151
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
152
|
Manolakou T, Verginis P, Boumpas DT. DNA Damage Response in the Adaptive Arm of the Immune System: Implications for Autoimmunity. Int J Mol Sci 2021; 22:5842. [PMID: 34072535 PMCID: PMC8198144 DOI: 10.3390/ijms22115842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
In complex environments, cells have developed molecular responses to confront threats against the genome and achieve the maintenance of genomic stability assuring the transfer of undamaged DNA to their progeny. DNA damage response (DDR) mechanisms may be activated upon genotoxic or environmental agents, such as cytotoxic drugs or ultraviolet (UV) light, and during physiological processes requiring DNA transactions, to restore DNA alterations that may cause cellular malfunction and affect viability. In addition to the DDR, multicellular organisms have evolved specialized immune cells to respond and defend against infections. Both adaptive and innate immune cells are subjected to DDR processes, either as a prerequisite to the immune response, or as a result of random endogenous and exogenous insults. Aberrant DDR activities have been extensively studied in the immune cells of the innate arm, but not in adaptive immune cells. Here, we discuss how the aberrant DDR may lead to autoimmunity, with emphasis on the adaptive immune cells and the potential of therapeutic targeting.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece;
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| |
Collapse
|
153
|
Wang D, Zhang Y, Xu X, Wu J, Peng Y, Li J, Luo R, Huang L, Liu L, Yu S, Zhang N, Lu B, Zhao K. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun 2021; 12:2674. [PMID: 33976226 PMCID: PMC8113592 DOI: 10.1038/s41467-021-22987-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
The transcription coactivator YAP plays a vital role in Hippo pathway for organ-size control and tissue homeostasis. Recent studies have demonstrated YAP is closely related to immune disorders and inflammatory diseases, but the underlying mechanisms remain less defined. Here, we find that YAP promotes the activation of NLRP3 inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile injuries. YAP deficiency in myeloid cells significantly attenuates LPS-induced systemic inflammation and monosodium urate (MSU) crystals-induced peritonitis. Mechanistically, YAP physically interacts with NLRP3 and maintains the stability of NLRP3 through blocking the association between NLRP3 and the E3 ligase β-TrCP1, the latter increases the proteasomal degradation of NLRP3 via K27-linked ubiquitination at lys380. Together, these findings establish a role of YAP in the activation of NLRP3 inflammasome, and provide potential therapeutic target to treat the NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Dan Wang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yening Zhang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xueming Xu
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yue Peng
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jing Li
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Ruiheng Luo
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Lingmin Huang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Liping Liu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Songlin Yu
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
- Postdoctoral Research Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Ben Lu
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, People's Republic of China.
- Key Laboratory of Sepsis and Translational Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan Province, People's Republic of China.
| | - Kai Zhao
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
154
|
Ehtesham N, Zare Rafie M, Esmaeilzadeh E, Dehani M, Davar S, Mosallaei M, Pakzad B, Ghorashi T, Darvish H, Soosanabadi M. Three functional variants in the NLRP3 gene are associated with susceptibility and clinical characteristics of systemic lupus erythematosus. Lupus 2021; 30:1273-1282. [PMID: 33951966 DOI: 10.1177/09612033211014273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nod-like receptor pyrin domain containing 3 (NLRP3) gene encodes an intracellular receptor whose dysregulation in systemic lupus erythematosus (SLE) has been reported in multiple studies. Activation of NLRP3 inflammasome leads to the induction of inflammatory response via cleaving and producing of specific cytokines. In the present study, we assessed the possible association between three functional polymorphisms in this gene and SLE risk in the Iranian population. These variants include two gain of function (rs4612666 and rs10754558) and one loss of function (rs6672995) which are correlated with modulation of expression of NLRP3. METHODS A case-control study involving 110 SLE patients and 116 control subjects was undertaken to estimate the frequency of rs4612666, rs10754558, and rs6672995 genotypes using real-time PCR high resolution melting method (HRM). RESULTS Our findings revealed significant associations between GG genotype and G allele of rs10754558 with increased risk of SLE (OR for GG genotype= 2.82; 95%CI [1.45-5.46]/OR for G allele= 1.97; 95%CI [1.36-2.87]). Although, no significant associations were recognized between allele and genotype frequencies of rs4612666 and rs6672995 polymorphisms with SLE risk (P > 0.05). Also, our analysis revealed that the C allele in rs4612666 and G allele in rs10754558 was correlated with the severity of disease activity (P < 0.001). Moreover, these common variants were associated with lower age of onset and some clinical symptoms in the patient group, such as skin manifestation, neurological symptom and, renal involvement (P < 0.05). CONCLUSION This study demonstrates a substantial association between NLRP3 polymorphisms with increased risk, clinical symptoms, and the severity of disease activity of SLE.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Zare Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mohammad Dehani
- School of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Saeideh Davar
- Department of Epidemiology and Biostatistics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Meysam Mosallaei
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Pakzad
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Tahereh Ghorashi
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Darvish
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
155
|
Plasma exosomes derived from patients with intestinal Behçet's syndrome induce intestinal epithelial cell pyroptosis. Clin Rheumatol 2021; 40:4143-4155. [PMID: 33954847 DOI: 10.1007/s10067-021-05755-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Intestinal Behçet's syndrome (IBS) has high morbidity and mortality rates with serious complications. The purpose of this study was to investigate the expression of pyroptosis-related proteins in the intestinal tissues of IBS patients and explore the role of plasma exosomes derived from IBS patients in the pyroptosis of intestinal epithelial cells. METHOD Immunohistochemistry was used to investigate the expression of nucleotide-binding domain-like receptor protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD). Quantitative real-time PCR was employed to measure the mRNA levels of IL-1β and IL-18 in the intestinal tissues. Plasma exosomes were isolated and observed by transmission electron microscopy. The exosomes were co-cultured with intestinal epithelial cells in vitro. Western blot was used to measure the expression of pyroptosis-related proteins including NLRP3, full-length GSDMD, N-terminal GSDMD, pro-caspase-1, and cleaved caspase-1. The levels of IL-1β and IL-18 were detected by enzyme-linked immunosorbent assay. Cell death was measured by using the lactate dehydrogenase (LDH) release assay. RESULTS Expression of NLRP3 (12.2% ± 1.2%, 8.1% ± 0.9%, t = 4.692, p = 0.009), caspase-1 (24.6% ± 2.1%, 4.2% ± 1.8%, t = 12.842, p = 0.000), and GSDMD (16.6% ± 1.9%, 9.8% ± 1.3%, t = 5.194, p = 0.007) were significantly increased in the intestinal tissues of patients with IBS compared with normal control (NC) group, respectively. The relative mRNA levels of IL-1β (t = 4.308, p = 0.005) and IL-18 (t = 3.096, p = 0.021) in the intestinal tissues were significantly higher in IBS patients than in NC group, while the protein levels of IL-1β (t = 3.873, p = 0.018) and IL-18 (t = 4.389, p = 0.012) were also significantly increased, which was consistent with the results of the relative mRNA levels. Moreover, we found that exosomes from IBS patients significantly induced pyroptosis of intestinal epithelial cells via the activation of NLRP3 inflammasome in vitro experiments. CONCLUSIONS Plasma exosomes derived from IBS patients may induce pyroptosis of intestinal epithelial cells via the activation of NLRP3 inflammasome. Key Points •The role of exosomes in IBS is first reported in this study. • In this study, we explored the mechanism that plasma exosomes derived from IBS patients may induce pyroptosis of intestinal epithelial cells via the activation of NLRP3 inflammasome.
Collapse
|
156
|
Orchestrated modulation of rheumatoid arthritis via crosstalking intracellular signaling pathways. Inflammopharmacology 2021; 29:965-974. [PMID: 33740220 DOI: 10.1007/s10787-021-00800-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/06/2021] [Indexed: 01/18/2023]
Abstract
Cell signaling is considered a part of a network for communication that regulates basic cellular activities. The ability of cells to communicate correctly to the surrounding environment has an important role in development, tissue repair, and immunity as well as normal tissue homeostasis. Dysregulated activation and crosstalk between many intracellular signaling pathways are implicated in the pathogenesis of rheumatoid arthritis (RA), such as the Janus Kinase/signal transducers and activators of transcription (JAK/STAT), Toll-like receptor/nuclear factor kappa B (TLR/NF-κB), phosphatidylinositide-3Kinase/protein kinase B/mammalian target of rapamycin (PI-3K/AKT/mTOR), the stress activated protein kinase/mitogen-activated protein kinase (SAPK/MAPK), and spleen tyrosine kinase (SYK) pathways. Other interrelated pathways that can be targeted to halt the inflammatory status in the disease are purinergic 2X7 receptor (P2X7R)/nucleotide binding oligomerization domain-like receptor family pyrin domain containing 3 or inflammasome (NLRP-3)/NF-κB and Notch pathways. In this review, we will show the orchestrated modulation in the pathogenesis of RA via the crossregulation between dysregulated signaling pathways which can mediate a sustained loop of activation for these signaling pathways as well as aggrevate the inflammatory condition. Also, this review will highlight many targets that can be useful in the development of more effective therapeutic options.
Collapse
|
157
|
Xiang H, Guo F, Tao X, Zhou Q, Xia S, Deng D, Li L, Shang D. Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation. Theranostics 2021; 11:4467-4482. [PMID: 33754072 PMCID: PMC7977474 DOI: 10.7150/thno.54245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have proven that the overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also duct cells, however, pancreatic duct contribution in acinar cells homeostasis is poorly known and the molecular mechanisms leading to acinar insult and acute pancreatitis (AP) are unclear. Our previous work also showed that S100A9 protein level was notably increased in AP rat pancreas through iTRAQ-based quantitative proteomic analysis. Therefore, we investigated the actions of injured duct cells on acinar cells and the S100A9-related effects and mechanisms underlying AP pathology in the present paper. Methods: In this study, we constructed S100A9 knockout (s100a9-/-) mice and an in vitro coculture system for pancreatic duct cells and acinar cells. Moreover, a variety of small molecular inhibitors of S100A9 were screened from ChemDiv through molecular docking and virtual screening methods. Results: We found that the upregulation of S100A9 induces cell injury and inflammatory response via NLRP3 activation by targeting VNN1-mediated ROS release; and loss of S100A9 decreases AP injury in vitro and in vivo. Moreover, molecular docking and mutant plasmid experiments proved that S100A9 has a direct interaction with VNN1 through the salt bridges formation of Lys57 and Glu92 residues in S100A9 protein. We further found that compounds C42H60N4O6 and C28H29F3N4O5S can significantly improve AP injury in vitro and in vivo through inhibiting S100A9-VNN1 interaction. Conclusions: Our study showed the important regulatory effect of S100A9 on pancreatic duct injury during AP and revealed that inhibition of the S100A9-VNN1 interaction may be a key therapeutic target for this disease.
Collapse
Affiliation(s)
- Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Shilin Xia
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dawei Deng
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lunxu Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
158
|
Ratajczak MZ, Kucia M. Extracellular Adenosine Triphosphate (eATP) and Its Metabolite, Extracellular Adenosine (eAdo), as Opposing "Yin-Yang" Regulators of Nlrp3 Inflammasome in the Trafficking of Hematopoietic Stem/Progenitor Cells. Front Immunol 2021; 11:603942. [PMID: 33584673 PMCID: PMC7878390 DOI: 10.3389/fimmu.2020.603942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex's actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
159
|
Surabhi S, Cuypers F, Hammerschmidt S, Siemens N. The Role of NLRP3 Inflammasome in Pneumococcal Infections. Front Immunol 2020; 11:614801. [PMID: 33424869 PMCID: PMC7793845 DOI: 10.3389/fimmu.2020.614801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammasomes are innate immune sensors that regulate caspase-1 mediated inflammation in response to environmental, host- and pathogen-derived factors. The NLRP3 inflammasome is highly versatile as it is activated by a diverse range of stimuli. However, excessive or chronic inflammasome activation and subsequent interleukin-1β (IL-1β) release are implicated in the pathogenesis of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and diabetes. Accordingly, inflammasome inhibitor therapy has a therapeutic benefit in these diseases. In contrast, NLRP3 inflammasome is an important defense mechanism against microbial infections. IL-1β antagonizes bacterial invasion and dissemination. Unfortunately, patients receiving IL-1β or inflammasome inhibitors are reported to be at a disproportionate risk to experience invasive bacterial infections including pneumococcal infections. Pneumococci are typical colonizers of immunocompromised individuals and a leading cause of community-acquired pneumonia worldwide. Here, we summarize the current limited knowledge of inflammasome activation in pneumococcal infections of the respiratory tract and how inflammasome inhibition may benefit these infections in immunocompromised patients.
Collapse
Affiliation(s)
| | | | | | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
160
|
PIM2 deletion alleviates lipopolysaccharide (LPS)-induced respiratory distress syndrome (ARDS) by suppressing NLRP3 inflammasome. Biochem Biophys Res Commun 2020; 533:1419-1426. [PMID: 33333710 DOI: 10.1016/j.bbrc.2020.08.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 11/24/2022]
Abstract
Inflammation has an essential role in regulating the pathogenesis of acute respiratory distress syndrome (ARDS). The serine/threonine kinase PIM2 is highly expressed in human macrophages, and exhibits regulatory role in inflammatory response. However, its effect on ARDS progression has not been investigated and still remains unclear. In the study, we attempted to investigate the potential of PIM2 during ARDS progression, and to reveal the underlying molecular mechanisms. Here, we found that PIM2 expression was dramatically up-regulated in lipopolysaccharide (LPS)-exposed murine macrophages through a dose- and time-dependent manner. Additionally, we found that PIM2 knockdown greatly alleviated LPS-triggered activation of Caspase-1, interleukin (IL)-1β, NOD-like receptor pyrin domain 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) in macrophages, along with suppressed inflammatory response. Importantly, we identified that PIM2 could directly interact with NLRP3. PIM2 over-expression could further promote LPS-triggered inflammation and NLRP3 inflammasome in macrophages. Furthermore, PIM2 knockout significantly alleviated the severity of ARDS in LPS-challenged mice. Evidently decreased inflammatory response and NLRP3 inflammasome were detected in pulmonary tissues of LPS-treated mice with PIM2 deficiency. Together, our findings demonstrated that PIM2 as a promising therapeutic target for ARDS treatment through regulating NLRP3 inflammasome.
Collapse
|