151
|
Samanta A, Podder S, Ghosh CK, Bhattacharya M, Ghosh J, Mallik AK, Dey A, Mukhopadhyay AK. ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide. J Mech Behav Biomed Mater 2017; 72:110-128. [DOI: 10.1016/j.jmbbm.2017.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
|
152
|
Shi F, Liu Y, Zhi W, Xiao D, Li H, Duan K, Qu S, Weng J. The synergistic effect of micro/nano-structured and Cu
2+
-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity. Biomed Mater 2017; 12:035006. [DOI: 10.1088/1748-605x/aa6c8d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
153
|
Bedian L, Villalba-Rodríguez AM, Hernández-Vargas G, Parra-Saldivar R, Iqbal HMN. Bio-based materials with novel characteristics for tissue engineering applications - A review. Int J Biol Macromol 2017; 98:837-846. [PMID: 28223133 DOI: 10.1016/j.ijbiomac.2017.02.048] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 02/05/2023]
Abstract
Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments.
Collapse
Affiliation(s)
- Luis Bedian
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Angel M Villalba-Rodríguez
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Gustavo Hernández-Vargas
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Roberto Parra-Saldivar
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
154
|
Chen X, Zhou XC, Liu S, Wu RF, Aparicio C, Wu JY. In vivo osseointegration of dental implants with an antimicrobial peptide coating. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:76. [PMID: 28386851 DOI: 10.1007/s10856-017-5885-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to evaluate the in vivo osseointegration of implants with hydrophobic antimicrobial GL13K-peptide coating in rabbit femoral condyles by micro-CT and histological analysis. Six male Japanese Rabbits (4 months old and weighing 2.5 kg each) were included in this study. Twelve implants (3.75 mm wide, 7 mm long) were randomly distributed in two groups, with six implants in the experimental group coated with GL13K peptide and six implants in the control group without surface coating. Each implant in the test and the control group was randomly implanted in the left or right side of femoral condyles. On one side randomly-selected of the femur, each rabbit received a drill that was left without implant as control for the natural healing of bone. After 3 weeks of healing radiographic evaluation of the implant sites was taken. After 6 weeks of healing, rabbits were sacrificed for evaluation of the short-term osseointegration of the dental implants using digital radiography, micro-CT and histology analysis. To perform evaluation of osseointegration, implant location and group was double blinded for surgeon and histology/radiology researcher. Two rabbits died of wound infection in sites with non-coated implants 2 weeks after surgery. Thus, at least four rabbits per group survived after 6 weeks of healing. The wounds healed without suppuration and inflammation. No implant was loose after 6 weeks of healing. Radiography observations showed good osseointegration after 3 and 6 weeks postoperatively, which proved that the tissues followed a natural healing process. Micro-CT reconstruction and analysis showed that there was no statistically significant difference (P > 0.05) in volume of bone around the implant between implants coated with GL13K peptide and implants without coating. Histomorphometric analysis also showed that the mineralized bone area was no statistically different (P > 0.05) between implants coated with GL13K peptide and implants without coating. This study demonstrates that titanium dental implants with an antimicrobial GL13K coating enables in vivo implant osseointegration at similar bone growth rates than gold-standard non-coated dental implants up to 6 weeks of implantation in rabbit femurs.
Collapse
Affiliation(s)
- X Chen
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota School of Dentistry, Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - X C Zhou
- Department of Orthodontics, Nanchang University, 49 Fuzhou Rd, Nanchang, 330008, China
| | - S Liu
- Department of Orthodontics, Nanchang University, 49 Fuzhou Rd, Nanchang, 330008, China
| | - R F Wu
- Department of Implantology, Nanchang University, 49 Fuzhou Rd, Nanchang, 330008, China
| | - C Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota School of Dentistry, Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - J Y Wu
- Department of Orthodontics, Nanchang University, 49 Fuzhou Rd, Nanchang, 330008, China.
- Department of Stomatology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai, 200092, China.
| |
Collapse
|
155
|
Shuai C, Shuai C, Feng P, Yang Y, Xu Y, Qin T, Yang S, Gao C, Peng S. Silane Modified Diopside for Improved Interfacial Adhesion and Bioactivity of Composite Scaffolds. Molecules 2017; 22:E511. [PMID: 28333113 PMCID: PMC6153932 DOI: 10.3390/molecules22040511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Diopside (DIOP) was introduced into polyetheretherketone/polyglycolicacid (PEEK/PGA) scaffolds fabricated via selective laser sintering to improve bioactivity. The DIOP surface was then modified using a silane coupling agent, 3-glycidoxypropyltrimethoxysilane (KH570), to reinforce interfacial adhesion. The results showed that the tensile properties and thermal stability of the scaffolds were significantly enhanced. It could be explained that, on the one hand, the hydrophilic group of KH570 formed an organic covalent bond with the hydroxy group on DIOP surface. On the other hand, there existed relatively high compatibility between its hydrophobic group and the biopolymer matrix. Thus, the ameliorated interface interaction led to a homogeneous state of DIOP dispersion in the matrix. More importantly, an in vitro bioactivity study demonstrated that the scaffolds with KH570-modified DIOP (KDIOP) exhibited the capability of forming a layer of apatite. In addition, cell culture experiments revealed that they had good biocompatibility compared to the scaffolds without KDIOP. It indicated that the scaffolds with KDIOP possess potential application in tissue engineering.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- The State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, China.
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Chenying Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- The State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Youwen Yang
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong Xu
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Tian Qin
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Sheng Yang
- Human Reproduction Center, Shenzhen Hospital of Hongkong University, Shenzhen 518053, China.
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- The State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China.
| |
Collapse
|
156
|
Gunay B, Hasirci N, Hasirci V. A cell attracting composite of lumbar fusion cage. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:749-767. [DOI: 10.1080/09205063.2017.1301771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Busra Gunay
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Graduate Department of Biotechnology, METU, Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Chemistry, METU, Ankara, Turkey
- Graduate Department of Biotechnology, METU, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Biological Sciences, METU, Ankara, Turkey
- Graduate Department of Biotechnology, METU, Ankara, Turkey
| |
Collapse
|
157
|
Heimer S, Schmidlin PR, Roos M, Stawarczyk B. Surface properties of polyetheretherketone after different laboratory and chairside polishing protocols. J Prosthet Dent 2017; 117:419-425. [DOI: 10.1016/j.prosdent.2016.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 10/20/2022]
|
158
|
Guo G, Zhou H, Wang Q, Wang J, Tan J, Li J, Jin P, Shen H. Nano-layered magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens. NANOSCALE 2017; 9:875-892. [PMID: 27995243 DOI: 10.1039/c6nr07729c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biomaterial-related bacterial infections cause patient suffering, mortality and extended periods of hospitalization, imposing a substantial burden on medical systems. In this context, understanding of nanomaterials-bacteria-cells interactions is of both fundamental and clinical significance. Herein, nano-MgF2 films were deposited on titanium substrate via magnetron sputtering. Using this platform, the antibacterial behavior and mechanism of the nano-MgF2 films were investigated in vitro and in vivo. It was found that, for S. aureus (CA-MRSA, USA300) and S. epidermidis (RP62A), the nano-MgF2 films possessed excellent anti-biofilm activity, but poor anti-planktonic bacteria activity in vitro. Nevertheless, both the traditional SD rat osteomyelitis model and the novel stably luminescent mouse infection model demonstrated that nano-MgF2 films exerted superior anti-infection effect in vivo, which cannot be completely explained by the antibacterial activity of the nanomaterial itself. Further, using polymorphonuclear leukocytes (PMNs), the critical immune cells of innate immunity, a complementary investigation of MgF2-bacteria-PMNs co-culturing revealed that the nano-MgF2 films improved the antibacterial effect of PMNs through enhancing their phagocytosis and stability. To our knowledge, this is the first time of exploring the antimicrobial mechanism of nano-MgF2 from the perspective of innate immunity both in vitro and in vivo. Based on the research results, a plausible mechanism is put forward for the predominant antibacterial effect of nano-MgF2in vivo, which may originate from the indirect immune enhancement effect of nano-MgF2 films. In summary, this study of surface antibacterial design using MgF2 nanolayer is a meaningful attempt, which can promote the host innate immune response to bacterial pathogens. This may give us a new understanding towards the antibacterial behavior and mechanism of nano-MgF2 films and pave the way towards their clinical applications.
Collapse
Affiliation(s)
- Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Jiaqi Tan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
159
|
Deng Y, Yang Y, Ma Y, Fan K, Yang W, Yin G. Nano-hydroxyapatite reinforced polyphenylene sulfide biocomposite with superior cytocompatibility and in vivo osteogenesis as a novel orthopedic implant. RSC Adv 2017. [DOI: 10.1039/c6ra25526d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The design of novel functional biomaterials that possess similar mechanical attributes as human bones, accompanied with admirable osteogenesis to replace conventional metallic implants would be an intriguing accomplishment.
Collapse
Affiliation(s)
- Yi Deng
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yuanyi Yang
- Department of Materials Engineering
- Sichuan College of Architectural Technology
- Deyang 618000
- China
| | - Yuan Ma
- Department of Neurosurgery
- Chengdu Military General Hospital
- Chengdu 610083
- China
| | - Kexia Fan
- Department of Neurosurgery
- Chengdu Military General Hospital
- Chengdu 610083
- China
| | - Weizhong Yang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Guangfu Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
160
|
Abstract
This review focuses on the relationship between the structures and properties of various polymers for different applications in dentistry.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Libang He
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Bengao Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
161
|
Wang L, Wang M, Wang Y, Shao Y, Zhu Y. Facile synthesis and the phase transition mechanism of fluoridated hydroxyapatite with a hierarchical architecture. CrystEngComm 2017. [DOI: 10.1039/c7ce01871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal growth process of FHA is investigated. The crystal orientation relationship is found to be [010]FHA//[001]DCPA and (001)FHA//(010)DCPA.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Ming Wang
- Key Laboratory of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yunli Wang
- Key Laboratory of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yiran Shao
- Key Laboratory of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
162
|
Salmasi S, Nayyer L, Seifalian AM, Blunn GW. Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of Polymeric Bone Tissue Engineered Scaffolds. Open Orthop J 2016; 10:900-919. [PMID: 28217213 PMCID: PMC5299581 DOI: 10.2174/1874325001610010900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/12/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Statistical reports show that every year around the world approximately 15 million bone fractures occur; of which up to 10% fail to heal completely and hence lead to complications of non-union healing. In the past, autografts or allografts were used as the “gold standard” of treating such defects. However, due to various limitations and risks associated with these sources of bone grafts, other avenues have been extensively investigated through which bone tissue engineering; in particular engineering of synthetic bone graft substitutes, has been recognised as a promising alternative to the traditional methods. METHODS A selective literature search was performed. RESULTS Bone tissue engineering offers unlimited supply, eliminated risk of disease transmission and relatively low cost. It could also lead to patient specific design and manufacture of implants, prosthesis and bone related devices. A potentially promising building block for a suitable scaffold is synthetic nanohydroxyapatite incorporated into synthetic polymers. Incorporation of nanohydroxyapatite into synthetic polymers has shown promising bioactivity, osteoconductivity, mechanical properties and degradation profile compared to other techniques previously considered. CONCLUSION Scientific research, through extensive physiochemical characterisation, in vitro and in vivo assessment has brought together the optimum characteristics of nanohydroxyapatite and various types of synthetic polymers in order to develop nanocomposites of suitable nature for bone tissue engineering. The aim of the present article is to review and update various aspects involved in incorporation of synthetic nanohydroxyapatite into synthetic polymers, in terms of their potentials to promote bone growth and regeneration in vitro, in vivo and consequently in clinical applications.
Collapse
Affiliation(s)
- Shima Salmasi
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Leila Nayyer
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Alexander M Seifalian
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| |
Collapse
|
163
|
Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016; 60:12-9. [PMID: 26520679 DOI: 10.1016/j.jpor.2015.10.001] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/15/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Polyetheretherketone (PEEK) is a polymer that has many potential uses in dentistry. The aim of this review was to summarize the outcome of research conducted on the material for dental applications. In addition, future prospects of PEEK in the field of clinical dentistry have been highlighted. STUDY SELECTION An electronic search was carried out via the PubMed (Medline) database using keywords 'polyetheretherketone', 'dental' and 'dentistry' in combination. Original research papers published in English language in last fifteen year were considered. The studies relevant to our review were critically analyzed and summarized. RESULTS PEEK has been explored for a number of applications for clinical dentistry. For example, PEEK dental implants have exhibited lesser stress shielding compared to titanium dental implants due to closer match of mechanical properties of PEEK and bone. PEEK is a promising material for a number of removable and fixed prosthesis. Furthermore, recent studies have focused improving the bioactivity of PEEK implants at the nanoscale. CONCLUSION Considering mechanical and physical properties similar to bone, PEEK can be used in many areas of dentistry. Improving the bioactivity of PEEK dental implants without compromising their mechanical properties is a major challenge. Further modifications and improving the material properties may increase its applications in clinical dentistry.
Collapse
Affiliation(s)
- Shariq Najeeb
- School of Clinical Dentistry, University of Sheffield, United Kingdom
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwarah, Saudi Arabia.
| | - Zohaib Khurshid
- School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, UK; Department of Biomedical Engineering, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Fahad Siddiqui
- Division of Oral Health & Society, Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
164
|
Gao X, Song J, Zhang Y, Xu X, Zhang S, Ji P, Wei S. Bioinspired Design of Polycaprolactone Composite Nanofibers as Artificial Bone Extracellular Matrix for Bone Regeneration Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27594-27610. [PMID: 27690143 DOI: 10.1021/acsami.6b10417] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The design and development of functional biomimetic systems for programmed stem cell response is a field of topical interest. To mimic bone extracellular matrix, we present an innovative strategy for constructing drug-loaded composite nanofibrous scaffolds in this study, which could integrate multiple cues from calcium phosphate mineral, bioactive molecule, and highly ordered fiber topography for the control of stem cell fate. Briefly, inspired by mussel adhesion mechanism, a polydopamine (pDA)-templated nanohydroxyapatite (tHA) was synthesized and then surface-functionalized with bone morphogenetic protein-7-derived peptides via catechol chemistry. Afterward, the resulting peptide-loaded tHA (tHA/pep) particles were blended with polycaprolactone (PCL) solution to fabricate electrospun hybrid nanofibers with random and aligned orientation. Our research demonstrated that the bioactivity of grafted peptides was retained in composite nanofibers. Compared to controls, PCL-tHA/pep composite nanofibers showed improved cytocompatibility. Moreover, the incorporated tHA/pep particles in nanofibers could further facilitate osteogenic differentiation potential of human mesenchymal stem cells (hMSCs). More importantly, the aligned PCL-tHA/pep composite nanofibers showed more osteogenic activity than did randomly oriented counterparts, even under nonosteoinductive conditions, indicating excellent performance of biomimetic design in cell fate decision. After in vivo implantation, the PCL-tHA/pep composite nanofibers with highly ordered structure could significantly promote the regeneration of lamellar-like bones in a rat calvarial critical-sized defect. Accordingly, the presented strategy in our work could be applied for a wide range of potential applications in not only bone regeneration application but also pharmaceutical science.
Collapse
Affiliation(s)
- Xiang Gao
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Jinlin Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Yancong Zhang
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
| | - Xiao Xu
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
| | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Shicheng Wei
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| |
Collapse
|
165
|
Marcomini AL, Rego BT, Suman Bretas RE. Improvement of the short- and long-term mechanical properties of injection-molded poly(etheretherketone) and hydroxyapatite nanocomposites. J Appl Polym Sci 2016. [DOI: 10.1002/app.44476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andre Luis Marcomini
- Department of Materials Engineering; Universidade Federal de São Carlos; Rod. Washington Luiz, KM 235 São Carlos SP 13565-905 Brazil
| | - Bruna Turino Rego
- Department of Materials Engineering; Universidade Federal de São Carlos; Rod. Washington Luiz, KM 235 São Carlos SP 13565-905 Brazil
| | - Rosario Elida Suman Bretas
- Department of Materials Engineering; Universidade Federal de São Carlos; Rod. Washington Luiz, KM 235 São Carlos SP 13565-905 Brazil
| |
Collapse
|
166
|
Durham JW, Rabiei A. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK. SURFACE & COATINGS TECHNOLOGY 2016; 301:106-113. [PMID: 27713592 PMCID: PMC5047667 DOI: 10.1016/j.surfcoat.2015.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength.
Collapse
Affiliation(s)
- John W. Durham
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, 27695
| | - Afsaneh Rabiei
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, 27695
| |
Collapse
|
167
|
Gan K, Liu H, Jiang L, Liu X, Song X, Niu D, Chen T, Liu C. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone. Dent Mater 2016; 32:e263-e274. [PMID: 27578287 DOI: 10.1016/j.dental.2016.08.215] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 08/13/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We aimed to investigate the bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation (PIII) on polyetheretherketone (PEEK). METHODS According to the different modified parameters, the PEEK specimens were randomly divided into four main groups (n=49/group): PEEK-C, PEEK-I, PEEK-L, and PEEK-H. Then, N2-PIII surface modification was conducted using the corresponding parameters. The microstructure and composition of the modified PEEK surface was observed by scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle of the PEEK surface was also studied by contact angle meters. The bioactive ability of PEEK samples was evaluated by observing the attachment, proliferation, and differentiation of MG63 cells cultured on the PEEK samples. Antibacterial property of the samples against Staphylococcus aureus was detected with the plate colony-counting methods. RESULTS SEM and AFM analysis shows that PEEK-C surface is relatively smooth with the Ra value of 50.6±2.52nm. PEEK-I and PEEK-L surface is rough with the Ra value of 435.9±6.47nm and 443.23±5.49nm, respectively, and the PEEK-H surface is the most rough with the Ra value of 608.4±3.14nm. XPS element analysis demonstrated that nitrogen functional groups were successfully introduced into the surface of PIII-modified PEEK. Biological evaluation and the antibacterial results showed that nitrogen PIII treatment can significantly improve the biological activity of PEEK, and samples showed antibacterial properties against S. aureus. SIGNIFICANCE PEEK surface subjected to the N2-PIII treatment showed better biological activity and antibacterial effect. Therefore, N2-PIII-treated PEEK surface is promising in bone tissue engineering and dental applications.
Collapse
Affiliation(s)
- Kang Gan
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Hong Liu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China.
| | - Lingling Jiang
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Xiuju Liu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Xiaoqing Song
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Deli Niu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Tianjie Chen
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Chenchen Liu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| |
Collapse
|
168
|
Shakir M, Jolly R, Khan MS, Rauf A, Kazmi S. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Int J Biol Macromol 2016; 93:276-289. [PMID: 27543347 DOI: 10.1016/j.ijbiomac.2016.08.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/01/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022]
Abstract
Herein, we report the synthesis of a novel tri-component nanocomposite system incorporating β-cyclodextrin (β-CD) with nano-hydroxyapatite (n-HA) and chitosan (CS), (n-HA/β-CD/CS) at three different temperatures via co-precipitation method. The chemical interactions and surface morphology have been evaluated by TEM, SEM and AFM techniques revealing the agglomerated nanoparticles in CS/n-HA-HA binary system whereas the ternary systems produced needle shaped nanoparticles dispersed homogeneously at low temperature with more porous and rougher surface. The addition of β-CD in CS/n-HA at low temperature decreased the particle size and raised the thermal stability as compared to CS/n-HA. The comparative hemolytic, protein adsorption and platelet adhesion studies confirmed the better hemocompatibility of n-HA/β-CD/CS-(RT,HT,LT) nanocomposites relative to CS/n-HA. The cell viability has been evaluated in vitro using MG-63 cell line which revealed superior non toxicity of n-HA/β-CD/CS-LT nanocomposite in comparison to n-HA/β-CD/CS-(RT,HT) and CS/n-HA nanocomposites. Thus it may be concluded that the orchestrated organic/inorganic n-HA/β-CD/CS-(RT,HT,LT) nanocomposites exhibited relatively higher cell viability of human osteoblast cells, stimulated greater osteogenesis, controlled biodegradation, enhanced antibacterial activity with excellent in-vitro biomineralization and remarkable mechanical parameters as compared to CS/n-HA nanocomposite and thus may provide opportunities for potential use as an alternative biomaterial for Bone tissue engineering applications.
Collapse
Affiliation(s)
- Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Reshma Jolly
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Shoeb Khan
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Ahmar Rauf
- Molecular Immunology Group Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Shadab Kazmi
- Molecular Immunology Group Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
169
|
Rongione NA, Floerke SA, Celik E. Developments in Antibacterial Disinfection Techniques. APPLYING NANOTECHNOLOGY FOR ENVIRONMENTAL SUSTAINABILITY 2016. [DOI: 10.4018/978-1-5225-0585-3.ch009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the most daunting challenges facing nations today is controlling the spread of increasingly lethal bacteria. Today, a handful of bacteria can no longer be treated with traditional antibiotics and show antibacterial resistance. In this regard, nanotechnology possesses tremendous potential for the development of novel tools which help prevent and combat the spread of unwanted microorganisms. These tools can provide unique solutions for the challenges of the traditional disinfection methods, such as increased antibacterial activity, cost reduction, biocompatibility and personalized treatment. Despite its great potential, nanotechnology remains in its infancy and continued research efforts are required to achieve its full potential. In this chapter, traditional methods and their associated limitations are reviewed for their efficacy against microbial spread, and potential solutions in nanotechnology are described. A review of the state of the art disinfection techniques using nanotechnology is presented, and promising new areas in the field are discussed.
Collapse
|
170
|
Jioui I, Dânoun K, Solhy A, Jouiad M, Zahouily M, Essaid B, Len C, Fihri A. Modified fluorapatite as highly efficient catalyst for the synthesis of chalcones via Claisen–Schmidt condensation reaction. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
171
|
Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:118. [PMID: 27259708 DOI: 10.1007/s10856-016-5731-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 05/22/2023]
Abstract
Polyetheretherketone (PEEK) is a polyaromatic semi-crystalline thermoplastic polymer with mechanical properties favorable for bio-medical applications. Polyetheretherketone forms: PEEK-LT1, PEEK-LT2, and PEEK-LT3 have already been applied in different surgical fields: spine surgery, orthopedic surgery, maxillo-facial surgery etc. Synthesis of PEEK composites broadens the physicochemical and mechanical properties of PEEK materials. To improve their osteoinductive and antimicrobial capabilities, different types of functionalization of PEEK surfaces and changes in PEEK structure were proposed. PEEK based materials are becoming an important group of biomaterials used for bone and cartilage replacement as well as in a large number of diverse medical fields. The current paper describes the structural changes and the surface functionalization of PEEK materials and their most common biomedical applications. The possibility to use these materials in 3D printing process could increase the scientific interest and their future development as well.
Collapse
Affiliation(s)
- Ivan Vladislavov Panayotov
- Laboratoire de Bioingénierie et Nanosciences EA 4203, UFR Odontologie, Université de Montpellier, 545 Avenue du Professeur Jean-Louis Viala, 34193, Montpellier Cedex 5, France.
| | - Valérie Orti
- Laboratoire de Bioingénierie et Nanosciences EA 4203, UFR Odontologie, Université de Montpellier, 545 Avenue du Professeur Jean-Louis Viala, 34193, Montpellier Cedex 5, France
| | - Frédéric Cuisinier
- Laboratoire de Bioingénierie et Nanosciences EA 4203, UFR Odontologie, Université de Montpellier, 545 Avenue du Professeur Jean-Louis Viala, 34193, Montpellier Cedex 5, France
| | - Jacques Yachouh
- Laboratoire de Bioingénierie et Nanosciences EA 4203, UFR Odontologie, Université de Montpellier, 545 Avenue du Professeur Jean-Louis Viala, 34193, Montpellier Cedex 5, France
| |
Collapse
|
172
|
Durham JW, Montelongo SA, Ong JL, Guda T, Allen MJ, Rabiei A. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:723-731. [PMID: 27524073 DOI: 10.1016/j.msec.2016.06.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 11/27/2022]
Abstract
A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration.
Collapse
Affiliation(s)
- John W Durham
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Sergio A Montelongo
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Joo L Ong
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Teja Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Matthew J Allen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Afsaneh Rabiei
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
173
|
Vaezi M, Black C, Gibbs DMR, Oreffo ROC, Brady M, Moshrefi-Torbati M, Yang S. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming. Molecules 2016; 21:molecules21060687. [PMID: 27240326 PMCID: PMC6273399 DOI: 10.3390/molecules21060687] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK) has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the bioactive phase (i.e., HA) distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.
Collapse
Affiliation(s)
- Mohammad Vaezi
- Engineering Materials Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK.
| | - Cameron Black
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - David M R Gibbs
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Mark Brady
- Invibio Ltd., Thornton-Cleveleys, Lancashire FY5 4QD, UK.
| | - Mohamed Moshrefi-Torbati
- Engineering Materials Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK.
| | - Shoufeng Yang
- Engineering Materials Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
174
|
Zhao M, Li H, Liu X, Wei J, Ji J, Yang S, Hu Z, Wei S. Response of Human Osteoblast to n-HA/PEEK--Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite. Sci Rep 2016; 6:22832. [PMID: 26956660 PMCID: PMC4783780 DOI: 10.1038/srep22832] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/22/2016] [Indexed: 01/27/2023] Open
Abstract
Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn't increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca(2+) concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery.
Collapse
Affiliation(s)
- Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shicheng Wei
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| |
Collapse
|
175
|
Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3499-515. [PMID: 26756224 DOI: 10.1021/acsami.5b12413] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanohydroxyapatite (HA) synthesized by biomimetic strategy is a promising nanomaterial as bone substitute due to its physicochemical features similar to those of natural nanocrystal in bone tissue. Inspired by mussel adhesive chemistry, a novel nano-HA was synthesized in our work by employing polydopamine (pDA) as template under weak alkaline condition. Subsequently, the as-prepared pDA-templated HA (tHA) was introduced into polycaprolactone (PCL) matrix via coelectrospinning, and a bioactive tHA/PCL composite nanofiber scaffold was developed targeted at bone regeneration application. Our research showed that tHA reinforced PCL composite nanofibers exhibited favorable cytocompatibility at given concentration of tHA (0-10 w.t%). Compared to pure PCL and traditional nano-HA enriched PCL (HA/PCL) composite nanofibers, enhanced cell adhesion, spreading and proliferation of human mesenchymal stem cells (hMSCs) were observed on tHA/PCL composite nanofibers on account of the contribution of pDA present in tHA. More importantly, tHA nanoparticles exposed on the surface of composite nanofibers could further promote osteogenesis of hMSCs in vitro even in the absence of osteogenesis soluble inducing factors when compared to traditional HA/PCL scaffolds, which was supported by in vivo test as well according to the histological analysis. Overall, our study demonstrated that the developed tHA/PCL composite nanofibers with enhanced cytocompatibility and osteogenic capacity hold great potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Jinlin Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Xiaohong Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | | | | | | | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Yi Deng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Feng Deng
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | | |
Collapse
|
176
|
Ouyang L, Zhao Y, Jin G, Lu T, Li J, Qiao Y, Ning C, Zhang X, Chu PK, Liu X. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials 2016; 83:115-26. [PMID: 26773668 DOI: 10.1016/j.biomaterials.2016.01.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022]
Abstract
Polyetheretherketone (PEEK) is desirable in orthopedic and dental applications because its mechanical properties are similar to those of natural bones but the bioinertness and inferior osteoconduction of PEEK have hampered many clinical applications. In this work, PEEK is sulfonated by concentrated sulfuric acid to fabricate a three-dimensional (3D) network. A hydrothermal treatment is subsequently conducted to remove the residues and the temperature is adjusted to obtain different sulfur concentrations. In vitro cell proliferation and real-time PCR analyses disclose enhanced proliferation and osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) on the samples with small sulfur concentrations. The in vitro antibacterial evaluation reveals that all the sulfonated samples possess excellent resistance against Staphylococcus aureus and Escherichia coli. The in vivo rat femur implantation model is adopted and X-ray, micro-CT, and histological analyses indicate that not only the premeditated injected bacteria cells are sterilized, but also new bone forms around the samples with small sulfur concentrations. The in vitro and in vivo results reveal that the samples subjected to the hydrothermal treatment to remove excess sulfur have better osseointegration and antibacterial ability and PEEK modified by sulfonation and hydrothermal treatment is promising in orthopedic and dental applications.
Collapse
Affiliation(s)
- Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yaochao Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Guodong Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tao Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Congqin Ning
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
177
|
Khoury J, Maxwell M, Cherian RE, Bachand J, Kurz AC, Walsh M, Assad M, Svrluga RC. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology. J Biomed Mater Res B Appl Biomater 2015; 105:531-543. [PMID: 26595255 DOI: 10.1002/jbm.b.33570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/28/2015] [Accepted: 11/02/2015] [Indexed: 01/14/2023]
Abstract
Polyetheretherketone (PEEK) is growing in popularity for orthopedic, spinal, and trauma applications but has potential significant limitations in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent, but is inert and therefore does not integrate well with bone. Current efforts are focusing on increasing the bioactivity of PEEK with surface modifications to improve the bone-implant interface. We used a novel Accelerated Neutral Atom Beam (ANAB) technology to enhance the bioactivity of PEEK. Human osteoblast-like cells seeded on ANAB-treated PEEK result in significantly enhanced proliferation compared with control PEEK. Cells grown on ANAB-treated PEEK increase osteogenic expression of ALPL (1.98-fold, p < 0.002), RUNX2 (3.20-fold, p < 0.002), COL1A (1.94-fold, p < 0.015), IBSP (2.78-fold, p < 0.003), and BMP2 (1.89-fold, p < 0.004). Cells grown on these treated surfaces also lead to an increased mineralization (6.4-fold at 21 days, p < 0.0005). In an ovine study, ANAB-treated PEEK implants resulted in enhanced bone-in-contact by 3.09-fold (p < 0.014), increased push-out strength (control 1959 ± 1445 kPa; ANAB 4068 ± 1197 kPa, p < 0.05), and evidence of bone ingrowth at both the early (4 weeks) and later (12 weeks) time points. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, leading to bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants. ANAB treatment, therefore, may significantly enhance the performance of PEEK medical implants and lead to improved clinical outcomes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 531-543, 2017.
Collapse
Affiliation(s)
- Joseph Khoury
- Exogenesis Corporation, Billerica, Massachusetts, 01821
| | | | | | - James Bachand
- Exogenesis Corporation, Billerica, Massachusetts, 01821
| | - Arthur C Kurz
- Exogenesis Corporation, Billerica, Massachusetts, 01821
| | - Michael Walsh
- Exogenesis Corporation, Billerica, Massachusetts, 01821
| | | | | |
Collapse
|
178
|
Iqbal HMN, Kyazze G, Locke IC, Tron T, Keshavarz T. Development of bio-composites with novel characteristics: Evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviours. Carbohydr Polym 2015; 131:197-207. [PMID: 26256176 DOI: 10.1016/j.carbpol.2015.05.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/21/2015] [Accepted: 05/24/2015] [Indexed: 02/08/2023]
Abstract
This paper describes a laccase-assisted grafting of gallic acid (GA) and thymol (T) as functional entities onto the previously developed P(3HB)-g-EC composite. GA-g-P(3HB)-g-EC and T-g-P(3HB)-g-EC bio-composites were prepared by laccase-assisted free radical-induced graft polymerisation of GA and T onto the P(3HB)-g-EC based composite using surface dipping and incorporation technique. The results of the antibacterial evaluation for the prepared composites indicated that 15GA-g-P(3HB)-g-EC, 15T-g-P(3HB)-g-EC and 20T-g-P(3HB)-g-EC composites possessed the strongest bacteriostatic and bactericidal activities against Gram-positive Bacillus subtilis NCTC 3610 and Staphylococcus aureus NCTC 6571 and Gram-negative Escherichia coli NTCT 10418 and Pseudomonas aeruginosa NCTC 10662 strains. In this study, we have also tested GA-g-P(3HB)-g-EC and T-g-P(3HB)-g-EC bio-composites for their ability to support and maintain multilineage differentiation of human keratinocyte-like (HaCaT) skin cells in-vitro. From the cytotoxicity results, the tested composites showed 100% viability and did not induce any adverse effect on a HaCaT's morphology. Finally, in soil burial evaluation, a progressive increase in the degradation rate of GA-g-P(3HB)-g-EC and T-g-P(3HB)-g-EC bio-composites was recorded with the passage of time up to 6 weeks. In summary, our current findings suggest that GA-g-P(3HB)-g-EC and T-g-P(3HB)-g-EC bio-composites are promising candidates for biomedical type applications such as skin regeneration, multiphasic tissue engineering and/or medical implants.
Collapse
Affiliation(s)
- Hafiz M N Iqbal
- Applied Biotechnology Research Group, Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1 W 6UW, United Kingdom.
| | - Godfrey Kyazze
- Applied Biotechnology Research Group, Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1 W 6UW, United Kingdom
| | - Ian C Locke
- Applied Biotechnology Research Group, Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1 W 6UW, United Kingdom
| | - Thierry Tron
- Aix-Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397 Marseille, France
| | - Tajalli Keshavarz
- Applied Biotechnology Research Group, Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1 W 6UW, United Kingdom.
| |
Collapse
|
179
|
Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification-A Review. Int J Dent 2015; 2015:381759. [PMID: 26495000 PMCID: PMC4606406 DOI: 10.1155/2015/381759] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK) can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.
Collapse
|
180
|
Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z, Wei J, Wei S. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces 2015; 136:64-73. [PMID: 26363268 DOI: 10.1016/j.colsurfb.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/18/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
As FDA-approved implantable material, polyetheretherketone (PEEK) is becoming a prime candidate to replace traditional surgical metallic implants made of titanium (Ti) and its alloys, since it has a lower elastic modulus than Ti. The bioinertness and defective osteointegration of PEEK, however, limit its clinical adoption as load-bearing dental/orthopedic material. The present work aimed at developing a PEEK bioactive ternary composite, polyetheretherketone/nano-hydroxyapatite/carbon fiber (PEEK/n-HA/CF), and evaluating it as a potential bone-repairing material by assessment of growth and differentiation of osteoblast-like MG63 cells and by estimation of osteointegration in vivo. Our results indicated that the adhesion, proliferation and osteogenic differentiation of cells, as well as the mechanical properties were greatly promoted for the PEEK/n-HA/CF biocomposite compared with pure PEEK matrix. More importantly, the ternary composite implant boosted in vivo bioactivity and osseointegration in canine tooth defect model. Thus, the PEEK/n-HA/CF ternary biocomposite with enhanced mechanics and biological performances hold great potential as bioactive implant material in dental and orthopedic applications.
Collapse
Affiliation(s)
- Yi Deng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ping Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lixin Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoling Xiong
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Zhihui Tang
- 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
181
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
182
|
Wang Q, Mejía Jaramillo A, Pavon JJ, Webster TJ. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices. J Biomed Mater Res B Appl Biomater 2015; 104:1352-8. [PMID: 26138597 DOI: 10.1002/jbm.b.33479] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 11/11/2022]
Abstract
Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016.
Collapse
Affiliation(s)
- Qi Wang
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts, 02115
| | | | - Juan J Pavon
- Department of Bioengineering, University of Antioquia, Medellín, Antioquia, Colombia
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts, 02115. .,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
183
|
Deng Y, Liu X, Xu A, Wang L, Luo Z, Zheng Y, Deng F, Wei J, Tang Z, Wei S. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine 2015; 10:1425-47. [PMID: 25733834 PMCID: PMC4337592 DOI: 10.2147/ijn.s75557] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK–nanohydroxyapatite ternary composites (PEEK/n-HA/CF) with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation) and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment/proliferation and promotes the production of alkaline phosphatase (ALP) activity and calcium nodule formation compared with the other groups. More importantly, the PEEK/n-HA/CF implant with appropriate surface roughness exhibits remarkably enhanced bioactivity and osseointegration in vivo in the animal experiment. These findings will provide critical guidance for the design of CFRPEEK-based implants with optimal roughness to regulate cellular behaviors, and to enhance biocompability and osseointegration. Meanwhile, the PEEK/n-HA/CF ternary composite with optimal surface roughness might hold great potential as bioactive biomaterial for bone grafting and tissue engineering applications.
Collapse
Affiliation(s)
- Yi Deng
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China ; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Anxiu Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Beijing, People's Republic of China
| | - Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zuyuan Luo
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Yunfei Zheng
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Beijing, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhihui Tang
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Shicheng Wei
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China ; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China ; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Beijing, People's Republic of China
| |
Collapse
|
184
|
Lim EK, Keem JO, Yun HS, Jung J, Chung BH. Smart nanoprobes for the detection of alkaline phosphatase activity during osteoblast differentiation. Chem Commun (Camb) 2015; 51:3270-2. [DOI: 10.1039/c4cc09620g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticle-conjugated fluorescent hydroxyapatite (AuFHAp) was developed as a smart nanoprobe for measuring alkaline phosphatase (ALP) activity.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- BioNano Health Guard Research Center
| | - Joo Oak Keem
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Hui-suk Yun
- Powder & Ceramics Division
- Korea Institute of Materials Science (KIMS)
- Changwon 642-831
- Republic of Korea
| | - Jinyoung Jung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- BioNano Health Guard Research Center
| | - Bong Hyun Chung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- BioNano Health Guard Research Center
| |
Collapse
|
185
|
Toita R, Sunarso S, Rashid AN, Tsuru K, Ishikawa K. Modulation of the osteoconductive property and immune response of poly(ether ether ketone) by modification with calcium ions. J Mater Chem B 2015; 3:8738-8746. [DOI: 10.1039/c5tb01679g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ca-modified PEEK facilitates osteoblastic cell proliferation and differentiation and shifts macrophage phenotype towards anti-inflammatory/wound healing type.
Collapse
Affiliation(s)
- R. Toita
- Department of Biomaterials
- Faculty of Dental Science
- Kyushu University
- 3-1-1 Maidashi
- Fukuoka 812-8582
| | - Sunarso Sunarso
- Department of Biomaterials
- Faculty of Dental Science
- Kyushu University
- 3-1-1 Maidashi
- Fukuoka 812-8582
| | - A. N. Rashid
- Department of Biomaterials
- Faculty of Dental Science
- Kyushu University
- 3-1-1 Maidashi
- Fukuoka 812-8582
| | - K. Tsuru
- Department of Biomaterials
- Faculty of Dental Science
- Kyushu University
- 3-1-1 Maidashi
- Fukuoka 812-8582
| | - K. Ishikawa
- Department of Biomaterials
- Faculty of Dental Science
- Kyushu University
- 3-1-1 Maidashi
- Fukuoka 812-8582
| |
Collapse
|
186
|
Iqbal HMN, Kyazze G, Locke IC, Tron T, Keshavarz T. In situ development of self-defensive antibacterial biomaterials: phenol-g-keratin-EC based bio-composites with characteristics for biomedical applications. GREEN CHEMISTRY 2015; 17:3858-3869. [DOI: 10.1039/c5gc00715a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, the development of highly inspired biomaterials with multi-functional characteristics has gained considerable attention, especially in biomedical and other health-related areas of the modern world.
Collapse
Affiliation(s)
- Hafiz M. N. Iqbal
- Applied Biotechnology Research Group
- Department of Life Sciences
- Faculty of Science and Technology
- University of Westminster
- London W1W 6UW
| | - Godfrey Kyazze
- Applied Biotechnology Research Group
- Department of Life Sciences
- Faculty of Science and Technology
- University of Westminster
- London W1W 6UW
| | - Ian Charles Locke
- Applied Biotechnology Research Group
- Department of Life Sciences
- Faculty of Science and Technology
- University of Westminster
- London W1W 6UW
| | - Thierry Tron
- Aix Marseille Université
- CNRS
- Centrale Marseille
- iSm2 UMR 7313
- Marseille
| | - Tajalli Keshavarz
- Applied Biotechnology Research Group
- Department of Life Sciences
- Faculty of Science and Technology
- University of Westminster
- London W1W 6UW
| |
Collapse
|
187
|
Shakib K, Tan A, Soskic V, Seifalian AM. Regenerative nanotechnology in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 2014; 52:884-93. [PMID: 25218313 DOI: 10.1016/j.bjoms.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/15/2022]
Abstract
Regenerative nanotechnology is at the forefront of medical research, and translational medicine is a challenge to both scientists and clinicians. Although there has been an exponential rise in the volume of research generated about it for both medical and surgical uses, key questions remain about its actual benefits. Nevertheless, some people think that therapeutics based on its principles may form the core of applied research for the future. Here we give an account of its current use in oral and maxillofacial surgery, and implications and challenges for the future.
Collapse
Affiliation(s)
- Kaveh Shakib
- Department of Oral and Maxillofacial Surgery, Royal Free London NHS Foundation Trust, London, UK; UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK.
| | - Aaron Tan
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK; UCL Medical School, University College London (UCL), London, UK
| | | | - Alexander M Seifalian
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK; Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|