak A, Kusyak N, Storozhuk L, Petranovska A, Gorbyk P, Korniichuk N, Yanovych I. Study of the adsorption activity of Fe3O4 synthesized by the solvothermal method in relation to doxorubicin. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
166
|
Zhang S, Wu S, Shen Y, Xiao Y, Gao L, Shi S. Cytotoxicity studies of Fe 3O 4 nanoparticles in chicken macrophage cells. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191561. [PMID: 32431865 PMCID: PMC7211854 DOI: 10.1098/rsos.191561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/06/2020] [Indexed: 05/06/2023]
Abstract
Magnetic Fe3O4 nanoparticles (Fe3O4-NPs) have been widely investigated for their biomedical applications. The main purpose of this study was to evaluate the cytotoxic effects of different sizes of Fe3O4-NPs in chicken macrophage cells (HD11). Experimental groups based on three sizes of Fe3O4-NPs (60, 120 and 250 nm) were created, and the Fe3O4-NPs were added to the cells at different doses according to the experimental group. The cell activity, oxidative index (malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS)), apoptosis and pro-inflammatory cytokine secretion level were detected to analyse the cytotoxic effects of Fe3O4-NPs of different sizes in HD11 cells. The results revealed that the cell viability of the 60 nm Fe3O4-NPs group was lower than those of the 120 and 250 nm groups when the same concentration of Fe3O4-NPs was added. No significant difference in MDA was observed among the three Fe3O4-NP groups. The SOD level and ROS production of the 60 nm group were significantly greater than those of the 120 and 250 nm groups. Furthermore, the highest levels of apoptosis and pro-inflammatory cytokine secretion were caused by the 60 nm Fe3O4-NPs. In conclusion, the smaller Fe3O4-NPs produced stronger cytotoxicity in chicken macrophage cells, and the cytotoxic effects may be related to the oxidative stress and apoptosis induced by increased ROS production as well as the increased expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Shan Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Shu Wu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Yiru Shen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Yunqi Xiao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Lizeng Gao
- Institute of Biophysics, Chinese Academy of Science, CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, CAS, Beijing 100101, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, People's Republic of China
- Author for correspondence: Shourong Shi e-mail:
| |
Collapse
|
167
|
Qasim S, Zafar A, Saif MS, Ali Z, Nazar M, Waqas M, Haq AU, Tariq T, Hassan SG, Iqbal F, Shu XG, Hasan M. Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111784. [DOI: 10.1016/j.jphotobiol.2020.111784] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
|
168
|
Green biosynthesis of Pt-nanoparticles from Anbara fruits: Toxic and protective effects on CCl4 induced hepatotoxicity in Wister rats. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
169
|
Sharma KS, Dubey AK, Koijam AS, Kumar C, Ballal A, Mukherjee S, Phadnis PP, Vatsa RK. Synthesis of 2-deoxy- d-glucose coated Fe 3O 4 nanoparticles for application in targeted delivery of the Pt( iv) prodrug of cisplatin – a novel approach in chemotherapy. NEW J CHEM 2020. [DOI: 10.1039/c9nj05989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt(IV) prodrug of cisplatin was loaded on 2DG functionalized silica coated Fe3O4 nanoparticles. The formulation alone exhibited biocompatibility whereas Pt(IV) loaded formulation exhibited cytotoxicity comparable with cisplatin.
Collapse
Affiliation(s)
| | - Akhil K. Dubey
- Bio-Organic Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Arunkumar S. Koijam
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Chandan Kumar
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Anand Ballal
- Molecular Biology Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Sudip Mukherjee
- UGC-DAE Consortium for Scientific Research
- Mumbai Centre
- Mumbai-400 085
- India
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| | - Rajesh K. Vatsa
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
170
|
Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1791. [PMID: 31888236 PMCID: PMC6956201 DOI: 10.3390/nano9121791] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Functionalization of nanomaterials can enhance and modulate their properties and behaviour, enabling characteristics suitable for medical applications. Magnetite (Fe3O4) nanoparticles are one of the most popular types of nanomaterials used in this field, and many technologies being already translated in clinical practice. This article makes a summary of the surface modification and functionalization approaches presented lately in the scientific literature for improving or modulating magnetite nanoparticles for their applications in nanomedicine.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| |
Collapse
|
171
|
El-Seedi HR, El-Shabasy RM, Khalifa SAM, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH, Sabir JSM, Zou X, Halabi MF, Sarhan W, Guo W. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 2019; 9:24539-24559. [PMID: 35527869 PMCID: PMC9069627 DOI: 10.1039/c9ra02225b] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles (NPs) are new inspiring clinical targets that have emerged from persistent efforts with unique properties and diverse applications. However, the main methods currently utilized in their production are not environmentally friendly. With the aim of promoting a green approach for the synthesis of NPs, this review describes eco-friendly methods for the preparation of biogenic NPs and the known mechanisms for their biosynthesis. Natural plant extracts contain many different secondary metabolites and biomolecules, including flavonoids, alkaloids, terpenoids, phenolic compounds and enzymes. Secondary metabolites can enable the reduction of metal ions to NPs in eco-friendly one-step synthetic processes. Moreover, the green synthesis of NPs using plant extracts often obviates the need for stabilizing and capping agents and yields biologically active shape- and size-dependent products. Herein, we review the formation of metallic NPs induced by natural extracts and list the plant extracts used in the synthesis of NPs. In addition, the use of bacterial and fungal extracts in the synthesis of NPs is highlighted, and the parameters that influence the rate of particle production, size, and morphology are discussed. Finally, the importance and uniqueness of NP-based products are illustrated, and their commercial applications in various fields are briefly featured.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre Box 574 SE-751 23 Uppsala Sweden +46 18 4714207
- College of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges Medina 42541 Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University Egypt
| | - Rehan M El-Shabasy
- Department of Chemistry, Faculty of Science, Menoufia University Egypt
- Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology Stockholm Sweden
| | - Shaden A M Khalifa
- Clinical Research Centre, Karolinska University Hospital Huddinge Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE 106 91 Stockholm Sweden
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Afzal Shah
- Department of Chemistry, College of Science, University of Bahrain Sakhir 32038 Bahrain
| | - Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Faiza Jan Iftikhar
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University Ismailia 41522 Egypt
| | - Abdelfatteh Omri
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Nahid H Hajrahand
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Jamal S M Sabir
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Xiaobo Zou
- College of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
| | - Mohammed F Halabi
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges Medina 42541 Saudi Arabia
| | | | - Weisheng Guo
- Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University Guangzhou 510260 China +86-020-34153830
| |
Collapse
|
172
|
Zaki SA, Eltarahony MM, Abd-El-Haleem DA. Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23661-23678. [PMID: 31201708 DOI: 10.1007/s11356-019-05479-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Disinfection of water and wastewater strongly contributes to solving the problem of water shortage in arid/semi-arid areas; cheap and ecofriendly approaches have to be used to meet water quality standards. In the present study, a green synthesis of iron nanoparticles (INPs) under aerobic and anaerobic conditions via nitrate reductases (NAP/NAR) enzymes produced by Proteus mirabilis strain 10B were employed for this target. The biosynthesized INPs were characterized; UV-Vis spectroscopy revealed surface plasmon resonance at 410 (aerobic) and 265 nm (anaerobic). XRD indicated crystalline magnetite ((MNPs) aerobically synthesized) and zerovalent INPs (ZVINPs anaerobically synthesized). EDX demonstrated strong iron signal with atomic percentages 73.3% (MNPs) and 61.7% (ZVINPs). TEM micrographs illustrated tiny, spherical, periplasmic MNPs (1.44-1.92 nm) and cytoplasmic ZVINPs with 11.7-60.8 nm. Zeta potential recorded - 31.8 mV (ZVINPs) and - 66.4 mV (MNPs) affirming colloidal stability. Moreover, the disinfection power of INPs was evaluated for standards organisms and real water (fresh, sea and salt mine) and wastewater (municipal, agricultural and industrial) samples. The results reported that INPs displayed higher antagonistic effect than iron precursor, 700 and 850 μg/mL of MNPs and ZVINPs, respectively, was sufficient to show a drastic algicidal effect on algal growth. Both types of INPs demonstrated obvious dose-dependent antibiofilm efficiency. Due to their smaller size, MNPs were more efficient than ZVINPs at the suppression of microbial growth in all examined water samples. Overall, MNPs showed superior antagonistic activity, which promotes their exploitation in enhancing water/wastewater quality.
Collapse
Affiliation(s)
- Sahar A Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Marwa Moustafa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Desouky A Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
173
|
Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, Danquah MK. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:755-771. [PMID: 31098696 DOI: 10.1007/s00210-019-01666-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Jaison Jeevanandham
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Murugesan Muthalagu
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Manisha Vidyavathy
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | | |
Collapse
|
174
|
Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 2019; 9:6876. [PMID: 31053743 PMCID: PMC6499818 DOI: 10.1038/s41598-019-43345-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
Biomedical application of quercetin (QT) as an effective flavonoid has limitations due to its low bioavailability. Superparamagnetic iron oxide nanoparticle (SPION) is a novel drug delivery system that enhances the bioavailability of quercetin. The effect of short time usage of quercetin on learning and memory function and its signaling pathways in the healthy rat is not well understood. The aim of this study was to investigate the effect of free quercetin and in conjugation with SPION on learning and memory in healthy rats and to find quercetin target proteins involved in learning and memory using Morris water maze (MWM) and computational methods respectively. Results of MWM show an improvement in learning and memory of rats treated with either quercetin or QT-SPION. Better learning and memory functions using QT-SPION reveal increased bioavailability of quercetin. Comparative molecular docking studies show the better binding affinity of quercetin to RSK2, MSK1, CytC, Cdc42, Apaf1, FADD, CRK proteins. Quercetin in comparison to specific inhibitors of each protein also demonstrates a better QT binding affinity. This suggests that quercetin binds to proteins leading to prevent neural cell apoptosis and improves learning and memory. Therefore, SPIONs could increase the bioavailability of quercetin and by this way improve learning and memory.
Collapse
Affiliation(s)
- Elnaz Amanzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | | | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zari Pahlevanneshan
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
175
|
Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01526-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
176
|
Ramadan MM, Asran-Amal, Almoammar H, Abd-Elsalam KA. Microbially Synthesized Biomagnetic Nanomaterials. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:49-75. [DOI: 10.1007/978-3-030-16439-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|