151
|
García-Martínez JM, Chocarro-Calvo A, De la Vieja A, García-Jiménez C. Insulin drives glucose-dependent insulinotropic peptide expression via glucose-dependent regulation of FoxO1 and LEF1/β-catenin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1141-50. [PMID: 25091498 DOI: 10.1016/j.bbagrm.2014.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/19/2014] [Accepted: 07/25/2014] [Indexed: 11/15/2022]
Abstract
Minutes after ingestion of fat or carbohydrates, vesicles stored in enteroendocrine cells release their content of incretin peptide hormones that, together with absorbed glucose, enhance insulin secretion by beta-pancreatic cells. Freshly-made incretins must therefore be packed into new vesicles in anticipation of the next meal with cells adjusting new incretin production to be proportional to the level of previous insulin release and absorbed blood glucose. Here we show that insulin stimulates the expression of the major human incretin, glucose-dependent insulinotropic peptide (GIP) in enteroendocrine cells but requires glucose to do it. Akt-dependent release of FoxO1 and glucose-dependent binding of LEF1/β-catenin mediate induction of Gip expression while insulin-induced phosphorylation of β-catenin does not alter its localization or transcriptional activity in enteroendocrine cells. Our results reveal a glucose-regulated feedback loop at the entero-insular axis, where glucose levels determine basal and insulin-induced Gip expression; GIP stimulation of insulin release, physiologically ensures a fine control of glucose homeostasis. How enteroendocrine cells adjust incretin production to replace incretin stores for future use is a key issue because GIP malfunction is linked to all forms of diabetes.
Collapse
Affiliation(s)
- Jose Manuel García-Martínez
- Department of Physiology, Biochemistry and Human Genetics, Faculty of Health Science, Rey Juan Carlos University, 28922 Alcorcon, Madrid, Spain
| | - Ana Chocarro-Calvo
- Department of Physiology, Biochemistry and Human Genetics, Faculty of Health Science, Rey Juan Carlos University, 28922 Alcorcon, Madrid, Spain
| | - Antonio De la Vieja
- Endocrine Tumor Unit (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Custodia García-Jiménez
- Department of Physiology, Biochemistry and Human Genetics, Faculty of Health Science, Rey Juan Carlos University, 28922 Alcorcon, Madrid, Spain.
| |
Collapse
|
152
|
Qin W, Pan J, Qin Y, Lee DN, Bauman WA, Cardozo C. Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter. Biochem Biophys Res Commun 2014; 450:979-83. [DOI: 10.1016/j.bbrc.2014.06.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
|
153
|
Adiponectin ameliorates experimental periodontitis in diet-induced obesity mice. PLoS One 2014; 9:e97824. [PMID: 24836538 PMCID: PMC4023953 DOI: 10.1371/journal.pone.0097824] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 02/05/2023] Open
Abstract
Adiponectin is an adipokine that sensitizes the body to insulin. Low levels of adiponectin have been reported in obesity, diabetes and periodontitis. In this study we established experimental periodontitis in male adiponectin knockout and diet-induced obesity mice, a model of obesity and type 2 diabetes, and aimed at evaluating the therapeutic potential of adiponectin. We found that systemic adiponectin infusion reduced alveolar bone loss, osteoclast activity and infiltration of inflammatory cells in both periodontitis mouse models. Furthermore, adiponectin treatment decreased the levels of pro-inflammatory cytokines in white adipose tissue of diet-induced obesity mice with experimental periodontitis. Our in vitro studies also revealed that forkhead box O1, a key transcriptional regulator of energy metabolism, played an important role in the direct signaling of adiponectin in osteoclasts. Thus, adiponectin increased forkhead box O1 mRNA expression and its nuclear protein level in osteoclast-precursor cells undergoing differentiation. Inhibition of c-Jun N-terminal kinase signaling decreased nuclear protein levels of forkhead box O1. Furthermore, over-expression of forkhead box O1 inhibited osteoclastogenesis and led to decreased nuclear levels of nuclear factor of activated T cells c1. Taken together, this study suggests that systemic adiponectin application may constitute a potential intervention therapy to ameliorate type 2 diabetes-associated periodontitis. It also proposes that adiponectin inhibition of osteoclastogenesis involves forkhead box O1.
Collapse
|
154
|
Bridges JP, Schehr A, Wang Y, Huo L, Besnard V, Ikegami M, Whitsett JA, Xu Y. Epithelial SCAP/INSIG/SREBP signaling regulates multiple biological processes during perinatal lung maturation. PLoS One 2014; 9:e91376. [PMID: 24806461 PMCID: PMC4012993 DOI: 10.1371/journal.pone.0091376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (ScapΔ/Δ, resulting in inactivation of SREBP signaling) or Insig1 and Insig2 (Insig1/2Δ/Δ, resulting in activation of SREBP signaling) was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/β-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.
Collapse
Affiliation(s)
- James P. Bridges
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Angelica Schehr
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yanhua Wang
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Liya Huo
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Machiko Ikegami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yan Xu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
155
|
Pérez-Castrillón JL, Riancho JA, de Luis D, Gonzalez-Sagrado M, Domingo-Andres M, Dueñas-Laita A. Expression of genes related to energy metabolism (osteocalcin, FOXO1, insulin receptor, and SOST) in bone cells of Goto-Kakizaki rats and response to bariatric surgery. Surg Obes Relat Dis 2014; 10:299-303. [DOI: 10.1016/j.soard.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/23/2013] [Accepted: 08/10/2013] [Indexed: 12/31/2022]
|
156
|
Fernandez-Ruiz R, Vieira E, Garcia-Roves PM, Gomis R. Protein tyrosine phosphatase-1B modulates pancreatic β-cell mass. PLoS One 2014; 9:e90344. [PMID: 24587334 PMCID: PMC3938680 DOI: 10.1371/journal.pone.0090344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/02/2014] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signalling pathway. It has been demonstrated that PTP1B deletion protects against the development of obesity and Type 2 Diabetes, mainly through its action on peripheral tissues. However, little attention has been paid to the role of PTP1B in β-cells. Therefore, our aim was to study the role of PTP1B in pancreatic β-cells. Silencing of PTP1B expression in a pancreatic β-cell line (MIN6 cells) reveals the significance of this endoplasmic reticulum bound phosphatase in the regulation of cell proliferation and apoptosis. Furthermore, the ablation of PTP1B is able to regulate key proteins involved in the proliferation and/or apoptosis pathways, such as STAT3, AKT, ERK1/2 and p53 in isolated islets from PTP1B knockout (PTP1B −/−) mice. Morphometric analysis of pancreatic islets from PTP1B −/− mice showed a higher β-cell area, concomitantly with higher β-cell proliferation and a lower β-cell apoptosis when compared to islets from their respective wild type (WT) littermates. At a functional level, isolated islets from 8 weeks old PTP1B −/− mice exhibit enhanced glucose-stimulated insulin secretion. Moreover, PTP1B −/− mice were able to partially reverse streptozotocin-induced β-cell loss. Together, our data highlight for the first time the involvement of PTP1B in β-cell physiology, reinforcing the potential of this phosphatase as a therapeutical target for the treatment of β-cell failure, a central aspect in the pathogenesis of Type 2 Diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Count
- Cell Line
- Cell Proliferation
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Endoplasmic Reticulum/chemistry
- Endoplasmic Reticulum/enzymology
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/pathology
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Streptozocin
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Elaine Vieira
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Pablo M. Garcia-Roves
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Clinic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
157
|
Rebollo A, Roglans N, Baena M, Padrosa A, Sánchez RM, Merlos M, Alegret M, Laguna JC. Liquid fructose down-regulates liver insulin receptor substrate 2 and gluconeogenic enzymes by modifying nutrient sensing factors in rats. J Nutr Biochem 2014; 25:250-8. [DOI: 10.1016/j.jnutbio.2013.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022]
|
158
|
Stefanetti RJ, Lamon S, Rahbek SK, Farup J, Zacharewicz E, Wallace MA, Vendelbo MH, Russell AP, Vissing K. Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle. J Appl Physiol (1985) 2014; 116:1491-502. [PMID: 24458747 DOI: 10.1152/japplphysiol.00136.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Knowledge from human exercise studies on regulators of muscle atrophy is lacking, but it is important to understand the underlying mechanisms influencing skeletal muscle protein turnover and net protein gain. This study examined the regulation of muscle atrophy-related factors, including atrogin-1 and MuRF1, their upstream transcription factors FOXO1 and FOXO3A and the atrogin-1 substrate eIF3-f, in response to unilateral isolated eccentric (ECC) vs. concentric (CONC) exercise and training. Exercise was performed with whey protein hydrolysate (WPH) or isocaloric carbohydrate (CHO) supplementation. Twenty-four subjects were divided into WPH and CHO groups and completed both single-bout exercise and 12 wk of training. Single-bout ECC exercise decreased atrogin-1 and FOXO3A mRNA compared with basal and CONC exercise, while MuRF1 mRNA was upregulated compared with basal. ECC exercise downregulated FOXO1 and phospho-FOXO1 protein compared with basal, and phospho-FOXO3A was downregulated compared with CONC. CONC single-bout exercise mediated a greater increase in MuRF1 mRNA and increased FOXO1 mRNA compared with basal and ECC. CONC exercise downregulated FOXO1, FOXO3A, and eIF3-f protein compared with basal. Following training, an increase in basal phospho-FOXO1 was observed. While WPH supplementation with ECC and CONC training further increased muscle hypertrophy, it did not have an additional effect on mRNA or protein levels of the targets measured. In conclusion, atrogin-1, MuRF1, FOXO1/3A, and eIF3-f mRNA, and protein levels, are differentially regulated by exercise contraction mode but not WPH supplementation combined with hypertrophy-inducing training. This highlights the complexity in understanding the differing roles these factors play in healthy muscle adaptation to exercise.
Collapse
Affiliation(s)
- Renae J Stefanetti
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Stine K Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| | - Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| | - Evelyn Zacharewicz
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Marita A Wallace
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Mikkel H Vendelbo
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
159
|
Wyrozumska P, Ashley JW, Ramanadham S, Liu Q, Garvey WT, Sztul E. Novel effects of Brefeldin A (BFA) in signaling through the insulin receptor (IR) pathway and regulating FoxO1-mediated transcription. CELLULAR LOGISTICS 2014; 4:e27732. [PMID: 24843827 PMCID: PMC4022606 DOI: 10.4161/cl.27732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/19/2022]
Abstract
Brefeldin A (BFA) is a fungal metabolite best known for its ability to inhibit activation of ADP-ribosylation factor (Arf) and thereby inhibit secretory traffic. BFA also appears to regulate the trafficking of the GLUT4 glucose transporter by inducing its relocation from intracellular stores to the cell surface. Such redistribution of GLUT4 is normally regulated by insulin-mediated signaling. Hence, we tested whether BFA may intersect with the insulin pathway. We report that BFA causes the activation of the insulin receptor (IR), IRS-1, Akt-2, and AS160 components of the insulin pathway. The response is mediated through phosphoinositol-3-kinase (PI3K) and Akt kinase since the PI3K inhibitor wortmannin and the Akt inhibitors MK2206 and perifosine inhibit the BFA effect. BFA-mediated activation of the insulin pathway results in Akt-mediated phosphorylation of the insulin-responsive transcription factor FoxO1. This leads to nuclear exclusion of FoxO1 and a decrease in transcription of the insulin-responsive gene SIRT-1. Our findings suggest novel effects for BFA in signaling and transcription, and imply that BFA has multiple intracellular targets and can be used to regulate diverse cellular responses that include vesicular trafficking, signaling and transcription.
Collapse
Affiliation(s)
- Paulina Wyrozumska
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Jason W Ashley
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Qinglan Liu
- Department of Nutrition Sciences University of Alabama at Birmingham; Birmingham, AL USA
| | - W Timothy Garvey
- Department of Nutrition Sciences University of Alabama at Birmingham; Birmingham, AL USA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| |
Collapse
|
160
|
Zhang W, Sumners LH, Siegel PB, Cline MA, Gilbert ER. Quantity of glucose transporter and appetite-associated factor mRNA in various tissues after insulin injection in chickens selected for low or high body weight. Physiol Genomics 2013; 45:1084-94. [DOI: 10.1152/physiolgenomics.00102.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chickens from lines selected for low (LWS) or high (HWS) body weight differ by 10-fold in body weight at 56 days old with differences in food intake, glucose regulation, and body composition. To evaluate if there are differences in appetite-regulatory factor and glucose transporter ( GLUT) mRNA that are accentuated by hypoglycemia, blood glucose was measured, and hypothalamus, liver, pectoralis major, and abdominal fat collected at 90 days of age from female HWS and LWS chickens, and reciprocal crosses, HL and LH, at 60 min after intraperitoneal injection of insulin. Neuropeptide Y ( NPY) and receptor ( NPYR) subtypes 1 and 5 mRNA were greater in LWS compared with HWS hypothalamus ( P < 0.05), but greater in HWS than LWS in fat ( P < 0.05). Expression of NPYR2 was greater in LWS than HWS in pectoralis major ( P < 0.05). There was greater expression in HWS than LWS for GLUT1 in hypothalamus and liver ( P < 0.05), GLUT2 in fat and liver ( P < 0.05), and GLUT9 in liver ( P < 0.05). Insulin was associated with reduced blood glucose in all populations ( P < 0.05) and reduced mRNA of insulin receptor ( IR) and GLUT 2 and 3 in liver ( P < 0.05). There was heterosis for mRNA, most notably NPYR1 (−78%) and NPYR5 (−81%) in fat and GLUT2 (−70%) in liver. Results suggest that NPY and GLUTs are associated with differences in energy homeostasis in LWS and HWS. Reduced GLUT and IR mRNA after insulin injection suggest a compensatory mechanism to prevent further hypoglycemia.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Lindsay H. Sumners
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Paul B. Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
161
|
IGF-1 regulation of key signaling pathways in bone. BONEKEY REPORTS 2013; 2:437. [PMID: 24422135 DOI: 10.1038/bonekey.2013.171] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is an unique peptide that functions in an endocrine/paracrine and autocrine manner in most tissues. Although it was postulated initially that liver-derived IGF-1 was the major source of IGF-1 (that is, the somatomedin hypothesis), it is also produced in a wide variety of tissues and can function in numerous ways as both a proliferative and differentiative factor. One such tissue is bone and all cell lineages in the skeleton have been shown to not only require IGF-1 for normal development and function but also to respond to IGF-1 via the IGF-1 receptor. Ligand-receptor activation leads to several distinct downstream signaling cascades, which have significant implications for cell survival, protein synthesis and energy utilization. The novel role of IGF-1 in regulating metabolic demands of the bone remodeling unit is currently under investigation. More studies are likely to shed new light on various aspects of skeletal physiology and potentially may lead to new therapeutics.
Collapse
|
162
|
Pietraszek A, Hermansen K, Pedersen SB, Langdahl BL, Holst JJ, Gregersen S. Effects of a meal rich in medium-chain saturated fat on postprandial lipemia in relatives of type 2 diabetics. Nutrition 2013; 29:1000-6. [DOI: 10.1016/j.nut.2013.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 10/26/2022]
|
163
|
Tejera MM, Kim EH, Sullivan JA, Plisch EH, Suresh M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:187-99. [PMID: 23733882 PMCID: PMC3691324 DOI: 10.4049/jimmunol.1300331] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During a T cell response, naive CD8 T cells differentiate into effector cells. Subsequently, a subset of effector cells termed memory precursor effector cells further differentiates into functionally mature memory CD8 T cells. The transcriptional network underlying this carefully scripted process is not well understood. In this study, we report that the transcription factor FoxO1 plays an integral role in facilitating effector-to-memory transition and functional maturation of memory CD4 and CD8 T cells. We find that FoxO1 is not required for differentiation of effector cells, but in the absence of FoxO1, memory CD8 T cells displayed features of senescence and progressive attrition in polyfunctionality, which in turn led to impaired recall responses and poor protective immunity. These data suggest that FoxO1 is essential for maintenance of functional CD8 T cell memory and protective immunity. Under competing conditions in bone marrow chimeric mice, FoxO1 deficiency did not perturb clonal expansion or effector differentiation. Instead, FoxO1-deficient memory precursor effector cells failed to survive and form memory CD8 T cells. Mechanistically, FoxO1 deficiency perturbed the memory CD8 T cell transcriptome, characterized by pronounced alterations in the expression of genes that encode transcription factors (including Tcf7), effector molecules, cell cycle regulators, and proteins that regulate fatty acid, purine, and pyramidine metabolism and mitochondrial functions. We propose that FoxO1 is a key regulator that reprograms and steers the differentiation of effector cells to functionally competent memory cells. These findings have provided fundamental insights into the mechanisms that regulate the quality of CD8 T cell memory to intracellular pathogens.
Collapse
Affiliation(s)
- Melba Marie Tejera
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Eui Ho Kim
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Jeremy A. Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Erin H. Plisch
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M. Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
164
|
Raju I, Kannan K, Abraham EC. FoxO3a Serves as a Biomarker of Oxidative Stress in Human Lens Epithelial Cells under Conditions of Hyperglycemia. PLoS One 2013; 8:e67126. [PMID: 23805295 PMCID: PMC3689697 DOI: 10.1371/journal.pone.0067126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
Background Forkhead box ‘O’ transcription factors (FoxOs) are implicated in the pathogenesis of type2 diabetes and other metabolic diseases. Abnormal activity of FoxOs was reported in the glucose and insulin metabolism. Expression of FoxO proteins was reported in ocular tissues; however their function under hyperglycemic conditions was not examined. Methods Human lens epithelial cell line was used to study the function of FoxO proteins. Immunofluorescence, flow cytometry and Western blotting were employed to detect the FoxO proteins under the conditions of hyperglycemia. Results In this study we examined the role of FoxO3a in hyperglycemia-induced oxidative stress in human lens epithelial cells. FoxO3a protein expression was elevated in a dose- and time-dependent fashion after high glucose treatment. Anti-oxidant defense mechanisms of the lens epithelial cells were diminished as evidenced from loss of mitochondrial membrane integrity and lowered MnSOD after 72 h treatment with high glucose. Taken together, FoxO3a acts as a sensitive indicator of oxidative stress and cell homeostasis in human lens epithelial cells during diabetic conditions. Conclusion FoxO3a is an early stress response protein to glucose toxicity in diabetic conditions.
Collapse
Affiliation(s)
- Ilangovan Raju
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Krishnaswamy Kannan
- Division of Rheumatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Edathara C. Abraham
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
165
|
Hess Michelini R, Doedens AL, Goldrath AW, Hedrick SM. Differentiation of CD8 memory T cells depends on Foxo1. ACTA ACUST UNITED AC 2013; 210:1189-200. [PMID: 23712431 PMCID: PMC3674697 DOI: 10.1084/jem.20130392] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The transcription factor Foxo1 is required for the differentiation of memory CD8+ T cells, and its absence hinders clearance of secondary infections. The forkhead O transcription factors (FOXO) integrate a range of extracellular signals, including growth factor signaling, inflammation, oxidative stress, and nutrient availability, to substantially alter the program of gene expression and modulate cell survival, cell cycle progression, and many yet to be unraveled cell type–specific responses. Naive antigen-specific CD8+ T cells undergo a rapid expansion and arming of effector function within days of pathogen exposure. In addition, by the peak of expansion, they form precursors to memory T cells capable of self-renewal and indefinite survival. Using lymphocytic choriomeningitis virus Armstrong to probe the response to infection, we found that Foxo1−/− CD8+ T cells expand normally with no defects in effector differentiation, but continue to exhibit characteristics of effector T cells long after antigen clearance. The KLRG1lo CD8+ T cells that are normally enriched for memory-precursor cells retain Granzyme B and CD69 expression, and fail to up-regulate TCF7, EOMES, and other memory signature genes. As a correlate, Foxo1−/− CD8+ T cells were virtually unable to expand upon secondary infection. Collectively, these results demonstrate an intrinsic role for FOXO1 in establishing the post-effector memory program that is essential to forming long-lived memory cells capable of immune reactivation.
Collapse
Affiliation(s)
- Rodrigo Hess Michelini
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
166
|
Choi YS, Yang JA, Crotty S. Dynamic regulation of Bcl6 in follicular helper CD4 T (Tfh) cells. Curr Opin Immunol 2013; 25:366-72. [PMID: 23688737 DOI: 10.1016/j.coi.2013.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/11/2022]
Abstract
Our bodies are continuously exposed to various types of infectious pathogens. Vaccinations are the most cost effective way to protect our bodies against a variety of infectious microbes. The efficacy of most vaccines relies on protective antibody production and generation of memory B cells. These two key components develop mostly from B cells that participate in germinal center reactions. Recent efforts have highlighted the critical role of follicular helper CD4 T (Tfh) cells in the generation of germinal centers. Given that Bcl6 is a major transcription factor for Tfh differentiation, here we review recent developments in the understanding of signaling molecules that regulate Bcl6 expression in CD4 T cells, as a potential target for development of more efficacious vaccines.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
167
|
Dunner S, Sevane N, Garcia D, Levéziel H, Williams JL, Mangin B, Valentini A. Genes involved in muscle lipid composition in 15 European Bos taurus breeds. Anim Genet 2013; 44:493-501. [PMID: 23611291 DOI: 10.1111/age.12044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Abstract
Consumers demand healthy and palatable meat, both factors being affected by fat composition. However, red meat has relatively high concentration of saturated fatty acids and low concentration of the beneficial polyunsaturated fatty acids. To select animals prone to produce particular fat types, it is necessary to identify the genes influencing muscle lipid composition. This paper describes an association study in which a large panel of candidate genes involved in adipogenesis, lipid metabolism and energy homoeostasis was tested for effects on fat composition in 15 European cattle breeds. Sixteen genes were found to have significant effects on different lipid traits, and among these, CFL1 and MYOZ1 were found to have large effects on the ratio of 18:2/18:3, CRI1 on the amount of neutral adrenic acid (22:4 n-6), MMP1 on docosahexaenoic acid (22:6 n-3) and conjugated linoleic acid, PLTP on the ratio of n-6:n-3 and IGF2R on flavour. Several genes - ALDH2, CHRNE, CRHR2, DGAT1, IGFBP3, NEB, SOCS2, SUSP1, TCF12 and FOXO1 - also were found to be associated with both lipid and organoleptic traits although with smaller effect. The results presented here help in understanding the genetic and biochemical background underlying variations in fatty acid composition and flavour in beef.
Collapse
Affiliation(s)
- S Dunner
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Vickers KC, Sethupathy P, Baran-Gale J, Remaley AT. Complexity of microRNA function and the role of isomiRs in lipid homeostasis. J Lipid Res 2013; 54:1182-91. [PMID: 23505317 DOI: 10.1194/jlr.r034801] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of biological pathways that govern lipid metabolic phenotypes. Recent advances in high-throughput small RNA sequencing technology have revealed the complex and dynamic repertoire of miRNAs. Specifically, it has been demonstrated that a single genomic locus can give rise to multiple, functionally distinct miRNA isoforms (isomiR). There are several mechanisms by which isomiRs can be generated, including processing heterogeneity and posttranscriptional modifications, such as RNA editing, exonuclease-mediated nucleotide trimming, and/or nontemplated nucleotide addition (NTA). NTAs are dominant at the 3'-end of a miRNA, are most commonly uridylation or adenlyation events, and are catalyzed by one or more of several nucleotidyl transferase enzymes. 3' NTAs can affect miRNA stability and/or activity and are physiologically regulated, whereas modifications to the 5'-ends of miRNAs likely alter miRNA targeting activity. Recent evidence also suggests that the biogenesis of specific miRNAs, or small RNAs that act as miRNAs, can occur through unconventional mechanisms that circumvent key canonical miRNA processing steps. The unveiling of miRNA diversity has significantly added to our view of the complexity of miRNA function. In this review we present the current understanding of the biological relevance of isomiRs and their potential role in regulating lipid metabolism.
Collapse
Affiliation(s)
- Kasey C Vickers
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | |
Collapse
|
169
|
Oishi K, Itoh N. Disrupted daily light–dark cycle induces the expression of hepatic gluconeogenic regulatory genes and hyperglycemia with glucose intolerance in mice. Biochem Biophys Res Commun 2013; 432:111-5. [DOI: 10.1016/j.bbrc.2013.01.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 02/02/2023]
|
170
|
|
171
|
Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci 2013; 94:328-35. [PMID: 23567132 DOI: 10.1016/j.meatsci.2013.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022]
Abstract
Understanding which are the genetic variants underlying the nutritional and sensory properties of beef, enables improvement in meat quality. The aim of this study is to identify new molecular markers for meat quality through an association study using candidate genes included in the PPARG and PPARGC1A networks given their master role in coordinating metabolic adaptation in fat tissue, muscle and liver. Amongst the novel associations found in this study, selection of the positive marker variants of genes such as BCL3, LPL, PPARG, SCAP, and SCD will improve meat organoleptic characteristics and health by balancing the n-6 to n-3 fatty acid ratio in meat. Also previous results on GDF8 and DGAT1 were validated, and the novel ATF4, HNF4A and PPARGC1A associations, although slightly under the significance threshold, are consistent with their physiological roles. These data contribute insights into the complex gene-networks underlying economically important traits.
Collapse
|
172
|
Abstract
Forkhead box O (FOXO) transcription factors are involved in the regulation of the cell cycle, apoptosis and metabolism. In model organisms, FOXO activity also affects stem cell maintenance and lifespan as well as age-related diseases, such as cancer and diabetes. Multiple upstream pathways regulate FOXO activity through post-translational modifications and nuclear-cytoplasmic shuttling of both FOXO and its regulators. The diversity of this upstream regulation and the downstream effects of FOXOs suggest that they function as homeostasis regulators to maintain tissue homeostasis over time and coordinate a response to environmental changes, including growth factor deprivation, metabolic stress (starvation) and oxidative stress.
Collapse
|
173
|
Liu Z, Castrillon DH, Zhou W, Richards JS. FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH. Mol Endocrinol 2013; 27:238-52. [PMID: 23322722 DOI: 10.1210/me.2012-1296] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Forkhead boxO (FOXO) transcription factors regulate multiple cellular functions. FOXO1 and FOXO3 are highly expressed in granulosa cells of ovarian follicles. Selective depletion of the Foxo1 and Foxo3 genes in granulosa cells of mice reveals a novel ovarian-pituitary endocrine feedback loop characterized by: 1) undetectable levels of serum FSH but not LH, 2) reduced expression of the pituitary Fshb gene and its transcriptional regulators, and 3) ovarian production of a factor(s) that suppresses pituitary cell Fshb expression. Equally notable, and independent of FSH, microarray analyses and quantitative PCR document that depletion of Foxo1/3 alters the expression of specific genes associated with follicle growth vs. apoptosis by disrupting critical and selective regulatory interactions of FOXO1/3 with the activin or bone morphogenetic protein 2 (BMP2) pathways, respectively. As a consequence, both granulosa cell proliferation and apoptosis were decreased. These data provide the first evidence that FOXO1/3 divergently regulate follicle growth or death by interacting with the activin or BMP pathways in granulosa cells and by modulating pituitary FSH production.
Collapse
Affiliation(s)
- Zhilin Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
174
|
Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL. FOXO transcription factors throughout T cell biology. Nat Rev Immunol 2012; 12:649-61. [PMID: 22918467 PMCID: PMC3875397 DOI: 10.1038/nri3278] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The outcome of an infection with any given pathogen varies according to the dosage and route of infection, but, in addition, the physiological state of the host can determine the efficacy of clearance, the severity of infection and the extent of immunopathology. Here we propose that the forkhead box O (FOXO) transcription factor family--which is central to the integration of growth factor signalling, oxidative stress and inflammation--provides connections between physical well-being and the form and magnitude of an immune response. We present a case that FOXO transcription factors guide T cell differentiation and function in a context-driven manner, and might provide a link between metabolism and immunity.
Collapse
Affiliation(s)
- Stephen M Hedrick
- University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0377, USA.
| | | | | | | | | |
Collapse
|
175
|
Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2012. [PMID: 23203037 PMCID: PMC3509553 DOI: 10.3390/ijms131113830] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress impacts multiple systems of the body and can lead to some of the most devastating consequences in the nervous system especially during aging. Both acute and chronic neurodegenerative disorders such as diabetes mellitus, cerebral ischemia, trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and tuberous sclerosis through programmed cell death pathways of apoptosis and autophagy can be the result of oxidant stress. Novel therapeutic avenues that focus upon the phosphoinositide 3-kinase (PI 3-K), Akt (protein kinase B), and the mammalian target of rapamycin (mTOR) cascade and related pathways offer exciting prospects to address the onset and potential reversal of neurodegenerative disorders. Effective clinical translation of these pathways into robust therapeutic strategies requires intimate knowledge of the complexity of these pathways and the ability of this cascade to influence biological outcome that can vary among disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
- Author to whom correspondence should be addressed: E-Mail:
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| |
Collapse
|
176
|
Maiese K, Chong ZZ, Shang YC, Wang S. Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov 2012; 8:35-48. [PMID: 23092114 DOI: 10.1517/17460441.2013.736485] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. AREAS COVERED The authors examine the novel directions for drug discovery that involve: the β-nicotinamide adenine dinucleotide (NAD(+)) precursor nicotinamide, the cytokine erythropoietin, the NAD(+)-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Furthermore, the authors present the implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival. EXPERT OPINION Nicotinamide, erythropoietin, and the downstream pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder.
Collapse
Affiliation(s)
- Kenneth Maiese
- New Jersey Health Sciences University, Cancer Institute of New Jersey, Laboratory of Cellular and Molecular Signaling , Newark, NJ 07101, USA.
| | | | | | | |
Collapse
|
177
|
Abstract
Surprising new discoveries in the field of skeletal biology show that bone cells produce endocrine hormones that regulate phosphate and glucose homeostasis. In this Review, we examine the features of these new endocrine pathways and discuss their physiological importance in the context of our current understanding of energy metabolism and mineral homeostasis. Consideration of evolutionary and comparative biology provides clues that a key driving force for the emergence of these hormonal pathways was the development of a large, energy-expensive musculoskeletal system. Specialized bone cells also evolved and produced endocrine hormones to integrate the skeleton in global mineral and nutrient homeostasis. The recognition of bone as a true endocrine organ represents a fertile area for further research and should improve the diagnosis and treatment of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
|
178
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|
179
|
Affiliation(s)
- Kristine C Y McGrath
- School of Medical and Molecular Biosciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | | |
Collapse
|
180
|
Kim M, Kim C, Choi YS, Kim M, Park C, Suh Y. Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects. Mech Ageing Dev 2012; 133:215-25. [PMID: 22738657 DOI: 10.1016/j.mad.2012.03.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 03/17/2012] [Accepted: 03/28/2012] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSC) have attracted considerable attention in the fields of cell and gene therapy due to their intrinsic ability to differentiate into multiple lineages. The various therapeutic applications involving MSC require initial expansion and/or differentiation in vitro prior to clinical use. However, serial passages of MSC in culture lead to decreased differentiation potential and stem cell characteristics, eventually inducing cellular aging which will limit the success of cell-based therapeutic interventions. Here we review the age-related changes that occur in MSC with a special focus on the shift of differentiation potential from osteogenic to adipogenic lineage during the MSC aging processes and how aging causes this preferential shift by oxidative stress and/or energy metabolism defect. Oxidative stress-related signals and some microRNAs affect the differentiation potential shift of MSC by directly targeting key regulatory factors such as Runx-2 or PPAR-γ, and energy metabolism pathway is involved as well. All information described here including transcription factors, microRNAs and FoxOs could be used towards development of treatment regimens for age-related bone diseases and related defects based on mutually exclusive lineage fate determination of MSC.
Collapse
Affiliation(s)
- MiJung Kim
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|