151
|
Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater 2021; 131:62-79. [PMID: 34237423 DOI: 10.1016/j.actbio.2021.06.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
The use of Graphene based materials, such as graphene oxide (GO), in biosensing applications is gaining significant interest, due to high signal output, with strong potential for high industrial growth rate. Graphene's excellent conduction and mechanical properties (such as toughness and elasticity) coupled with high reactivity to chemical molecules are some of its appealing properties. The presence of ripples on the surface (whether indigenous or induced) represents another property/variable that provide enormous potential if harnessed properly. In this article, we review the current knowledge regarding the use of graphene for biosensing. We discuss briefly the general topic of using graphene for biosensing applications with special emphasis on wearable graphene-based biosensors. The intrinsic ripples of graphene and their effect on graphene biosensing capabilities are thoroughly discussed. We dedicate a section also for the manipulation of intrinsic ripples. Then we review the use of Graphene oxide (GO) in biosensing and discuss the effect of ripples on its properties. We present a review of the current biosensor devices made out of GO for detection of different molecular targets. Finally, we present some thoughts for future perspectives and opportunities of this field. STATEMENT OF SIGNIFICANCE: Biosensors are tools that detect the presence and amount of a chemical substance, such as pregnancy tests and glucose monitoring devices. They are general portable, have short response times and are sensitive, making them highly effective. Gold and silver are used in biosensors and more recently, graphene. Graphene is sheets of carbon atoms and is the only two-dimensional crystal in nature. It has unique features allowing its effective use in biosensing applications, including the presence of ripples (non-flat areas that give it its electronic properties). The last comprehensive review of this topic was published in 2016. This paper reviews the current knowledge of graphene based biosensors, with a focus on ripples and their effect on graphene biosensing capabilities.
Collapse
|
152
|
Liu S, Hu Q, Li C, Zhang F, Gu H, Wang X, Li S, Xue L, Madl T, Zhang Y, Zhou L. Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy. ACS Sens 2021; 6:2911-2919. [PMID: 34282892 PMCID: PMC8406416 DOI: 10.1021/acssensors.1c00641] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive, selective, rapid, and label-free detection of pathogenic bacteria with high generality is of great importance for clinical diagnosis, biosecurity, and public health. However, most traditional approaches, such as microbial cultures, are time-consuming and laborious. To circumvent these problems, surface-enhanced Raman spectroscopy (SERS) appears to be a powerful technique to characterize bacteria at the single-cell level. Here, by SERS, we report a strategy for the rapid and specific detection of 22 strains of common pathogenic bacteria. A novel and high-quality silver nanorod SERS substrate, prepared by the facile interface self-assembly method, was utilized to acquire the chemical fingerprint information of pathogens with improved sensitivity. We also applied the mathematical analysis methods, such as the t-test and receiver operating characteristic method, to determine the Raman features of these 22 strains and demonstrate the clear identification of most bacteria (20 strains) from the rest and also the reliability of this SERS sensor. This rapid and specific strategy for wide-range bacterial detection offers significant advantages over existing approaches and sets the base for automated and onsite detection of pathogenic bacteria in a complex real-life situation.
Collapse
Affiliation(s)
- Siying Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiushi Hu
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Li
- Institute of Medical Equipment, Academy of Military Sciences, Tianjin 300161, China
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinrui Wang
- Anti-plague Institute Hebei Province, Zhangjiakou 075000, China
| | - Shuang Li
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Xue
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tobias Madl
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhou
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
153
|
Li J, Fang Y, Lin X, Hao Z, Yin Y, Zhao M, Liu Y. Universal Nanoplatform for Ultrasensitive Ratiometric Fluorescence Detection and Highly Efficient Photothermal Inactivation of Pathogenic Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:6361-6370. [DOI: 10.1021/acsabm.1c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jinjie Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yanliang Yin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
154
|
Yoon SA, Park SY, Cha Y, Gopala L, Lee MH. Strategies of Detecting Bacteria Using Fluorescence-Based Dyes. Front Chem 2021; 9:743923. [PMID: 34458240 PMCID: PMC8397417 DOI: 10.3389/fchem.2021.743923] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Identification of bacterial strains is critical for the theranostics of bacterial infections and the development of antibiotics. Many organic fluorescent probes have been developed to overcome the limitations of conventional detection methods. These probes can detect bacteria with "off-on" fluorescence change, which enables the real-time imaging and quantitative analysis of bacteria in vitro and in vivo. In this review, we outline recent advances in the development of fluorescence-based dyes capable of detecting bacteria. Detection strategies are described, including specific interactions with bacterial cell wall components, bacterial and intracellular enzyme reactions, and peptidoglycan synthesis reactions. These include theranostic probes that allow simultaneous bacterial detection and photodynamic antimicrobial effects. Some examples of other miscellaneous detections in bacteria have also been described. In addition, this review demonstrates the validation of these fluorescent probes using a variety of biological models such as gram-negative and -positive bacteria, antibiotic-resistant bacteria, infected cancer cells, tumor-bearing, and infected mice. Prospects for future research are outlined by presenting the importance of effective in vitro and in vivo detection of bacteria and development of antimicrobial agents.
Collapse
Affiliation(s)
| | | | | | | | - Min Hee Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul, South Korea
| |
Collapse
|
155
|
Melo AMA, Furtado RF, de Fatima Borges M, Biswas A, Cheng HN, Alves CR. Performance of an amperometric immunosensor assembled on carboxymethylated cashew gum for Salmonella detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
156
|
Nooranian S, Mohammadinejad A, Mohajeri T, Aleyaghoob G, Kazemi Oskuee R. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol Appl Biochem 2021; 69:1517-1534. [PMID: 34269486 DOI: 10.1002/bab.2224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Simply synthetized gold nanoparticles have been highly used in medicine and biotechnology as a result of their biocompatibility, conductivity, and being easily functionalized with biomolecules such as aptamer. Aptamer-conjugated gold nanoparticle structures synergically possess characteristics of both aptamer and gold nanoparticles including high binding affinity, high biocompatibility, enhanced target selectivity, and long circulatory half-life. Aptamer-conjugated gold nanoparticles have extensively gained considerable attention for designing of biosensing systems due to their interesting optical and electrochemical features. Moreover, biosensors based on aptamer-gold nanoparticles are easy to use, with fast response, and inexpensive which make them ideal in individualized medicine, disease markers detection, food safety, and so forth. Moreover, due to high selectivity and biocompatibility of aptamer-gold nanoparticles, these biosensing platforms are ideal tools for targeted drug delivery systems. The application of this nanostructure as diagnostic and therapeutic tool has been developed for detection of cancer in the early stage by detecting cancer biomarkers, pathogens, proteins, toxins, antibiotics, adenosine triphosphate, and other small molecules. This review obviously demonstrates that this nanostructure effectively is applicable in the field of biomedicine and possesses potential of commercialization aims.
Collapse
Affiliation(s)
- Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
157
|
Balkourani G, Brouzgou A, Archonti M, Papandrianos N, Song S, Tsiakaras P. Emerging materials for the electrochemical detection of COVID-19. J Electroanal Chem (Lausanne) 2021; 893:115289. [PMID: 33907536 PMCID: PMC8062413 DOI: 10.1016/j.jelechem.2021.115289] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 virus is still causing a dramatic loss of human lives worldwide, constituting an unprecedented challenge for the society, public health and economy, to overcome. The up-to-date diagnostic tests, PCR, antibody ELISA and Rapid Antigen, require special equipment, hours of analysis and special staff. For this reason, many research groups have focused recently on the design and development of electrochemical biosensors for the SARS-CoV-2 detection, indicating that they can play a significant role in controlling COVID disease. In this review we thoroughly discuss the transducer electrode nanomaterials investigated in order to improve the sensitivity, specificity and response time of the as-developed SARS-CoV-2 electrochemical biosensors. Particularly, we mainly focus on the results appeard on Au-based and carbon or graphene-based electrodes, which are the main material groups recently investigated worldwidely. Additionally, the adopted electrochemical detection techniques are also discussed, highlighting their pros and cos. The nanomaterial-based electrochemical biosensors could enable a fast, accurate and without special cost, virus detection. However, further research is required in terms of new nanomaterials and synthesis strategies in order the SARS-CoV-2 electrochemical biosensors to be commercialized.
Collapse
Affiliation(s)
- G Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
| | - A Brouzgou
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| | - M Archonti
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
| | - N Papandrianos
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| | - S Song
- The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - P Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
- Laboratory of Materials and Devices for Clean Energy, Department of Technology of Electrochemical Processes, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russian Federation
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg 620990, Russian Federation
| |
Collapse
|
158
|
Rajpal S, Bhakta S, Mishra P. Biomarker imprinted magnetic core-shell nanoparticles for rapid, culture free detection of pathogenic bacteria. J Mater Chem B 2021; 9:2436-2446. [PMID: 33625438 DOI: 10.1039/d0tb02842h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rapid and selective detection of microorganisms in complex biological systems draws huge attention to address the rising issue of antimicrobial resistance. Diagnostics based on the identification of whole microorganisms are laborious, time-consuming and costly, thus alternative strategies for early clinical diagnosis include biomarker based microbial detection. This paper describes a low-cost, easy-to-use method for the detection of Pseudomonas aeruginosa infections by specifically identifying a biomarker pyocyanin, using surface-molecularly imprinted nanoparticles or "plastibodies". The selective nanopockets are created by templating pyocyanin onto 20 nm allyl-functionalized magnetic nanoparticles coated with a thin layer of the acrylamide-based polymer. This functional material with an impressive imprinting factor (IF) of 5 and a binding capacity of ∼2.5 mg g-1 of polymers can be directly applied for the detection of bacteria in complex biological samples based on the presence of pyocyanin. These MIPs are highly selective and sensitive to pyocyanin and can consistently bind with pyocyanin in repeated use. Finally, the facile and efficient capture of pyocyanin has versatile applications ranging from biomarker based culture free detection of P. aeruginosa to monitoring of the therapeutic regime, in addition to developing a new class of antibiotics.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Snehasis Bhakta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India. and Department of Chemistry, Cooch Behar College, West Bengal 736101, India and Nanoscale Research Facilities, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
159
|
Kim S, Romero-Lozano A, Hwang DS, Yoon JY. A guanidinium-rich polymer as a new universal bioreceptor for multiplex detection of bacteria from environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125338. [PMID: 33592489 DOI: 10.1016/j.jhazmat.2021.125338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 05/25/2023]
Abstract
Protamine, a guanidinium rich polymer, is proposed as a universal bioreceptor for bacteria, towards rapid and handheld bacteria detection from complex environmental water samples without the need for specific antibodies or primers. Escherichia coli K12, Salmonella Typhimurium, and Staphylococcus aureus (MSSA) were assayed, representing gram-negative, gram-positive, rod- and round-shaped bacteria. Samples and the protamine conjugated fluorescent particles were sequentially loaded to the paper microfluidic chips and flowed through the channels spontaneously via capillary action. The particles were aggregated via protamine-bacteria membrane interactions and unbound particles were rinsed via capillary action. A low-cost smartphone fluorescence microscope was designed, fabricated, and imaged the paper channels. A unique image processing algorithm isolated only the aggregated particles to detect all three bacteria (p < 0.05) with a detection limit of 101-102 CFU/mL. Protamine did not induce any particle aggregation with a model protein, algae, and virus. Successful bacteria detection was also demonstrated with environmental field water samples. Total assay time was < 10 min with neither extraction nor enrichment steps. In summary, a guanidinium-rich polymer showed a promise as a universal bioreceptor for bacteria and can be used on a paper microfluidic chip and smartphone quantification towards rapid and handheld detection.
Collapse
Affiliation(s)
- Sangsik Kim
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Anakaren Romero-Lozano
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Dong Soo Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
160
|
Ogawa U, Koyama K, Koseki S. Rapid detection and enumeration of aerobic mesophiles in raw foods using dielectrophoresis. J Microbiol Methods 2021; 186:106251. [PMID: 34038753 DOI: 10.1016/j.mimet.2021.106251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
The concept of dielectrophoresis (DEP), which involves the movement of neutral particles by induced polarization in nonuniform electric fields, has been exploited in various biological applications. However, only a few studies have investigated the use of DEP for detecting and enumerating microorganisms in foodstuffs. Therefore, we aimed to evaluate the accuracy and efficiency of a DEP-based method for enumerating viable bacteria in three raw foods: freshly cut lettuce, chicken breast, and minced pork. The DEP separation of bacterial cells was conducted at 20 V of output voltage and 6000 to 9000 kHZ of frequency with sample conductivity of 30-70 μS/cm. The accuracy and validity of the DEP method for enumerating viable bacteria were compared with those of the conventional culture method; no significant variation was observed. We found a high correlation between the data obtained using DEP and the conventional aerobic plate count culture method, with a high coefficient of determination (R2 > 0.90) regardless of the food product; the difference in cell count data between both methods was within 1.0 log CFU/mL. Moreover, we evaluated the efficiency of the DEP method for enumerating bacterial cells in chicken breasts subjected to either freezing or heat treatment. After thermal treatment at 55 °C and 60 °C, the viable cell counts determined via the DEP method were found to be lower than those obtained using the conventional culture method, which implies that the DEP method may not be suitable for the direct detection of injured cells. In addition to its high accuracy and efficiency, the DEP method enables the determination of viable cell counts within 30 min, compared to 48 h required for the conventional culture method. In conclusion, the DEP method may be a potential alternative tool for rapid determination of viable bacteria in a variety of foodstuffs.
Collapse
Affiliation(s)
- Umi Ogawa
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Kento Koyama
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Shigenobu Koseki
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan.
| |
Collapse
|
161
|
Ayhan K, Coşansu S, Orhan-Yanıkan E, Gülseren G. Advance methods for the qualitative and quantitative determination of microorganisms. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
162
|
Chen L, Cabot JM, Paull B. Thread-based isotachophoresis for DNA extraction and purification from biological samples. LAB ON A CHIP 2021; 21:2565-2573. [PMID: 34002759 DOI: 10.1039/d1lc00179e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A rapid, low-cost, and disposable microfluidic thread-based isotachophoresis method was developed for the purification and preconcentration of nucleic acids from biological samples, prior to their extraction and successful analysis using quantitative polymerase chain reaction (qPCR). This approach extracts and concentrates protein-free DNA from the terminating electrolyte buffer, via a continuous sampling approach, resulting in significant focussing of the extracted DNA upon a 6 cm length nylon thread. The platform was optimised using the preconcentration of a fluorescent dye, showing a 600-fold concentration capacity within <5 min. The system was then applied to the one-step extraction of lambda DNA - an E. coli bacteriophage - spiked into whole blood, exhibiting the exclusion of PCR inhibitors. The extraction efficiency from the thread material following concentration was consistent, between 94.4-113.9%. The determination of lambda DNA in whole blood was achieved within a linear range of 1.0-1 × 105 fg μL-1 (20-2 × 106 copies per μL). This technique demonstrates great potential for the development of thread-based affordable analytical and diagnostic devices based upon DNA and RNA isolation.
Collapse
Affiliation(s)
- Liang Chen
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart 7001, Australia and ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Joan M Cabot
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart 7001, Australia and ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia and Diagnostic Devices Unit, Leitat Technology Center, Innovació 2, Terrassa, Barcelona 08225, Spain.
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart 7001, Australia and ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
163
|
Shen Y, Lei F, Meng T, Li C, Yang Z, Huang J, Song F, Wan Y. Gold nanoparticles-mediated fluorescent chemical nose sensor for pathogenic diagnosis and phenotype. J Mol Recognit 2021; 34:e2919. [PMID: 34137098 DOI: 10.1002/jmr.2919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 02/04/2023]
Abstract
Pathogens are one of the important factors affecting national economic construction. An ideal detection system for pathogen control with excellent sensitivity, high specificity, and time-saving is needed. Here, we reported a method for bacterial detection using gold nanoparticles-mediated fluorescent "chemical nose" sensors (GFCEs). The technique consists of gold nanoparticles-coated magnetic particle using benzaldehyde, octyl aldehyde, and pyrimidine-4-formaldehyde modified, respectively. And these positively charged nanocompound interacting with three different fluorescent proteins (FPs) to form three kinds of GFCEs, respectively, named GFCE1, GFCE2, and GFCE3. Upon binding with pathogenic cells, functionalized gold nanoparticles could identify patches on hydrophobic/functional surfaces of microorganisms, and self-assemble with living bacteria by complementary electrostatic interactions. The binding ability between GFCEs and bacteria determines the change of fluorescence response of three FPs from GFCEs. These feature fluorescent level are pathogen-specific, highly repeatable, and can be analyzed by Linear Discriminant Analysis (LDA). The combination of GFCE1 and GFCE2 has the best performance when detecting pathogens with concentrations of 106 cfu mL-1 . The first discriminant within 15 minutes is 93.8%, which could be used for subsequent identification of unknown samples. The commonly applicable system provides a simple way for the rapid bacterial detection without preprocessing procedures.
Collapse
Affiliation(s)
- Yuanyuan Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Feifei Lei
- School of Computer Science and Cyberspace Security, Hainan University, Haikou, PR China
| | - Tian Meng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Jiaomei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Fengge Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| |
Collapse
|
164
|
Higgins O, Smith TJ. 3' Tth Endonuclease Cleavage Polymerase Chain Reaction (3TEC-PCR) Technology for Single-Base-Specific Multiplex Pathogen Detection using a Two-Oligonucleotide System. Int J Mol Sci 2021; 22:6061. [PMID: 34199760 PMCID: PMC8199996 DOI: 10.3390/ijms22116061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
Polymerase chain reaction (PCR) is the standard in nucleic acid amplification technology for infectious disease pathogen detection and has been the primary diagnostic tool employed during the global COVID-19 pandemic. Various PCR technology adaptations, typically using two-oligonucleotide dye-binding methods or three-oligonucleotide hydrolysis probe systems, enable real-time multiplex target detection or single-base specificity for the identification of single-nucleotide polymorphisms (SNPs). A small number of two-oligonucleotide PCR systems facilitating both multiplex detection and SNP identification have been reported; however, these methods often have limitations in terms of target specificity, production of variable or false-positive results, and the requirement for extensive optimisation or post-amplification analysis. This study introduces 3' Tth endonuclease cleavage PCR (3TEC-PCR), a two-oligonucleotide PCR system incorporating a modified primer/probe and a thermostable cleavage enzyme, Tth endonuclease IV, for real-time multiplex detection and SNP identification. Complete analytical specificity, low limits of detection, single-base specificity, and simultaneous multiple target detection have been demonstrated in this study using 3TEC-PCR to identify bacterial meningitis associated pathogens. This is the first report of a two-oligonucleotide, real-time multiplex PCR technology with single-base specificity using Tth endonuclease IV.
Collapse
Affiliation(s)
- Owen Higgins
- Molecular Diagnostics Research Group, School of Natural Sciences, National University of Ireland, Galway, Ireland;
- Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Terry J. Smith
- Molecular Diagnostics Research Group, School of Natural Sciences, National University of Ireland, Galway, Ireland;
- Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
165
|
Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021; 275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.
Collapse
|
166
|
Plazonic F, Fisher A, Carugo D, Hill M, Glynne-Jones P. Acoustofluidic device for acoustic capture of Bacillus anthracis spore analogues at low concentration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:4228. [PMID: 34241474 DOI: 10.1121/10.0005278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
A portable device for the rapid concentration of Bacillus subtilis var niger spores, also known as Bacillus globigii (BG), using a thin-reflector acoustofluidic configuration is described. BG spores form an important laboratory analog for the Bacillus anthracis spores, a serious health and bioterrorism risk. Existing systems for spore detection have limitations on detection time and detection that will benefit from the combination with this technology. Thin-reflector acoustofluidic devices can be cheaply and robustly manufactured and provide a more reliable acoustic force than previously explored quarter-wave resonator systems. The system uses the acoustic forces to drive spores carried in sample flows of 30 ml/h toward an antibody functionalized surface, which captures and immobilizes them. In this implementation, spores were fluorescently labeled and imaged. Detection at concentrations of 100 CFU/ml were demonstrated in an assay time of 10 min with 60% capture. We envisage future systems to incorporate more advanced detection of the concentrated spores, leading to rapid, sensitive detection in the presence of significant noise.
Collapse
Affiliation(s)
- Filip Plazonic
- Mechatronics, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Adam Fisher
- Mechatronics, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Dario Carugo
- Department of Pharmaceutics, UCL School of Pharmacy, University College London (UCL), London, WC1N 1AX, United Kingdom
| | - Martyn Hill
- Mechatronics, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Peter Glynne-Jones
- Mechatronics, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
167
|
Kalimuthu P, Gonzalez-Martinez JF, Jakubauskas D, Cárdenas M, Ruzgas T, Sotres J. Battery-free radio frequency wireless sensor for bacteria based on their degradation of gelatin-fatty acid composite films. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
168
|
Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev 2021; 50:7725-7744. [PMID: 34013918 DOI: 10.1039/d0cs01340d] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food fermentation, antibiotics, and pollutant degradation are closely related to bacteria. Bacteria play an irreplaceable role in life. However, some bacteria seriously threaten human health and cause large-scale infectious diseases. Therefore, there is a pressing need to develop strategies to accurately monitor bacteria. Technology based on molecular probes and fluorescence imaging is noninvasive, results in little damage, and has high specificity and sensitivity, so it has been widely applied in the detection of bacteria. In this review, we summarize the recent progress in bacterial detection using fluorescence. In particular, we generalize the mechanisms commonly used to design organic fluorescent probes for detecting and imaging bacteria. Moreover, a perspective regarding fluorescent probes for bacterial detection is discussed.
Collapse
Affiliation(s)
- Yurou Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| |
Collapse
|
169
|
Pilevar M, Kim KT, Lee WH. Recent advances in biosensors for detecting viruses in water and wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124656. [PMID: 33308919 DOI: 10.1016/j.jhazmat.2020.124656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 05/09/2023]
Abstract
As there is a considerable number of virus particles in wastewater which cause numerous infectious diseases, it is necessary to eliminate viruses from domestic wastewater before it is released in the environment. In addition, on-site detection of viruses in wastewater can provide information on possible virus exposures in the community of a given wastewater catchment. For this purpose, the pre-detection of different strains of viruses in wastewaters is an essential environmental step. Epidemiological studies illustrate that viruses are the most challenging pathogens to be detected in water samples because of their nano sizes, discrete distribution, and low infective doses. Over the past decades, several methods have been applied for the detection of waterborne viruses which include polymerase chain reaction-based methods (PCR), enzyme-linked immunosorbent assay (ELISA), and nucleic acid sequence-based amplification (NASBA). Although they have shown acceptable performance in virus measurements, their drawbacks such as complicated and time-consuming procedures, low sensitivity, and high analytical cost call for alternatives. Although biosensors are still in an early stage for practical applications, they have shown great potential to become an alternative means for virus detection in water and wastewater. This comprehensive review addresses the different types of viruses found in water and the recent development of biosensors for detecting waterborne viruses.
Collapse
Affiliation(s)
- Mohsen Pilevar
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
170
|
Kim S, Lee MH, Wiwasuku T, Day AS, Youngme S, Hwang DS, Yoon JY. Human sensor-inspired supervised machine learning of smartphone-based paper microfluidic analysis for bacterial species classification. Biosens Bioelectron 2021; 188:113335. [PMID: 34030093 DOI: 10.1016/j.bios.2021.113335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
Bacteria identification has predominantly been conducted using specific bioreceptors such as antibodies or nucleic acid sequences. This approach may be inappropriate for environmental monitoring when the user does not know the target bacterial species and for screening complex water samples with many unknown bacterial species. In this work, we investigate the supervised machine learning of the bacteria-particle aggregation pattern induced by the peptide sets identified from the biofilm-bacteria interface. Each peptide is covalently conjugated to polystyrene particles and loaded together with bacterial suspensions onto paper microfluidic chips. Each peptide interacts with bacterial species to a different extent, leading to varying sizes of particle aggregation. This aggregation changes the surface tension and viscosity of the liquid flowing through the paper pores, altering the flow velocity at different extents. A smartphone camera captures this flow velocity without being affected by ambient and environmental conditions, towards a low-cost, rapid, and field-ready assay. A collection of such flow velocity data generates a unique fingerprinting profile for each bacterial species. Support vector machine is utilized to classify the species. At optimized conditions, the training model can predict the species at 93.3% accuracy out of five bacteria: Escherichia coli, Staphylococcus aureus, Salmonella Typhimurium, Enterococcus faecium, and Pseudomonas aeruginosa. Flow rates are monitored for less than 6 s and the sample-to-answer assay time is less than 10 min. The demonstrated method can open a new way of analyzing complex biological and environmental samples in a biomimetic manner with machine learning classification.
Collapse
Affiliation(s)
- Sangsik Kim
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Min Hee Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Theanchai Wiwasuku
- Materials Chemistry Research Centre, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alexander S Day
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Sujittra Youngme
- Materials Chemistry Research Centre, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
171
|
Hwang SH, Kim JH, Park J, Park KS. Fluorescence nucleobase analogue-based strategy with high signal-to-noise ratio for ultrasensitive detection of food poisoning bacteria. Analyst 2021; 145:6307-6312. [PMID: 32706347 DOI: 10.1039/d0an01026j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed a simple and ultrasensitive strategy for the identification of foodborne pathogens utilizing a fluorescent nucleobase analogue [2-aminopurine (2-AP)]-containing split G-quadruplex that binds blocker DNA. Compared to a previous strategy that did not use blocker DNA, this strategy showed a significant increase in the signal-to-noise ratio-by approximately 300%-owing to the displacement of the blocker DNA by the target DNA that induces the formation of an active G-quadruplex structure, thereby leading to a substantial increase in the 2-AP fluorescence signal. The proposed strategy was rationally combined with polymerase chain reaction, which resulted in the successful determination of genomic DNA (within the range of 10-106 copies) derived from the food poisoning bacterium Escherichia coli, with a limit of detection of 5.2 copies and high selectivity. In addition, the practical applicability of this method was demonstrated by analyzing E. coli-spiked lettuce samples.
Collapse
Affiliation(s)
- Sung Hyun Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | | | | | | |
Collapse
|
172
|
Fast and Sensitive Bacteria Detection by Boronic Acid Modified Fluorescent Dendrimer. SENSORS 2021; 21:s21093115. [PMID: 33946193 PMCID: PMC8124657 DOI: 10.3390/s21093115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
This study reports a novel, fast, easy, and sensitive detection method for bacteria which is urgently needed to diagnose infections in their early stages. Our work presents a complex of poly(amidoamine) dendrimer modified by phenylboronic acid and labeled by a fluorescent dansyl group (Dan-B8.5-PAMAM). Our system detects bacteria in 20 min with a sensitivity of approximately 104 colony-forming units (CFU)·mL−1. Moreover, it does not require any peculiar technical skills or expensive materials. The driving force for bacteria recognition is the binding between terminal phenylboronic acids on the probe and bacteria’s surface glycolipids, rather than electrostatic interactions. The aggregation caused by such binding reduces fluorescence. Even though our recognition method does not distinguish between live or dead bacteria, it shows selective antibacterial activity towards Gram-negative bacteria. This study may potentially contribute a new method for the convenient detection and killing of bacteria.
Collapse
|
173
|
Lin Z, Wu G, Zhao L, Lai KWC. Detection of Bacterial Metabolic Volatile Indole Using a Graphene-Based Field-Effect Transistor Biosensor. NANOMATERIALS 2021; 11:nano11051155. [PMID: 33925137 PMCID: PMC8145981 DOI: 10.3390/nano11051155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/25/2021] [Indexed: 02/01/2023]
Abstract
The existence of bacteria is a great threat to food safety. Volatile compounds secreted by bacteria during their metabolic process can be dissected to evaluate bacterial contamination. Indole, as a major volatile molecule released by Escherichia coli (E. coli), was chosen to examine the presence of E. coli in this research. In this work, a graphene field-effect transistor (G-FET) was employed to detect the volatile molecule-indole based on a π-π stacking interaction between the indole and the graphene. The exposure of G-FET devices to the indole provokes a change in electrical signal, which is ascribed to the adsorption of the indole molecule onto the graphene surface via π-π stacking. The adsorption of the indole causes a charge rearrangement of the graphene-indole complex, which leads to changes in the electrical signal of G-FET biosensors with a different indole concentration. Currently, the indole biosensor can detect indole from 10 ppb to 250 ppb and reach a limit of detection of 10 ppb for indole solution detection. We believe that our detection strategy for detecting bacterial metabolic gas molecules will pave a way to developing an effective platform for bacteria detection in food safety monitoring.
Collapse
Affiliation(s)
- Zihong Lin
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (Z.L.); (L.Z.)
| | - Guangfu Wu
- Department of Biomedical Engineering, University of Connecticuit, Storrs, CT 06269, USA;
| | - Ling Zhao
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (Z.L.); (L.Z.)
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (Z.L.); (L.Z.)
- Correspondence:
| |
Collapse
|
174
|
Ye X, Feng T, Li L, Wang T, Li P, Huang W. Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomater 2021; 125:29-40. [PMID: 33582362 DOI: 10.1016/j.actbio.2021.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Bacterial infections are serious threats to public health due to lack of advanced techniques to rapidly and accurately diagnose these infections in clinics. Although bacterial infections can be treated with broad-spectrum antibiotics based on empirical judgment, the emergence of antimicrobial resistance has attracted global attention due to long-term misuse and abuse of antibiotics by humans in recent decades. Therefore, it is imperative to selectively discriminate and precisely eliminate pathogenic bacteria. Herein, in addition to the conventional methods for bacterial identification, we comprehensively reviewed the recently developed theranostic platforms for specific discrimination and selective killing of bacteria according to their different interactions with the target bacteria, such as electrostatic and hydrophobic interactions, molecular recognition, microenvironment response, metabolic labeling, bacteriophage targeting, and others. These theranostic agents not only benefit from improved therapeutic efficiency but also present limited susceptibility to induce bacterial resistance. The strategies summarized in this review will open up new avenues in developing effective antimicrobial materials to accurately diagnose and treat bacterial infections in the post-antibiotic era. STATEMENT OF SIGNIFICANCE: Bacterial infections are difficult to be rapidly and accurately diagnosed, and are generally treated with broad-spectrum antibiotics, which leads to the development of drug resistance. By integrating imaging modalities and therapeutic methods in a single treatment, various theranostic agents have been developed to address the abovementioned issues. Therefore, the emerging theranostic platforms for selective identification and elimination of bacteria based on the distinct interactions of the theranostic agents with the target bacteria are summarized in this review. We believe that the information provided in this review will guide researchers in designing advanced antibacterial theranostics for practical applications in the post-antibiotic era.
Collapse
Affiliation(s)
- Xiaoting Ye
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Chongqing 401120, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China; Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
175
|
Enshaei H, Puiggalí‐Jou A, del Valle LJ, Turon P, Saperas N, Alemán C. Nanotheranostic Interface Based on Antibiotic-Loaded Conducting Polymer Nanoparticles for Real-Time Monitoring of Bacterial Growth Inhibition. Adv Healthc Mater 2021; 10:e2001636. [PMID: 33336558 DOI: 10.1002/adhm.202001636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Indexed: 01/18/2023]
Abstract
Conducting polymers have been increasingly used as biologically interfacing electrodes for biomedical applications due to their excellent and fast electrochemical response, reversible doping-dedoping characteristics, high stability, easy processability, and biocompatibility. These advantageous properties can be used for the rapid detection and eradication of infections associated to bacterial growth since these are a tremendous burden for individual patients as well as the global healthcare system. Herein, a smart nanotheranostic electroresponsive platform, which consists of chloramphenicol (CAM)-loaded in poly(3,4-ethylendioxythiophene) nanoparticles (PEDOT/CAM NPs) for concurrent release of the antibiotic and real-time monitoring of bacterial growth is presented. PEDOT/CAM NPs, with an antibiotic loading content of 11.9 ± 1.3% w/w, are proved to inhibit the growth of Escherichia coli and Streptococcus sanguinis due to the antibiotic release by cyclic voltammetry. Furthermore, in situ monitoring of bacterial activity is achieved through the electrochemical detection of β-nicotinamide adenine dinucleotide, a redox active specie produced by the microbial metabolism that diffuse to the extracellular medium. According to these results, the proposed nanotheranostic platform has great potential for real-time monitoring of the response of bacteria to the released antibiotic, contributing to the evolution of the personalized medicine.
Collapse
Affiliation(s)
- Hamidreza Enshaei
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Anna Puiggalí‐Jou
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Pau Turon
- B. Braun Surgical S.A. Carretera de Terrassa 121, Rubí Barcelona 08191 Spain
| | - Núria Saperas
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10‐12 Barcelona 08028 Spain
| |
Collapse
|
176
|
Abstract
The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of light-known as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as "quantum plasmonic sensing", and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.
Collapse
Affiliation(s)
- Changhyoup Lee
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Benjamin Lawrie
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Raphael Pooser
- Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kwang-Geol Lee
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021Karlsruhe, Germany.,Max Planck School of Photonics, 07745 Jena, Germany
| | - Mark Tame
- Department of Physics, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
177
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
178
|
Klass SH, Sofen LE, Hallberg ZF, Fiala TA, Ramsey AV, Dolan NS, Francis MB, Furst AL. Covalent capture and electrochemical quantification of pathogenic E. coli. Chem Commun (Camb) 2021; 57:2507-2510. [PMID: 33585846 PMCID: PMC9274617 DOI: 10.1039/d0cc08420d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pathogenic E. coli pose a significant threat to public health, as strains of this species cause both foodborne illnesses and urinary tract infections. Using a rapid bioconjugation reaction, we selectively capture E. coli at a disposable gold electrode from complex solutions and accurately quantify the pathogenic microbes using electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Sarah H Klass
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Laura E Sofen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zachary F Hallberg
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Tahoe A Fiala
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Nicholas S Dolan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
179
|
ZHANG T, TAO Q, BIAN XJ, CHEN Q, YAN J. Rapid Visualized Detection of Escherichia Coli O157:H7 by DNA Hydrogel Based on Rolling Circle Amplification. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
180
|
Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water. BIOSENSORS-BASEL 2021; 11:bios11020057. [PMID: 33670061 PMCID: PMC7927109 DOI: 10.3390/bios11020057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Paper substrates are promising for development of cost-effective and efficient point-of-care biosensors, essential for public healthcare and environmental diagnostics in emergency situations. Most paper-based biosensors rely on the natural capillarity of paper to perform qualitative or semi-quantitative colorimetric detections. To achieve quantification and better sensitivity, technologies combining paper-based substrates and electrical detection are being developed. In this work, we demonstrate the potential of electrical measurements by means of a simple, parallel-plate electrode setup towards the detection of whole-cell bacteria captured in nitrocellulose (NC) membranes. Unlike current electrical sensors, which are mostly integrated, this plug and play system has reusable electrodes and enables simple and fast bacterial detection through impedance measurements. The characterized NC membrane was subjected to (i) a biofunctionalization, (ii) different saline solutions modelling real water samples, and (iii) bacterial suspensions of different concentrations. Bacterial detection was achieved in low conductivity buffers through both resistive and capacitive changes in the sensed medium. To capture Bacillus thuringiensis, the model microorganism used in this work, the endolysin cell-wall binding domain (CBD) of Deep-Blue, a bacteriophage targeting this bacterium, was integrated into the membranes as a recognition bio-interface. This experimental proof-of-concept illustrates the electrical detection of 107 colony-forming units (CFU) mL−1 bacteria in low-salinity buffers within 5 min, using a very simple setup. This offers perspectives for affordable pathogen sensors that can easily be reconfigured for different bacteria. Water quality testing is a particularly interesting application since it requires frequent testing, especially in emergency situations.
Collapse
|
181
|
Chen A, Wang D, Nugen SR, Chen J. An Engineered Reporter Phage for the Fluorometric Detection of Escherichia coli in Ground Beef. Microorganisms 2021; 9:microorganisms9020436. [PMID: 33669833 PMCID: PMC7922204 DOI: 10.3390/microorganisms9020436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Despite enhanced sanitation implementations, foodborne bacterial pathogens still remain a major threat to public health and generate high costs for the food industry. Reporter bacteriophage (phage) systems have been regarded as a powerful technology for diagnostic assays for their extraordinary specificity to target cells and cost-effectiveness. Our study introduced an enzyme-based fluorescent assay for detecting the presence of E. coli using the T7 phage engineered with the lacZ operon which encodes beta-galactosidase (β-gal). Both endogenous and overexpressed β-gal expression was monitored using a fluorescent-based method with 4-methylumbelliferyl β-d-galactopyranoside (MUG) as the substrate. The infection of E. coli with engineered phages resulted in a detection limit of 10 CFU/mL in ground beef juice after 7 h of incubation. In this study, we demonstrated that the overexpression of β-gal coupled with a fluorogenic substrate can provide a straightforward and sensitive approach to detect the potential biological contamination in food samples. The results also suggested that this system can be applied to detect E. coli strains isolated from environmental samples, indicating a broader range of bacterial detection.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
| | - Danhui Wang
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Correspondence:
| | - Juhong Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
182
|
Mustafa MI, Makhawi AM. SHERLOCK and DETECTR: CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for Emerging Infectious Diseases. J Clin Microbiol 2021; 59:e00745-20. [PMID: 33148705 PMCID: PMC8106734 DOI: 10.1128/jcm.00745-20] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are one of the most intimidating threats to human race, responsible for an immense burden of disabilities and deaths. Rapid diagnosis and treatment of infectious diseases offers a better understanding of their pathogenesis. According to the World Health Organization, the ideal approach for detecting foreign pathogens should be rapid, specific, sensitive, instrument-free, and cost-effective. Nucleic acid pathogen detection methods, typically PCR, have numerous limitations, such as highly sophisticated equipment requirements, reagents, and trained personnel relying on well-established laboratories, besides being time-consuming. Thus, there is a crucial need to develop novel nucleic acid detection tools that are rapid, specific, sensitive, and cost-effective, particularly ones that can be used for versatile point-of-care diagnostic applications. Two new methods exploit unpredicted in vitro properties of CRISPR-Cas effectors, turning activated nucleases into basic amplifiers of a specific nucleic acid binding event. These effectors can be attached to a diversity of reporters and utilized in tandem with isothermal amplification approaches to create sensitive identification in multiple deployable field formats. Although still in their beginning, SHERLOCK and DETECTR technologies are potential methods for rapid detection and identification of infectious diseases, with ultrasensitive tests that do not require complicated processing. This review describes SHERLOCK and DETECTR technologies and assesses their properties, functions, and prospective to become the ultimate diagnostic tools for diagnosing infectious diseases and curbing disease outbreaks.
Collapse
|
183
|
Arreguin-Campos R, Jiménez-Monroy KL, Diliën H, Cleij TJ, van Grinsven B, Eersels K. Imprinted Polymers as Synthetic Receptors in Sensors for Food Safety. BIOSENSORS 2021; 11:46. [PMID: 33670184 PMCID: PMC7916965 DOI: 10.3390/bios11020046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/08/2023]
Abstract
Foodborne illnesses represent high costs worldwide in terms of medical care and productivity. To ensure safety along the food chain, technologies that help to monitor and improve food preservation have emerged in a multidisciplinary context. These technologies focus on the detection and/or removal of either biological (e.g., bacteria, virus, etc.) or chemical (e.g., drugs and pesticides) safety hazards. Imprinted polymers are synthetic receptors able of recognizing both chemical and biological contaminants. While numerous reviews have focused on the use of these robust materials in extraction and separation applications, little bibliography summarizes the research that has been performed on their coupling to sensing platforms for food safety. The aim of this work is therefore to fill this gap and highlight the multidisciplinary aspects involved in the application of imprinting technology in the whole value chain ranging from IP preparation to integrated sensor systems for the specific recognition and quantification of chemical and microbiological contaminants in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616,6200 MD Maastricht, The Netherlands; (R.A.-C.); (K.L.J.-M.); (H.D.); (T.J.C.); (B.v.G.)
| |
Collapse
|
184
|
Kartanas T, Levin A, Toprakcioglu Z, Scheidt T, Hakala TA, Charmet J, Knowles TPJ. Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection. Anal Chem 2021; 93:2848-2853. [PMID: 33507064 DOI: 10.1021/acs.analchem.0c04149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detection and analysis of proteins in a label-free manner under native solution conditions is an increasingly important objective in analytical bioscience platform development. Common approaches to detect native proteins in solution often require specific labels to enhance sensitivity. Dry mass sensing approaches, by contrast, using mechanical resonators, can operate in a label-free manner and offer attractive sensitivity. However, such approaches typically suffer from a lack of analyte selectivity as the interface between standard protein separation techniques and micro-resonator platforms is often constrained by qualitative mechanical sensor performance in the liquid phase. Here, we describe a strategy that overcomes this limitation by coupling liquid chromatography with a quartz crystal microbalance (QCM) platform by using a microfluidic spray dryer. We explore a strategy which allows first to separate a protein mixture in a physiological buffer solution using size exclusion chromatography, permitting specific protein fractions to be selected, desalted, and subsequently spray-dried onto the QCM for absolute mass analysis. By establishing a continuous flow interface between the chromatography column and the spray device via a flow splitter, simultaneous protein mass detection and sample fractionation is achieved, with sensitivity down to a 100 μg/mL limit of detection. This approach for quantitative label-free protein mixture analysis offers the potential for detection of protein species under physiological conditions.
Collapse
Affiliation(s)
- Tadas Kartanas
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Aviad Levin
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tom Scheidt
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tuuli A Hakala
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jerome Charmet
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,WMG, University of Warwick, Coventry CV4 7AL, U.K
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, Cambridge CB3 0FE, U.K
| |
Collapse
|
185
|
Molecular diagnostic of toxigenic Corynebacterium diphtheriae strain by DNA sensor potentially suitable for electrochemical point-of-care diagnostic. Talanta 2021; 227:122161. [PMID: 33714465 DOI: 10.1016/j.talanta.2021.122161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The presented study is focused on the development of electrochemical genosensor for detection of tox gene fragment of toxigenic Corynebacterium diphtheriae strain. Together with our previous studies it fulfils the whole procedure for fast and accurate diagnostic of diphtheria at its early stage of infection with the use of electrochemical methods. The developed DNA sensor potentially can be used in more sophisticated portable device. After the electrochemical stem-loop probe structure optimization the conditions for real asymmetric PCR (aPCR) product detection were selected. As was shown it was crucial to optimize the magnesium and organic solvent concentrations in detection buffer. Under optimal conditions it was possible to selectively detect as low as 20.8 nM of complementary stand in 5 min or 0.5 nM in 30 min with sensitivity of 12.81 and 0.24 1⋅μM-1 respectively. The unspecific biosensor response was elucidated with the use of new electrode blocking agent, diethyldithiocarbamate. Its application in electrochemical genosensors lead to significant higher current values and the biosensor response even in conditions with magnesium ion depletion. The developed biosensor selectivity was examined using samples containing genetic material originated from a number of non-target bacterial species which potentially can be present in the human upper respiratory tract.
Collapse
|
186
|
Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1109. [PMID: 33562639 PMCID: PMC7915135 DOI: 10.3390/s21041109] [Citation(s) in RCA: 527] [Impact Index Per Article: 131.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.
Collapse
Affiliation(s)
- Varnakavi. Naresh
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
187
|
Sayed SM, Xu KF, Jia HR, Yin FF, Ma L, Zhang X, Khan A, Ma Q, Wu FG, Lu X. Naphthalimide-based multifunctional AIEgens: Selective, fast, and wash-free fluorescence tracking and identification of Gram-positive bacteria. Anal Chim Acta 2021; 1146:41-52. [DOI: 10.1016/j.aca.2020.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
|
188
|
Yamaguchi Y, Yamamoto T. One-Dimensional Flow of Bacteria on an Electrode Rail by Dielectrophoresis: Toward Single-Cell-Based Analysis. MICROMACHINES 2021; 12:mi12020123. [PMID: 33498919 PMCID: PMC7911595 DOI: 10.3390/mi12020123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Many applications in biotechnology and medicine, among other disciplines, require the rapid enumeration of bacteria, preferably using miniaturized portable devices. Microfluidic technology is expected to solve this miniaturization issue. In the enumeration of bacteria in microfluidic devices, the technique of aligning bacteria in a single line prior to counting is the key to an accurate count at single-bacterium resolution. Here, we describe the numerical and experimental evaluation of a device utilizing a dielectrophoretic force to array bacteria in a single line, allowing their facile numeration. The device comprises a channel to flow bacteria, two counter electrodes, and a capture electrode several microns or less in width for arranging bacteria in a single line. When the capture electrode is narrower than the diameter of a bacterium, the entrapment efficiency of the one-dimensional array is 80% or more within 2 s. Furthermore, since some cell-sorting applications require bacteria to move against the liquid flow, we demonstrated that bacteria can move in a single line in the off-axial direction tilted 30° from the flow direction. Our findings provide the basis for designing miniature, portable devices for evaluating bacteria with single-cell accuracy.
Collapse
|
189
|
Vercauteren R, Leprince A, Mahillon J, Francis LA. Porous Silicon Biosensor for the Detection of Bacteria through Their Lysate. BIOSENSORS 2021; 11:27. [PMID: 33498536 PMCID: PMC7909573 DOI: 10.3390/bios11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Porous silicon (PSi) has been widely used as a biosensor in recent years due to its large surface area and its optical properties. Most PSi biosensors consist in close-ended porous layers, and, because of the diffusion-limited infiltration of the analyte, they lack sensitivity and speed of response. In order to overcome these shortcomings, PSi membranes (PSiMs) have been fabricated using electrochemical etching and standard microfabrication techniques. In this work, PSiMs have been used for the optical detection of Bacillus cereus lysate. Before detection, the bacteria are selectively lysed by PlyB221, an endolysin encoded by the bacteriophage Deep-Blue targeting B. cereus. The detection relies on the infiltration of bacterial lysate inside the membrane, which induces a shift of the effective optical thickness. The biosensor was able to detect a B. cereus bacterial lysate, with an initial bacteria concentration of 105 colony forming units per mL (CFU/mL), in only 1 h. This proof-of-concept also illustrates the specificity of the lysis before detection. Not only does this detection platform enable the fast detection of bacteria, but the same technique can be extended to other bacteria using selective lysis, as demonstrated by the detection of Staphylococcus epidermidis, selectively lysed by lysostaphin.
Collapse
Affiliation(s)
- Roselien Vercauteren
- Electrical Engineering Department, Institute of Information and Communication Technologies Electronics and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (J.M.)
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (J.M.)
| | - Laurent A. Francis
- Electrical Engineering Department, Institute of Information and Communication Technologies Electronics and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
190
|
Ali SA, Boby N, Preena P, Singh SV, Kaur G, Ghosh SK, Nandi S, Chaudhuri P. Microcapillary LAMP for rapid and sensitive detection of pathogen in bovine semen. Anim Biotechnol 2021; 33:1025-1034. [PMID: 33427030 DOI: 10.1080/10495398.2020.1863225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A microcapillary-based loop-mediated isothermal amplification (µcLAMP) has been described for specific detection of infectious reproductive pathogens in semen samples of cattle without sophisticated instrumentation. Brucella abortus, Leptospira interrogans serovar Pomona and bovine herpesvirus 1 (BoHV-1) cultures were mixed in bovine semen samples. The µcLAMP assay is portable, user-friendly, cost-effective, and suitable to be performed as a POC diagnostic test. We have demonstrated high sensitivity and specificity of µcLAMP for detection of Brucella, Leptospira, and BoHV-1 in bovine semen samples comparable to PCR and qPCR assays. Thus, µcLAMP would be a promising field-based test for monitoring various infectious pathogens in biological samples.HighlightsDetect infectious organism in bovines semenReduction in carryover contamination is an important attribute, which may reduce the false-positive reaction.µcLAMP is a miniaturized form, which could be performed with a minimum volume of reagents.The µcLAMP assay is portable, user-friendly, and suitable to be performed as a POC diagnostic test.
Collapse
Affiliation(s)
- Syed Atif Ali
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Nongthombam Boby
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, India
| | - Prasanna Preena
- Division of Veterinary Medicine, Indian Veterinary Research Institute, Izatnagar, India
| | - Shiv Varan Singh
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Gurpreet Kaur
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Subrata Kumar Ghosh
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - Sukdeb Nandi
- CADRAD, Indian Veterinary Research Institute, Izatnagar, India
| | - Pallab Chaudhuri
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
191
|
Rentschler S, Kaiser L, Deigner HP. Emerging Options for the Diagnosis of Bacterial Infections and the Characterization of Antimicrobial Resistance. Int J Mol Sci 2021; 22:E456. [PMID: 33466437 PMCID: PMC7796476 DOI: 10.3390/ijms22010456] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Precise and rapid identification and characterization of pathogens and antimicrobial resistance patterns are critical for the adequate treatment of infections, which represent an increasing problem in intensive care medicine. The current situation remains far from satisfactory in terms of turnaround times and overall efficacy. Application of an ineffective antimicrobial agent or the unnecessary use of broad-spectrum antibiotics worsens the patient prognosis and further accelerates the generation of resistant mutants. Here, we provide an overview that includes an evaluation and comparison of existing tools used to diagnose bacterial infections, together with a consideration of the underlying molecular principles and technologies. Special emphasis is placed on emerging developments that may lead to significant improvements in point of care detection and diagnosis of multi-resistant pathogens, and new directions that may be used to guide antibiotic therapy.
Collapse
Affiliation(s)
- Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany; (S.R.); (L.K.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany; (S.R.); (L.K.)
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany; (S.R.); (L.K.)
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
192
|
Rodrigues CF, Azevedo NF, Miranda JM. Integration of FISH and Microfluidics. Methods Mol Biol 2021; 2246:249-261. [PMID: 33576994 DOI: 10.1007/978-1-0716-1115-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suitable molecular methods for a faster microbial identification in food and clinical samples have been explored and optimized during the last decades. However, most molecular methods still rely on time-consuming enrichment steps prior to detection, so that the microbial load can be increased and reach the detection limit of the techniques.In this chapter, we describe an integrated methodology that combines a microfluidic (lab-on-a-chip) platform, designed to concentrate cell suspensions and speed up the identification process in Saccharomyces cerevisiae , and a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) protocol optimized and adapted to microfluidics. Microfluidic devices with different geometries were designed, based on computational fluid dynamics simulations, and subsequently fabricated in polydimethylsiloxane by soft lithography. The microfluidic designs and PNA-FISH procedure described here are easily adaptable for the detection of other microorganisms of similar size.
Collapse
Affiliation(s)
- Célia F Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João M Miranda
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
193
|
Thi Tran NH, Phung VD, Thi Ta HK, Lam VD, Manh DH, Pham NK, Kim JY, Lee NY, Phan BT. Ultrasensitive biosensors based on waveguide-coupled long-range surface plasmon resonance (WC-LRSPR) for enhanced fluorescence spectroscopy. RSC Adv 2021; 11:22450-22460. [PMID: 35480844 PMCID: PMC9034228 DOI: 10.1039/d1ra02130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/12/2021] [Indexed: 11/21/2022] Open
Abstract
We investigated the coupling phenomenon between plasmonic resonance and waveguide modes through theoretical and experimental parametric analyses on the bimetallic waveguide-coupled long-range surface plasmon resonance (Bi-WCLRSPR) structure.
Collapse
Affiliation(s)
- Nhu Hoa Thi Tran
- Faculty of Materials Science
- University of Science
- HoChiMinh City
- Vietnam
- Vietnam National University
| | - Viet-Duc Phung
- Future Materials and Devices Laboratory
- Duy Tan University
- Ho Chi Minh City
- Vietnam
- Faculty of Environmental and Chemical Engineering
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science
- University of Science
- HoChiMinh City
- Vietnam
- Vietnam National University
| | - Vu Dinh Lam
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Do Hung Manh
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Ngoc Kim Pham
- Faculty of Materials Science
- University of Science
- HoChiMinh City
- Vietnam
- Vietnam National University
| | - Jae Young Kim
- Department of Life Science
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Bach Thang Phan
- Vietnam National University
- HoChiMinh City
- Vietnam
- Center for Innovative Materials and Architectures (INOMAR)
- HoChiMinh City
| |
Collapse
|
194
|
Mi F, Guan M, Hu C, Peng F, Sun S, Wang X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 2021; 146:429-443. [DOI: 10.1039/d0an01459a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
- Xinjiang bingtuan Xingxin Vocational and Technical College
| | - Ming Guan
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Fei Peng
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Shijiao Sun
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| |
Collapse
|
195
|
Lee U, Kim YH, Yoon KS, Kim Y. Selective Butyrate Esterase Probe for the Rapid Colorimetric and Fluorogenic Identification of Moraxella catarrhalis. Anal Chem 2020; 92:16051-16057. [PMID: 33211958 DOI: 10.1021/acs.analchem.0c03671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical identification of the pathogenic bacterium Moraxella catarrhalis in cultures relies on the detection of bacterial butyrate esterase (C4-esterase) using a coumarin-based fluorogenic substrate, 4-methylumbelliferyl butyrate. However, this classical probe may give false-positive responses because of its poor stability and lack of specificity. Here, we report a new colorimetric and fluorogenic probe design employing a meso-ester-substituted boron dipyrromethene (BODIPY) dye for the specific detection of C4-esterase activity expressed by M. catarrhalis. This new probe has resistance to nonspecific hydrolysis that is far superior to the classical probe and also selectively responds to esterase with rapid colorimetric and fluorescence signal changes and large "turn-on" ratios. The probe was successfully applied to the specific detection of M. catarrhalis with high sensitivity.
Collapse
Affiliation(s)
- Uisung Lee
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Yeon Ho Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
196
|
Bai H, He W, Chau JHC, Zheng Z, Kwok RTK, Lam JWY, Tang BZ. AIEgens for microbial detection and antimicrobial therapy. Biomaterials 2020; 268:120598. [PMID: 33321291 DOI: 10.1016/j.biomaterials.2020.120598] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022]
Abstract
Pathogenic microbes can cause infections or diseases in hosts and they pose ongoing threats to human health. Antibiotics have been taken an active role in treating a wide variety of infections or diseases since they were first introduced in the 1940s. However, the emergence of antibiotic-resistant microbes makes these previously effective drugs invalid regrettably. So it is urgently needed to accelerate research and development for new antimicrobial systems and strategies. Recently, luminogens with aggregation-induced emission characteristics (AIEgens) have emerged as powerful fluorescent tools for microbial detection and antimicrobial therapy. In this review, we highlighted the latest advancements of AIEgen-based biofunctional materials and systems in this research field. AIE fluorescent probes have the advantages of excellent sensitivity and rapid response, which make them useful for ultrafast bacterial imaging, bacteria classification, and pathogen discrimination. Early microbial detection and identification could help us study the mechanism of antibiotic resistance more scientifically. Moreover, the AIEgens-based photosensitizers (AIE-PSs) with strong photosensitization show good performance on the efficient elimination of multidrug-resistant bacteria and intracellular bacteria. At the end of the review, a short perspective on aggregate science is concluded.
Collapse
Affiliation(s)
- Haotian Bai
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei He
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518057, China
| | - Joe H C Chau
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zheng
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T K Kwok
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518057, China; Center for Aggregation-Induced Emission and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
197
|
Liao YH, Muthuramalingam K, Tung KH, Chuan HH, Liang KY, Hsu CP, Cheng CM. Portable Device for Quick Detection of Viable Bacteria in Water. MICROMACHINES 2020; 11:mi11121079. [PMID: 33291693 PMCID: PMC7761948 DOI: 10.3390/mi11121079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
(1) Background: Access to clean water is a very important factor for human life. However, pathogenic microorganisms in drinking water often cause diseases, and convenient/inexpensive testing methods are urgently needed. (2) Methods: The reagent contains 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and phenazine methosulfate (PMS) and can react with succinate dehydrogenase within bacterial cell membranes to produce visible purple crystals. The colorimetric change of the reagent after reaction can be measured by a sensor (AS7262). (3) Results: Compared with traditional methods, our device is simple to operate and can provide rapid (i.e., 5 min) semi-quantitative results regarding the concentration of bacteria within a test sample. (4) Conclusions: This easy-to-use device, which employs MTT-PMS reagents, can be regarded as a potential and portable tool for rapid water quality determination.
Collapse
Affiliation(s)
- Yu-Hsiang Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
| | - Karthickraj Muthuramalingam
- Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;
| | - Kuo-Hao Tung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
| | - Ho-Hsien Chuan
- Department of Surgery, National Taiwan University Hospital, Chu-Tung Branch, Hsinchu 300, Taiwan;
| | - Ko-Yuan Liang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan;
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chen-Peng Hsu
- Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;
- Correspondence: (C.-P.H.); (C.-M.C.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
- Correspondence: (C.-P.H.); (C.-M.C.)
| |
Collapse
|
198
|
Jones HJ, Shield CG, Swift BM. The Application of Bacteriophage Diagnostics for Bacterial Pathogens in the Agricultural Supply Chain: From Farm-to-Fork. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:176-188. [PMID: 36147287 PMCID: PMC9041468 DOI: 10.1089/phage.2020.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriophages (phages) have great potential not only as therapeutics but as diagnostics. Indeed, they have been developed and used to diagnose and detect bacterial infections, primarily in human clinical settings. The ability to rapidly detect and control bacterial pathogens in agriculture is of primary importance to maintain food security, improve animal health, and prevent the passage of zoonotic pathogens into the human population. Culture-based detection methods are often labor-intensive, and require further confirmatory tests, increasing costs and processing times needed for diagnostics. Molecular detection methods such as polymerase chain reaction are commonly used to determine the safety of food, however, a major drawback is their inability to differentiate between viable and nonviable bacterial pathogens in food. Phage diagnostics have been proven to be rapid, capable of identifying viable pathogens and do not require cultivation to detect bacteria. Phage detection takes advantage of the specificity of interaction between phage and their hosts. Furthermore, phage detection is cost effective, which is vitally important in agricultural supply chains where there is a drive to keep costs down to ensure that the cost of food does not increase. The full potential of phage detection/diagnostics is not wholly realized or commercialized. This review explores the current use and potential future scope of phage diagnostics and their application to various bacterial pathogens across agriculture and food supply chains.
Collapse
Affiliation(s)
- Helen J. Jones
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Christopher G. Shield
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Benjamin M.C. Swift
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
199
|
Manohar Raju V, Bhavana V, Gayathri G, Suryan S, Reddy R, Reddy N, Ravikumar C, Sridhar Santosh M. A novel disposable electrochemical DNA biosensor for the rapid detection of Bacillus thuringiensis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
200
|
Aquino A, Conte-Junior CA. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. BIOSENSORS-BASEL 2020; 10:bios10120194. [PMID: 33260424 PMCID: PMC7760337 DOI: 10.3390/bios10120194] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Several individuals will experience accidental exposure to an allergen. In this sense, the industry has invested in the processes of removing allergenic compounds in food. However, accidental exposure to allergenic proteins can result from allergenic substances not specified on labels. Analysis of allergenic foods is involved in methods based on immunological, genetic, and mass spectrometry. The traditional methods have some limitations, such as high cost. In recent years, biosensor and nanoparticles combined have emerged as sensitive, selective, low-cost, and time-consuming techniques that can replace classic techniques. Nevertheless, each nanomaterial has shown a different potential to specific allergens or classes. This review used Preferred Reporting Items for Systematic Reviews and the Meta-Analysis guidelines (PRISMA) to approach these issues. A total of 104 articles were retrieved from a standardized search on three databases (PubMed, Scopus and Web of Science). The systematic review article is organized by the category of allergen detection and nanoparticle detection. This review addresses the relevant biosensors and nanoparticles as gold, carbon, graphene, quantum dots to allergen protein detection. Among the selected articles it was possible to notice a greater potential application on the allergic proteins Ah, in peanuts and gold nanoparticle-base as a biosensor. We envision that in our review, the association between biosensor and nanoparticles has shown promise in the analysis of allergenic proteins present in different food samples.
Collapse
Affiliation(s)
- Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Correspondence: ; Tel.: +55-(21)-3938-7825
| |
Collapse
|