151
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
152
|
Feng S, Meng C, Liu Y, Yi Y, Liang A, Zhang Y, Hao Z. Bacillus licheniformis prevents and reduces anxiety-like and depression-like behaviours. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12580-7. [PMID: 37209162 DOI: 10.1007/s00253-023-12580-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
As common mental disorders, depression and anxiety impact people all around the world. Recent studies have found that the gut microbiome plays an important role in mental health. It is becoming possible to treat mental disorders by regulating the composition of the gut microbiota. Bacillus licheniformis is a probiotic used to treat gut diseases through balancing the gut microbiome during lasting years. Considering the role of gut microbiota in the gut-brain axis, this study used chronic unpredictable mild stress (CUMS) model rats to explore whether Bacillus licheniformis can prevent and treat depression and anxiety. We found that B. licheniformis reduced the depressive-like and anxiety-like behaviours of the rats during the CUMS process. Meanwhile, B. licheniformis changed the gut microbiota composition; increased the short chain fatty acids (SCFAs) in the colon, decreased kynurenine, norepinephrine, and glutamate levels; and increased the tryptophan, dopamine, epinephrine, and γ-aminobutyric acid (GABA) in the brain. After correlation analysis, we found Parabacteroides, Anaerostipes, Ruminococcus-2, and Blautia showed significant correlation with neurotransmitters and SCFAs, indicating the gut microbiome plays an important role in B. licheniformis reducing depressive-like behaviours. Therefore, this study suggested B. licheniformis may prevent depressive-like and anxiety-like behaviours while regulating the gut microbiota composition and increasing the SCFA levels in the colon to alter the levels of the neurotransmitters in the brain. KEY POINTS: • B. licheniformis reduced depressive-like and anxiety-like behaviours induced by the chronic unpredictable mild stress. • GABA levels in the brain are assonated with B. licheniformis regulating depressive-like and anxiety-like behaviours. • Gut microbiota composition alteration followed by metabolic changes may play a role in the GABA levels increase.
Collapse
Affiliation(s)
- Siyuan Feng
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chen Meng
- Beijing Institute of Otolaryngology, Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Yiyuan Liu
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
153
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
154
|
Sun J, Zhu Z, Lin Q, Qi S, Li Q, Zhou Y, Li R. Metabolic Engineering of Escherichia coli for the Biosynthesis of 3-Phenylpropionic Acid and 3-Phenylpropyl Acetate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4646-4655. [PMID: 37146254 DOI: 10.1021/acs.jafc.3c00652] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
3-Phenylpropionic acid (3PPA) and its derivative 3-phenylpropyl acetate (3PPAAc) are important aromatic compounds with broad applications in the cosmetics and food industries. In this study, we constructed a plasmid-free 3PPA-producing Escherichia coli strain and designed a novel 3PPAAc biosynthetic pathway. A module containing tyrosine ammonia lyase and enoate reductase, evaluated under the control of different promoters, was combined with phenylalanine-overproducing strain E. coli ATCC31884, enabling the plasmid-free de novo production of 218.16 ± 43.62 mg L-1 3PPA. The feasibility of the pathway was proved by screening four heterologous alcohol acetyltransferases, which catalyzed the transformation of 3-phenylpropyl alcohol into 3PPAAc. Afterward, 94.59 ± 16.25 mg L-1 3PPAAc was achieved in the engineered E. coli strain. Overall, we have not only demonstrated the potential of de novo synthesis of 3PPAAc in microbes for the first time but also provided a platform for the future of biosynthesis of other aromatic compounds.
Collapse
Affiliation(s)
- Jing Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingfang Lin
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Shilian Qi
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qianqian Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
155
|
Li J, Wang J, Wang M, Zheng L, Cen Q, Wang F, Zhu L, Pang R, Zhang A. Bifidobacterium: a probiotic for the prevention and treatment of depression. Front Microbiol 2023; 14:1174800. [PMID: 37234527 PMCID: PMC10205982 DOI: 10.3389/fmicb.2023.1174800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Depression is a common psychological disease, which has become one of the main factors affecting human health. It has a serious impact on individuals, families, and society. With the prevalence of COVID-19, the incidence of depression has further increased worldwide. It has been confirmed that probiotics play a role in preventing and treating depression. Especially, Bifidobacterium is the most widely used probiotic and has positive effects on the treatment of depression. The mechanisms underlying its antidepressant effects might include anti-inflammation and regulation of tryptophan metabolism, 5-hydroxytryptamine synthesis, and the hypothalamus-pituitary-adrenal axis. In this mini-review, the relationship between Bifidobacterium and depression was summarized. It is hoped that Bifidobacterium-related preparations would play a positive role in the prevention and treatment of depression in the future.
Collapse
Affiliation(s)
- Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Junyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meiyu Wang
- Rehabilitation and Wellness Care Centre, Tianfu College of Swufe, Chengdu, China
| | - Li Zheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Qiuyu Cen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Fangfang Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Li Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
156
|
Hao Z, Meng C, Li L, Feng S, Zhu Y, Yang J, Han L, Sun L, Lv W, Figeys D, Liu H. Positive mood-related gut microbiota in a long-term closed environment: a multiomics study based on the "Lunar Palace 365" experiment. MICROBIOME 2023; 11:88. [PMID: 37095530 PMCID: PMC10124008 DOI: 10.1186/s40168-023-01506-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Psychological health risk is one of the most severe and complex risks in manned deep-space exploration and long-term closed environments. Recently, with the in-depth research of the microbiota-gut-brain axis, gut microbiota has been considered a new approach to maintain and improve psychological health. However, the correlation between gut microbiota and psychological changes inside long-term closed environments is still poorly understood. Herein, we used the "Lunar Palace 365" mission, a 1-year-long isolation study in the Lunar Palace 1 (a closed manned Bioregenerative Life Support System facility with excellent performance), to investigate the correlation between gut microbiota and psychological changes, in order to find some new potential psychobiotics to maintain and improve the psychological health of crew members. RESULTS We report some altered gut microbiota that were associated with psychological changes in the long-term closed environment. Four potential psychobiotics (Bacteroides uniformis, Roseburia inulinivorans, Eubacterium rectale, and Faecalibacterium prausnitzii) were identified. On the basis of metagenomic, metaproteomic, and metabolomic analyses, the four potential psychobiotics improved mood mainly through three pathways related to nervous system functions: first, by fermenting dietary fibers, they may produce short-chain fatty acids, such as butyric and propionic acids; second, they may regulate amino acid metabolism pathways of aspartic acid, glutamic acid, tryptophan, etc. (e.g., converting glutamic acid to gamma-aminobutyric acid; converting tryptophan to serotonin, kynurenic acid, or tryptamine); and third, they may regulate other pathways, such as taurine and cortisol metabolism. Furthermore, the results of animal experiments confirmed the positive regulatory effect and mechanism of these potential psychobiotics on mood. CONCLUSIONS These observations reveal that gut microbiota contributed to a robust effect on the maintenance and improvement of mental health in a long-term closed environment. Our findings represent a key step towards a better understanding the role of the gut microbiome in mammalian mental health during space flight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew mental health during future long-term human space expeditions on the moon or Mars. This study also provides an essential reference for future applications of psychobiotics to neuropsychiatric treatments. Video Abstract.
Collapse
Affiliation(s)
- Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- Key Laboratory of Molecular Medicine and Biotherapy, Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chen Meng
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Institute of Otolaryngology, Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Siyuan Feng
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yinzhen Zhu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jianlou Yang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Liangzhe Han
- State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Leilei Sun
- State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Weifeng Lv
- State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
157
|
Mutoh N, Kakiuchi I, Hiraku A, Iwabuchi N, Kiyosawa K, Igarashi K, Tanaka M, Nakamura M, Miyasaka M. Heat-killed Lactobacillus helveticus improves mood states: a randomised, double-blind, placebo-controlled study. Benef Microbes 2023; 14:109-118. [PMID: 37026368 DOI: 10.3920/bm2022.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We investigated the effects of heat-killed Lactobacillus helveticus MCC1848 on daily mood states in healthy young adults. Participants (n=58) were randomised to receive heat-killed L. helveticus MCC1848 powder or placebo powder for 4 weeks. During the study period, adverse events were recorded in the participant diary. Mood states were assessed before and 2 and 4 weeks after initiation of the intervention. The primary outcomes were the shortened version of the Profile of Mood States 2 (POMS 2) scores. Secondary outcomes included other mood state (State-Trait Anxiety Inventory (STAI); visual analogue scale (VAS)), quality of life (acute form of the SF-36v2), sleep (Athens Insomnia Scale (AIS)) and fatigue (Chalder Fatigue Scale (CFS)) scores. Four weeks of heat-killed L. helveticus MCC1848 intake, compared to placebo, significantly improved the shortened version of the POMS 2 'friendliness' and the VAS 'relaxed' scores, which are two indicators of positive mood states. On the other hand, heat-killed L. helveticus MCC1848 intake had no significant effects on negative mood state items (e.g. anger, nervousness, confusion) assessed by the shortened version of the POMS 2, STAI and VAS. AIS and CFS scores also showed no significant differences. No adverse effects were observed with 4 weeks of heat-killed L. helveticus MCC1848 intake. These results suggest that daily consumption of heat-killed L. helveticus MCC1848 is safe and has the potential to improve positive mood states. UMIN Clinical Trial Registry: UMIN000043697.
Collapse
Affiliation(s)
- N Mutoh
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - I Kakiuchi
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| | - A Hiraku
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - N Iwabuchi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - K Kiyosawa
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| | - K Igarashi
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| | - M Tanaka
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - M Nakamura
- Matsumoto City Hospital, 4417-180 Hata, 390-1401 Matsumoto-city, Nagano, Japan
| | - M Miyasaka
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| |
Collapse
|
158
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
159
|
Müller L, Di Benedetto S. Aged brain and neuroimmune responses to COVID-19: post-acute sequelae and modulatory effects of behavioral and nutritional interventions. Immun Ageing 2023; 20:17. [PMID: 37046272 PMCID: PMC10090758 DOI: 10.1186/s12979-023-00341-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Advanced age is one of the significant risk determinants for coronavirus disease 2019 (COVID-19)-related mortality and for long COVID complications. The contributing factors may include the age-related dynamical remodeling of the immune system, known as immunosenescence and chronic low-grade systemic inflammation. Both of these factors may induce an inflammatory milieu in the aged brain and drive the changes in the microenvironment of neurons and microglia, which are characterized by a general condition of chronic inflammation, so-called neuroinflammation. Emerging evidence reveals that the immune privilege in the aging brain may be compromised. Resident brain cells, such as astrocytes, neurons, oligodendrocytes and microglia, but also infiltrating immune cells, such as monocytes, T cells and macrophages participate in the complex intercellular networks and multiple reciprocal interactions. Especially changes in microglia playing a regulatory role in inflammation, contribute to disturbing of the brain homeostasis and to impairments of the neuroimmune responses. Neuroinflammation may trigger structural damage, diminish regeneration, induce neuronal cell death, modulate synaptic remodeling and in this manner negatively interfere with the brain functions.In this review article, we give insights into neuroimmune interactions in the aged brain and highlight the impact of COVID-19 on the functional systems already modulated by immunosenescence and neuroinflammation. We discuss the potential ways of these interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and review proposed neuroimmune mechanisms and biological factors that may contribute to the development of persisting long COVID conditions. We summarize the potential mechanisms responsible for long COVID, including inflammation, autoimmunity, direct virus-mediated cytotoxicity, hypercoagulation, mitochondrial failure, dysbiosis, and the reactivation of other persisting viruses, such as the Cytomegalovirus (CMV). Finally, we discuss the effects of various interventional options that can decrease the propagation of biological, physiological, and psychosocial stressors that are responsible for neuroimmune activation and which may inhibit the triggering of unbalanced inflammatory responses. We highlight the modulatory effects of bioactive nutritional compounds along with the multimodal benefits of behavioral interventions and moderate exercise, which can be applied as postinfectious interventions in order to improve brain health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
160
|
Yeramilli V, Cheddadi R, Shah J, Brawner K, Martin C. A Review of the Impact of Maternal Prenatal Stress on Offspring Microbiota and Metabolites. Metabolites 2023; 13:metabo13040535. [PMID: 37110193 PMCID: PMC10142778 DOI: 10.3390/metabo13040535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal prenatal stress exposure affects the development of offspring. We searched for articles in the PubMed database and reviewed the evidence for how prenatal stress alters the composition of the microbiome, the production of microbial-derived metabolites, and regulates microbiome-induced behavioral changes in the offspring. The gut-brain signaling axis has gained considerable attention in recent years and provides insights into the microbial dysfunction in several metabolic disorders. Here, we reviewed evidence from human studies and animal models to discuss how maternal stress can modulate the offspring microbiome. We will discuss how probiotic supplementation has a profound effect on the stress response, the production of short chain fatty acids (SCFAs), and how psychobiotics are emerging as novel therapeutic targets. Finally, we highlight the potential molecular mechanisms by which the effects of stress are transmitted to the offspring and discuss how the mitigation of early-life stress as a risk factor can improve the birth outcomes.
Collapse
Affiliation(s)
- Venkata Yeramilli
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Riadh Cheddadi
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Juhi Shah
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
| | - Kyle Brawner
- Department of Biology, Lipscomb University, Nashville, TN 37204, USA
| | - Colin Martin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
161
|
Dehghani MH, Saghafi F, Bordbari Z, Zare-Kamali J, Jafari-Nedooshan J, Sahebnasagh A. Investigating the effect of oral synbiotic on enteral feeding tolerance in critically ill patients: A double-blinded controlled clinical trial of gut microbiota. Nutr Clin Pract 2023; 38:402-410. [PMID: 35809224 DOI: 10.1002/ncp.10895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Probiotics are beneficial live microorganisms that can modify the gut microbiota. It is assumed that they help improve enteral feeding intolerance (EFI) and nosocomial infections in critically ill patients. The present clinical trial aimed to investigate the efficacy of synbiotics in improving EFI and oropharyngeal aspiration in patients admitted to the intensive care unit (ICU). METHODS This randomized clinical trial was conducted on 105 critically ill patients admitted to the ICU of a tertiary referral hospital affiliated with a medical university. The patients were randomly assigned to either a synbiotic or control group and underwent 7 days of investigation. The primary end point was reduced gastric residual volume, which is suggestive of an improvement in EFI. The secondary end point included requirement for prokinetics, frequency of aspiration, duration of mechanical ventilation, length of ICU stay, and level of consciousness. RESULTS The present clinical trial showed that synbiotic intervention has resulted in a significantly diminished requirement for prokinetics (P = 0.019), fewer oropharyngeal aspirations (P = 0.01), improved volume of bolus administration, and decreased gastric residual volume during the 7-day follow-up period. The patients who received synbiotic had an improved level of consciousness (P = 0.01). CONCLUSION This clinical trial showed that the prescription of synbiotic from the initial days of enteral feeding has resulted in a significantly diminished requirement for prokinetics, less oropharyngeal aspiration, decreased gastric residual volume, improved volume of bolus administration, and hence, better tolerance of enteral feeding.
Collapse
Affiliation(s)
- Mohammad Hossein Dehghani
- Department of Anesthesiology and Critical Care, Shahid Rahnemoun Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Bordbari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Zare-Kamali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamal Jafari-Nedooshan
- Department of Surgery, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, School of Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
162
|
Ma YF, Lin YA, Huang CL, Hsu CC, Wang S, Yeh SR, Tsai YC. Lactiplantibacillus plantarum PS128 Alleviates Exaggerated Cortical Beta Oscillations and Motor Deficits in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. Probiotics Antimicrob Proteins 2023; 15:312-325. [PMID: 34449056 DOI: 10.1007/s12602-021-09828-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by midbrain dopaminergic neuronal loss and subsequent physical impairments. Levodopa manages symptoms best, while deep brain stimulation (DBS) is effective for advanced PD patients; however, side effects occur with the diminishing therapeutic window. Recently, Lactiplantibacillus plantarum PS128 (PS128) was found to elevate dopamine levels in rodent brains, suggesting its potential to prevent PD. Here, the therapeutic efficacy of PS128 was examined in the 6-hydroxydopamine rat PD model. Suppression of the power spectral density of beta oscillations (beta PSD) in the primary motor cortex (M1) was recorded as the indicator of disease progression. We found that 6 weeks of daily PS128 supplementation suppressed M1 beta PSD as well as did levodopa and DBS. Long-term normalization of M1 beta PSD was found in PS128-fed rats, whereas levodopa and DBS showed only temporal effects. PS128 + levodopa and PS128 + DBS exhibited better therapeutic effects than did levodopa + DBS or either alone. Significantly improved motor functions in PS128-fed rats were correlated with normalization of M1 beta PSD. Brain tissue analyses further demonstrated the role of PS128 in dopaminergic neuroprotection and the enhanced availability of neurotransmitters. These findings suggest that psychobiotic PS128 might be used alongside conventional therapies to treat PD patients.
Collapse
Affiliation(s)
- Yi-Fan Ma
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Microbiome Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yi-An Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- EzInstrument Technology Co., Ltd., Hsinchu, 300, Taiwan
| | - Chin-Lin Huang
- Microbiome Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Bened Biomedical Co., Ltd., Taipei, 104, Taiwan
| | | | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Shih-Rung Yeh
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan.
| | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Microbiome Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
163
|
Morales-Torres R, Carrasco-Gubernatis C, Grasso-Cladera A, Cosmelli D, Parada FJ, Palacios-García I. Psychobiotic Effects on Anxiety Are Modulated by Lifestyle Behaviors: A Randomized Placebo-Controlled Trial on Healthy Adults. Nutrients 2023; 15:nu15071706. [PMID: 37049546 PMCID: PMC10096963 DOI: 10.3390/nu15071706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Psychobiotics are modulators of the Microbiota-Gut-Brain Axis (MGBA) with promising benefits to mental health. Lifestyle behaviors are established modulators of both mental health and the MGBA. This randomized placebo-controlled clinical trial (NCT04823533) on healthy adults (N = 135) tested 4 weeks of probiotic supplementation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175). We assessed effects on wellbeing, quality of life, emotional regulation, anxiety, mindfulness and interoceptive awareness. We then analyzed if lifestyle behaviors modulated probiotic effectiveness. Results showed no significant effects of probiotic intake in whole sample outcomes. Correlational analyses revealed Healthy Behaviors were significantly correlated with wellbeing across scales. Moreover, the linear mixed-effects model showed that the interaction between high scores in Healthy Behaviors and probiotic intake was the single significant predictor of positive effects on anxiety, emotional regulation, and mindfulness in post-treatment outcomes. These findings highlight the relevance of controlling for lifestyle behaviors in psychobiotic and mental health research.
Collapse
|
164
|
Tyagi A, Chen X, Shan L, Yan P, Chelliah R, Oh DH. Whole-genome analysis of gamma-aminobutyric acid producing Psychobiotic Limosilactobacillus reuteri with its Untargeted metabolomics using UHPLC-Q-Tof MS/MS. Gene 2023; 858:147195. [PMID: 36641079 DOI: 10.1016/j.gene.2023.147195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The gamma amino butyric acid (GABA) is a chemical messenger and is essential for the health of the brain and muscles. Some lactic acid bacteria (LAB) have the potential to function as psychobiotic cultures because they can produce significant amounts of neuroactive compounds like GABA. Psychobiotics are known to alter bidirectional communication between the gastrointestinal tract and the central nervous system. In the present study, the Limosilactobacillus reuteri (L. reuteri) strain, isolated from human breast milk, was used to detect the GABA-producing glutamic acid decarboxylase (gad) gene and GABA production. PCR, HPLC and UHPLCQ-TOF-MS2 approaches were applied to identify the gad gene, GABA content, and bioactive compounds produced by the bacterial strain, respectively. Additionally, the whole genome was sequenced to better understand the strain's psychobiotic and technological genomic properties. The gadB and gadC genes were confirmed in plasmid 1 of the whole genome. The complete genome sequence of L. reuteri comprises the genome length of 2,087,202 bp with 51.6 percent of G + C content. The results indicate that L. reuteri can be used as a starter culture for the production of GABA-enriched functional foods as well as psychobiotics for health benefits.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Xiuqin Chen
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Lingyue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, South Korea; Saveetha School of Engineering, (SIMATS) University, Saveetha Nagar, Sriperumbudur, Tamil Nadu 600124, India.
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
165
|
Hinchado MD, Quero-Calero CD, Otero E, Gálvez I, Ortega E. Synbiotic Supplementation Improves Quality of Life and Inmunoneuroendocrine Response in Patients with Fibromyalgia: Influence of Codiagnosis with Chronic Fatigue Syndrome. Nutrients 2023; 15:nu15071591. [PMID: 37049432 PMCID: PMC10097287 DOI: 10.3390/nu15071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Fibromyalgia (FM) and chronic fatigue syndrome (CFS) are two medical conditions in which pain, fatigue, immune/inflammatory dysregulation, as well as various mental health disorders predominate in the diagnosis, without evidence of a clear consensus on the treatment of FM and CFS. The main aim of this research was to analyse the possible effects of a synbiotic (Synbiotic, Gasteel Plus® (Heel España S.A.U.), through the study of pro-inflammatory/anti-inflammatory cytokines (IL-8/IL-10) and neuroendocrine biomarkers (cortisol and DHEA), in order to evaluate the interaction between inflammatory and stress responses mediated by the cytokine-HPA (hypothalamic-pituitary-adrenal) axis, as well as mental and physical health using body composition analysis, accelerometry and previously validated questionnaires. The participants were women diagnosed with FM with or without a diagnostic of CFS. Each participant was evaluated at baseline and after the intervention, which lasted one month. Synbiotic intervention decreased levels of perceived stress, anxiety and depression, as well as improved quality of life during daily activities. In addition, the synbiotic generated an activation of HPA axis (physiological cortisol release) that can compensate the increased inflammatory status (elevated IL-8) observed at baseline in FM patients. There were no detrimental changes in body composition or sleep parameters, as well as in the most of the activity/sedentarism-related parameters studied by accelerometry. It is concluded that synbiotic nutritional supplements can improve the dysregulated immunoneuroendocrine interaction involving inflammatory and stress responses in women diagnosed with FM, particularly in those without a previous CFS diagnostic; as well as their perceived of levels stress, anxiety, depression and quality of life.
Collapse
|
166
|
De Oliveira FL, Salgaço MK, de Oliveira MT, Mesa V, Sartoratto A, Peregrino AM, Ramos WS, Sivieri K. Exploring the Potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as Promising Psychobiotics Using SHIME. Nutrients 2023; 15:nu15061521. [PMID: 36986251 PMCID: PMC10056475 DOI: 10.3390/nu15061521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Psychobiotics are probiotics that have the characteristics of modulating central nervous system (CNS) functions or reconciled actions by the gut-brain axis (GBA) through neural, humoral and metabolic pathways to improve gastrointestinal activity as well as anxiolytic and even antidepressant abilities. The aim of this work was to evaluate the effect of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the gut microbiota of mildly anxious adults using SHIME®. The protocol included a one-week control period and two weeks of treatment with L. helveticus R0052 and B. longum R0175. Ammonia (NH4+), short chain fatty acids (SCFAs), gamma-aminobutyric acid (GABA), cytokines and microbiota composition were determined. Probiotic strains decreased significantly throughout the gastric phase. The highest survival rates were exhibited by L. helveticus R0052 (81.58%; 77.22%) after the gastric and intestinal phase when compared to B. longum (68.80%; 64.64%). At the genus level, a taxonomic assignment performed in the ascending colon in the SHIME® model showed that probiotics (7 and 14 days) significantly (p < 0.005) increased the abundance of Lactobacillus and Olsenella and significantly decreased Lachnospira and Escheria-Shigella. The probiotic treatment (7 and 14 days) decreased (p < 0.001) NH4+ production when compared to the control period. For SCFAs, we observed after probiotic treatment (14 days) an increase (p < 0.001) in acetic acid production and total SCFAs when compared to the control period. Probiotic treatment increased (p < 0.001) the secretion of anti-inflammatory (IL-6 and IL-10) and decreased (p < 0.001) pro-inflammatory cytokines (TNF-alpha) when compared to the control period. The gut-brain axis plays an important role in the gut microbiota, producing SCFAs and GABA, stimulating the production of anti-anxiety homeostasis. The signature of the microbiota in anxiety disorders provides a promising direction for the prevention of mental illness and opens a new perspective for using the psychobiotic as a main actor of therapeutic targets.
Collapse
Affiliation(s)
- Fellipe Lopes De Oliveira
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | | | - Victoria Mesa
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | | | - Williams Santos Ramos
- APSEN Farmacêutica, Department of Medical Affairs, Santo Amaro 04753-001, SP, Brazil
| | - Katia Sivieri
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
- University of Araraquara-UNIARA, Araraquara 14801-320, SP, Brazil
| |
Collapse
|
167
|
Zheng R, Shi S, Zhang Q, Yuan S, Guo T, Guo J, Jiang P. Molecular mechanisms of Huanglian Jiedu decoction in treating Alzheimer’s disease by regulating microbiome via network pharmacology and molecular docking analysis. Front Cell Infect Microbiol 2023; 13:1140945. [PMID: 37009506 PMCID: PMC10060893 DOI: 10.3389/fcimb.2023.1140945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundHuanglian Jiedu decoction (HLJDD) is a famous traditional Chinese medicine prescription, which is widely used in the treatment of Alzheimer’s disease (AD). However, the interaction between bioactive substances in HLJDD and AD-related targets has not been well elucidated.AimA network pharmacology-based approach combined with molecular docking was performed to determine the bioactives, key targets, and potential pharmacological mechanism of HLJDD against AD, through the regulation of microbial flora.Materials and methodsBioactives and potential targets of HLJDD, as well as AD-related targets, were retrieved from Traditional Chinese Medicine Systems Pharmacology Analysis Database (TCMSP). Key bioactive components, potential targets, and signaling pathways were obtained through bioinformatics analysis, including protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was performed to predict the binding of active compounds with core targets.Results102 bioactive ingredients of HLJDD and 76 HLJDD-AD-related targets were screened. Bioinformatics analysis revealed that kaempferol, wogonin, beta-sitosterol, baicalein, acacetin, isocorypalmine, (S)-canadine, (R)-canadine may be potential candidate agents. AKT1, TNF, TP53, VEGFA, FOS, PTGS2, MMP9 and CASP3 could become potential therapeutic targets. 15 important signaling pathways including the cancer pathway, VEGF signaling pathway, and NF-κB signaling pathway might play an important role in HLJDD against AD. Moreover, molecular docking analysis suggested that kaempferol, wogonin, beta-sitosterol, baicalein, acacetin, isocorypalmine, (S)-canadine, and (R)-canadine combined well with AKT1, TNF, TP53, VEGFA, FOS, PTGS2, MMP9, CASP3, respectively.ConclusionOur results comprehensively illustrated the bioactives, potential targets, and possible molecular mechanisms of HLJDD against AD. HLJDD may regulate the microbiota flora homeostasis to treat AD through multiple targets and multiple pathways. It also provided a promising strategy for the use of traditional Chinese medicine in treating human diseases.
Collapse
Affiliation(s)
- Renyuan Zheng
- Sichuan Key Laboratory of Noncoding RNA and Drugs, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shenggan Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Zhang
- Sichuan Key Laboratory of Noncoding RNA and Drugs, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shuqin Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tong Guo
- Sichuan Key Laboratory of Noncoding RNA and Drugs, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peidu Jiang, ; Jinlin Guo,
| | - Peidu Jiang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Peidu Jiang, ; Jinlin Guo,
| |
Collapse
|
168
|
He X, Liu W, Tang F, Chen X, Song G. Effects of Probiotics on Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis of Clinical Trials. Nutrients 2023; 15:nu15061415. [PMID: 36986145 PMCID: PMC10054498 DOI: 10.3390/nu15061415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Many studies have explored the efficacy of probiotics on autism spectrum disorder (ASD) in children, but there is no consensus on the curative effect. This systematic review and meta-analysis aimed to comprehensively investigate whether probiotics could improve behavioral symptoms in children with ASD. A systematic database search was conducted and a total of seven studies were included in the meta-analysis. We found a nonsignificant overall effect size of probiotics on behavioral symptoms in children with ASD (SMD = −0.24, 95% CI: −0.60 to 0.11, p = 0.18). However, a significant overall effect size was found in the subgroup of the probiotic blend (SMD = −0.42, 95% CI: −0.83 to −0.02, p = 0.04). Additionally, these studies provided limited evidence for the efficacy of probiotics due to their small sample sizes, a shorter intervention duration, different probiotics used, different scales used, and poor research quality. Thus, randomized, double-blind, and placebo-controlled studies following strict trial guidelines are needed to precisely demonstrate the therapeutic effects of probiotics on ASD in children.
Collapse
Affiliation(s)
- Xiao He
- Department of Health Statistics, School of Public Health, Dalian Medical University, No. 9 South Road, Lvshun District, Dalian 116044, China; (X.H.); (W.L.); (F.T.)
| | - Wenxi Liu
- Department of Health Statistics, School of Public Health, Dalian Medical University, No. 9 South Road, Lvshun District, Dalian 116044, China; (X.H.); (W.L.); (F.T.)
| | - Fengrao Tang
- Department of Health Statistics, School of Public Health, Dalian Medical University, No. 9 South Road, Lvshun District, Dalian 116044, China; (X.H.); (W.L.); (F.T.)
| | - Xin Chen
- Department of Epidemiology, School of Public Health, Dalian Medical University, No. 9 South Road, Lvshun District, Dalian 116044, China;
| | - Guirong Song
- Department of Health Statistics, School of Public Health, Dalian Medical University, No. 9 South Road, Lvshun District, Dalian 116044, China; (X.H.); (W.L.); (F.T.)
- Correspondence:
| |
Collapse
|
169
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
170
|
Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology. Microb Pathog 2023; 178:106063. [PMID: 36893903 DOI: 10.1016/j.micpath.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/03/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.
Collapse
|
171
|
Tang H, Huang W, Yao YF. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:49-62. [PMID: 36908281 PMCID: PMC9993431 DOI: 10.15698/mic2023.03.792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous microorganisms that can colonize the intestine and participate in the physiological metabolism of the host. LAB can produce a variety of metabolites, including organic acids, bacteriocin, amino acids, exopolysaccharides and vitamins. These metabolites are the basis of LAB function and have a profound impact on host health. The intestine is colonized by a large number of gut microorganisms with high species diversity. Metabolites of LAB can keep the balance and stability of gut microbiota through aiding in the maintenance of the intestinal epithelial barrier, resisting to pathogens and regulating immune responses, which further influence the nutrition, metabolism and behavior of the host. In this review, we summarize the metabolites of LAB and their influence on the intestine. We also discuss the underlying regulatory mechanisms and emphasize the link between LAB and the human gut from the perspective of health promotion.
Collapse
Affiliation(s)
- Huang Tang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China
| |
Collapse
|
172
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
173
|
Lai CCW, Boag S. The association between gut-health promoting diet and depression: A mediation analysis. J Affect Disord 2023; 324:136-142. [PMID: 36586592 DOI: 10.1016/j.jad.2022.12.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Recent research has highlighted the relevance of a gut-health promoting diet as a possible treatment and prevention for depression. A dietary pattern with consumption of fermented food and high consumption of dietary fiber can promote gut health, physical health, and might even improve mental health. This study aimed to investigate the interrelationship among diet, physical health, and depression. METHODS This study used a nationally representative sample (N = 16,572) from the National Health and Nutrition Examination Survey (2011-2018). Dietary information was collected by dietary recall interviews. Depression was assessed by the 9-item Patient Health Questionnaire. Subjective physical health was indicated by self-reported Body Mass Index (BMI). Objective physical health was indicated by BMI measured by trained health technicians. Path analysis was used to test the association between diet and depression, and the mediating roles of self-reported BMI and BMI measured by technicians. RESULTS Consumption of probiotic foods and higher intake of fiber were significantly associated with lower levels of depressive symptoms. Both subjective and objective physical health significantly mediated the relationship between variables of diet and mild depressive symptoms. Subjective physical health also significantly mediated the relationship between high intake of dietary fiber and lower likelihood of reporting severe depressive symptoms. CONCLUSION Despite being cross-sectional in nature, this study presented evidence that gut-health promoting diets may reduce depressive symptoms through improving physical health. These findings provide preliminary support to diet programs for preventing depression and diet programs as an alternative or supplementary treatment of depression.
Collapse
Affiliation(s)
- Catie Chun Wan Lai
- School of Psychological Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Simon Boag
- School of Psychological Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
174
|
Sharma N, Kang DK, Paik HD, Park YS. Beyond probiotics: a narrative review on an era of revolution. Food Sci Biotechnol 2023; 32:413-421. [PMID: 36911329 PMCID: PMC9992473 DOI: 10.1007/s10068-022-01212-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Whether knowingly or unknowingly, humans have been consuming probiotic microorganisms through traditionally fermented foods for generations. Bacteria, like lactic acid bacteria, are generally thought to be harmless and produce many metabolites that are beneficial for human health. Probiotics offer a wide range of health benefits; however, their therapeutic usage is limited because they are living organisms. As a result, the focus on the health advantages of microbes has recently shifted from viable live probiotics to non-viable microbes made from probiotics. These newly emerging non-viable microbes include paraprobiotics, postbiotics, psychobiotics, nutribiotics, and gerobiotics. Their metabolites can boost physiological health and reveal the therapeutic effects of probiotics. This new terminology in microbes, their traits, and their applications are summarized in the present review.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
175
|
Kazem YI, Mahmoud MH, Essa HA, Azmy O, Kandeel WA, Al-Moghazy M, El-Attar I, Hasheesh A, Mehanna NS. Role of Bifidobacterium spp. intake in improving depressive mood and well-being and its link to kynurenine blood level: an interventional study. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:223-232. [PMID: 34758244 DOI: 10.1515/jcim-2021-0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Evidence for the contribution of the brain-gut-microbiota axis to the depression pathophysiology is increasing nowadays. Disturbed gut microbiota equilibrium along with bad dietary habits both lead to kynurenine pathway abnormalities contributing to the depression pathophysiology. In this respect, many studies are found but the interventional clinical trials are limited. The present interventional study aims to evaluate the impact of Bifidobacterium spp. supplementation together with improving dietary intake on depressive mood and well-being and their correlation with kynurenine blood level in adult Egyptian healthy volunteers. METHODS A number of 98 healthy female volunteers with a mean age of 46.96 ± 1.82 years were selected and enrolled in this study. They were given yogurt enriched with Bifidobacterium spp. daily for eight weeks. Clinical examination as well as questionnaires for the evaluation of psychological well-being and depression were done at base line and after eight weeks of intervention. Fasting blood samples and stool samples were collected from all subjects at baseline and eight weeks after the intervention for the investigation of serum kynurenine concentration, blood hemoglobin, serum transaminases (ALT & AST) serum urea and creatinine as well as fecal Bifidobacterium count. RESULTS Data revealed that both depression and well-being showed highly significant improvement combined with significant drop in kynurenine blood level after intervention. Also, a significant rise in fecal Bifidobacterium count and a significant improvement in hemoglobin level and activity of liver enzymes were recorded. After intervention, a significant negative correlation was recorded between depression and fecal Bifidobacterium count as well as between serum kynurenine level, and well-being. CONCLUSION Bifidobacterium spp. supplementation combined with improvement in dietary intake resulted in improvement of depressive mood and well-being and reduced kynurenine blood level.
Collapse
Affiliation(s)
- Yusr I Kazem
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Maha H Mahmoud
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Hend A Essa
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Osama Azmy
- Reproductive Health & Family Planning Department, Medical Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | | | - Marwa Al-Moghazy
- Dairy Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | | | - Adel Hasheesh
- Children with Special Needs Department, Institute of Human Genetics and Genome Research, National Research Centre, Dokki, Cairo, Egypt
| | - Nayra S Mehanna
- Dairy Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
176
|
Breit S, Mazza E, Poletti S, Benedetti F. White matter integrity and pro-inflammatory cytokines as predictors of antidepressant response in MDD. J Psychiatr Res 2023; 159:22-32. [PMID: 36657311 DOI: 10.1016/j.jpsychires.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a multifactorial, serious and heterogeneous mental disorder that can lead to chronic recurrent symptoms, treatment resistance and suicidal behavior. MDD often involves immune dysregulation with high peripheral levels of inflammatory cytokines that might have an influence on the clinical course and treatment response. Moreover, patients with MDD show brain volume changes as well as white matter (WM) alterations that are already existing in the early stage of illness. Mounting evidence suggests that both neuroimaging markers, such as WM integrity and blood markers, such as inflammatory cytokines might serve as predictors of treatment response in MDD. However, the relationship between peripheral inflammation, WM structure and antidepressant response is not yet clearly understood. The aim of the present review is to elucidate the association between inflammation and WM integrity and its impact on the pathophysiology and progression of MDD as well as the role of possible novel biomarkers of treatment response to improve MDD prevention and treatment strategies.
Collapse
Affiliation(s)
- Sigrid Breit
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Elena Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
177
|
Carbia C, Bastiaanssen TFS, Iannone LF, García-Cabrerizo R, Boscaini S, Berding K, Strain CR, Clarke G, Stanton C, Dinan TG, Cryan JF. The Microbiome-Gut-Brain axis regulates social cognition & craving in young binge drinkers. EBioMedicine 2023; 89:104442. [PMID: 36739238 PMCID: PMC10025767 DOI: 10.1016/j.ebiom.2023.104442] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Binge drinking is the consumption of an excessive amount of alcohol in a short period of time. This pattern of consumption is highly prevalent during the crucial developmental period of adolescence. Recently, the severity of alcohol use disorders (AUDs) has been linked with microbiome alterations suggesting a role for the gut microbiome in its development. Furthermore, a strong link has emerged too between microbiome composition and socio-emotional functioning across different disorders including AUD. The aim of this study was to investigate the potential link (and its predictive value) between alcohol-related altered microbial profile, social cognition, impulsivity and craving. METHODS Young people (N = 71) aged 18-25 reported their alcohol use and underwent a neuropsychological evaluation. Craving was measured at baseline and three months later. Diet was controlled for. Blood, saliva and hair samples were taken for inflammatory, kynurenine and cortisol analysis. Stool samples were provided for shotgun metagenomic sequencing and short-chain fatty acids (SCFAs) were measured. FINDINGS Binge drinking was associated with distinct microbiome alterations and emotional recognition difficulties. Associations were found for several microbiome species with emotional processing and impulsivity. Craving showed a strong link with alterations in microbiome composition and neuroactive potential over time. INTERPRETATION In conclusion, this research demonstrates alterations in the gut microbiome of young binge drinkers (BDs) and identifies early biomarkers of craving. Associations between emotional processing and microbiome composition further support the growing literature on the gut microbiome as a regulator of social cognition. These findings are of relevance for new gut-derived interventions directed at improving early alcohol-related alterations during the vulnerability period of adolescence. FUNDING C.C. and R.G-C. received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754535. APC Microbiome Ireland is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan [grant no. SFI/12/RC/2273_P2]. J.F.C has research support from Cremo, Pharmavite, DuPont and Nutricia. He has spoken at meetings sponsored by food and pharmaceutical companies. G.C. has received honoraria from Janssen, Probi, and Apsen as an invited speaker; is in receipt of research funding from Pharmavite, Fonterra, Nestle and Reckitt; and is a paid consultant for Yakult, Zentiva and Heel pharmaceuticals. All the authors declare no competing interests.
Collapse
Affiliation(s)
- Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | | | | | | | - Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
178
|
Bifidobacterium lactis Probio-M8 improves bone metabolism in patients with postmenopausal osteoporosis, possibly by modulating the gut microbiota. Eur J Nutr 2023; 62:965-976. [PMID: 36334119 DOI: 10.1007/s00394-022-03042-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Postmenopausal osteoporosis (PMO) is usually managed by conventional drug treatment. However, prolonged use of these drugs cause side effects. Gut microbiota may be a potential target for treatment of PMO. This work was a three-month intervention trial aiming to evaluate the added effect of probiotics as adjunctive treatment for PMO. METHODS Forty patients with PMO were randomized into probiotic (n = 20; received Bifidobacterium animalis subsp. lactis Probio-M8 [Probio-M8], calcium, calcitriol) and placebo (n = 20; received placebo material, calcium, calcitriol) groups. The bone mineral density of patients was measured at month 0 (0 M; baseline) and month 3 (3 M; after three-month intervention). Blood and fecal samples were collected 0 M and 3 M. Only 15 and 12 patients from Probio-M8 and placebo groups, respectively, provided complete fecal samples for gut microbiota analysis. RESULTS No significant change was observed in the bone mineral density of patients at 3 M. Co-administering Probio-M8 improved the bone metabolism, reflected by an increased vitamin D3 level and decreased PTH and procalcitonin levels in serum at 3 M. Fecal metagenomic analysis revealed modest changes in the gut microbiome in both groups at 3 M. Interestingly, Probio-M8 co-administration affected the gut microbial interactive correlation network, particularly the short-chain fatty acid-producing bacteria. Probio-M8 co-administration significantly increased genes encoding some carbohydrate metabolism pathways (including ABC transporters, the phosphotransferase system, and fructose and mannose metabolism) and a choline-phosphate cytidylyltransferase. CONCLUSIONS Co-administering Probio-M8 with conventional drugs/supplements was more efficacious than conventional drugs/supplements alone in managing PMO. Our study shed insights into the beneficial mechanism of probiotic adjunctive treatment. REGISTRATION NUMBER OF CLINICAL TRIAL Chinese Clinical Trial Registry (identifier number: ChiCTR1800019268).
Collapse
|
179
|
Olorocisimo JP, Diaz LA, Co DE, Carag HM, Ibana JA, Velarde MC. Lactobacillus delbrueckii reduces anxiety-like behavior in zebrafish through a gut microbiome - brain crosstalk. Neuropharmacology 2023; 225:109401. [PMID: 36565853 DOI: 10.1016/j.neuropharm.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Certain bacteria possess the ability to reduce anxiety- and stress-related behaviors through the gut microbiome-brain axis. Such bacteria are called psychobiotics, and can be used to improve mood and cognition. However, only a few bacteria have been characterized as psychobiotics, and their exact mechanism of action remains unclear. Hence, in this study we analyzed three different species under the Lactobacillacea family, namely, Lactobacillus delbrueckii, Lacticaseibacillus casei, and Lacticaseibacillus paracasei for their potential psychobiotic activities. L. delbrueckii treatment reduced anxiety-like behavior and increased brain and gut glutamic acid decarboxylase (gad) gene expression in zebrafish. It also altered zebrafish gut microbial community as determined by PCR-DGGE and 16S rRNA-based metagenomics analysis. Overall, this paper showed that L. delbrueckii but not L. paracasei and L. casei, induced a consistent improvement in anxiety-like behavior in zebrafish, implicating its potential role as a psychobiotic to reduce anxiety. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
Affiliation(s)
- Joshua P Olorocisimo
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Leomir A Diaz
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines; Career Incentive Program Scholarship Division, Science Education Institute, Department of Science and Technology, Bicutan Taguig City, Philippines.
| | - Daniel E Co
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Harold M Carag
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Joyce A Ibana
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| |
Collapse
|
180
|
Freijy TM, Cribb L, Oliver G, Metri NJ, Opie RS, Jacka FN, Hawrelak JA, Rucklidge JJ, Ng CH, Sarris J. Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The "Gut Feelings" randomised controlled trial. Front Neurosci 2023; 16:1097278. [PMID: 36815026 PMCID: PMC9940791 DOI: 10.3389/fnins.2022.1097278] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
Background Preliminary evidence supports the use of dietary interventions and gut microbiota-targeted interventions such as probiotic or prebiotic supplementation for improving mental health. We report on the first randomised controlled trial (RCT) to examine the effects of a high-prebiotic dietary intervention and probiotic supplements on mental health. Methods "Gut Feelings" was an 8-week, 2 × 2 factorial RCT of 119 adults with moderate psychological distress and low prebiotic food intake. Treatment arms: (1) probiotic supplement and diet-as-usual (probiotic group); (2) high-prebiotic diet and placebo supplement (prebiotic diet group); (3) probiotic supplement and high-prebiotic diet (synbiotic group); and (4) placebo supplement and diet-as-usual (placebo group). The primary outcome was assessment of total mood disturbance (TMD; Profile of Mood States Short Form) from baseline to 8 weeks. Secondary outcomes included anxiety, depression, stress, sleep, and wellbeing measures. Results A modified intention-to-treat analysis using linear mixed effects models revealed that the prebiotic diet reduced TMD relative to placebo at 8 weeks [Cohen's d = -0.60, 95% confidence interval (CI) = -1.18, -0.03; p = 0.039]. There was no evidence of symptom improvement from the probiotic (d = -0.19, 95% CI = -0.75, 0.38; p = 0.51) or synbiotic treatments (d = -0.03, 95% CI = -0.59, 0.53; p = 0.92). Improved anxiety, stress, and sleep were noted in response to the prebiotic diet while the probiotic tentatively improved wellbeing, relative to placebo. No benefit was found in response to the synbiotic intervention. All treatments were well tolerated with few adverse events. Conclusion A high-prebiotic dietary intervention may improve mood, anxiety, stress, and sleep in adults with moderate psychological distress and low prebiotic intake. A synbiotic combination of high-prebiotic diet and probiotic supplement does not appear to have a beneficial effect on mental health outcomes, though further evidence is required. Results are limited by the relatively small sample size. Clinical trial registration https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372753, identifier ACTRN12617000795392.
Collapse
Affiliation(s)
- Tanya M. Freijy
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lachlan Cribb
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Georgina Oliver
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Rachelle S. Opie
- IPAN, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Felice N. Jacka
- School of Medicine, Food and Mood Centre, IMPACT Strategic Research Centre, Deakin University, Melbourne, VIC, Australia,Centre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC, Australia,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, OLD, Australia
| | - Jason A. Hawrelak
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia,Human Nutrition and Functional Medicine Department, University of Western States, Portland, OR, United States
| | - Julia J. Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia,*Correspondence: Jerome Sarris,
| |
Collapse
|
181
|
Fermented dairy foods consumption and depressive symptoms: A meta-analysis of cohort studies. PLoS One 2023; 18:e0281346. [PMID: 36745637 PMCID: PMC9901789 DOI: 10.1371/journal.pone.0281346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The gut-brain axis has been potentially proposed as a link between the intake of fermented dairy foods and depression. We carried out this meta-analysis on published cohort studies to estimate the overall depression risk of fermented dairy foods intake. METHODS We searched the CNKI (China National Knowledge Infrastructure) and PubMed databases for all articles within a range of published years from 2010 to 2022 on the association between fermented dairy foods intake and depression. RESULTS Finally, 8 studies met the inclusion criteria for this study, with 83,533 participants. Overall, there was statistical evidence of significantly decreased depression risk was found to be associated with fermented dairy foods intake (OR = 0.89, 95% CI = 0.81-0.98). In subgroup analysis, cheese and yogurt consumptions were significantly associated with decreased depression risk (OR = 0.91, 95% CI = 0.84-0.98 for cheese and OR = 0. 84, 95% CI = 0.72-0.99 for yogurt). However, we failed to find superabundant intake of fermented dairy foods intake decreased the risk of depression. CONCLUSION Our meta-analysis indicated that fermented dairy foods intake may have potential beneficial effect on depression via the gut-brain axis.
Collapse
|
182
|
Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J Neuroinflammation 2023; 20:23. [PMID: 36737776 PMCID: PMC9896737 DOI: 10.1186/s12974-023-02693-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays an important role in the development of depression. The aim of this study was to investigate the effects of 5-HT on cognitive function, learning and memory induced by chronic unforeseeable mild stress stimulation (CUMS) in female mice. CUMS mice and TPH2 KO mice were used in the study. Lactococcus lactis E001-B-8 fungus powder was orally administered to mice with CUMS. METHODS We used the open field test, Morris water maze, tail suspension test and sucrose preference test to examine learning-related behaviours. In addition, AB-PAS staining, immunofluorescence, ELISA, qPCR, Western blotting and microbial sequencing were employed to address our hypotheses. RESULTS The effect of CUMS was more obvious in female mice than in male mice. Compared with female CUMS mice, extracellular serotonin levels in TPH2 KO CUMS mice were significantly reduced, and cognitive dysfunction was aggravated. Increased hippocampal autophagy levels, decreased neurotransmitter levels, reduced oxidative stress damage, increased neuroinflammatory responses and disrupted gut flora were observed. Moreover, L. lactis E001-B-8 significantly improved the cognitive behaviour of mice. CONCLUSIONS These results strongly suggest that L. lactis E001-B-8 but not FLX can alleviate rodent depressive and anxiety-like behaviours in response to CUMS, which is associated with the improvement of 5-HT metabolism and modulation of the gut microbiome composition.
Collapse
Affiliation(s)
- Junxing Ma
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
183
|
Huang R, Lu Y, Jin M, Liu Y, Zhang M, Xian S, Chang Z, Wang L, Zhang W, Lu J, Tong X, Wang S, Zhu Y, Huang J, Jiang L, Gu M, Huang Z, Wu M, Ji S. A bibliometric analysis of the role of microbiota in trauma. Front Microbiol 2023; 14:1091060. [PMID: 36819034 PMCID: PMC9932281 DOI: 10.3389/fmicb.2023.1091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Over the last several decades, the gut microbiota has been implicated in the formation and stabilization of health, as well as the development of disease. With basic and clinical experiments, scholars are gradually understanding the important role of gut microbiota in trauma, which may offer novel ideas of treatment for trauma patients. In this study, we purposed to summarize the current state and access future trends in gut microbiota and trauma research. Methods We retrieved relevant documents and their published information from the Web of Science Core Collection (WoSCC). Bibliometrix package was responsible for the visualized analysis. Results Totally, 625 documents were collected and the number of annual publications kept increasing, especially from 2016. China published the most documents while the USA had the highest local citations. The University of Colorado and Food & Function are respectively the top productive institution and journal, as PLOS One is the most local cited journal. With the maximum number of articles and local citations, Deitch EA is supported to be the most contributive author. Combining visualized analysis of keywords and documents and literature reading, we recognized two key topics: bacteria translocation in trauma and gut microbiota's effect on inflammation in injury, especially in nervous system injury. Discussion The impact of gut microbiota on molecular and pathological mechanism of inflammation is the focus now. In addition, the experiments of novel therapies based on gut microbiota's impact on trauma are being carried out. We hope that this study can offer a birds-eye view of this field and promote the gradual improvement of it.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Zongqiang Huang ✉
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Minjuan Wu ✉
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Shizhao Ji ✉
| |
Collapse
|
184
|
Berding K, Bastiaanssen TFS, Moloney GM, Boscaini S, Strain CR, Anesi A, Long-Smith C, Mattivi F, Stanton C, Clarke G, Dinan TG, Cryan JF. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol Psychiatry 2023; 28:601-610. [PMID: 36289300 PMCID: PMC9908549 DOI: 10.1038/s41380-022-01817-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
The impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population. Forty-five adults were randomized into either a psychobiotic (n = 24) or control (n = 21) diet for 4 weeks. Fecal microbiota composition and function was characterized using shotgun sequencing. Stress, overall health and diet were assessed using validated questionnaires. Metabolic profiling of plasma, urine and fecal samples was performed. Intervention with a psychobiotic diet resulted in reductions of perceived stress (32% in diet vs. 17% in control group), but not between groups. Similarly, biological marker of stress were not affected. Additionally, higher adherence to the diet resulted in stronger decreases in perceived stress. While the dietary intervention elicited only subtle changes in microbial composition and function, significant changes in the level of 40 specific fecal lipids and urinary tryptophan metabolites were observed. Lastly, microbial volatility was linked to greater changes in perceived stress scores in those on the psychobiotic diet. These results highlight that dietary approaches can be used to reduce perceived stress in a human cohort. Using microbiota-targeted diets to positively modulate gut-brain communication holds possibilities for the reduction of stress and stress-associated disorders, but additional research is warranted to investigate underlying mechanisms, including the role of the microbiota.
Collapse
Affiliation(s)
| | | | - Gerard M Moloney
- APC Microbiome Ireland, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Conall R Strain
- APC Microbiome Ireland, Cork, Ireland.,Teagsac Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Andrea Anesi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Fulvio Mattivi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland.,Teagsac Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
185
|
Are neuromodulation interventions associated with changes in the gut microbiota? A systematic review. Neuropharmacology 2023; 223:109318. [PMID: 36334762 DOI: 10.1016/j.neuropharm.2022.109318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
The microbiota-gut-brain axis (MGBA) refers to the bidirectional communication between the brain and the gut microbiota and recent studies have linked the MGBA to health and disease. Research has so far investigated this axis mainly from microbiota to brain but less is known about the other direction. One approach to examine the MGBA from brain to microbiota is through understanding if and how neuromodulation might impact microbiota. Neuromodulation encompasses a wide range of stimulation techniques and is used to treat neurological, psychiatric and metabolic disorders, like Parkinson's Disease, depression and obesity. Here, we performed a systematic review to investigate whether neuromodulation is associated with subsequent changes in the gut microbiota. Searches in PsycINFO and MEDLINE were performed up to March 2022. Included studies needed to be clinical or preclinical studies comparing the effects of deep brain stimulation, electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation or vagal nerve stimulation on the gut microbiota before and after treatment or between active and control groups. Seven studies were identified. Neuromodulation was associated with changes in relative bacterial abundances, but not with (changes in) α-diversity or β-diversity. Summarizing, currently reported findings suggest that neuromodulation interventions are associated with moderate changes in the gut microbiome. However, findings remain inconclusive due to the limited number and varying quality of included studies, as well as the large heterogeneity between studies. More research is required to more conclusively establish whether, and if so, via which mechanism(s) of action neuromodulation interventions might influence the gut microbiota.
Collapse
|
186
|
Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT, Mani-López E, López-Malo A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023; 28:molecules28031230. [PMID: 36770898 PMCID: PMC9920731 DOI: 10.3390/molecules28031230] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Over the years, probiotics have been extensively studied within the medical, pharmaceutical, and food fields, as it has been revealed that these microorganisms can provide health benefits from their consumption. Bacterial probiotics comprise species derived from lactic acid bacteria (LAB) (genus Lactobacillus, Leuconostoc, and Streptococcus), the genus Bifidobacterium, and strains of Bacillus and Escherichia coli, among others. The consumption of probiotic products is increasing due to the current situation derived from the pandemic caused by COVID-19. Foods with bacterial probiotics and postbiotics are premised on being healthier than those not incorporated with them. This review aims to present a bibliographic compilation related to the incorporation of bacterial probiotics in food and to demonstrate through in vitro and in vivo studies or clinical trials the health benefits obtained with their metabolites and the consumption of foods with bacterial probiotics/postbiotics. The health benefits that have been reported include effects on the digestive tract, metabolism, antioxidant, anti-inflammatory, anticancer, and psychobiotic properties, among others. Therefore, developing food products with bacterial probiotics and postbiotics is a great opportunity for research in food science, medicine, and nutrition, as well as in the food industry.
Collapse
|
187
|
Wang J, Liu X, Li Q. Interventional strategies for ischemic stroke based on the modulation of the gut microbiota. Front Neurosci 2023; 17:1158057. [PMID: 36937662 PMCID: PMC10017736 DOI: 10.3389/fnins.2023.1158057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The microbiota-gut-brain axis connects the brain and the gut in a bidirectional manner. The organism's homeostasis is disrupted during an ischemic stroke (IS). Cerebral ischemia affects the intestinal flora and microbiota metabolites. Microbiome dysbiosis, on the other hand, exacerbates the severity of IS outcomes by inducing systemic inflammation. Some studies have recently provided novel insights into the pathogenesis, efficacy, prognosis, and treatment-related adverse events of the gut microbiome in IS. In this review, we discussed the view that the gut microbiome is of clinical value in personalized therapeutic regimens for IS. Based on recent non-clinical and clinical studies on stroke, we discussed new therapeutic strategies that might be developed by modulating gut bacterial flora. These strategies include dietary intervention, fecal microbiota transplantation, probiotics, antibiotics, traditional Chinese medication, and gut-derived stem cell transplantation. Although the gut microbiota-targeted intervention is optimistic, some issues need to be addressed before clinical translation. These issues include a deeper understanding of the potential underlying mechanisms, conducting larger longitudinal cohort studies on the gut microbiome and host responses with multiple layers of data, developing standardized protocols for conducting and reporting clinical analyses, and performing a clinical assessment of multiple large-scale IS cohorts. In this review, we presented certain opportunities and challenges that might be considered for developing effective strategies by manipulating the gut microbiome to improve the treatment and prevention of ischemic stroke.
Collapse
|
188
|
Vasiliu O. The current state of research for psychobiotics use in the management of psychiatric disorders-A systematic literature review. Front Psychiatry 2023; 14:1074736. [PMID: 36911130 PMCID: PMC9996157 DOI: 10.3389/fpsyt.2023.1074736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The need to find new therapeutic interventions in patients diagnosed with psychiatric disorders is supported by the data suggesting high rates of relapse, chronic evolution, therapeutic resistance, or lack of adherence and disability. The use of pre-, pro-, or synbiotics as add-ons in the therapeutic management of psychiatric disorders has been explored as a new way to augment the efficacy of psychotropics and to improve the chances for these patients to reach response or remission. This systematic literature review focused on the efficacy and tolerability of psychobiotics in the main categories of psychiatric disorders and it has been conducted through the most important electronic databases and clinical trial registers, using the PRISMA 2020 guidelines. The quality of primary and secondary reports was assessed using the criteria identified by the Academy of Nutrition and Diabetics. Forty-three sources, mostly of moderate and high quality, were reviewed in detail, and data regarding the efficacy and tolerability of psychobiotics was assessed. Studies exploring the effects of psychobiotics in mood disorders, anxiety disorders, schizophrenia spectrum disorders, substance use disorders, eating disorders, attention deficit hyperactivity disorder (ADHD), neurocognitive disorders, and autism spectrum disorders (ASD) were included. The overall tolerability of the interventions assessed was good, but the evidence to support their efficacy in specific psychiatric disorders was mixed. There have been identified data in favor of probiotics for patients with mood disorders, ADHD, and ASD, and also for the association of probiotics and selenium or synbiotics in patients with neurocognitive disorders. In several domains, the research is still in an early phase of development, e.g., in substance use disorders (only three preclinical studies being found) or eating disorders (one review was identified). Although no well-defined clinical recommendation could yet be formulated for a specific product in patients with psychiatric disorders, there is encouraging evidence to support further research, especially if focused on the identification of specific sub-populations that may benefit from this intervention. Several limitations regarding the research in this field should be addressed, i.e., the majority of the finalized trials are of short duration, there is an inherent heterogeneity of the psychiatric disorders, and the diversity of the explored Philae prevents the generalizability of the results from clinical studies.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila University Emergency Central Military Hospital, Bucharest, Romania
| |
Collapse
|
189
|
Kim IB, Park SC, Kim YK. Microbiota-Gut-Brain Axis in Major Depression: A New Therapeutic Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:209-224. [PMID: 36949312 DOI: 10.1007/978-981-19-7376-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depression is impacted by the disruption of gut microbiota. Defects in gut microbiota can lead to microbiota-gut-brain axis dysfunction and increased vulnerability to major depression. While traditional chemotherapeutic approaches, such as antidepressant use, produce an overall partial therapeutic effect on depression, the gut microbiome has emerged as an effective target for better therapeutic outcomes. Recent representative studies on the microbiota hypothesis to explore the association between gut pathophysiology and major depression have indicated that restoring gut microbiota and microbiota-gut-brain axis could alleviate depression. We reviewed studies that supported the gut microbiota hypothesis to better understand the pathophysiology of depression; we also explored reports suggesting that gut microbiota restoration is an effective approach for improving depression. These findings indicate that gut microbiota and microbiota-gut-brain axis are appropriate new therapeutic targets for major depression.
Collapse
Affiliation(s)
- Il Bin Kim
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seon-Cheol Park
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea.
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
190
|
Gervasi T, Mandalari G. The Interplay Between Gut Microbiota and Central Nervous System. Curr Pharm Des 2023; 29:3274-3281. [PMID: 38062662 DOI: 10.2174/0113816128264312231101110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/14/2023] [Indexed: 01/26/2024]
Abstract
This review highlights the relationships between gastrointestinal microorganisms and the brain. The gut microbiota communicates with the central nervous system through nervous, endocrine, and immune signalling mechanisms. Our brain can modulate the gut microbiota structure and function through the autonomic nervous system, and possibly through neurotransmitters which directly act on bacterial gene expression. In this context, oxidative stress is one the main factors involved in the dysregulation of the gut-brain axis and consequently in neurodegenerative disorders. Several factors influence the susceptibility to oxidative stress by altering the antioxidant status or free oxygen radical generation. Amongst these, of interest is alcohol, a commonly used substance which can negatively influence the central nervous system and gut microbiota, with a key role in the development of neurodegenerative disorder. The role of "psychobiotics" as a novel contrast strategy for preventing and treating disorders caused due to alcohol use and abuse has been investigated.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina 98166, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina 98166, Italy
| |
Collapse
|
191
|
Bozzi Cionci N, Reggio M, Baffoni L, Di Gioia D. Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:219-250. [DOI: 10.1007/978-3-031-19564-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
192
|
Choudhary S, Shanu K, Devi S. Psychobiotics as an Emerging Category of Probiotic Products. PROBIOTICS, PREBIOTICS, SYNBIOTICS, AND POSTBIOTICS 2023:361-391. [DOI: 10.1007/978-981-99-1463-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
193
|
DÜDÜKÇÜ N, ÖĞÜT S. Psychobiotics and Elderly Health. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2022. [DOI: 10.18863/pgy.1033628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
While aging with physiological dimensions refers to the changes seen with chronological age, on the other hand, aging with psychological dimensions refers to the change of humans’ capacity to adaptively. Such as learning, psychomotor, problem-solving and personality traits. With the improvement of life quality in recent years, the average life expectancy and therefore the incidence of neurodegenerative diseases among the elderly have also increased. Although the aging process is universal, progressive, gradual and unstoppable, human gut microbiota-targeted aging management is a new approach to health and anti-aging. Nutrition plays a big factor in the elderly population with providing adequate cognitive and physical functions and when taking the right nutrition it also reduces the risk of chronic diseases. When adding functional foods into the diet, it can play a significant role to reduce the risk of diet-related diseases. Such as probiotics and prebiotics. In recent years, a new subclass of probiotics called ‘psychobiotics’ has emerged. These psychobiotics are defined as probiotics that, when taken in appropriate amounts, it creates positive psychiatric effects in human psychopathology. Examination of this new class of probiotics provides a glimmer of hope for the effective management of neurodegenerative diseases and various psychiatric disorders, especially with increasing life expectancy. Also, recommending the use of probiotics in old age will contribute to the treatment of some health problems related to aging.
Collapse
|
194
|
Donati Zeppa S, Agostini D, Ferrini F, Gervasi M, Barbieri E, Bartolacci A, Piccoli G, Saltarelli R, Sestili P, Stocchi V. Interventions on Gut Microbiota for Healthy Aging. Cells 2022; 12:cells12010034. [PMID: 36611827 PMCID: PMC9818603 DOI: 10.3390/cells12010034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the improvement in health and social conditions has led to an increase in the average lifespan. Since aging is the most important risk factor for the majority of chronic human diseases, the development of therapies and intervention to stop, lessen or even reverse various age-related morbidities is an important target to ameliorate the quality of life of the elderly. The gut microbiota, that is, the complex ecosystem of microorganisms living in the gastrointestinal tract, plays an important role, not yet fully understood, in maintaining the host's health and homeostasis, influencing metabolic, oxidative and cognitive status; for this reason, it is also named "the forgotten endocrine organ" or "the second brain". On the other hand, the gut microbiota diversity and richness are affected by unmodifiable factors, such as aging and sex, and modifiable ones, such as diet, pharmacological therapies and lifestyle. In this review, we discuss the changes, mostly disadvantageous, for human health, induced by aging, in microbiota composition and the effects of dietary intervention, of supplementation with probiotics, prebiotics, synbiotics, psychobiotics and antioxidants and of physical exercise. The development of an integrated strategy to implement microbiota health will help in the goal of healthy aging.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Univerity San Raffaele, 00166 Rome, Italy
| |
Collapse
|
195
|
The History of the Intestinal Microbiota and the Gut-Brain Axis. Pathogens 2022; 11:pathogens11121540. [PMID: 36558874 PMCID: PMC9786924 DOI: 10.3390/pathogens11121540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The gut-brain axis and the intestinal microbiota have been an area of an intensive research in the last few years. However, it is not a completely novel area of interest for physicians and scientists. From the earliest centuries, both professionals and patients turned their attention to the gastrointestinal system in order to find the root of physical and mental disturbances. The approach to the gut-brain axis and the therapeutic methods have changed alongside the development of different medical approaches to health and illness. They often reflected the social changes. The authors of this article aim to provide a brief history of the gut-brain axis and the intestinal microbiota in order to demonstrate how important the study of these systems is for both scientists and medical professionals, as well as for the general public. We analysed the publications accessible through PubMed regarding the microbiota and gut-brain axis history. If available, we accessed the original historical sources. We conclude that although the history of this science might be long, there are still many areas that need to be researched, analysed, and understood in future projects. The interest in the subject is not diminishing, but rather it has increased throughout the years.
Collapse
|
196
|
Alloo J, Leleu I, Grangette C, Pied S. Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Front Immunol 2022; 13:1024998. [PMID: 36569929 PMCID: PMC9772015 DOI: 10.3389/fimmu.2022.1024998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Many parasitic diseases (including cerebral malaria, human African trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and neuroschistosomiasis) feature acute or chronic brain inflammation processes, which are often associated with deregulation of glial cell activity and disruption of the brain blood barrier's intactness. The inflammatory responses of astrocytes and microglia during parasite infection are strongly influenced by a variety of environmental factors. Although it has recently been shown that the gut microbiota influences the physiology and immunomodulation of the central nervous system in neurodegenerative diseases like Alzheimer's disease and Parkinson's, the putative link in parasite-induced neuroinflammatory diseases has not been well characterized. Likewise, the central nervous system can influence the gut microbiota. In parasite infections, the gut microbiota is strongly perturbed and might influence the severity of the central nervous system inflammation response through changes in the production of bacterial metabolites. Here, we review the roles of astrocytes and microglial cells in the neuropathophysiological processes induced by parasite infections and their possible regulation by the gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Centre National de la Recherche Scientifique-CNRS UMR 9017-Institut National de la Recherche Scientifique et Médicale-Inserm U1019, Institut Pasteur de Lille, Univ. Lille, Lille, France
| |
Collapse
|
197
|
Implication of saturated fats in the aetiology of childhood attention deficit/hyperactivity disorder - A narrative review. Clin Nutr ESPEN 2022; 52:78-85. [PMID: 36513489 DOI: 10.1016/j.clnesp.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/04/2022] [Accepted: 10/09/2022] [Indexed: 12/14/2022]
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common mental health disorder in the paediatric population. ADHD is highly comorbid with obesity, and has also been associated with poor dietary patterns such as increased consumption of refined carbohydrates and saturated fats. Although ADHD in children was associated with high consumption of saturated fats, so far there has been no evidence-based attempt to integrate dietary strategies controlling for intake of saturated fats into the etiological framework of the disorder. Evidence from human studies and animal models has shown that diets high in saturated fats are detrimental for the development of dopaminergic neurocircuitries, synthesis of neurofactors (e.g. brain derived neurotrophic factor) and may promote brain inflammatory processes. Notably, animal models provide evidence that early life consumption of a high saturated fats diet may impair the development of central dopamine pathways. In the present paper, we review the impact of high saturated fats diets on neurobiological processes in human studies and animal models, and how these associations may be relevant to the neuropathophysiology of ADHD in children. The validation of this relationship and its underlying mechanisms through future investigative studies could have implications for the prevention or exacerbation of ADHD symptoms, improve the understanding of the pathogenesis of the disorder, and help design future dietary studies in patients with ADHD.
Collapse
|
198
|
Luo M, Liu Q, Xiao L, Xiong LS. Golden bifid might improve diarrhea-predominant irritable bowel syndrome via microbiota modulation. JOURNAL OF HEALTH, POPULATION AND NUTRITION 2022; 41:21. [PMID: 35578355 PMCID: PMC9109320 DOI: 10.1186/s41043-022-00302-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Gut microbiota might play a crucial role in the pathogenesis of irritable bowel syndrome (IBS), and probiotics supplement may be an effective treatment option. This study aims to explore the therapeutic effects of Golden bifid on the diarrhea-predominant IBS (IBS-D). Methods Twenty-one consecutive IBS-D patients were recruited based on Rome IV criteria. All patients took 2000 mg Golden bifid triple daily for 4 weeks. Gastrointestinal (GI) symptoms, psychological symptoms, small intestine bacterial overgrowth (SIBO) and fecal microbiota characteristics were evaluated in IBS-D patients before and after treatment. Results After 4-week treatment of Golden bifid, the GI symptoms such as abdominal pain (2.90 ± 1.04 vs. 1.90 ± 1.26, P = 0.002), abdominal distension (2.00 ± 1.34 vs. 1.29 ± 1.31, P = 0.007), diarrhea (3.24 ± 1.37 vs. 1.81 ± 1.21, P = 0.001), defecatory urgency (3.48 ± 1.03 vs. 2.33 ± 1.35, P = 0.000) and incomplete evacuation (2.71 ± 1.15 vs. 1.76 ± 1.26, P = 0.003) were significantly alleviated in IBS-D patients. The Self-Rating Depression Scale (SDS) decreased significantly (46.19 ± 11.36 vs. 43.33 ± 9.65, P = 0.041), and SIBO could be eradicated in 25% (4/16) of IBS-D patients with SIBO. Meanwhile, the abundance of Unclassified Lachnospiraceae and Dorea in genus level and Unclassified Lachnospiraceae, Bacterium Dorea, Bacterium Butyricicoccus and Dorea formicigenerans ATCC 27755 in species level were increased in fecal microbiota (P < 0.05). Conclusions Golden bifid could improve most of GI symptoms and depressive symptoms in IBS-D patients and eradicate a small proportion of SIBO in those IBS-D patients with SIBO. What's more, Golden bifid could also modulate the fecal microbiota in IBS-D patients, which implied that the Golden bifid might improve IBS-D via microbiota modulation. Supplementary Information The online version contains supplementary material available at 10.1186/s41043-022-00302-0.
Collapse
|
199
|
Dziedzic A, Saluk J. Probiotics and Commensal Gut Microbiota as the Effective Alternative Therapy for Multiple Sclerosis Patients Treatment. Int J Mol Sci 2022; 23:ijms232214478. [PMID: 36430954 PMCID: PMC9699268 DOI: 10.3390/ijms232214478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The gut-brain axis (GBA) refers to the multifactorial interactions between the intestine microflora and the nervous, immune, and endocrine systems, connecting brain activity and gut functions. Alterations of the GBA have been revealed in people with multiple sclerosis (MS), suggesting a potential role in disease pathogenesis and making it a promising therapeutic target. Whilst research in this field is still in its infancy, a number of studies revealed that MS patients are more likely to exhibit modified microbiota, altered levels of short-chain fatty acids, and enhanced intestinal permeability. Both clinical and preclinical trials in patients with MS and animal models revealed that the administration of probiotic bacteria might improve cognitive, motor, and mental behaviors by modulation of GBA molecular pathways. According to the newest data, supplementation with probiotics may be associated with slower disability progression, reduced depressive symptoms, and improvements in general health in patients with MS. Herein, we give an overview of how probiotics supplementation may have a beneficial effect on the course of MS and its animal model. Hence, interference with the composition of the MS patient's intestinal microbiota may, in the future, be a grip point for the development of diagnostic tools and personalized microbiota-based adjuvant therapy.
Collapse
|
200
|
Subramaniam S, Sabran MR, Stanslas J, Kirby BP. Effect of aflatoxin B1 exposure on the progression of depressive-like behavior in rats. Front Nutr 2022; 9:1032810. [PMID: 36466381 PMCID: PMC9712965 DOI: 10.3389/fnut.2022.1032810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 07/20/2023] Open
Abstract
While it is well documented that aflatoxin B1 (AFB1); one of the most toxic food contaminants is linked to the development of depression. However, the mechanism on how it affects the gut and brain health leading to depressive-like behavior remains unclear. This study was conducted to determine the effect of AFB1 on the progression of depressive-like behavior. Thirty-two (n = 32) male Sprague Dawley rats were randomly allocated into four groups: control, low-dose (5 μg AFB1/kg), high-dose (25 μg AFB1/kg) and positive control group; exposed on chronic unpredictable mild stress (CUMS). After 4 weeks of exposure, sucrose preference test (SPT) and force swim test (FST) were used to measure behavioral despair. Fecal samples were selectively cultured to profile the bacteria. Body weight and relative organs weights were compared among groups. AFB1 and CUMS caused reduction in body weight and food intake as well as increased relative weight of adrenal glands, liver, and brain. Rats in AFB1 and CUMS groups had suppressed sucrose preference and prolonged immobility time in FST, wherein this could indicate anhedonia. Besides, fecal count of Lactobacillus spp. was significantly low following AFB1 exposure, with increasing count of Bifidobacterium spp, in comparison to the control. Indeed, further biochemical analysis and metagenomic approach are warranted to explore the underlying mechanisms on the role of gut microbiota dysbiosis and dysregulation of gut-brain axis due to AFB1 neurotoxicity on the progression of depressive-like behavior.
Collapse
Affiliation(s)
- Syarminie Subramaniam
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd-Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Brian P. Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|