151
|
Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance. Sci Rep 2018; 8:4566. [PMID: 29545533 PMCID: PMC5854665 DOI: 10.1038/s41598-018-22683-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/27/2018] [Indexed: 01/23/2023] Open
Abstract
To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.
Collapse
|
152
|
Chen M, Chen Y, Dong S, Lan S, Zhou H, Tan Z, Li X. Mixed nitrifying bacteria culture under different temperature dropping strategies: Nitrification performance, activity, and community. CHEMOSPHERE 2018; 195:800-809. [PMID: 29289907 DOI: 10.1016/j.chemosphere.2017.12.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the nitrification performance, metabolic activity, antioxidant enzyme activity as well as bacterial community of mixed nitrifying bacteria culture under different temperature dropping strategies [(#1) growth temperature kept at 20 °C; (#2) sharp1 decreased from 20 °C to 10 °C; (#3) growth at 20 °C for 6 days followed by sharp decrease to 10 °C; and (#4) gradual decreased from 20 °C to 10 °C] were evaluated. It was shown that acclimation at 20 °C for 6 days allowed to maintain better nitrification activity at 10 °C. The nitrite oxidation capacity of nitrifiers was significantly correlated with the relative light unit (RLU) (p < .05) and the fluctuation of superoxide dismutase (SOD) enzyme activity (p < .01). With serial #3 showed the highest RLU levels and the least SOD enzyme fluctuation as compared to serials #2 and #4. Throughout the experimental period, Nitrosospira and Nitrosomonas as well as Nitrospira were identified as the predominant ammonia-oxidizing bacteria (AOB) and nitrate-oxidizing bacteria (NOB). The dynamic change of AOB/NOB ratios and nitrification activity in serials #2-#4 demonstrated that AOB recovered better than NOB with long-term 10 °C exposure, and the nitrification performance was mainly limited by the nitrite oxidation capacity of NOB. Applying 6 days acclimation at 20 °C was beneficial for the mixed nitrifying bacteria culture to cope with low temperature (10 °C) stress, possibly due to the maintenance of metabolic activity, antioxidant enzyme activity stability as well as appropriate AOB/NOB ratio.
Collapse
Affiliation(s)
- Maoxia Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| |
Collapse
|
153
|
Goberna M, Simón P, Hernández MT, García C. Prokaryotic communities and potential pathogens in sewage sludge: Response to wastewaster origin, loading rate and treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:360-368. [PMID: 28988070 DOI: 10.1016/j.scitotenv.2017.09.240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 05/15/2023]
Abstract
Sewage sludge features high nitrogen and phosphorous contents encouraging its use as a biosolid in agriculture, but it bears potential chemical and microbiological risks. To tease apart the relative contribution of main factors determining the sludge chemical and microbial features, we analysed 28 treatment plants differing in the wastewater origin (municipal residues, agro-food or chemical industries), organic loading rate and treatment technology (extended aeration, activated sludge or activated sludge followed by anaerobic digestion). We found that the treatment technology and the organic loading rate are main determinants of the sludge chemical properties, including its organic load, nutrient and metal contents, and override the effect of the wastewater origin. Sludge bacterial and archaeal community structure and diversity, characterized through massive sequencing of the 16S rRNA gene, were also mostly determined by the treatment technology partly through shifts in the sludge nutrient load. The same factor conditioned the relative abundance of sequenced bacteria most closely related to potential pathogens, but not that of cultivable Escherichia coli or Salmonella spp. We did not find an effect of the geographic location of the plant on any of the variables at the regional scale of our study. Operational parameters appear as major determinants of the sludge chemical and microbial properties, irrespective of the source of wastewaters, thus leaving a broad management window for improving the agronomic value of sewage sludge.
Collapse
Affiliation(s)
- Marta Goberna
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC). Carretera de Moncada-Náquera km 4.5, E-46113 Moncada, Valencia, Spain.
| | - Pedro Simón
- ESAMUR. Complejo de Espinardo, C/Santiago Navarro 4, E-30100 Murcia, Spain
| | - María Teresa Hernández
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - Carlos García
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, E-30100, Espinardo, Murcia, Spain
| |
Collapse
|
154
|
Miao L, Zhang Q, Wang S, Li B, Wang Z, Zhang S, Zhang M, Peng Y. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate. BIORESOURCE TECHNOLOGY 2018; 249:108-116. [PMID: 29040843 DOI: 10.1016/j.biortech.2017.09.151] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
The biofilm system is beneficial for Anammox process designed to treat landfill leachate. In this study, the composition of extracellular polymeric substances (EPS) and the microbial community in an Anammox biofilm system were analyzed to determine the functions driving the biofilm's ability to treat landfill leachate. The results demonstrated that increasing influent carbon oxygen demand (COD) could stimulate EPS production. EPS helped enrich Anammox bacteria and supplied them with nutrients and enzymes, facilitating effective nitrogen removal (approximately 95%). The variation in Anammox bacteria was similar to the variation in EPS composition. In the tested Anammox Sequencing Biofilm Batch Reactor (SBBR) system, Candidatus Kuenenia was dominant among known Anammox genus, because of its high substrate affinity and because it adapts better to landfill leachate. The relative abundance of Candidatus Kuenenia in the biofilm rose from 3.26% to 12.38%, illustrating the protection and enrichment offered by the biofilm in carrying out Anammox.
Collapse
Affiliation(s)
- Lei Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China; Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Sujian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Man Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China.
| |
Collapse
|
155
|
Fang D, Zhao G, Xu X, Zhang Q, Shen Q, Fang Z, Huang L, Ji F. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions. BIORESOURCE TECHNOLOGY 2018; 249:684-693. [PMID: 29091854 DOI: 10.1016/j.biortech.2017.10.063] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Wastewater treatment plants (WWTPs) in plateau regions have unique microbial community structures. In this study, Illumina high-throughput sequencing technology was applied to investigate microbial communities of plateau WWTPs. The research showed that microbial diversities and richness were negatively associated with the altitude and positively to the water temperature to a certain extent. The dominant phyla of plateau and control WWTPs were similar, which mainly included Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes. In plateau WWTPs, the LEfSe analysis found 4 biomarkers which can catabolize aromatic compounds, indicating the microorganisms that can degrade refractory organics might survive better in plateau WWTPs. The analysis of functional genera and enzymes showed that there was no significant difference in abundances of organic degrading bacteria, but the nitrogen removal bacteria were less abundant and phosphorus removal bacteria were more abundant in plateau WWTPs.
Collapse
Affiliation(s)
- Dexin Fang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Gen Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Xiaoyi Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Qian Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Zhuoyao Fang
- Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Liping Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
156
|
Liu J, Zhang P, Li H, Tian Y, Wang S, Song Y, Zeng G, Sun C, Tian Z. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community. BIORESOURCE TECHNOLOGY 2018; 250:110-116. [PMID: 29161569 DOI: 10.1016/j.biortech.2017.11.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Two-stage anoxic/oxic combined membrane bioreactor (A/O-A/O-MBR) process was used to treat leachate generated from Shenyang Laohuchong landfill, and the effect of hydraulic retention time (HRT) was studied. A long HRT of 9 d and a short HRT of 5 d showed negative effect on the stability of process, resulting in a higher organic concentration of effluent than that with a HRT of 7 d, while the highest removal of chemical oxygen demand (COD), ammonia (NH4+-N) and total nitrogen (TN) were achieved with a HRT of 7 d, which was 82.4%, 99.1% and 75.3% respectively. The analysis of microbial communities by high-throughput sequencing showed that phyla Proteobacteria and Bacteroidetes were the dominant bacteria, which accounted for 36.63-42.39%, 29.21-38.66%, respectively. For genus classification, the most representative of Ferruginibacter, unclassified-Saprospiraceae and Nitrosomonas accounted for 20.76-35.11% totally. The other communities, including Nitrobacter, Planctomyces, Rhodobacteraceae and Nitrospirae, were also developed for organic degradation and denitrification.
Collapse
Affiliation(s)
- Jianbo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuan Tian
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Siyu Wang
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghui Song
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Chen Sun
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiyong Tian
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
157
|
Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances. SCIENCE CHINA-LIFE SCIENCES 2018; 61:753-761. [DOI: 10.1007/s11427-017-9228-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|
158
|
Liu Z, Zhou H, Liu J, Huang M, Yin X, Liu Z, Mao Y, Xie W, Li D. Evaluation of performance and microbial community successional patterns in an integrated OCO reactor under ZnO nanoparticle stress. RSC Adv 2018; 8:26928-26933. [PMID: 35541049 PMCID: PMC9083345 DOI: 10.1039/c8ra05057k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/02/2022] Open
Abstract
An integrated OCO reactor was used to investigate the performance and microbial community successional changes under long-term exposure to relatively low levels of ZnO nanoparticles (NPs). Relatively higher concentrations of ZnO NPs (1.5 mg L−1) could adversely affect the nitrogen and phosphorus removal in the reactor. The diversity and richness of the microbial communities chronically declined with an increasing concentration of ZnO NPs higher than 1.5 mg L−1. With the elevated ZnO NPs, the phyla abundances of Proteobacteria, Firmicutes and Actinobacteria decreased slightly, whereas those of Bacteroidetes and Acidobacteria increased. Bacteroidetes and Proteobacteria were the predominant phyla in each phase (with a variation in abundance), together with some common taxa responses to ZnO NP stress as revealed by Venn diagram analysis. Some genera associated with the removal of nitrogen and phosphorus, such as Acinetobacter, Stenotrophomonas and Pseudomonas, decreased significantly. The present results are significant for expanding our understanding of the functional performance and microbial community successions of activated sludge which has experienced long-term exposure to environmentally relevant concentrations of ZnO NPs. An integrated OCO reactor was used to investigate the performance and microbial community successional changes under a long-term exposure to relatively low-level ZnO nanoparticles (NPs).![]()
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| | - Huifang Zhou
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Jiefeng Liu
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Mei Huang
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Xudong Yin
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| | - Zhisen Liu
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| | - Yufeng Mao
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Wenyu Xie
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| | - Dehao Li
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| |
Collapse
|
159
|
Yan X, Zhu C, Huang B, Yan Q, Zhang G. Enhanced nitrogen removal from electroplating tail wastewater through two-staged anoxic-oxic (A/O) process. BIORESOURCE TECHNOLOGY 2018; 247:157-164. [PMID: 28950122 DOI: 10.1016/j.biortech.2017.09.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Consisted of anaerobic (ANA), anoxic-1 (AN1), aerobic-1 (AE1), anoxic-2 (AN2), aerobic-2 (AE2) reactors and sediment tank, the two-staged A/O process was applied for depth treatment of electroplating tail wastewater with high electrical conductivity and large amounts of ammonia nitrogen. It was found that the NH4+-N and COD removal efficiencies reached 97.11% and 83.00%, respectively. Besides, the short-term salinity shock of the control, AE1 and AE2 indicated that AE1 and AE2 have better resistance to high salinity when the concentration of NaCl ranged from 1 to 10g/L. Meanwhile, it was found through high-throughput sequencing that bacteria genus Nitrosomonas, Nitrospira and Thauera, which are capable of nitrogen removal, were enriched in the two-staged A/O process. Moreover, both salt-tolerant bacteria and halophili bacteria were also found in the combined process. Therefore, microbial community within the two-staged A/O process could be acclimated to high electrical conductivity, and adapted for electroplating tail wastewater treatment.
Collapse
Affiliation(s)
- Xinmei Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chunyan Zhu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Bin Huang
- Institute of Applied Ecology, CAS, Shenyang 110016, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Guangsheng Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
160
|
Ren LF, Lv L, Kang Q, Gao B, Ni SQ, Chen YH, Xu S. Microbial dynamics of biofilm and suspended flocs in anammox membrane bioreactor: The effect of non-woven fabric membrane. BIORESOURCE TECHNOLOGY 2018; 247:259-266. [PMID: 28950134 DOI: 10.1016/j.biortech.2017.09.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Membrane bioreactor with non-woven fabric membranes (NWMBR) is developing into a suitable method for anaerobic ammonium oxidation (anammox). As a carrier, non-woven fabric membrane divided total biomass into biofilm and suspended flocs gradually. Total nitrogen removal efficiency was maintained around 82.6% under nitrogen loading rate of 567.4mgN/L/d after 260days operation. Second-order substrate removal and Stover-Kincannon models were successfully used to simulate the nitrogen removal performance in NWMBR. High-throughput sequence was employed to elucidate the underlying microbial community dynamics. Candidatus Brocadia, Kuenenia, Jettenia were detected to affirm the dominant status of anammox microorganisms and 98.2% of anammox microorganisms distributed in biofilm. In addition, abundances of functional genes (hzs, nirK) in biofilm and suspended flocs were assessed by quantitative PCR to further investigate the coexistence of anammox and other microorganisms. Potential nitrogen removal pathways were established according to relevant nitrogen removal performance and microbial community.
Collapse
Affiliation(s)
- Long-Fei Ren
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, PR China; School of Environmental Science and Engineering, Shanghai Jiaotong University, PR China
| | - Lu Lv
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, PR China
| | - Baoyu Gao
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China.
| | - Yi-Han Chen
- School of Environmental Science and Engineering, Shanghai Jiaotong University, PR China
| | - Shiping Xu
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| |
Collapse
|
161
|
Świątczak P, Cydzik-Kwiatkowska A. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1655-1669. [PMID: 29101689 PMCID: PMC5766719 DOI: 10.1007/s11356-017-0615-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/24/2017] [Indexed: 05/27/2023]
Abstract
By modification of the operational conditions of batch reactors, a municipal wastewater treatment plant was upgraded from activated sludge to aerobic granular sludge (AGS) technology. After upgrading, the volume of the biological reactors was reduced by 30%, but the quality of the effluent substantially improved. The concentration of biomass in the reactors increased twofold; the average biomass yield was 0.6 g MLVSS/g COD, and excess granular sludge was efficiently stabilized in aerobic conditions. Canonical correspondence analysis based on the results of next-generation sequencing showed that the time of adaptation significantly influenced the microbial composition of the granules. In mature granules, the abundance of ammonium-oxidizing bacteria was very low, while the abundance of the nitrite-oxidizing bacteria Nitrospira sp. was 0.5 ± 0.1%. The core genera were Tetrasphaera, Sphingopyxis, Dechloromonas, Flavobacterium, and Ohtaekwangia. Bacteria belonging to these genera produce extracellular polymeric substances, which stabilize granule structure and accumulate phosphorus. The results of this study will be useful for designers of AGS wastewater treatment plants, and molecular data given here provide insight into the ecology of mature aerobic granules from a full-scale facility.
Collapse
Affiliation(s)
- Piotr Świątczak
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-709, Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-709, Olsztyn, Poland.
| |
Collapse
|
162
|
Zhang B, Xu X, Zhu L. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter. Sci Rep 2017; 7:17930. [PMID: 29263391 PMCID: PMC5738398 DOI: 10.1038/s41598-017-17743-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/29/2017] [Indexed: 12/01/2022] Open
Abstract
To better understand the relationship between the environmental variables and microbial communities of activated sludge, we took winter samples from different biological treatment units (anaerobic, oxic, etc) from the WWTP's of a number of Chinese cities. Differences in influent organic components and activated sludge microbial communities were identified by gas chromatography-mass spectrometry and high-throughput sequencing technology, respectively. Liquid nitrogen grinding pretreatment of samples was found to aid in the obtaining of a more bio-diversified sample. Influent type and dissolved oxygen concentration influenced the activated sludge microbial community structure. Nitrospira, Caldilineaceae and Anaerolineaceae were highly related to domestic wastewater treatment systems, whereas Thauera was the most abundant putative refractory aromatic hydrocarbon decomposer found in industrial wastewater treatment systems. Within the influent composition, we speculate that Thauera, Macellibacteroides and Desulfomicrobium are the key functional genera of the anaerobic environment of the textile dyeing industry wastewater treatment systems, whilst Thauera and Thiobacillus are key functional microbes in fine chemical wastewater treatment systems.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, P.R. China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, P.R. China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, P.R. China.
| |
Collapse
|
163
|
Kruglova A, Gonzalez-Martinez A, Kråkström M, Mikola A, Vahala R. Bacterial diversity and population shifts driven by spotlight wastewater micropollutants in low-temperature highly nitrifying activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:291-299. [PMID: 28668740 DOI: 10.1016/j.scitotenv.2017.06.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
In this study the influence of low-temperature (8°C), sludge retention time (SRT) and loading of spotlight wastewater micropollutants (MPs) on bacterial community of activated sludge was investigated with a special focus on nitrification. Two Sequencing batch reactors (SBR) and two membrane bioreactors (MBR) were operated with synthetic municipal-like wastewater receiving and not receiving ibuprofen, diclofenac, estrone and 17α-ethynylestradiol (EE2). Bacterial population studies were related to removal efficiencies of studied MPs. The results showed that studied bacterial communities significantly differed from all previously published nitrifying activated sludge communities. Exceptionally low concentration of autotrophic nitrifying bacteria were found (<0.5%) as well as no common heterotrophic nitrifies were presenting in activated sludge and therefore could not be related to the MPs removal. Additionally SRT had a spacious effect on the diversity of bacteria and bacterial population shifts under pressure of MPs. Growth of Firmicutes was suppressed by presence of MPs in all the reactors. Increase of MPs concentrations in wastewater improved the removal of EE2. Abundance of Delta- and Gammaproteobacteria showed positive correlation with diclofenac removal.
Collapse
Affiliation(s)
- Antonina Kruglova
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland.
| | | | - Matilda Kråkström
- Åbo Akademy University, Johan Gadolin Process Chemistry Centre, c/o Laboratory of Organic Chemistry, Piispankatu 8, 20500 Turku, Finland
| | - Anna Mikola
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland
| | - Riku Vahala
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland
| |
Collapse
|
164
|
Xu D, Liu S, Chen Q, Ni J. Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment. AMB Express 2017; 7:40. [PMID: 28205101 PMCID: PMC5311017 DOI: 10.1186/s13568-017-0336-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 11/10/2022] Open
Abstract
The microbial community diversity in anaerobic-, anoxic- and oxic-biological zones of a conventional Carrousel oxidation ditch system for domestic wastewater treatment was systematically investigated. The monitored results of the activated sludge sampled from six full-scale WWTPs indicated that Proteobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Verrucomicrobia, Acidobacteria and Nitrospirae were dominant phyla, and Nitrospira was the most abundant and ubiquitous genus across the three biological zones. The anaerobic-, anoxic- and oxic-zones shared approximately similar percentages across the 50 most abundant genera, and three genera (i.e. uncultured bacterium PeM15, Methanosaeta and Bellilinea) presented statistically significantly differential abundance in the anoxic-zone. Illumina high-throughput sequences related to ammonium oxidizer organisms and denitrifiers with top50 abundance in all samples were Nitrospira, uncultured Nitrosomonadaceae, Dechloromonas, Thauera, Denitratisoma, Rhodocyclaceae (norank) and Comamonadaceae (norank). Moreover, environmental variables such as water temperature, water volume, influent ammonium nitrogen, influent chemical oxygen demand (COD) and effluent COD exhibited significant correlation to the microbial community according to the Monte Carlo permutation test analysis (p < 0.05). The abundance of Nitrospira, uncultured Nitrosomonadaceae and Denitratisoma presented strong positive correlations with the influent/effluent concentration of COD and ammonium nitrogen, while Dechloromonas, Thauera, Rhodocyclaceae (norank) and Comamonadaceae (norank) showed positive correlations with water volume and temperature. The established relationship between microbial community and environmental variables in different biologically functional zones of the six representative WWTPs at different geographical locations made the present work of potential use for evaluation of practical wastewater treatment processes.
Collapse
|
165
|
Treatment of high-strength ammonium wastewater by polyvinyl alcohol–sodium alginate immobilization of activated sludge. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
166
|
Multi-Level Contact Oxidation Process Performance When Treating Automobile Painting Wastewater: Pollutant Removal Efficiency and Microbial Community Structures. WATER 2017. [DOI: 10.3390/w9110881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
167
|
Li GQ, Yu T, Wu QY, Lu Y, Hu HY. Development of an ATP luminescence-based method for assimilable organic carbon determination in reclaimed water. WATER RESEARCH 2017; 123:345-352. [PMID: 28683375 DOI: 10.1016/j.watres.2017.06.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Assimilable organic carbon (AOC) is an important indicator of the biological stability of reclaimed water. In this study, a new rapid and more stable method for AOC measurement in reclaimed water was proposed. Indigenous microbial culture from secondary effluent was used as the inoculum, and bacterial growth was determined by the quantity of adenosine triphosphate (ATP) in the form of luminescence instead of plate count. ATP luminescence had a high correlation with biogrowth both in pure acetate solutions and reclaimed waters. ATP luminescence analysis could be determined in 5 min. Three days of 10000 cells/mL inoculum incubated at 25 °C were enough for the bacteria to reach the stationary phase. The good correlations between ATP luminescence and the added acetate-C concentration illustrated the applicability of monitoring AOC level by luminescence method. And in reclaimed water samples, indigenous microbial culture produces the highest AOC results compared with the pure strains. This indicated that the integrity of indigenous microbial culture ensured the full utilization of matrix carbons, which demonstrated the advantage of indigenous microbial culture compared with the selected pure bacteria in the traditional AOC test. The average ATP content per cell of 3.95 × 10-10 nmol/cell was derived, and this value was stable in both the acetate solutions and reclaimed waters. Furthermore, the average yield coefficient of 1.5 × 105 RLU/μg acetate-C (4.1 × 10-3 nmol ATP/μg acetate-C) was obtained from different indigenous cultures. Additionally, the indigenous microbial cultures from different secondary effluents would produce the similar AOC results for the same water sample, indicating the consistency of this assay. The ATP luminescence-AOC assay provides a faster, more stable and accurate approach for monitoring the biological stability of reclaimed waters.
Collapse
Affiliation(s)
- Guo-Qiang Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tong Yu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
168
|
He Q, Zhou J, Song Q, Zhang W, Wang H, Liu L. Elucidation of microbial characterization of aerobic granules in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal at varying carbon to phosphorus ratios. BIORESOURCE TECHNOLOGY 2017; 241:127-133. [PMID: 28551433 DOI: 10.1016/j.biortech.2017.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
An aerobic granules simultaneous nitrification, denitrification and phosphorus removal (SNDPR) system was evaluated in terms of the reactor performance and microbial population dynamics with decreasing C/P ratios from 50 to 16. The effects of C/P ratios on organic carbon and nutrients removal were investigated, as well as the alpha diversity of the bacterial community and bacterial compositions by using Illumina MiSeq pyrosequencing technology. Finally, the relative abundances and distribution patterns were identified and assessed given the key functional groups involved in biological nutrients removals to reveal the effects of C/P ratios to aerobic granules in the SNDPR from the molecular level.
Collapse
Affiliation(s)
- Qiulai He
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jun Zhou
- College of Urban Construction, Nanjing University of Technology, Nanjing 210009, China
| | - Qun Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Li Liu
- Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| |
Collapse
|
169
|
Yangin-Gomec C, Pekyavas G, Sapmaz T, Aydin S, Ince B, Akyol Ç, Ince O. Microbial monitoring of ammonia removal in a UASB reactor treating pre-digested chicken manure with anaerobic granular inoculum. BIORESOURCE TECHNOLOGY 2017; 241:332-339. [PMID: 28577482 DOI: 10.1016/j.biortech.2017.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Performance and microbial community dynamics in an upflow anaerobic sludge bed (UASB) reactor coupled with anaerobic ammonium oxidizing (Anammox) treating diluted chicken manure digestate (Total ammonia nitrogen; TAN=123±10mg/L) were investigated for a 120-d operating period in the presence of anaerobic granular inoculum. Maximum TAN removal efficiency reached to above 80% with as low as 20mg/L TAN concentrations in the effluent. Moreover, total COD (tCOD) with 807±215mg/L in the influent was removed by 60-80%. High-throughput sequencing revealed that Proteobacteria, Actinobacteria, and Firmicutes were dominant phyla followed by Euryarchaeota and Bacteroidetes. The relative abundance of Planctomycetes significantly increased from 4% to 8-9% during the late days of the operation with decreased tCOD concentration, which indicated a more optimum condition to favor ammonia removal through anammox route. There was also significant association between the hzsA gene and ammonia removal in the UASB reactor.
Collapse
Affiliation(s)
- Cigdem Yangin-Gomec
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey.
| | - Goksen Pekyavas
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey
| | - Tugba Sapmaz
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey
| | - Sevcan Aydin
- BioCore Biotechnology Environmental and Energy Technologies R&D Ltd., Istanbul 34217, Turkey
| | - Bahar Ince
- Boğaziçi University, Institute of Environmental Sciences, Bebek, 34342 Istanbul, Turkey
| | - Çağrı Akyol
- Boğaziçi University, Institute of Environmental Sciences, Bebek, 34342 Istanbul, Turkey
| | - Orhan Ince
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
170
|
Assessing impacts of DNA extraction methods on next generation sequencing of water and wastewater samples. J Microbiol Methods 2017; 141:10-16. [DOI: 10.1016/j.mimet.2017.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
|
171
|
Cheng C, Zhou Z, Niu T, An Y, Shen X, Pan W, Chen Z, Liu J. Effects of side-stream ratio on sludge reduction and microbial structures of anaerobic side-stream reactor coupled membrane bioreactors. BIORESOURCE TECHNOLOGY 2017; 234:380-388. [PMID: 28343057 DOI: 10.1016/j.biortech.2017.03.077] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
An anoxic/oxic membrane bioreactor (AO-MBR) and three anaerobic side-stream reactor (ASSR) coupled MBRs (ASSR-MBR) were operated to investigate effects of side-stream ratio (SR) on sludge reduction and microbial community structure of ASSR-MBRs. The ASSR-MBR achieved efficient COD and ammonium nitrogen removal. SR increased from 0.2 to 1.0 favored nitrogen removal, and increased sludge reduction from 6.0% to 49.7%. The total released COD in the ASSR increased with the rising SR and was inversely proportional to sludge yield of ASSR-MBR. Pyrosequencing analysis showed that phyla Chloroflexi and Armatimonadetes surviving in anaerobic conditions were enriched in the ASSR, while Nitrospirae was dominant in the MBR. Comparison at the genus level revealed that higher SR favored the growth of slow growers, while lower SR enriched hydrolytic and predatory bacteria. The results suggested that SR has a profound effect on nitrogen removal, sludge reduction and microbial community structure in the ASSR-MBR.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Tianhao Niu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuelian Shen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Wei Pan
- Shanghai Municipal Sewerage Co., Ltd, Shanghai 200233, China
| | - Zhihui Chen
- Shanghai Municipal Sewerage Co., Ltd, Shanghai 200233, China
| | - Jin Liu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
172
|
Jacquiod S, Brejnrod A, Morberg SM, Abu Al-Soud W, Sørensen SJ, Riber L. Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Mol Ecol 2017; 26:3556-3571. [DOI: 10.1111/mec.14138] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Samuel Jacquiod
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Asker Brejnrod
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Stefan M. Morberg
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Søren J. Sørensen
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Leise Riber
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
173
|
Chen Y, Lan S, Wang L, Dong S, Zhou H, Tan Z, Li X. A review: Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. CHEMOSPHERE 2017; 174:173-182. [PMID: 28161518 DOI: 10.1016/j.chemosphere.2017.01.129] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
The performance and stabilization of biological wastewater treatment systems 1are closely related to the microbial community structure and dynamics. In this paper, the effects and mechanisms of influent composition, process configuration, operating parameters (dissolved oxygen [DO], pH, hydraulic retention time [HRT] and sludge retention time [SRT]) and environmental condition (temperature) to the change of microbial community structure and process performance (nitrification, denitrification, biological phosphorus removal, organics mineralization and utilization, etc.) are critically reviewed. Furthermore, some strategies for microbial community structure regulation, mainly bioaugmentation, process adjustment and operating parameters optimization, applied in the current wastewater treatment systems are also discussed. Although the recent studies have strengthened our understanding on the relationship between microbial community structure and wastewater treatment process performance, how to fully tap the microbial information, optimize the microbial community structure and maintain the process performance in wastewater treatment systems are still full of challenges.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Longhui Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| |
Collapse
|
174
|
Muter O, P Erkons I, Selga T, Berzins A, Gudra D, Radovica-Spalvina I, Fridmanis D, Bartkevics V. Removal of pharmaceuticals from municipal wastewaters at laboratory scale by treatment with activated sludge and biostimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:402-413. [PMID: 28126281 DOI: 10.1016/j.scitotenv.2017.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Municipal wastewater containing 21 pharmaceutical compounds, as well as activated sludge obtained from the aeration tank of the same wastewater treatment plant were used in lab-scale biodegradation experiments. The concentrations of pharmaceutical compounds were determined by high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry and ranged from 13.2ng/L to 51.8μg/L. Activated sludge was characterized in the terms of phylogenetic and catabolic diversity of microbial community, as well as its morphology. Proteobacteria (24.0%) represented the most abundant phylum, followed by Bacteroidetes (19.8%) and Firmicutes (13.2%). Bioaugmentation of wastewater with activated sludge stimulated the biodegradation process for 14 compounds. The concentration of carbamazepine in non-amended and bioaugmented WW decreased during the first 17h up to 30% and 70%, respectively. Diclofenac and ibuprofen demonstrated comparatively slow removal. The stimulating effect of the added nutrients was observed for the degradation of almost all pharmaceuticals detected in WW. The most pronounced effect of nutrients was found for erythromycin. The results were compared with those obtained for the full-scale WW treatment process.
Collapse
Affiliation(s)
- Olga Muter
- Institute of Microbiology & Biotechnology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia.
| | - Ingus P Erkons
- Faculty of Chemistry, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Turs Selga
- Faculty of Biology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Andrejs Berzins
- Institute of Microbiology & Biotechnology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Center, 1 Ratsupites Str., Riga LV-1067, Latvia
| | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Center, 1 Ratsupites Str., Riga LV-1067, Latvia
| | - Vadims Bartkevics
- Faculty of Chemistry, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| |
Collapse
|
175
|
Choi J, Kim ES, Ahn Y. Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 227:133-141. [PMID: 28013129 DOI: 10.1016/j.biortech.2016.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Pyrosequencing was used to investigate biofouling-causing microbial consortia at the community level in bulk sludge and cake layers within a full-scale membrane bioreactor (MBR). The analysis revealed Chao's estimates of total operational taxonomic units (OTUs) of 1726, 1806, and 1362 for bulk sludge, cake outer layer, and cake inner layer, respectively. The bulk sludge and cake outer layer OTUs clustered together, whereas the cake inner layer OTUs formed a separate group, indicating that environmental conditions affected the microbial community composition within the MBR. Bacteroidetes, Proteobacteria, and Chloroflexi were the dominant phyla in both the bulk sludge and the cake layers. Comparison at the genus level showed twelve distinct genera in the cake layers that were absent in bulk sludge. Twenty distinct genera were recorded in the inner cake layer. Those genera are likely the microbial colonization pioneers in full-scale membrane bioreactors.
Collapse
Affiliation(s)
- Jeongdong Choi
- Department of Environmental Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Youngho Ahn
- Department of Civil Engineering, Yeungnam University, Gyungsan 38541, Republic of Korea.
| |
Collapse
|
176
|
Luo H, Song Y, Zhou Y, Yang L, Zhao Y. Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5509-5520. [PMID: 28028705 DOI: 10.1007/s11356-016-8233-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
ABS resin wastewater is a high-temperature nitrogenous organic wastewater. It can be successfully treated with anoxic/aerobic (A/O) process. In this study, the effect of temperature on nitrogen removal and microbial community after quick temperature rise (QTR) was investigated. It was indicated that QTR from 25 to 30 °C facilitated the microbial growth and achieved a similar effluent quality as that at 25 °C. QTR from 25 to 35 °C or 40 °C resulted in higher effluent concentration of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN), and total phosphorus (TP). Illumina MiSeq pyrosequencing analysis illustrated that the richness and diversity of the bacterial community was decreased as the temperature was increased. The percentage of many functional groups was changed significantly. QTR from 25 to 40 °C also resulted in the inhibition of ammonia oxidation rate and high concentration of free ammonia, which then inhibited the growth of NOB (Nitrospira), and thus resulted in nitrite accumulation. The high temperature above 35 °C promoted the growth of a denitrifying bacterial genus, Denitratisoma, which might increase N2O production during the denitrification process.
Collapse
Affiliation(s)
- Huilong Luo
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China.
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yudong Song
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuexi Zhou
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liwei Yang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China
| | - Yaqian Zhao
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
177
|
Wang S, Pu Y, Wei C. COD and nitrogen removal and microbial communities in a novel waterfall biofilm reactor operated at different COD/TN ratios. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:99-105. [PMID: 27768533 DOI: 10.1080/10934529.2016.1237115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to characterize the pollutant removal efficiency and the microbial communities that arose in a newly designed waterfall biofilm reactor (WFBR) at different chemical oxygen demand/total nitrogen (COD/TN) ratios. The reactor was operated continuously for 28 days at different COD/TN ratios, and its efficiency was evaluated. Results showed that as the thickness of the biofilm increased, the structure of the biofilm encouraged anaerobic-aerobic, anoxic-anaerobic, and fully anaerobic conditions in one reactor. The COD/TN ratios used had a significant effect on the removal of COD and nitrogen components. At a COD/TN ratio of 14, the ammonium nitrogen removal efficiency reached its highest value (99%), but the COD removal efficiency remained at approximately 90%. High-throughput sequencing revealed that the highest community diversity and richness were seen at a COD/TN ratio of 18, and the major phyla were Proteobacteria (average abundance of 47%), Actinobacteria (24%), and Bacteroidetes (13%). As the COD/TN ratios increased from 7 to 18, the abundance of Proteobacteria gradually increased from 25% to 68%. These results could provide important guidance for the design of new wastewater treatment systems and also enrich our theoretical understanding of microbial ecology.
Collapse
Affiliation(s)
- Siyao Wang
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Yuewu Pu
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Cheng Wei
- b School of Architecture, South China University of Technology, State Key Laboratory of Subtropical Building Science , Guangzhou , China
| |
Collapse
|
178
|
Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. BIORESOURCE TECHNOLOGY 2017; 224:1-12. [PMID: 27889353 DOI: 10.1016/j.biortech.2016.11.042] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 05/25/2023]
Abstract
Due to research advancement and discoveries in the field of medical science, maintains and provides better human health and safer life, which lead to high demand for production of pharmaceutical compounds with a concomitant increase in population. These pharmaceutical (biologically active) compounds were not fully metabolized by the body and excreted out in wastewater. This micro-pollutant remains unchanged during wastewater treatment plant operation and enters into the receiving environment via the discharge of treated water. Persistence of pharmaceutical compounds in both surface and ground waters becomes a major concern due to their potential eco-toxicity. Pharmaceuticals (emerging micro-pollutants) deteriorate the water quality and impart a toxic effect on living organisms. Therefore, from last two decades, plenty of studies were conducted on the occurrence, impact, and removal of pharmaceutical residues from the environment. This review provides an overview on the fate and removal of pharmaceutical compounds via biological treatment process.
Collapse
Affiliation(s)
| | | | - Yassine Ouarda
- INRS Eau, Terre et Environnement, Québec (Québec), Canada
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, Québec (Québec), Canada
| | | | - Gerardo Buelna
- Centre de Recherche Industrielle du Québec (CRIQ), Québec (Québec), Canada
| |
Collapse
|
179
|
Coats ER, Brinkman CK, Lee S. Characterizing and contrasting the microbial ecology of laboratory and full-scale EBPR systems cultured on synthetic and real wastewaters. WATER RESEARCH 2017; 108:124-136. [PMID: 27814897 PMCID: PMC5176642 DOI: 10.1016/j.watres.2016.10.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
The anthropogenic discharge of phosphorus (P) into surface waters can induce the proliferation of cyanobacteria and algae, which can negatively impact water quality. Enhanced biological P removal (EBPR) is an engineered process that can be employed to efficiently remove significant quantities of P from wastewater. Within this engineered system, the mixed microbial consortium (MMC) becomes enriched with polyphosphate accumulating organisms (PAOs). To date much knowledge has been developed on PAOs, and the EBPR process is generally well understood; nonetheless, the engineered process remains underutilized. In this study, investigations were conducted using qPCR and Illumina MiSeq to assess the impacts of wastewater (synthetic vs. real) on EBPR microbial ecology. While a strong relationship was demonstrated between EBPR metrics (P:C; influent VFA:P) and excellent P removal across diverse EBPR systems and MMCs, no such correlations existed with the specific MMCs. Moreover, MMCs exhibited distinct clusters based on substrate, and qPCR results based on the putative PAO Accumulibacter did not correlate with BLASTN eubacterial results for either Accumulibacter or Rhodocyclaceae. More critically, PAO-based sequences aligned poorly with Accumulibacter for both eubacterial and PAO primer sets, which strongly suggests that the conventional PAO primers applied in FISH and qPCR analysis do not sufficiently target the putative PAO Accumulibacter. In particular, negligible alignment was observed for PAO amplicons obtained from a MMC performing excellent EBPR on crude glycerol (an atypical substrate). A synthetic wastewater-based MMC exhibited the best observed BLASTN match of the PAO amplicons, raising concerns about the potential relevance in using synthetic substrates in the study of EBPR.
Collapse
Affiliation(s)
- Erik R Coats
- Department of Civil Engineering, University of Idaho, Moscow, ID 83844-1022, USA.
| | - Cynthia K Brinkman
- Department of Civil Engineering, University of Idaho, Moscow, ID 83844-1022, USA
| | - Stephen Lee
- Department of Statistics, University of Idaho, Moscow, ID 83844-1104, USA
| |
Collapse
|
180
|
Fan XY, Gao JF, Pan KL, Li DC, Dai HH. Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant. RSC Adv 2017. [DOI: 10.1039/c7ra10704h] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dynamics of bacterial communities and nitrogen metabolism genes in a full-scale WWTP as revealed by Illumina sequencing and PICRUSt.
Collapse
Affiliation(s)
- Xiao-Yan Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Kai-Ling Pan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Ding-Chang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Hui-Hui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
181
|
Bacterial community structure within an activated sludge reactor added with phenolic compounds. Appl Microbiol Biotechnol 2016; 101:3405-3414. [DOI: 10.1007/s00253-016-8000-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 01/02/2023]
|
182
|
Cao S, Du R, Niu M, Li B, Ren N, Peng Y. Integrated anaerobic ammonium oxidization with partial denitrification process for advanced nitrogen removal from high-strength wastewater. BIORESOURCE TECHNOLOGY 2016; 221:37-46. [PMID: 27639222 DOI: 10.1016/j.biortech.2016.08.082] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
In this study, a novel integrated anaerobic ammonium oxidization with partial denitrification process (termed as ANAMMOX-PD) was developed for advanced nitrogen removal from high-strength wastewater, which excess NO3--N produced by ANAMMOX was fed into PD reactor for NO2--N production and then refluxing to ANAMMOX reactor for further removal. Results showed that total nitrogen (TN) removal efficiency as high as 97.8% was achieved and effluent TN-N was below 20mg/L at influent TN-N of 820mg/L. Furthermore, the feasibility of simultaneously treating domestic wastewater was demonstrated in ANAMMOX-PD process, and NH4+-N removal efficiency of 96.7% was obtained. The nitrogen removal was mainly carried out through ANAMMOX pathway, and high-throughput sequencing revealed that Candidatus_Brocadia was the major ANAMMOX species. The presented process could effectively solve the problem of excess nitrate residual in ANAMMOX effluent, which hold a great potential in application of currently ANAMMOX treating high-strength wastewater (e.g. sludge digestion supernatant).
Collapse
Affiliation(s)
- Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Meng Niu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongzhen Peng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
183
|
Gokal J, Awolusi OO, Enitan AM, Kumari S, Bux F. Chapter 4 Molecular Characterization and Quantification of Microbial Communities in Wastewater Treatment Systems. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
184
|
Ordaz A, Sánchez M, Rivera R, Rojas R, Zepeda A. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor. Biodegradation 2016; 28:81-94. [DOI: 10.1007/s10532-016-9779-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
|
185
|
Terashima M, Yama A, Sato M, Yumoto I, Kamagata Y, Kato S. Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant. Microbes Environ 2016; 31:449-455. [PMID: 27867159 PMCID: PMC5158118 DOI: 10.1264/jsme2.me16097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process.
Collapse
Affiliation(s)
- Mia Terashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | |
Collapse
|
186
|
Zhang Y, Geng J, Ma H, Ren H, Xu K, Ding L. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:479-86. [PMID: 27395074 DOI: 10.1016/j.scitotenv.2016.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 05/28/2023]
Abstract
To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5ppb, 50ppb and 10ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH4(+)N) removals appeared unchanged (p>0.05) with 5 and 50ppb, but decreased significantly with 10ppm (p<0.05). Extracellular polymeric substances (EPS) concentrations increased significantly with increasing TC or SMX concentrations (p<0.05). High-throughput 16S rRNA gene sequencing results suggested that Proteobacteria, Actinobacteria and Bacteroidetes were the three most abundant phyla in sludge samples. The Actinobacteria percentages increased with increasing TC or SMX concentration, while Proteobacteria and Bacteroidetes decreased. The microbial diversity achieved its maximum at 5ppb and decreased with higher concentrations. The total ARGs abundances in sludge increased with addition of TC or SMX, and the higher relative abundances were in the order of sul1>tetG>sul2>tetA>intI1>tetS>tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p<0.01).
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.
| | - Haijun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
187
|
Wang P, Yu Z, Qi R, Zhang H. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant. WATER RESEARCH 2016; 105:157-166. [PMID: 27614036 DOI: 10.1016/j.watres.2016.08.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/16/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
In this study, pyrosequencing combined with clone library analysis, qPCR, and fluorescent in situ hybridization (FISH) were performed to identify detailed changes of bacterial and filamentous bacterial communities in activated sludge (AS) in 3 types of typical AS samples: sludge bulking (B-AS), excessive bulking (EB-AS), and non-bulking (N-AS). Sludge bulking resulted in a decrease in total bacterial numbers from (6.4 ± 0.18) × 108 gene copies/mL in N-AS to (2.4 ± 0.22) × 108 in EB-AS and a decrease in bacterial diversity from 2757 OTUs in N-AS to 2217 OTUs in EB-AS. With the occurrence of sludge bulking, Actinobacteria and Firmicutes increased sharply, whereas Proteobacteria, which was the predominant phylum in N-AS, decreased markedly. In addition, Nitrospirae, a major lineage of the nitrite-oxidizing bacteria, had quite a low abundance in EB-AS (0.15%), while it was relatively high in N-AS (1.17%). On the other hand, filamentous bacteria accounted for 28.77% and 5.72% of total sequences in EB-AS and N-AS, respectively. More interestingly, 11 types of filamentous bacteria were always present in 3 types of typical AS samples from different stages of sludge bulking, and most of them enriched in EB-AS compared to N-AS. It is noteworthy that, in addition to the frequently reported filamentous bacteria such as Candidatus M. parvicella and Tetrasphaera, novel filamentous species of Trichococcus might exist in this bulking WWTP. Our results reveal that sludge bulking are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the bulking phenomenon in AS.
Collapse
Affiliation(s)
- Ping Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China.
| | - Rong Qi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China
| | - Hongxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
188
|
Qiu G, Zhang S, Srinivasa Raghavan DS, Das S, Ting YP. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level. BIORESOURCE TECHNOLOGY 2016; 219:298-310. [PMID: 27498011 DOI: 10.1016/j.biortech.2016.07.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria.
Collapse
Affiliation(s)
- Guanglei Qiu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Divya Shankari Srinivasa Raghavan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Subhabrata Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
189
|
Dynamics of Bacterial Community Abundance and Structure in Horizontal Subsurface Flow Wetland Mesocosms Treating Municipal Wastewater. WATER 2016. [DOI: 10.3390/w8100457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
190
|
Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA. Insights in Waste Management Bioprocesses Using Genomic Tools. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:121-170. [PMID: 27926430 DOI: 10.1016/bs.aambs.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial capacities drive waste stabilization and resource recovery in environmental friendly processes. Depending on the composition of waste, a stress-mediated selection process ensures a scenario that generates a specific enrichment of microbial community. These communities dynamically change over a period of time while keeping the performance through the required utilization capacities. Depending on the environmental conditions, these communities select the appropriate partners so as to maintain the desired functional capacities. However, the complexities of these organizations are difficult to study. Individual member ratios and sharing of genetic intelligence collectively decide the enrichment and survival of these communities. The next-generation sequencing options with the depth of structure and function analysis have emerged as a tool that could provide the finer details of the underlying bioprocesses associated and shared in environmental niches. These tools can help in identification of the key biochemical events and monitoring of expression of associated phenotypes that will support the operation and maintenance of waste management systems. In this chapter, we link genomic tools with process optimization and/or management, which could be applied for decision making and/or upscaling. This review describes both, the aerobic and anaerobic, options of waste utilization process with the microbial community functioning as flocs, granules, or biofilms. There are a number of challenges involved in harnessing the microbial community intelligence with associated functional plasticity for efficient extension of microbial capacities for resource recycling and waste management. Mismanaged wastes could lead to undesired genotypes such as antibiotic/multidrug-resistant microbes.
Collapse
Affiliation(s)
- H J Purohit
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Kapley
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Khardenavis
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Qureshi
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - N A Dafale
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| |
Collapse
|
191
|
Meerbergen K, Van Geel M, Waud M, Willems KA, Dewil R, Van Impe J, Appels L, Lievens B. Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. Microbiologyopen 2016; 6. [PMID: 27667132 PMCID: PMC5300884 DOI: 10.1002/mbo3.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
It is assumed that microbial communities involved in the biological treatment of different wastewaters having a different chemical composition harbor different microbial populations which are specifically adapted to the environmental stresses encountered in these systems. Yet, little is known about the composition of these microbial communities. Therefore, the aim of this study was to assess the microbial community composition over two seasons (winter and summer) in activated sludge from well‐operating textile wastewater treatment plants (WWTPs) in comparison with municipal WWTPs, and to explain observed differences by environmental variables. 454‐pyrosequencing generated 160 archaeal and 1645 bacterial species‐level Operational Taxonomic Units (OTUs), with lower observed richness in activated sludge from textile WWTPs compared to municipal WWTPs. The bacterial phyla Planctomycetes, Chloroflexi, Chlorobi, and Acidobacteria were more abundant in activated sludge samples from textile WWTPs, together with archaeal members of Thaumarchaeota. Nonmetric multidimensional scaling analysis of the microbial communities showed that microbial communities from textile and municipal WWTPs were significantly different, with a seasonal effect on archaea. Nitrifying and denitrifying bacteria as well as phosphate‐accumulation bacteria were more abundant in municipal WWTPs, while sulfate‐reducing bacteria were almost only detected in textile WWTPs. Additionally, microbial communities from textile WWTPs were more dissimilar than those of municipal WWTPs, possibly due to a wider diversity in environmental stresses to which microbial communities in textile WWTPs are subjected to. High salinity, high organic loads, and a higher water temperature were important potential variables driving the microbial community composition in textile WWTPs. This study provides a general view on the composition of microbial communities in activated sludge of textile WWTPs, and may provide novel insights for identifying key players performing important functions in the purification of textile wastewaters.
Collapse
Affiliation(s)
- Ken Meerbergen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Maarten Van Geel
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Michael Waud
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Kris A Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- Process and Environmental Technology Lab (PETLab), Department of Chemical Engineering, Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control (BioTeC), Department of Chemical Engineering, Technology Campus Gent, KU Leuven, Gent, Belgium
| | - Lise Appels
- Process and Environmental Technology Lab (PETLab), Department of Chemical Engineering, Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| |
Collapse
|
192
|
Jo SJ, Kwon H, Jeong SY, Lee CH, Kim TG. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors. WATER RESEARCH 2016; 101:214-225. [PMID: 27262549 DOI: 10.1016/j.watres.2016.05.042] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Operation of membrane bioreactors (MBRs) for wastewater treatment is hampered by the membrane biofouling resulting from microbial activities. However, the knowledge of the microbial ecology of both biofilm and activated sludge in MBRs has not been sufficient. In this study, we scrutinized microbial communities of biofilm and activated sludge from 10 full-scale MBR plants. Overall, Flavobacterium, Dechloromonas and Nitrospira were abundant in order of abundance in biofilm, whereas Dechloromonas, Flavobacterium and Haliscomenobacter in activated sludge. Community structure was analyzed in either biofilm or activated sludge. Among MBRs, as expected, not only diversity of microbial community but also its composition was different from one another (p < 0.05). Between the biofilm and activated sludge, community composition made significant difference, but its diversity measures (i.e., alpha diversity, e.g., richness, diversity and evenness) did not (p > 0.05). Effects of ten environmental factors on community change were investigated using Spearman correlation. MLSS, HRT, F/M ratio and SADm explained the variation of microbial composition in the biofilm, whereas only MLSS did in the activated sludge. Microbial networks were constructed with the 10 environmental factors. The network results revealed that there were different topological characteristics between the biofilm and activated sludge networks, in which each of the 4 factors had different associations with microbial nodes. These results indicated that the different microbial associations were responsible for the variation of community composition between the biofilm and activated sludge.
Collapse
Affiliation(s)
- Sung Jun Jo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hyeokpil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - So-Yeon Jeong
- Department of Microbiology, Pusan National University, Pusan 46241, South Korea
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea.
| | - Tae Gwan Kim
- Department of Microbiology, Pusan National University, Pusan 46241, South Korea.
| |
Collapse
|
193
|
Chen C, Sun F, Zhang H, Wang J, Shen Y, Liang X. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). BIORESOURCE TECHNOLOGY 2016; 216:571-578. [PMID: 27285572 DOI: 10.1016/j.biortech.2016.05.115] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Nitrogen removal with different organic carbon effect was investigated using anaerobic baffled reactor (ABR) anammox reactor. Results indicated that organic carbon exert an important effect on nitrogen removal through anammox process. When the feeding COD concentration was lower than 99.7mgL(-1), nitrogen removal could be enhanced via the coexistence of denitrification and anammox. Elevated COD could further deteriorate the anammox activity with almost complete inhibition at the COD concentration of 284.1mgL(-1). The nitrogen removal contribution rate of anammox was varied from 92.7% to 6.9%. However, the anammox activity was recovered when the COD/TN was decreased from 2.33 to 1.25 with influent nitrite addition. And, the anammox process was again intensified from 27.0 to 51.2%. High-throughput Miseq sequencing analyses revealed that the predominant phylum changed from Chloroflexi to Proteobacteria with the elevated COD addition, which indicated COD concentration was the most important factor regulating the bacterial community structure.
Collapse
Affiliation(s)
- Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang Province, Hangzhou 310058, PR China
| | - Faqian Sun
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Haiqing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaoliang Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinqiang Liang
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
194
|
Long XE, Wang J, Huang Y, Yao H. Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15483-15494. [PMID: 27117156 DOI: 10.1007/s11356-016-6681-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Landfills are always the most important part of solid waste management and bear diverse metabolic activities involved in element biogeochemical cycling. There is an increasing interest in understanding the microbial community and activities in landfill cover soils. To improve our knowledge of landfill ecosystems, we determined the microbial physiological profiles and communities in three landfill cover soils (Ninghai: NH, Xiangshan: XS, and Fenghua: FH) of different ages using the MicroResp(TM), phospholipid fatty acid (PLFA), and high-throughput sequencing techniques. Both total PLFAs and glucose-induced respiration suggested more active microorganisms occurred in intermediate cover soils. Microorganisms in all landfill cover soils favored L-malic acid, ketoglutarate, and citric acid. Gram-negative bacterial PLFAs predominated in all samples with the representation of 16:1ω7, 18:1ω7, and cy19:0 in XS and NH sites. Proteobacteria dominated soil microbial phyla across different sites, soil layers, and season samples. Canonical correspondence analysis showed soil pH, dissolved organic C (DOC), As, and total nitrogen (TN) contents significantly influenced the microbial community but TN affected the microbial physiological activities in both summer and winter landfill cover soils.
Collapse
Affiliation(s)
- Xi-En Long
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen, 361021, China
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, No. 88 Zhong Ke Road, Ningbo, 315830, China
| | - Juan Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen, 361021, China
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, No. 88 Zhong Ke Road, Ningbo, 315830, China
| | - Ying Huang
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, Jiangsu Province, 210046, China
| | - Huaiying Yao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen, 361021, China.
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, No. 88 Zhong Ke Road, Ningbo, 315830, China.
| |
Collapse
|
195
|
Li Y, Zhou J, Gong B, Wang Y, He Q. Cometabolic degradation of lincomycin in a Sequencing Batch Biofilm Reactor (SBBR) and its microbial community. BIORESOURCE TECHNOLOGY 2016; 214:589-595. [PMID: 27183234 DOI: 10.1016/j.biortech.2016.04.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
Cometabolism technology was employed to degrade lincomycin wastewater in Sequencing Batch Biofilm Reactor (SBBR). In contrast with the control group, the average removal rate of lincomycin increased by 56.0% and Total Organic Carbon (TOC) increased by 52.5% in the cometabolic system with glucose as growth substrate. Under the same condition, Oxidation-Reduction Potential (ORP) was 85.1±7.3mV in cometabolic system and 198.2±8.4mV in the control group, indicating that glucose changed the bulk ORP and created an appropriate growing environment for function bacteria. Functional groups of lincomycin were effectively degraded in cometabolic system proved by FTIR and GC-MS. Meanwhile, results of DGGE and 16S rDNA showed great difference in dominant populations between cometabolic system and the control group. In cometabolic system, Roseovarius (3.35%), Thiothrix (2.74%), Halomonas (2.49%), Ignavibacterium (2.02%), and TM7_genus_incertae_sedis (1.93%) were verified as dominant populations at genus level. Cometabolism may be synergistically caused by different functional dominant bacteria.
Collapse
Affiliation(s)
- Yancheng Li
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing, PR China
| | - Benzhou Gong
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing, PR China.
| |
Collapse
|
196
|
He Q, Zhou J, Wang H, Zhang J, Wei L. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor. BIORESOURCE TECHNOLOGY 2016; 214:1-8. [PMID: 27115745 DOI: 10.1016/j.biortech.2016.04.088] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/11/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
The evolution of the bacterial population during formation of denitrifying phosphorus removal granular sludge was investigated using high-throughput pyrosequencing. As a result, mature granules with a compact structure were obtained in an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor under an organic loading rate as low as 0.3kg COD/(m(3)·d). Rod-shaped microbes were observed to cover with the outer surface of granules. Besides, reliable COD and simultaneous nitrogen and phosphorus removal efficiencies were achieved over the whole operation period. MiSeq pyrosequencing analysis illustrated that both the microbial diversity and richness increased sharply during the granulation process, whereas they stayed stable after the presence of granules. Some microorganisms seemed to contribute to the formation of granules, and some were identified as functional bacterial groups responsible for constructing the biological reactor.
Collapse
Affiliation(s)
- Qiulai He
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jun Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Jing Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Li Wei
- State Key Lab of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
197
|
Summer holidays as break-point in shaping a tannery sludge microbial community around a stable core microbiota. Sci Rep 2016; 6:30376. [PMID: 27461169 PMCID: PMC4961970 DOI: 10.1038/srep30376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/04/2016] [Indexed: 11/08/2022] Open
Abstract
Recently, several investigations focused on the discovery of a bacterial consortium shared among different wastewater treatment plants (WWTPs). Nevertheless, the definition of a core microbiota over time represents the necessary counterpart in order to unravel the dynamics of bacterial communities in these environments. Here we performed a monthly survey on the bacterial community of a consortial industrial plant. Objectives of this study were: (1) to identify a core microbiota constant over time; (2) to evaluate the temporal dynamics of the community during one year. A conspicuous and diversified core microbiota is constituted by operational taxonomic units which are present throughout the year in the plant. Community composition data confirm that the presence and abundance of bacteria in WWTPs is highly consistent at high taxonomic level. Our results indicate however a difference in microbial community structure between two groups of samples, identifying the summer holiday period as the break-point. Changes in the structure of the microbial community occur otherwise gradually, one month after another. Further studies will clarify how the size and diversity of the core microbiota could affect the observed dynamics.
Collapse
|
198
|
Qu Y, Zhang X, Shen W, Ma Q, You S, Pei X, Li S, Ma F, Zhou J. Illumina MiSeq sequencing reveals long-term impacts of single-walled carbon nanotubes on microbial communities of wastewater treatment systems. BIORESOURCE TECHNOLOGY 2016; 211:209-215. [PMID: 27017131 DOI: 10.1016/j.biortech.2016.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
In this study, phenol wastewater treatment systems treated with different concentrations of single-walled carbon nanotubes (SWCNTs) (0-3.5g/L) were exposed to phenol and carbon nanotubes (CNTs) shock loadings to investigate the long-term impacts of SWCNTs on microbial communities. Phenol removal remained high efficiency (>98%) in SWCNTs-treated groups but decreased in non-treated group (85.1±1.9%) when exposed to high concentration of phenol (500mg/L). However, secondary dosing of SWCNTs in SWCNTs-treated groups would decrease the phenol removal efficiency. Illumina MiSeq sequencing revealed that the diversity, richness and structure of microbial communities were shifted under phenol shock loading, especially under high phenol concentration, but not under CNTs shock loading. In response to phenol and CNTs shock loadings, Rudaea, Burkholderia, Sphingomonas, Acinetobacter, Methylocystis and Thauera became dominant genera, which should be involved in phenol removal. These results suggested that a proper amount of SWCNTs might have positive effects on phenol wastewater treatment systems.
Collapse
Affiliation(s)
- Yuanyuan Qu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuwang Zhang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenli Shen
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiao Ma
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengnan You
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofang Pei
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jiti Zhou
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
199
|
Hong JM, Hu MM, Sun R, Chen BY. Unraveling characteristics of nutrient removal and microbial community in a novel aerated landscape - Activated sludge ecological system. BIORESOURCE TECHNOLOGY 2016; 212:280-288. [PMID: 27111873 DOI: 10.1016/j.biortech.2016.04.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
In this study, a novel landscape-activated sludge ecological system (LASeM) was constructed with the advantages of promising treatment, less land need and significant landscape services. Compared to literature, this study provided promising integrated wastewater treatment and landscape for wastewater treatment. This first-attempt study clearly deciphered interactive effect of aeration rate (AR) on nutrient removal and microbial community structure in LASeM. When AR was 0.016m(3)h(-1), the most appropriate removal of COD, NH4(+)-N and TP were 96%, 97% and 74% with the effluent of 14.3, 1.7 and 0.7mgL(-1), respectively, which showed satisfactory capabilities for rural domestic wastewater treatment. According to clone library analysis, Proteobacteria (71%), Bacteroidetes (17%) were found to be the dominant bacterial phylums present in LASeM for biodegradation. In particular, the incorporation of plants altered the microbial community and strengthened capability for the nutrients removal likely due to synergistic interactions among species in the ecosystem.
Collapse
Affiliation(s)
- Jun-Ming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Miao-Miao Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Rong Sun
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan.
| |
Collapse
|
200
|
Su JF, Ma M, Wei L, Ma F, Lu JS, Shao SC. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water. MARINE POLLUTION BULLETIN 2016; 107:233-239. [PMID: 27126181 DOI: 10.1016/j.marpolbul.2016.03.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Acinetobacter sp. J25 exhibited good denitrification and high algicidal activity against toxic Microcystis aeruginosa. Response surface methodology (RSM) experiments showed that the maximum algicidal ratio occurred under the following conditions: temperature, 30.46°C; M. aeruginosa density, 960,000cellsmL(-1); and inoculum, 23.75% (v/v). Of these, inoculum produced the maximum effect. In the eutrophic landscape water experiment, 10% bacterial culture was infected with M. aeruginosa cells in the landscape water. After 24days, the removal ratios of nitrate and chlorophyll-a were high, 100% and 87.86%, respectively. The denitrification rate was approximately 0.118mgNO3(-)-N·L(-1)·h(-1). Moreover, the high-throughput sequencing result showed that Acinetobacter sp. J25 was obviously beneficial for chlorophyll-a and nitrate removal performance in the eutrophic landscape water treatment. Therefore, strain J25 is promising for the simultaneous removal of chlorophyll-a and nitrate in the eutrophic landscape water treatment.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| | - Min Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Jin Suo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Si Cheng Shao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| |
Collapse
|