151
|
The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci 2020; 21:ijms21217889. [PMID: 33114290 PMCID: PMC7660609 DOI: 10.3390/ijms21217889] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential mineral participating in different functions of the organism under physiological conditions. Numerous biological processes, such as oxygen and lipid metabolism, protein production, cellular respiration, and DNA synthesis, require the presence of iron, and mitochondria play an important role in the processes of iron metabolism. In addition to its physiological role, iron may be also involved in the adaptive processes of myocardial "conditioning". On the other hand, disorders of iron metabolism are involved in the pathological mechanisms of the most common human diseases and include a wide range of them, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease, and accelerate the development of atherosclerosis. Furthermore, iron also exerts potentially deleterious effects that may be manifested under conditions of ischemia/reperfusion (I/R) injury, myocardial infarction, heart failure, coronary artery angioplasty, or heart transplantation, due to its involvement in reactive oxygen species (ROS) production. Moreover, iron has been recently described to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". Ferroptosis is a form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been shown to be associated with I/R injury and several other cardiac diseases as a significant form of cell death in cardiomyocytes. In this review, we will discuss the role of iron in cardiovascular diseases, especially in myocardial I/R injury, and protective mechanisms stimulated by different forms of "conditioning" with a special emphasis on the novel targets for cardioprotection.
Collapse
|
152
|
Grant ES, Clucas DB, McColl G, Hall LT, Simpson DA. Re-examining ferritin-bound iron: current and developing clinical tools. Clin Chem Lab Med 2020; 59:459-471. [PMID: 33090965 DOI: 10.1515/cclm-2020-1095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Iron is a highly important metal ion cofactor within the human body, necessary for haemoglobin synthesis, and required by a wide range of enzymes for essential metabolic processes. Iron deficiency and overload both pose significant health concerns and are relatively common world-wide health hazards. Effective measurement of total iron stores is a primary tool for both identifying abnormal iron levels and tracking changes in clinical settings. Population based data is also essential for tracking nutritional trends. This review article provides an overview of the strengths and limitations associated with current techniques for diagnosing iron status, which sets a basis to discuss the potential of a new serum marker - ferritin-bound iron - and the improvement it could offer to iron assessment.
Collapse
Affiliation(s)
- Erin S Grant
- School of Physics, University of Melbourne, Parkville, VIC, Australia
| | - Danielle B Clucas
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Diagnostic Haematology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Gawain McColl
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, VIC, Australia
| | - Liam T Hall
- School of Physics, University of Melbourne, Parkville, VIC, Australia
| | - David A Simpson
- School of Physics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
153
|
Bae DH, Gholam Azad M, Kalinowski DS, Lane DJR, Jansson PJ, Richardson DR. Ascorbate and Tumor Cell Iron Metabolism: The Evolving Story and Its Link to Pathology. Antioxid Redox Signal 2020; 33:816-838. [PMID: 31672021 DOI: 10.1089/ars.2019.7903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Vitamin C or ascorbate (Asc) is a water-soluble vitamin and an antioxidant that is involved in many crucial biological functions. Asc's ability to reduce metals makes it an essential enzyme cofactor. Recent Advances: The ability of Asc to act as a reductant also plays an important part in its overall role in iron metabolism, where Asc induces both nontransferrin-bound iron and transferrin-bound iron uptake at physiological concentrations (∼50 μM). Moreover, Asc has emerged to play an important role in multiple diseases and its effects at pharmacological doses could be important for their treatment. Critical Issues: Asc's role as a regulator of cellular iron metabolism, along with its cytotoxic effects and different roles at pharmacological concentrations, makes it a candidate as an anticancer agent. Ever since the controversy regarding the studies from the Mayo Clinic was finally explained, there has been a renewed interest in using Asc as a therapeutic approach toward cancer due to its minimal side effects. Numerous studies have been able to demonstrate the anticancer activity of Asc through selective oxidative stress toward cancer cells via H2O2 generation at pharmacological concentrations. Studies have demonstrated that Asc's cytotoxic mechanism at concentrations (>1 mM) has been associated with decreased cellular iron uptake. Future Directions: Recent studies have also suggested other mechanisms, such as Asc's effects on autophagy, polyamine metabolism, and the cell cycle. Clearly, more has yet to be discovered about Asc's mechanism of action to facilitate safe and effective treatment options for cancer and other diseases.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Mahan Gholam Azad
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Darius J R Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Japan
| |
Collapse
|
154
|
Deficiency in gp91Phox (NOX2) Protects against Oxidative Stress and Cardiac Dysfunction in Iron Overloaded Mice. HEARTS 2020. [DOI: 10.3390/hearts1020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of NADPH oxidase subunit, gp91phox (NOX2) in development of oxidative stress and cardiac dysfunction due to iron (Fe)-overload was assessed. Control (C57BL/6J) and gp91phox knockout (KO) mice were treated for up to 8 weeks with Fe (2.5 mg/g/wk, i.p.) or Na-dextran; echocardiography, plasma 8-isoprostane (lipid peroxidation marker), cardiac Fe accumulation (Perl’s staining), and CD11b+ (WBCs) infiltrates were assessed. Fe caused no adverse effects on cardiac function at 3 weeks. At 6 weeks, significant declines in left ventricular (LV) ejection fraction (14.6% lower), and fractional shortening (19.6% lower) occurred in the Fe-treated control, but not in KO. Prolonging Fe treatment (8 weeks) maintained the depressed LV systolic function with a trend towards diastolic dysfunction (15.2% lower mitral valve E/A ratio) in controls but produced no impact on the KO. Fe-treatment (8 weeks) caused comparable cardiac Fe accumulation in both strains, but a 3.3-fold elevated plasma 8-isoprostane, and heightened CD11b+ staining in controls. In KO mice, lipid peroxidation and CD11b+ infiltration were 50% and 68% lower, respectively. Thus, gp91phox KO mice were significantly protected against oxidative stress, and systolic and diastolic dysfunction, supporting an important role of NOX2-mediated oxidative stress in causing cardiac dysfunction during Fe overload.
Collapse
|
155
|
Nakanishi T, Nanami M, Kuragano T. The pathogenesis of CKD complications; Attack of dysregulated iron and phosphate metabolism. Free Radic Biol Med 2020; 157:55-62. [PMID: 31978539 DOI: 10.1016/j.freeradbiomed.2020.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023]
Abstract
Chronic kidney disease (CKD) patients have a tremendously higher risk of developing cardiovascular disease (CVD) and infection than the non-CKD population, which could be caused by intertwining actions of hyperphosphatemia and CKD associated misdistribution of iron. CVD is often associated with vascular calcification, which has been attributed to hyperphosphatemia, and could be initiated in mitochondria, inducing apoptosis, and accelerated by reactive oxygen species (ROS). The production of ROS is principally linked to intracellular ferrous iron. For infection, the virulence and pathogenicity of a pathogen is directly related to its capacity to acquire iron for proliferation and to escape or subvert the host's immune response. Iron administration for renal anemia can sometimes be overdosed, which could decrease host immune mechanisms through its direct effect on neutrophils, macrophages and T cell function. Hyperphosphatemia has been demonstrated to be associated with an increased incidence of infection. We hypothesized two possible mechanisms: 1) fibroblast growth factor-23 levels are increased in parallel with serum phosphate levels and directly impair leukocyte recruitment and host defense mechanisms, and 2) circulating non-transferrin-bound iron (NTBI) is increased due to decreased iron binding capacity of the carrier protein transferrin in high-phosphate conditions. From these observations, maintaining an adequate serum range of phosphate levels and minimizing intracellular iron accumulation could attenuate the development of CKD complications.
Collapse
Affiliation(s)
- Takeshi Nakanishi
- Department of Nephrology, Sumiyoshigawa Hospital, Japan; Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Japan.
| | - Masayoshi Nanami
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Japan.
| | - Takahiro Kuragano
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Japan.
| |
Collapse
|
156
|
Sobh A, Loguinov A, Zhou J, Jenkitkasemwong S, Zeidan R, El Ahmadie N, Tagmount A, Knutson M, Fraenkel PG, Vulpe CD. Genetic screens reveal CCDC115 as a modulator of erythroid iron and heme trafficking. Am J Hematol 2020; 95:1085-1098. [PMID: 32510613 DOI: 10.1002/ajh.25899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes. Comprehensive elucidation of molecular pathways governing and regulating cellular iron acquisition and heme trafficking is required to better understand physiological and pathological processes affecting erythropoiesis. Here, we report the first genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens in human erythroid cells to identify determinants of iron and heme uptake, as well as heme-mediated erythroid differentiation. We identified several candidate modulators of TBI acquisition including TfR1, indicating that our approach effectively revealed players mechanistically relevant to the process. Interestingly, components of the endocytic pathway were also revealed as potential determinants of transferrin acquisition. We deciphered a role for the vacuolar-type H+ - ATPase (V- ATPase) assembly factor coiled-coil domain containing 115 (CCDC115) in TBI uptake and validated this role in CCDC115 deficient K562 cells. Our screen in hemin-treated cells revealed perturbations leading to cellular adaptation to heme, including those corresponding to trafficking mechanisms and transcription factors potentiating erythroid differentiation. Pathway analysis indicated that endocytosis and vesicle acidification are key processes for heme trafficking in erythroid precursors. Furthermore, we provided evidence that CCDC115, which we identified as required for TBI uptake, is also involved in cellular heme distribution. This work demonstrates a previously unappreciated common intersection in trafficking of transferrin iron and heme in the endocytic pathway of erythroid cells.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program University of California Berkeley Berkeley California
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Alex Loguinov
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Jie Zhou
- Department of Physiological Sceinces University of Florida Gainesville Florida
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Supak Jenkitkasemwong
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Rola Zeidan
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Nader El Ahmadie
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | | | - Mitchell Knutson
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Paula G. Fraenkel
- Division of Hematology/Oncology and Cancer Research Institute Beth Israel Deaconess Medical Center Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
- Oncology Research and Development, Sanofi Cambridge Massachusetts
| | | |
Collapse
|
157
|
Fischer JA, Pei LX, Goldfarb DM, Albert A, Elango R, Kroeun H, Karakochuk CD. Is untargeted iron supplementation harmful when iron deficiency is not the major cause of anaemia? Study protocol for a double-blind, randomised controlled trial among non-pregnant Cambodian women. BMJ Open 2020; 10:e037232. [PMID: 32801202 PMCID: PMC7430471 DOI: 10.1136/bmjopen-2020-037232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION The WHO recommends daily oral iron supplementation for 12 weeks in women and adolescents where anaemia prevalence is greater than 40%. However, if iron deficiency is not a major cause of anaemia, then, at best, untargeted iron supplementation is a waste of resources; at worst, it could cause harm. Further, different forms of iron with varying bioavailability may present greater risks of harm. METHODS AND ANALYSIS A 12-week three-arm, double-blind, randomised controlled supplementation trial was conducted in Cambodia to determine if there is potential harm associated with untargeted iron supplementation. We will recruit and randomise 480 non-pregnant women (ages 18-45 years) to receive one of three interventions: 60 mg elemental iron as ferrous sulfate (the standard, commonly used form), 18 mg ferrous bisglycinate (a highly bioavailable iron amino acid chelate) or placebo. We will measure ferritin concentrations (to evaluate non-inferiority between the two forms of iron), as well as markers of potential harm in blood and stool (faecal calprotectin, gut pathogen abundance and DNA damage) at baseline and 12 weeks. Mixed-effects generalised linear models will be used to assess the effect of iron on ferritin concentration and markers of potential harm at 12 weeks. ETHICS AND DISSEMINATION Ethical approval was obtained from the University of British Columbia Clinical Research Ethics Board (H18-02610), the Children's and Women's Health Centre of British Columbia Research Ethics Board (H18-02610) and the National Ethics Committee for Health Research in Cambodia (273-NECHR). Findings will be published in peer-reviewed journals, presented to stakeholders and policymakers globally and shared within participants' communities. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT04017598).
Collapse
Affiliation(s)
- Jordie Aj Fischer
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lulu X Pei
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - David M Goldfarb
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arianne Albert
- Department of Biostatistics, Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Rajavel Elango
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hou Kroeun
- Helen Keller International Cambodia, Phnom Penh, British Columbia, Cambodia
| | - Crystal D Karakochuk
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
158
|
Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020; 10:E1176. [PMID: 32806787 PMCID: PMC7463674 DOI: 10.3390/biom10081176] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Iron (Fe), copper (Cu), and zinc (Zn) are microelements essential for the proper functioning of living organisms. These elements participatein many processes, including cellular metabolism and antioxidant and anti-inflammatory defenses, and also influence enzyme activity, regulate gene expression, and take part in protein synthesis. Fe, Cu, and Zn have a significant impact on the health of pregnant women and in the development of the fetus, as well as on the health of the newborn. A proper concentration of these elements in the body of women during pregnancy reduces the risk of complications such as anemia, induced hypertension, low birth weight, preeclampsia, and postnatal complications. The interactions between Fe, Cu, and Zn influence their availability due to their similar physicochemical properties. This most often occurs during intestinal absorption, where metal ions compete for binding sites with transport compounds. Additionally, the relationships between these ions have a great influence on the course of reactions in the tissues, as well as on their excretion, which can be stimulated or delayed. This review aims to summarize reports on the influence of Fe, Cu, and Zn on the course of single and multiple pregnancies, and to discuss the interdependencies and mechanisms occurring between Fe, Cu, and Zn.
Collapse
Affiliation(s)
- Konrad Grzeszczak
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
159
|
Li C, Liu Y, Dong Z, Xu M, Gao M, Cong M, Liu S. TCDD promotes liver fibrosis through disordering systemic and hepatic iron homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122588. [PMID: 32325343 DOI: 10.1016/j.jhazmat.2020.122588] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental pollutant which can cause severe health problems, such as fibrosis. However, the toxic effects and related mechanism of TCDD on the liver remain largely unknown. In this study, we established a liver fibrosis mouse model upon exposure of TCDD, as evidenced by increased collagen I, tumor growth factor β1 (TGFβ1), α-smooth muscle actin (α-SMA), and Masson staining. Meanwhile, there was also a significant increase of inflammatory factors and TUNEL-positive hepatocytes in liver, indicating that liver inflammation and hepatic cell apoptosis occurred. In addition, increased serum and liver iron were concomitant with liver injury induced by TCDD. We further investigated the mechanism underlying TCDD-induced hepatocyte apoptosis through apoptosis polymerase chain reaction array, and found that a crucial apoptosis-related gene, cell death-inducing DFF45-like effector b (Cideb), was significantly increased in primary hepatocytes from TCDD-exposed mice, and accompanied by liver iron deposition in hepcidin knockout mice. Therefore, Cideb depletion could effectively attenuated TCDD or iron induced cell death related genes expression. In conclusion, our results showed that iron-induced Cideb expression played a critical role in promoting TCDD-induced hepatocyte apoptosis and liver fibrosis, which provide a novel mechanism for understanding TCDD-induced liver injury.
Collapse
Affiliation(s)
- Changying Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingying Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
160
|
Brissot P, Brissot E. What's Important and New in Hemochromatosis? Clin Hematol Int 2020; 2:143-148. [PMID: 34595455 PMCID: PMC8432403 DOI: 10.2991/chi.k.200726.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/18/2020] [Indexed: 11/24/2022] Open
Abstract
Major advances in the understanding of genetic iron overload have led to a clarification of the nosology and terminology of the related diseases. The term hemochromatosis should be reserved to the entities where iron overload is related to hepcidin deficiency or hepcidin resistance. The diagnosis of hemochromatosis is non-invasive, based on clinical examination, blood investigations and, whenever possible, magnetic resonance imaging. Phlebotomies remain the mainstay of the treatment, but new therapeutic approaches should, in the future, constitute a valuable advance, hopefully both as an adjunct to bleeding in the induction phase and as its replacement in the maintenance phase. The goal of the present review is to update the terminology of hemochromatosis in light of major pathophysiological advances, and the main features of its diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Université de Rennes 1, Institut NuMeCan, Inserm U-1241, Univ Rennes 1, Rennes, France
| | - Eolia Brissot
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, APHP, Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, AP-HP, Centre de recherche Saint-Antoine, UMR-S938, Paris, France
| |
Collapse
|
161
|
Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R, Hentze MW, Muckenthaler MU. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J 2020; 41:2681-2695. [PMID: 30903157 DOI: 10.1093/eurheartj/ehz112] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/10/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Whether and how iron affects the progression of atherosclerosis remains highly debated. Here, we investigate susceptibility to atherosclerosis in a mouse model (ApoE-/- FPNwt/C326S), which develops the disease in the context of elevated non-transferrin bound serum iron (NTBI). METHODS AND RESULTS Compared with normo-ferremic ApoE-/- mice, atherosclerosis is profoundly aggravated in iron-loaded ApoE-/- FPNwt/C326S mice, suggesting a pro-atherogenic role for iron. Iron heavily deposits in the arterial media layer, which correlates with plaque formation, vascular oxidative stress and dysfunction. Atherosclerosis is exacerbated by iron-triggered lipid profile alterations, vascular permeabilization, sustained endothelial activation, elevated pro-atherogenic inflammatory mediators, and reduced nitric oxide availability. NTBI causes iron overload, induces reactive oxygen species production and apoptosis in cultured vascular cells, and stimulates massive MCP-1-mediated monocyte recruitment, well-established mechanisms contributing to atherosclerosis. NTBI-mediated toxicity is prevented by transferrin- or chelator-mediated iron scavenging. Consistently, a low-iron diet and iron chelation therapy strongly improved the course of the disease in ApoE-/- FPNwt/C326S mice. Our results are corroborated by analyses of serum samples of haemochromatosis patients, which show an inverse correlation between the degree of iron depletion and hallmarks of endothelial dysfunction and inflammation. CONCLUSION Our data demonstrate that NTBI-triggered iron overload aggravates atherosclerosis and unravel a causal link between NTBI and the progression of atherosclerotic lesions. Our findings support clinical applications of iron restriction in iron-loaded individuals to counteract iron-aggravated vascular dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Francesca Vinchi
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,New York Blood Center (NYBC), Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), 310 East 67th Street, 10065, New York, NY, USA.,Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Graca Porto
- Centro Hospitalar do Porto-Hospital Santo António, Largo do Prof. Abel Slazar, 4099-001 Porto, Portugal.,Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreas Simmelbauer
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Sara T Passos
- New York Blood Center (NYBC), Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), 310 East 67th Street, 10065, New York, NY, USA
| | - Maciej Garbowski
- Hematology Department, University College London Cancer Institute, London, aul O'Gorman Bld, 72 Huntley Street, WC1E 6DD, London, UK
| | - André M N Silva
- Departamento de Quimica e Bioquimica, REQUIMITE-LAQV, Faculdade de Ciencias, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Sebastian Spaich
- Department of Cardiology, Angiology and Pneumonology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Svenja E Seide
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Richard Sparla
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Matthias W Hentze
- Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
162
|
TfR1 Extensively Regulates the Expression of Genes Associated with Ion Transport and Immunity. Curr Med Sci 2020; 40:493-501. [PMID: 32681254 DOI: 10.1007/s11596-020-2208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Transferrin receptor 1 (TfR1), encoded by the TFRC gene, is the gatekeeper of cellular iron uptake for cells. A variety of molecular mechanisms are at work to tightly regulate TfR1 expression, and abnormal TfR1 expression has been associated with various diseases. In the current study, to determine the regulation pattern of TfR1, we cloned and overexpressed the human TFRC gene in HeLa cells. RNA-sequencing (RNA-seq) was used to analyze the global transcript levels in overexpressed (OE) and normal control (NC) samples. A total of 1669 differentially expressed genes (DEGs) were identified between OE and NC. Gene ontology (GO) analysis was carried out to explore the functions of the DEGs. It was found that multiple DEGs were associated with ion transport and immunity. Moreover, the regulatory network was constructed on basis of DEGs associated with ion transport and immunity, highlighting that TFRC was the node gene of the network. These results together suggested that precisely controlled TfR1 expression might be not only essential for iron homeostasis, but also globally important for cell physiology, including ion transport and immunity.
Collapse
|
163
|
Liu M, Hao Z, Li R, Cai J, Jiang C, Li Y. Erythrocyte-rich thrombi related to serum iron contribute to single stent retrieval and favorable clinical outcomes in acute ischemic stroke by endovascular treatment. Thromb Res 2020; 195:8-15. [PMID: 32629152 DOI: 10.1016/j.thromres.2020.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Erythrocyte-rich thrombi seem to be associated with favorable clinical outcomes of patients with AIS by endovascular treatment (EVT), as observed from previous studies. However, only few studies show whether erythrocyte-rich thrombi can be associated with favorable clinical outcomes by EVT and which factor can be related to erythrocyte-rich thrombi. This retrospective study aimed to evaluate the relationship between erythrocyte-rich thrombi and favorable clinical outcomes and further explored factors associated with erythrocyte-rich thrombi. METHODS This study was carried out retrospectively from March 2016 to April 2019 on patients who suffered acute ischemic stroke and were treated by EVT at this stroke center. The laboratory test and clinical data were assessed for the relationship between erythrocyte-rich thrombi and favorable clinical outcomes and factors associated with erythrocyte-rich thrombi. All thrombi were divided into erythrocyte-rich thrombi group and fibrin-rich thrombi group based on the proportion of area of the predominant composition which was more than 50% in retrieved thrombi. RESULTS This retrospective study enrolled 84 patients, including 32 patients in the erythrocyte-rich thrombi group and 52 patients in the fibrin-rich thrombi group. It showed single stent retrieval (p = 0.017, adjusted OR: 4.061, 95% CI: 1.281-12.872) and favorable clinical outcomes (p < 0.001, adjusted OR: 14.648, 95% CI: 4.637-46.270) were both significantly associated with erythrocyte-rich thrombi. A significant difference in the factor associated with erythrocyte-rich thrombi was serum iron, which correlated positively with erythrocyte fraction in thrombi (p < 0.001, r: 0.452). CONCLUSIONS Erythrocyte-rich thrombi could contribute to single stent retrieval and favorable clinical outcomes by EVT, and serum iron might be the factor associated with erythrocyte-rich thrombi.
Collapse
Affiliation(s)
- Mingli Liu
- The Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhongfei Hao
- The Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ruiyan Li
- The Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinquan Cai
- The Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chuanlu Jiang
- The Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Yongli Li
- The Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
164
|
Restrepo-Gallego M, Díaz LE, Rondó PHC. Classic and emergent indicators for the assessment of human iron status. Crit Rev Food Sci Nutr 2020; 61:2827-2840. [PMID: 32619106 DOI: 10.1080/10408398.2020.1787326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron deficiency is the leading cause of anemia, a significant global public health problem. Different methods exist for assessing iron nutritional status, including laboratory tests that focus on storage, transportation, and iron functional compartment parameters. Classical markers such as bone marrow, serum iron, ferritin, hemoglobin, erythrocyte parameters, transferrin, transferrin receptors, and zinc protoporphyrin are discussed in this review. Additional parameters calculated from these indicators, including transferrin saturation, ferritin index and Thomas plot, and some emergent parameters such as hepcidin, erythroferrone, and low hemoglobin density are also discussed. There is no a single indicator for assessing iron nutritional status. Therefore, the use of more than one indicator may be the best practice to obtain the correct diagnosis, also considering the influence of inflammation/infection on many of these indicators. The constant validation of the current parameters, the improvement of assessment methods, and the identification of new indicators will be the key to refine the assessment of iron nutritional status and the right choice of treatment for its improvement.
Collapse
Affiliation(s)
| | - Luis E Díaz
- Doctorate Program in Bioscience, La Sabana University, Chía, Colombia
| | - Patrícia H C Rondó
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
165
|
Enhanced labile plasma iron in hematopoietic stem cell transplanted patients promotes Aspergillus outgrowth. Blood Adv 2020; 3:1695-1700. [PMID: 31167821 DOI: 10.1182/bloodadvances.2019000043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/19/2019] [Indexed: 01/21/2023] Open
Abstract
Key Points
Serum-enhanced labile plasma iron in patients undergoing allogeneic HSCT is critical for Aspergillus fumigatus growth in vitro. Transferrin iron in serum is inaccessible for A fumigatus, and uptake of iron in the form of eLPI involves fungal siderophores.
Collapse
|
166
|
Transferrin saturation is independently associated with the severity of obstructive sleep apnea syndrome and hypoxia among obese subjects. Clin Nutr 2020; 40:608-614. [PMID: 32600855 DOI: 10.1016/j.clnu.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION & AIMS Obstructive sleep apnea syndrome (OSAS) is a frequent complication of obesity. Intermittent chronic hypoxia which frequently results from OSAS could modulate the systemic control of iron metabolism and alter serum iron parameters, especially among obese patients. AIMS to evaluate whether serum parameters of iron bioavailability and storage (primary), as well as age, waist circumference, arterial hypertension and tobacco use (secondary) are associated with OSAS severity and/or hypoxia. METHODS design: a single-center retrospective study with prospective data collection; inclusion criteria: consecutive patients referred for initial assessment for obesity underwent nocturnal respiratory polygraphy and iron status serum assessment within a 3-month period. The adjusted analyzes were performed using ANOVA and reported as adjusted means and 95% confidence interval (95% CI). RESULTS 13 men and 56 women were included. OSAS prevalence: 72% (n = 50). Ferritin (mean ± SD, 260 ± 276 vs. 111 ± 89 μg/l, p = 0.01) and transferrin saturation (31 ± 10 vs. 24 ± 9%, p = 0.002) were significantly higher in case of moderate/severe OSAS than in absent/mild OSAS, independently from gender and tobacco use. Serum iron (19.4 μg/l [CI95%, 16.5-22.3] vs. 16.2 μg/l ([14.1-18.2], p = 0.056) and transferrin saturation (31.5% [26.3-36.7]) vs. 25.3% [21.6-29.1], p = 0.043) were higher when time under oxygen saturation <90% was >15%. Age (mean ± SD, 51 ± 11 vs. 41 ± 12 yr, p = 0.001), waist circumference (136 ± 18 vs. 123 ± 12 cm, p = 0.003), arterial hypertension (59% (n = 13/22) vs. 23% (n = 11/47), p = 0.004) and tobacco use (64% (n = 14/22) vs. 32% (n = 15/47), p = 0.01) were significantly greater in moderate/severe OSAS than in absent/mild OSAS. CONCLUSIONS Transferrin saturation was associated with OSAS severity and time under hypoxia. This suggests a relationship between OSAS-induced hypoxia and iron metabolism among obese patients.
Collapse
|
167
|
Iron overload and its impact on outcome of patients with hematological diseases. Mol Aspects Med 2020; 75:100868. [PMID: 32620237 DOI: 10.1016/j.mam.2020.100868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/19/2023]
Abstract
Systemic iron overload (SIO) is a common challenge in patients with hematological diseases and develops as a result of ineffective erythropoiesis, multiple red blood cell (RBC) transfusions and disease-specific therapies. Iron homeostasis is tightly regulated as there is no physiological pathway to excrete iron from the body. Excess iron is, therefore, stored in tissues like liver, heart and bone marrow and can lead to progressive organ damage. The presence of free iron in the form of non-transferrin bound iron (NTBI) is especially detrimental. Reactive oxygen species can also cause stromal damage in the bone marrow and promote leukemic cell growth in vitro. In acute leukemias and myelodysplastic syndromes outcome is worse in patients with SIO compared to patients without. Especially in patients undergoing allogeneic HSCT presence of NTBI before or during transplant has been shown to negatively affect non-relapse mortality and overall survival. Although the mechanisms, of how these effects are mediated by SIO are not very well understood monitoring of iron status by serum markers and imaging techniques is, therefore, mandatory especially in these patients. Whether peri-interventional iron chelation may improve outcome of these patients is part of current clinical research.
Collapse
|
168
|
Suliburska J, Skrypnik K, Chmurzyńska A. Folic Acid Affects Iron Status in Female Rats with Deficiency of These Micronutrients. Biol Trace Elem Res 2020; 195:551-558. [PMID: 31512172 PMCID: PMC7176598 DOI: 10.1007/s12011-019-01888-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
Although simultaneous supplementation with iron and folic acid is justified, the potential interactions between these micronutrients are unknown. The aim of this study was to determine the effects of oral iron and folic acid, administered together or separately, on iron concentration in tissues in rats with a deficiency of both these micronutrients. In the first stage of the experiment (28 days), 150 8-week-old female Wistar rats were randomly assigned to a control group (C; n = 30) fed the standard diet and to a study group (n = 120) fed a diet deficit in iron and folate. The study group was then randomly divided to four groups: D group fed a deficit diet, FE group fed a deficit diet with iron gluconate, the FOL group fed a deficit diet with folate acid, and the FEFOL group fed a deficit diet with iron gluconate and folate acid. After 2, 10, and 21 days of supplementation, ten animals from each group were killed. Morphological parameters were measured in whole blood. Iron concentration was assayed in serum, liver, spleen, pancreas, heart, and kidneys. Folic acid supplementation more significantly decreased iron concentrations in the pancreas and spleen than in the D group after 10 and 21 days of supplementation. Moreover, the combination of iron with folic acid markedly decreased iron levels in the liver and spleen, in comparison with iron alone, after 10 and 21 days of the experiment. In conclusion, folic acid affects iron status in female rats deficient in these micronutrients in moderate and long-term supplementation.
Collapse
Affiliation(s)
- Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland.
| | - Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland
| | - Agata Chmurzyńska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland
| |
Collapse
|
169
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|
170
|
Fallet E, Rayar M, Landrieux A, Camus C, Houssel-Debry P, Jezequel C, Legros L, Uguen T, Ropert-Bouchet M, Boudjema K, Guyader D, Bardou-Jacquet E. Iron metabolism imbalance at the time of listing increases overall and infectious mortality after liver transplantation. World J Gastroenterol 2020; 26:1938-1949. [PMID: 32390704 PMCID: PMC7201152 DOI: 10.3748/wjg.v26.i16.1938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver transplantation (LT) is the best treatment for patients with liver cancer or end stage cirrhosis, but it is still associated with a significant mortality. Therefore identifying factors associated with mortality could help improve patient management. The impact of iron metabolism, which could be a relevant therapeutic target, yield discrepant results in this setting. Previous studies suggest that increased serum ferritin is associated with higher mortality. Surprisingly iron deficiency which is a well described risk factor in critically ill patients has not been considered. AIM To assess the impact of pre-transplant iron metabolism parameters on post-transplant survival. METHODS From 2001 to 2011, 553 patients who underwent LT with iron metabolism parameters available at LT evaluation were included. Data were prospectively recorded at the time of evaluation and at the time of LT regarding donor and recipient. Serum ferritin (SF) and transferrin saturation (TS) were studied as continuous and categorical variable. Cox regression analysis was used to determine mortality risks factors. Follow-up data were obtained from the local and national database regarding causes of death. RESULTS At the end of a 95-mo median follow-up, 196 patients were dead, 38 of them because of infections. In multivariate analysis, overall mortality was significantly associated with TS > 75% [HR: 1.73 (1.14; 2.63)], SF < 100 µg/L [HR: 1.62 (1.12; 2.35)], hepatocellular carcinoma [HR: 1.58 (1.15; 2.26)], estimated glomerular filtration rate (CKD EPI Cystatin C) [HR: 0.99 (0.98; 0.99)], and packed red blood cell transfusion [HR: 1.05 (1.03; 1.08)]. Kaplan Meier curves show that patients with low SF (< 100 µg/L) or high SF (> 400 µg/L) have lower survival rates at 36 mo than patients with normal SF (P = 0.008 and P = 0.016 respectively). Patients with TS higher than 75% had higher mortality at 12 mo (91.4% ± 1.4% vs 84.6% ± 3.1%, P = 0.039). TS > 75% was significantly associated with infection related death [HR: 3.06 (1.13; 8.23)]. CONCLUSION Our results show that iron metabolism imbalance (either deficiency or overload) is associated with post-transplant overall and infectious mortality. Impact of iron supplementation or depletion should be assessed in prospective study.
Collapse
Affiliation(s)
- Elodie Fallet
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Michel Rayar
- Service de Chirurgie Hepatobilaire, CHU Rennes, University Rennes, Rennes 35033, France
| | - Amandine Landrieux
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Christophe Camus
- Service de Réanimation médicale, CHU Rennes, University Rennes, Rennes 35033, France
| | - Pauline Houssel-Debry
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
- Service de Chirurgie Hepatobilaire, CHU Rennes, University Rennes, Rennes 35033, France
| | - Caroline Jezequel
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Ludivine Legros
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Thomas Uguen
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | | | - Karim Boudjema
- Service de Chirurgie Hepatobilaire, CHU Rennes, University Rennes, Rennes 35033, France
| | - Dominique Guyader
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | | |
Collapse
|
171
|
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9040313. [PMID: 32326494 PMCID: PMC7222183 DOI: 10.3390/antiox9040313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich’s ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.
Collapse
|
172
|
Khan AA, Hadi Y, Hassan A, Kupec J. Polycythemia and Anemia in Hereditary Hemochromatosis. Cureus 2020; 12:e7607. [PMID: 32399341 PMCID: PMC7213665 DOI: 10.7759/cureus.7607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction Hereditary hemochromatosis is a syndrome of dysregulated iron homeostasis resulting in the excessive deposition of iron. Hemochromatosis causes pulmonary, pancreatic, and hepatic dysfunction, all of which are risk factors for anemia in the general population. Conversely, iron overload states are thought to predispose to polycythemia. The effect of the homozygosity and heterozygosity of hereditary hemochromatosis-associated genes on hemoglobin levels has not been sufficiently studied. Materials and methods We conducted a retrospective cohort study at West Virginia University of all patients who underwent HFE gene analysis and carried the diagnosis of hemochromatosis. Charts were reviewed to identify relevant variables and the patients' clinical course. Results A total of 213 patients were included with 143 male participants (67.13%). The mean age was 53.6 years (SD: 15.2). A total of 108 patients were homozygous for the C282Y mutation. The prevalence of baseline characteristics are as follows: tobacco use 46.3%, chronic obstructive pulmonary disease 16.4%, malignancy 20.1%, cirrhosis 16.8%, anticoagulant use 6.5%, and chronic renal insufficiency 13.1%. The mean hemoglobin of the population was 15.0 mg/dL (SD 2.21). Anemia was seen in 23 patients (10.80%) and 59 patients (27.6%) had polycythemia. Concurrent malignancy and the presence of chronic renal insufficiency were significantly associated with anemia in both the univariate and multivariate analysis (p-values < 0.001). Patients with homozygosity for C282Y were more likely to receive phlebotomy as compared to other patients. Serum ferritin was not associated with anemia or polycythemia on multivariate analyses (p-values 0.197 and 0.105, respectively). Conclusion Despite the high prevalence of comorbidities that are known risk factors for anemia in the general population, few patients with hereditary hemochromatosis develop anemia. Female patients with hereditary hemochromatosis are relatively protected against polycythemia, affecting only one-fourth of all patients with hemochromatosis, with most patients' serum hemoglobin reported within normal limits.
Collapse
Affiliation(s)
- Adnan Aman Khan
- Medicine, West Virginia University School of Medicine, Morgantown, USA
| | - Yousaf Hadi
- Medicine, West Virginia University School of Medicine, Morgantown, USA
| | - Ayesha Hassan
- Medicine, West Virginia University School of Medicine, Morgantown, USA
| | - Justin Kupec
- Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown, USA
| |
Collapse
|
173
|
Al-Moshary M, Imtiaz N, Al-Mussaed E, Khan A, Ahmad S, Albqami S. Clinical and Biochemical Assessment of Liver Function Test and Its Correlation with Serum Ferritin Levels in Transfusion-dependent Thalassemia Patients. Cureus 2020; 12:e7574. [PMID: 32391223 PMCID: PMC7205361 DOI: 10.7759/cureus.7574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aims The aim of our study was to correlate liver function tests with serum ferritin levels in multi-transfused thalassemia patients. Methods This was a descriptive cross-sectional study conducted in the department of hematology, Khyber Medical University, from January 2018 to December 2018. Thalassemia patients of either sex dependent on transfusion ≥ 1 year and having a confirmatory report of the disease were included in our study. The nonprobability convenience sampling technique was used. The Pearson correlation coefficient was applied to observe the correlation between serum ferritin level and liver function tests. A p-value of ≤0.05 was considered statistically significant. SPSS version 23 (SPSS Inc., Chicago, Illinois) was used for data analysis. Results A total of 138 subjects of age range 2-23 years, with a mean age of 12.08 ± 6.02 years, were included in our study. The mean serum ferritin of patients in our study was 3278.64 ng/ml with the lowest of 285.2 ng/mL and the highest of 10940.2 ng/ml. With the increase in serum ferritin levels, a rapid increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels was seen. When serum ferritin levels were correlated with total bilirubin level, the bilirubin level remains static with a further increase in serum ferritin levels. Conclusion It was deduced that iron deposition is the ultimate reason for increased liver enzymes. There was a positive correlation between serum ferritin and ALT, AST, and ALP while a weak connection was found between serum ferritin and bilirubin levels.
Collapse
Affiliation(s)
- May Al-Moshary
- Pathology, Princess Nourah Bint Abdul Rahman University, Riyadh, SAU
| | - Nayab Imtiaz
- Pathology, Institute of Kidney Disease, Peshawar, PAK
| | - Eman Al-Mussaed
- Pathology, Princess Nourah Bint Abdul Rahman University, Riyadh, SAU
| | - Adnan Khan
- Pediatrics, Rehman Medical Institute, Peshawar, PAK
| | | | - Sara Albqami
- Internal Medicine, King Saud University, Riyadh, SAU
| |
Collapse
|
174
|
Abstract
OBJECTIVES Severe alcoholic hepatitis (sAH) confers substantial mortality, but the disease course is difficult to predict. As iron parameters are attractive outcome predictors in other liver diseases, we tested their prognostic ability in sAH. METHODS Serum ferritin, transferrin, iron, transferrin saturation, nontransferrin-bound iron, soluble transferrin receptor, and hepcidin were measured in 828 patients with sAH recruited prospectively through the STOPAH trial. The cohort was randomly divided into exploratory (n = 200) and validation sets (n = 628). RESULTS Patients with sAH had diminished serum transferrin but increased transferrin saturation. Among iron parameters, baseline transferrin was the best predictor of 28-day (area under the receiver operated characteristic 0.72 [95% confidence interval 0.67-0.78]) and 90-day survival (area under the receiver operated characteristic 0.65 [0.61-0.70]). Transferrin's predictive ability was comparable with the composite scores, namely model of end-stage liver disease, Glasgow alcoholic hepatitis score, and discriminant function, and was independently associated with survival in multivariable analysis. These results were confirmed in a validation cohort. Transferrin did not correlate with markers of liver synthesis nor with non-transferrin-bound iron or soluble transferrin receptor (as markers of excess unbound iron and functional iron deficiency, respectively). DISCUSSION In patients with sAH, serum transferrin predicts mortality with a performance comparable with commonly used composite scoring systems. Hence, this routinely available parameter might be a useful marker alone or as a component of prognostic models.
Collapse
|
175
|
Xenobiotics, Trace Metals and Genetics in the Pathogenesis of Tauopathies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041269. [PMID: 32079163 PMCID: PMC7068520 DOI: 10.3390/ijerph17041269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
Tauopathies are a disease group characterized by either pathological accumulation or release of fragments of hyperphosphorylated tau proteins originating from the central nervous system. The tau hypotheses of Parkinson’s and Alzheimer’s diseases contain a clinically diverse spectrum of tauopathies. Studies of case records of various tauopathies may reveal clinical phenotype characteristics of the disease. In addition, improved understanding of different tauopathies would disclose environmental factors, such as xenobiotics and trace metals, that can precipitate or modify the progression of the disorder. Important for diagnostics and monitoring of these disorders is a further development of adequate biomarkers, including refined neuroimaging, or proteomics. Our goal is to provide an in-depth review of the current literature regarding the pathophysiological roles of tau proteins and the pathogenic factors leading to various tauopathies, with the perspective of future advances in potential therapeutic strategies.
Collapse
|
176
|
Verna G, Liso M, De Santis S, Dicarlo M, Cavalcanti E, Crovace A, Sila A, Campiglia P, Santino A, Lippolis A, Serino G, Fasano A, Chieppa M. Iron Overload Mimicking Conditions Skews Bone Marrow Dendritic Cells Differentiation into MHCII lowCD11c +CD11b +F4/80 + Cells. Int J Mol Sci 2020; 21:ijms21041353. [PMID: 32079304 PMCID: PMC7072937 DOI: 10.3390/ijms21041353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
Iron overload is an undesired effect of frequent blood transfusions or genetic diseases. Myelodysplastic syndrome (MDS) patients become transfusion dependent, but due to the combination of ineffective haematopoiesis and repeated blood transfusions they are often subject to iron overload. In this study, we demonstrate that iron-overload mimicking condition alters bone marrow progenitor differentiation towards dendritic cells (DCs). Cells cultured in iron-enriched culture medium for seven days fail to differentiate into conventional CD11c+MHCIIhi DCs and fail to efficiently respond to LPS (Lipopolysaccharides). Cells appear smaller than control DCs but vital and able to perform FITC-dextran (Fluorescein isothiocyanate-dextran) endocytosis. At molecular level, cells cultured in iron-enriched conditions show increased ARG1 and PU.1, and decreased IRF8 expression.
Collapse
Affiliation(s)
- Giulio Verna
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
- Department of Immunology and Cell Biology, European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy; (P.C.); (A.F.)
| | - Marina Liso
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
| | - Stefania De Santis
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Manuela Dicarlo
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
| | - Elisabetta Cavalcanti
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
| | - Alberto Crovace
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
| | - Annamaria Sila
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
| | - Pietro Campiglia
- Department of Immunology and Cell Biology, European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy; (P.C.); (A.F.)
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Angelo Santino
- Unit of Lecce, Institute of Sciences of Food Production C.N.R., via Monteroni, 73100 Lecce, Italy;
| | - Antonio Lippolis
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
| | - Grazia Serino
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
| | - Alessio Fasano
- Department of Immunology and Cell Biology, European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy; (P.C.); (A.F.)
- Harvard Medical School Division of Pediatric Gastroenterology and Nutrition and Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.V.); (M.L.); (M.D.); (E.C.); (A.C.); (A.S.); (A.L.); (G.S.)
- Department of Immunology and Cell Biology, European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy; (P.C.); (A.F.)
- Correspondence:
| |
Collapse
|
177
|
Serra R, Ssempijja L, Provenzano M, Andreucci M. Genetic biomarkers in chronic venous disease. Biomark Med 2020; 14:75-80. [PMID: 32053001 DOI: 10.2217/bmm-2019-0408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology at the Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy.,Department of Medical & Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| | - Lwanga Ssempijja
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology at the Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy.,Department of Medical & Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| | - Michele Provenzano
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| | - Michele Andreucci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Calabria, Italy
| |
Collapse
|
178
|
Dabboubi R, Amri Y, Yahyaoui S, Mahjoub R, Sahli CA, Sahli C, Hadj Fredj S, Bibi A, Sammoud A, Messaoud T. A new case of congenital atransferrinemia with a novel splice site mutation: c.293-63del. Eur J Med Genet 2020; 63:103874. [PMID: 32028041 DOI: 10.1016/j.ejmg.2020.103874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 02/01/2020] [Indexed: 11/28/2022]
Abstract
Congenital atransferrinemia is an extremely rare autosomal recessive disorder resulting in the complete absence or extremely reduced amount of transferrin. In this study, we describe the first case of congenital atransferrinemia in Tunisia and the 18th patient in the reported data. The patient was referred to our hospital to explore a severe hypochromic and microcytic anemia. The laboratory evaluation including hematological and biochemical examination was performed in the proband and her parents. All exons of the transferrin gene were PCR amplified. The products were screened for mutations by direct sequencing. Based on laboratory and clinical findings, diagnosis of congenital atransferrinemia was confirmed. DNA sequencing revealed the presence of a novel homozygous deletion (c.293-63del) in the intron 13. This mutation is predicted to generate a higher score cryptic branch point leading to the production of an altered mRNA molecule. The second previously reported missense mutation p.Arg609Trp. Crystallographic structure analyzes demonstrate that the mutation would probably lead to significant conformational change not allowing the expression of transferrin protein. Current molecular characterization of this novel transferrin abnormality puts to the proof the variability in onset, first blood transfusion, and phenotypic expression in atransferrinemic patients.
Collapse
Affiliation(s)
- Rym Dabboubi
- Biochemistry Laboratory, Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| | - Yessine Amri
- Biochemistry Laboratory, Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia.
| | - Salem Yahyaoui
- Department of Pediatrics, Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunisia
| | - Rahma Mahjoub
- Laboratory of Clinical Biology, National Institute of Nutrition and Food Technology, 1007, Tunis, Tunisia
| | - Chayma Abdelhafidh Sahli
- Laboratory of Clinical Biology, National Institute of Nutrition and Food Technology, 1007, Tunis, Tunisia
| | - Chaima Sahli
- Biochemistry Laboratory, Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| | - Sondess Hadj Fredj
- Biochemistry Laboratory, Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| | - Amina Bibi
- Laboratory of Clinical Biology, National Institute of Nutrition and Food Technology, 1007, Tunis, Tunisia
| | - Azza Sammoud
- Department of Pediatrics, Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunisia
| | - Taieb Messaoud
- Biochemistry Laboratory, Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| |
Collapse
|
179
|
Di Francesco T, Delafontaine L, Philipp E, Lechat E, Borchard G. Iron polymaltose complexes: Could we spot physicochemical differences in medicines sharing the same active pharmaceutical ingredient? Eur J Pharm Sci 2020; 143:105180. [DOI: 10.1016/j.ejps.2019.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
180
|
Cavdar Z, Oktan MA, Ural C, Calisir M, Kocak A, Heybeli C, Yildiz S, Arici A, Ellidokuz H, Celik A, Yilmaz O, Sarioglu S, Cavdar C. Renoprotective Effects of Alpha Lipoic Acid on Iron Overload-Induced Kidney Injury in Rats by Suppressing NADPH Oxidase 4 and p38 MAPK Signaling. Biol Trace Elem Res 2020; 193:483-493. [PMID: 31025242 DOI: 10.1007/s12011-019-01733-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
We aimed to investigate the protective effect of alpha lipoic acid (ALA), a powerful antioxidant, against oxidative kidney damage induced by iron overload in rats. Male Wistar albino rats were separated into groups: control (n = 7), ALA (100 mg/kg (n = 7), iron sucrose (IS) (40 mg/kg) (n = 7), and IS + ALA (40 mg/kg IS administration followed by 100 mg/kg ALA) (n = 7). IS and ALA were injected weekly for 4 weeks via the tail vein. Blood and kidneys were collected at sacrification on day 29. Serum creatinine and iron levels were analyzed. Tubular injury and iron deposits were evaluated histopathologically. Additionally, iron, malondialdehyde (MDA), superoxide dismutase (SOD), catalase, and glutathione (GSH) levels and mRNA expressions of the subunits of NADPH oxidase, known as NOX4 and p22phox, tumor necrosis factor (TNF)-α, kidney injury molecule-1 (KIM-1), and also p38 MAPK signaling in the kidneys, were evaluated biochemically. In the IS group, serum creatinine and iron level, tubular dilation, and loss of brush border in the kidneys were significantly higher than those of the control. Although those changes were reduced by ALA, the differences were not statistically significant. However, ALA reduced significantly MDA level and increased SOD activity in the kidney during IS administration. ALA also significantly reduced mRNA expressions of NOX4 and p22phox induced by IS, which was parallel to significant decreases of TNF-α and KIM-1 mRNA expressions. Moreover, ALA could suppress the activation of p38 MAPK during IS administration. In conclusion, ALA may be an effective strategy to attenuate in IS-induced oxidative kidney injury.
Collapse
Affiliation(s)
- Zahide Cavdar
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey.
| | - Mehmet Asi Oktan
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Cemre Ural
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Meryem Calisir
- Department of Laboratory Animal Science, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ayse Kocak
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Cihan Heybeli
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Serkan Yildiz
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Aylin Arici
- Department of Medical Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hulya Ellidokuz
- Department of Biostatistics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ali Celik
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Science, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sulen Sarioglu
- Department of Pathology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Caner Cavdar
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
181
|
Kakiuchi R, Hirayama T, Yanagisawa D, Tooyama I, Nagasawa H. A 19F-MRI probe for the detection of Fe(ii) ions in an aqueous system. Org Biomol Chem 2020; 18:5843-5849. [DOI: 10.1039/d0ob00903b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An activity-based 19F-MRI probe that showed a chemical shift change in response to Fe(ii) was developed.
Collapse
Affiliation(s)
- Ryo Kakiuchi
- Laboratory of Pharmaceutical and Medicinal Chemistry
- Gifu Pharmaceutical University
- Gifu
- Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry
- Gifu Pharmaceutical University
- Gifu
- Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center
- Shiga University of Medical Science
- Shiga
- Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center
- Shiga University of Medical Science
- Shiga
- Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry
- Gifu Pharmaceutical University
- Gifu
- Japan
| |
Collapse
|
182
|
Pattanakuhar S, Phrommintikul A, Tantiworawit A, Srichairattanakool S, Chattipakorn SC, Chattipakorn N. N-acetylcysteine Restored Heart Rate Variability and Prevented Serious Adverse Events in Transfusion-dependent Thalassemia Patients: a Double-blind Single Center Randomized Controlled Trial. Int J Med Sci 2020; 17:1147-1155. [PMID: 32547310 PMCID: PMC7294923 DOI: 10.7150/ijms.45795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/07/2020] [Indexed: 11/05/2022] Open
Abstract
Regular blood transfusions in transfusion-dependent thalassemia (TDT) patients can lead to iron overload, causing oxidative stress and sympathovagal imbalance, resulting in increased cardiac complications. We hypothesized that administrating of N-acetylcysteine (NAC) prevents serious adverse events including cardiac complications in TDT patients by reducing systemic oxidative stress and balancing cardiac sympathovagal control. This study was double-blind, randomized control trial, investigating in 59 Thai TDT patients. After randomization, the participants were divided into two groups. The control group received standard care of TDT patient plus placebo, whereas the intervention group received 600 mg of NAC orally for six months. Serum 8-isoprostane, TNF-alpha, IL-10, 24-hour ECG monitoring, echocardiograms and the incidence of thalassemia-related complications were collected. At baseline, no significant difference in any parameters between the control and the intervention groups. At the end of intervention, the incidence of serious adverse events (i.e. infection, worsening thalassemia) was significantly higher in the control group when compared with the intervention group (24.1% vs. 3.3%, p=0.019) (Chi-square test; absolute risk reduction=20.8%, number needed to treat=4.8). The control group also had significantly lower time-dependent HRV parameters, compared with the intervention group (p=0.025 and 0.030, independent t-test). Treatment with NAC restored HRV and reduced serious adverse event in TDT patients, however, no difference in cardiac complications could be demonstrated. NAC could prevent serious adverse events in TDT patients. The proposed mechanism might be the balancing of sympathovagal control.
Collapse
Affiliation(s)
- Sintip Pattanakuhar
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arintaya Phrommintikul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Division of Cardiology, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Adisak Tantiworawit
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Somdet Srichairattanakool
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
183
|
Ding H, Yu X, Chen L, Han J, Zhao Y, Feng J. Tolerable upper intake level of iron damages the intestine and alters the intestinal flora in weaned piglets. Metallomics 2020; 12:1356-1369. [DOI: 10.1039/d0mt00096e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron is an indispensable element for animal growth but become toxic at high concentrations, while tolerable upper intake level of iron shows adverse effect in the intestine.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Xiaonan Yu
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Lingjun Chen
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Jianan Han
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Yang Zhao
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Jie Feng
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| |
Collapse
|
184
|
Abstract
Iron is an essential micronutrient for oxygen transport, cellular energy metabolism, and many enzymatic reactions. Complex physiological processes have evolved for iron acquisition to meet metabolic needs while avoiding toxicity from iron-generated free radicals. Systemic iron homeostasis is centered around the regulation of iron absorption from duodenum and iron release from stores by hepcidin. Intracellular iron is maintained under tight control by iron regulatory proteins acting at post-transcriptional level. Despite these elaborate mechanisms, iron status is frequently altered by environmental or genetic influences. Iron deficiency anemia is the most common nutritional disorder affecting a quarter of the world population. Iron deficiency is associated with impaired cognitive development and reduced capacity for physical work, making it a high priority for public health initiatives. Chronic inflammation from infections or other causes limits iron availability and contributes to anemia of chronic disease. At the opposite end are conditions where iron overload leads to serious complications from organ damage. Mutations in HFE gene are the most frequent cause of hereditary hemochromatosis in European population, but rare elsewhere in the world. Iron overload develops in dyserythropoietic anemias from increased intestinal absorption. Transfusional iron overload, most often observed in thalassemia, is increasing among cancer survivors due to the use of protocols requiring intensive transfusion support. Tissue-specific brain iron overload is observed in some degenerative neurological diseases without an increase in systemic iron. New insights into iron metabolism are guiding the development of novel therapies for iron deficiency and iron overload.
Collapse
Affiliation(s)
- Ashutosh Lal
- Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, California, USA.
| |
Collapse
|
185
|
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 2019; 206:107451. [PMID: 31836453 DOI: 10.1016/j.pharmthera.2019.107451] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of biochemical pathways is a hallmark of cancer cells, and generation of lactic acid from glucose/glutamine represents one of the consequences of such metabolic alterations. Cancer cells export lactic acid out to prevent intracellular acidification, not only increasing lactate levels but also creating an acidic pH in extracellular milieu. Lactate and protons in tumor microenvironment are not innocuous bystander metabolites but have special roles in promoting tumor-cell proliferation and growth. Lactate functions as a signaling molecule by serving as an agonist for the G-protein-coupled receptor GPR81, involving both autocrine and paracrine mechanisms. In the autocrine pathway, cancer cell-generated lactate activates GPR81 on cancer cells; in the paracrine pathway, cancer cell-generated lactate activates GPR81 on immune cells, endothelial cells, and adipocytes present in tumor stroma. The end result of GPR81 activation is promotion of angiogenesis, immune evasion, and chemoresistance. The acidic pH creates an inwardly directed proton gradient across the cancer-cell plasma membrane, which provides driving force for proton-coupled transporters in cancer cells to enhance supply of selective nutrients. There are several molecular targets in the pathways involved in the generation of lactic acid by cancer cells and its role in tumor promotion for potential development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Timothy P Brown
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
186
|
Kenawi M, Rouger E, Island ML, Leroyer P, Robin F, Rémy S, Tesson L, Anegon I, Nay K, Derbré F, Brissot P, Ropert M, Cavey T, Loréal O. Ceruloplasmin deficiency does not induce macrophagic iron overload: lessons from a new rat model of hereditary aceruloplasminemia. FASEB J 2019; 33:13492-13502. [DOI: 10.1096/fj.201901106r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Moussa Kenawi
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Emmanuel Rouger
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Marie-Laure Island
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Patricia Leroyer
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - François Robin
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Séverine Rémy
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Kévin Nay
- Laboratory Movement, Sport, and Health Sciences (M2S-EA7470), University Rennes 2–Ecole Normale Supérieure (ENS) Rennes, Bruz, France
| | - Frédéric Derbré
- Laboratory Movement, Sport, and Health Sciences (M2S-EA7470), University Rennes 2–Ecole Normale Supérieure (ENS) Rennes, Bruz, France
| | - Pierre Brissot
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Thibault Cavey
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| |
Collapse
|
187
|
Iron homeostasis and oxidative stress: An intimate relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118535. [DOI: 10.1016/j.bbamcr.2019.118535] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023]
|
188
|
Bries AE, Wang C, Agbemafle I, Wels B, Reddy MB. Assessment of Acute Serum Iron, Non-Transferrin-Bound Iron, and Gastrointestinal Symptoms with 3-Week Consumption of Iron-Enriched Aspergillus oryzae Compared with Ferrous Sulfate. Curr Dev Nutr 2019; 3:nzz127. [PMID: 32154497 PMCID: PMC7053575 DOI: 10.1093/cdn/nzz127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Iron deficiency anemia (IDA) is a widespread nutritional deficiency, and iron supplementation, especially with ferrous sulfate (FeSO4), is the most common strategy to treat IDA; however, compliance is often poor with daily FeSO4 owing to negative side effects. In a previous study, iron from iron-enriched Aspergillus oryzae [Ultimine® Koji Iron (ULT)] was absorbed similarly to FeSO4. OBJECTIVES The main objective of this study was to assess the safety of consuming ULT in terms of increasing non-transferrin-bound iron (NTBI) and gastrointestinal distress. METHODS Young female participants (n = 16) with serum ferritin <40 μg/L were randomly assigned to a double-blind, 9-wk crossover study with a 3-wk placebo/washout period between treatments. Oral FeSO 4 and ULT supplements containing 65 mg Fe were administered daily for 21 consecutive days. On day 1, serum iron (SI), percentage transferrin saturation (%TS), and NTBI were measured for 8 h on the first day of iron consumption. Changes in biochemical indicators were evaluated after 3 wk consumption. Side effects questionnaires were completed weekly on 2 randomly selected weekdays and 1 weekend day for the entire study. RESULTS SI, %TS, and NTBI were all markedly higher during hours 2-8 (P < 0.001) with FeSO4 than with ULT. Oxidative stress, inflammatory, and kidney and liver function markers remained unchanged with both supplementations compared with placebo. Changes in iron status markers were not significantly different among the 3 treatments. Individual or global side effects were not significantly different among all treatments. Even when common side effects of nausea, constipation, and diarrhea were combined, FeSO4 treatment had a significantly higher effect than ULT (P = 0.04) and placebo (P = 0.004) only at week 3, but the difference was not significant between ULT and placebo. CONCLUSIONS Low NTBI production and fewer common gastrointestinal side effects with ULT suggest that it is a safe oral iron supplement to treat IDA. This trial was registered at clinicaltrials.gov as NCT04018300.
Collapse
Affiliation(s)
- Amanda E Bries
- Department of Food Sciences and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Chong Wang
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Isaac Agbemafle
- Department of Food Sciences and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Brian Wels
- State Hygienic Laboratory, University of Iowa, Ankeny, IA, USA
| | - Manju B Reddy
- Department of Food Sciences and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
189
|
Sousa L, Oliveira MM, Pessôa MTC, Barbosa LA. Iron overload: Effects on cellular biochemistry. Clin Chim Acta 2019; 504:180-189. [PMID: 31790701 DOI: 10.1016/j.cca.2019.11.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Iron is an essential element for human life. However, it is a pro-oxidant agent capable of reacting with hydrogen peroxide. An iron overload can cause cellular changes, such as damage to the plasma membrane leading to cell death. Effects of iron overload in cellular biochemical processes include modulating membrane enzymes, such as the Na, K-ATPase, impairing the ionic transport and inducing irreversible damage to cellular homeostasis. To avoid such damage, cells have an antioxidant system that acts in an integrated manner to prevent oxidative stress. In addition, the cells contain proteins responsible for iron transport and storage, preventing its reaction with other substances during absorption. Moreover, iron is associated with cellular events coordinated by iron-responsive proteins (IRPs) that regulate several cellular functions, including a process of cell death called ferroptosis. This review will address the biochemical aspects of iron overload at the cellular level and its effects on important cellular structures.
Collapse
Affiliation(s)
- Leilismara Sousa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marina M Oliveira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marco Túlio C Pessôa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| |
Collapse
|
190
|
Song Q, Zhao Y, Li Q, Han X, Duan J. Puerarin protects against iron overload-induced retinal injury through regulation of iron-handling proteins. Biomed Pharmacother 2019; 122:109690. [PMID: 31786468 DOI: 10.1016/j.biopha.2019.109690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Excess iron content can build up in the retina and lead to iron-mediated retinal injury. An important isoflavone C-glucoside, puerarin, has been reported to be involved in retinal protection. In this experiment, we studied the effects and potential mechanisms of puerarin on retinal injury in vivo and in vitro. We found that puerarin reduced serum and retinal iron content, attenuated the pathophysiological changes and retinal iron deposition, and partially prevented the decrease of rhodopsin and retinal pigment epithelium-specific 65 kDa protein expression in retinas of iron-overload mice. Puerarin rescued the abnormal expression of iron-handling proteins in the mouse retina and suppressed the oxidative stress induced by iron overload, as evident from the enhanced activity of superoxide dismutase, catalase, and glutathione peroxidase and decreased content of malondialdehyde. Moreover, puerarin inhibited the phosphorylation of p38 and ERK mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription 3 (STAT3), thereby protecting the retinal cells from apoptosis by suppressing cytochrome c release, caspase activation, and poly (ADP-ribose) polymerase cleavage in vivo. Also, the ability of puerarin to regulate iron-handling proteins, decrease intracellular Fe2+, and inhibit cell apoptosis was further confirmed in ARPE-19 cells. The experimental data verify the protective role of puerarin in the treatment of retinal injury caused by iron overload; its possible mechanisms might be associated with regulation of iron-handling proteins, enhancement of the antioxidant capacity, and the inhibition of MAPK and STAT3 activation and the apoptotic pathways under iron overload conditions.
Collapse
Affiliation(s)
- Qiongtao Song
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Ying Zhao
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Qiang Li
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Xue Han
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Junguo Duan
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China.
| |
Collapse
|
191
|
Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron complexes in blood plasma of iron-deficient pigs do not originate directly from nutrient iron. Metallomics 2019; 11:1900-1911. [PMID: 31603444 PMCID: PMC6854301 DOI: 10.1039/c9mt00152b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nutrient iron entering the blood binds transferrin (TFN)d, which delivers iron to cells in the body. In healthy individuals, ∼30% of TFN is iron-bound while the remainder is unbound (apo-TFN). TFN saturates the plasma of individuals with iron-overload diseases such as hereditary hemochromatosis, prompting release of a poorly-defined low-molecular-mass (LMM) iron species called non-transferrin-bound iron (NTBI). An experiment was devised to directly detect NTBI in plasma of iron-deficient pigs and to assess the role of the liver which is known to bind NTBI. Catheters were surgically installed in the portal vein (PV) and either the caudal vena cava or the cranial vena cava. After the animals recovered, 57Fe II ascorbate was injected into the stomach via a feeding tube. Blood was removed through the catheters before and after injection; plasma became 57Fe-enriched after injection. 57Fe-enriched plasma was passed through a 10 kDa cutoff membrane and the flow-through solution (FTS) was subjected to size-exclusion liquid chromatography (LC). The eluent flowed into an ICP-MS where 56Fe and 57Fe were detected. Low-intensity iron peaks with masses of 400-1600 Da were observed, but none became enriched in 57Fe after injection. Rather, the injected 57Fe bound to apo-TFN. Viewed naively, this implies that nutrient-derived 57Fe in healthy mammals passes from the intestines to apo-TFN without first entering the blood as a LMM intermediate. In this case, nutrient iron exported from intestinal enterocytes of healthy individuals may quickly bind apo-TFN such that LMM iron species do not accumulate in blood plasma. Some 57Fe from the FTS may have adsorbed onto the column. In any event, the LMM iron species in plasma that eluted from the column must have originated from iron stored within the body, perhaps in macrophages - not directly from nutrient iron absorption. The liver absorbed and released LMM iron species, but the effect was modest, consistent with its role as a dynamic iron buffer. Passage through the liver also altered the distribution of different forms of TFN present in the PV.
Collapse
Affiliation(s)
- Nathaniel Dziuba
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Joanne Hardy
- Department of Veterinary Surgery, Veterinary Medicine and Biosciences, College Station, TX 77843-4475, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
192
|
Structural analysis of the transferrin receptor multifaceted ligand(s) interface. Biophys Chem 2019; 254:106242. [DOI: 10.1016/j.bpc.2019.106242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
|
193
|
Hwang K, Mou Q, Lake RJ, Xiong M, Holland B, Lu Y. Metal-Dependent DNAzymes for the Quantitative Detection of Metal Ions in Living Cells: Recent Progress, Current Challenges, and Latest Results on FRET Ratiometric Sensors. Inorg Chem 2019; 58:13696-13708. [PMID: 31364355 PMCID: PMC7176321 DOI: 10.1021/acs.inorgchem.9b01280] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many different metal ions are involved in various biological functions including metallomics and trafficking, and yet there are currently effective sensors for only a few metal ions, despite the first report of metal sensors for calcium more than 40 years ago. To expand upon the number of metal ions that can be probed in biological systems, we and other laboratories employ the in vitro selection method to obtain metal-specific DNAzymes with high specificity for a metal ion and then convert these DNAzymes into fluorescent sensors for these metal ions using a catalytic beacon approach. In this Forum Article, we summarize recent progress made in developing these DNAzyme sensors to probe metal ions in living cells and in vivo, including several challenges that we were able to overcome for this application, such as DNAzyme delivery, spatiotemporal control, and signal amplification. Furthermore, we have identified a key remaining challenge for the quantitative detection of metal ions in living cells and present a new design and the results of a Förster resonance energy transfer (FRET)-based DNAzyme sensor for the ratiometric quantification of Zn2+ in HeLa cells. By converting existing DNAzyme sensors into a ratiometric readout without compromising the fundamental catalytic function of the DNAzymes, this FRET-based ratiometric DNAzyme design can readily be applied to other DNAzyme sensors as a major advance in the field to develop much more quantitative metal-ion probes for biological systems.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Quanbing Mou
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Brandalynn Holland
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
194
|
Jahng JWS, Alsaadi RM, Palanivel R, Song E, Hipolito VEB, Sung HK, Botelho RJ, Russell RC, Sweeney G. Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Rep 2019; 20:e47911. [PMID: 31441223 PMCID: PMC6776927 DOI: 10.15252/embr.201947911] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Erfei Song
- Department of BiologyYork UniversityTorontoONCanada
| | | | | | - Roberto Jorge Botelho
- Department of Chemistry and Biology and the Molecular Science Graduate ProgramRyerson UniversityTorontoONCanada
| | | | - Gary Sweeney
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
195
|
Charitou G, Tsertos C, Parpottas Y, Kleanthous M, Lederer CW, Phylactides M. 57Fe enrichment in mice for β-thalassaemia studies via Mössbauer spectroscopy of blood samples. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:635-643. [PMID: 31302726 DOI: 10.1007/s00249-019-01389-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/03/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
In this work, wild-type and heterozygous β-thalassaemic mice were enriched with 57Fe via gastrointestinal absorption to characterize in greater detail the iron complexes then identifiable via Mössbauer spectroscopy. The 57Fe enrichment method was validated and Mössbauer spectra were obtained at 80 K from blood samples from wild-type and β-thalassaemic mice at 1, 3, 6, and 9 months of age. As expected, the haemoglobin levels of the thalassaemic mice were lower than from normal mice, indicating anaemia. Furthermore, significant amounts of ferritin-like iron were observed in the thalassaemic mice samples, which decreased with mouse age, reflecting the pattern of reticulocyte count reduction reported in the literature.
Collapse
Affiliation(s)
- George Charitou
- Department of Physics, University of Cyprus, 1678, Nicosia, Cyprus.
| | | | - Yannis Parpottas
- School of Engineering and Applied Sciences, Frederick University, 1036, Nicosia, Cyprus
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Carsten W Lederer
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| |
Collapse
|
196
|
Garcia YS, Barros MR, Ventura GT, de Queiroz RM, Todeschini AR, Neves JL. Probing the interaction of carbonaceous dots with transferrin and albumin: Impact on the protein structure and non-synergetic metal release. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
197
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
198
|
Abstract
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element-iron regulatory protein (IRE-IRP) system. In the kidney, iron transport mechanisms independent of the IRE-IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.
Collapse
|
199
|
When might transferrin, hemopexin or haptoglobin administration be of benefit following the transfusion of red blood cells? Curr Opin Hematol 2019; 25:452-458. [PMID: 30281034 DOI: 10.1097/moh.0000000000000458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW After transfusion, a percentage of red blood cells undergo hemolysis within macrophages. Intravascular exposures to hemin and hemoglobin (Hb) can occur after storage bag hemolysis, some transfusion reactions, during use of medical assist devices and in response to bacterial hemolysins. Proteins that regulate iron, hemin and Hb either become saturated after iron excess (transferrin, Tf) or depleted after hemin (hemopexin, Hpx) and Hb (haptoglobin, Hp) excess. Protein saturation or stoichiometric imbalance created by transfusion increases exposure to non-Tf bound iron, hemin and Hb. Tf, Hpx and Hp are being developed for hematological disorders where iron, hemin and Hb contribute to pathophysiology. However, complexed to their ligands, each represents a potential iron source for pathogens, which may complicate the use of these proteins. RECENT FINDINGS Erythrophagocytosis by macrophages and processes of cell death that lead to reactive iron exposure are increasingly described. In addition, the effects of transfusion introduced circulatory hemin and Hb are described in the literature, particularly following large volume transfusion, infection and during concomitant medical device use. SUMMARY Supplementation with Tf, Hpx and Hp suggests therapeutic potential in conditions of extravascular/intravascular hemolysis. However, their administration following transfusion may require careful assessment of concomitant disease.
Collapse
|
200
|
The Efficacy of Iron Chelators for Removing Iron from Specific Brain Regions and the Pituitary-Ironing out the Brain. Pharmaceuticals (Basel) 2019; 12:ph12030138. [PMID: 31533229 PMCID: PMC6789569 DOI: 10.3390/ph12030138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy, either subcutaneous or orally administered, has been used successfully in various clinical conditions. The removal of excess iron from various tissues, e.g., the liver spleen, heart, and the pituitary, in beta thalassemia patients, has become an essential therapy to prolong life. More recently, the use of deferiprone to chelate iron from various brain regions in Parkinson’s Disease and Friederich’s Ataxia has yielded encouraging results, although the side effects, in <2% of Parkinson’s Disease(PD) patients, have limited its long-term use. A new class of hydroxpyridinones has recently been synthesised, which showed no adverse effects in preliminary trials. A vital question remaining is whether inflammation may influence chelation efficacy, with a recent study suggesting that high levels of inflammation may diminish the ability of the chelator to bind the excess iron.
Collapse
|