151
|
Fujiwara N, Nakagawa H, Enooku K, Kudo Y, Hayata Y, Nakatsuka T, Tanaka Y, Tateishi R, Hikiba Y, Misumi K, Tanaka M, Hayashi A, Shibahara J, Fukayama M, Arita J, Hasegawa K, Hirschfield H, Hoshida Y, Hirata Y, Otsuka M, Tateishi K, Koike K. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity. Gut 2018; 67:1493-1504. [PMID: 29437870 PMCID: PMC6039238 DOI: 10.1136/gutjnl-2017-315193] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Metabolic reprogramming of tumour cells that allows for adaptation to their local environment is a hallmark of cancer. Interestingly, obesity-driven and non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) mouse models commonly exhibit strong steatosis in tumour cells as seen in human steatohepatitic HCC (SH-HCC), which may reflect a characteristic metabolic alteration. DESIGN Non-tumour and HCC tissues obtained from diethylnitrosamine-injected mice fed either a normal or a high-fat diet (HFD) were subjected to comprehensive metabolome analysis, and the significance of obesity-mediated metabolic alteration in hepatocarcinogenesis was evaluated. RESULTS The extensive accumulation of acylcarnitine species was seen in HCC tissues and in the serum of HFD-fed mice. A similar increase was found in the serum of patients with NASH-HCC. The accumulation of acylcarnitine could be attributed to the downregulation of carnitine palmitoyltransferase 2 (CPT2), which was also seen in human SH-HCC. CPT2 downregulation induced the suppression of fatty acid β-oxidation, which would account for the steatotic changes in HCC. CPT2 knockdown in HCC cells resulted in their resistance to lipotoxicity by inhibiting the Src-mediated JNK activation. Additionally, oleoylcarnitine enhanced sphere formation by HCC cells via STAT3 activation, suggesting that acylcarnitine accumulation was a surrogate marker of CPT2 downregulation and directly contributed to hepatocarcinogenesis. HFD feeding and carnitine supplementation synergistically enhanced HCC development accompanied by acylcarnitine accumulation in vivo. CONCLUSION In obesity-driven and NASH-driven HCC, metabolic reprogramming mediated by the downregulation of CPT2 enables HCC cells to escape lipotoxicity and promotes hepatocarcinogenesis.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Kenichiro Enooku
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yotaro Kudo
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Takuma Nakatsuka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yasuo Tanaka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Ryosuke Tateishi
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yohko Hikiba
- Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation 2-2-6 Nihonbashibakurocho, Chuo-ku, Tokyo 103-0002
| | - Kento Misumi
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Mariko Tanaka
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Akimasa Hayashi
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Junji Shibahara
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Masashi Fukayama
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Hadassa Hirschfield
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences. Icahn School of Medicine at Mount Sinai, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences. Icahn School of Medicine at Mount Sinai, USA
| | - Yoshihiro Hirata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Motoyuki Otsuka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Keisuke Tateishi
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| |
Collapse
|
152
|
Wu Y, Shan B, Dai J, Xia Z, Cai J, Chen T, Lv S, Feng Y, Zheng L, Wang Y, Liu J, Fang J, Xie D, Rui L, Liu J, Liu Y. Dual role for inositol-requiring enzyme 1α in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice. Hepatology 2018; 68:533-546. [PMID: 29506314 DOI: 10.1002/hep.29871] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/18/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
Obesity is associated with both endoplasmic reticulum (ER) stress and chronic metabolic inflammation. ER stress activates the unfolded protein response (UPR) and has been implicated in a variety of cancers, including hepatocellular carcinoma (HCC). It is unclear whether individual UPR pathways are mechanistically linked to HCC development, however. Here we report a dual role for inositol-requiring enzyme 1α (IRE1α), the ER-localized UPR signal transducer, in obesity-promoted HCC development. We found that genetic ablation of IRE1α in hepatocytes not only markedly reduced the occurrence of diethylnitrosamine (DEN)-induced HCC in liver-specific IRE1α knockout (LKO) mice when fed a normal chow (NC) diet, but also protected against the acceleration of HCC progression during high-fat diet (HFD) feeding. Irrespective of their adiposity states, LKO mice showed decreased hepatocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation, even in the face of increased hepatic apoptosis. Furthermore, IRE1α abrogation blunted obesity-associated activation of hepatic inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway, leading to reduced production of the tumor-promoting inflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). Importantly, higher IRE1α expression along with elevated STAT3 phosphorylation was also observed in the tumor tissues from human HCC patients, correlating with their poorer survival rate. CONCLUSION IRE1α acts in a feed-forward loop during obesity-induced metabolic inflammation to promote HCC development through STAT3-mediated hepatocyte proliferation. (Hepatology 2018).
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Bo Shan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Jianli Dai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Zhixiong Xia
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Tianwei Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Songya Lv
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yuxiong Feng
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Fang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Dong Xie
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, the University of Michigan Medical School, Ann Arbor, MI
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| |
Collapse
|
153
|
Liu JJ, Li Y, Chen WS, Liang Y, Wang G, Zong M, Kaneko K, Xu R, Karin M, Feng GS. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol 2018; 69:79-88. [PMID: 29505847 PMCID: PMC6008184 DOI: 10.1016/j.jhep.2018.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Shp2 is an SH2-tyrosine phosphatase acting downstream of receptor tyrosine kinases (RTKs). Most recent data demonstrated a liver tumor-suppressing role for Shp2, as ablating Shp2 in hepatocytes aggravated hepatocellular carcinoma (HCC) induced by chemical carcinogens or Pten loss. We further investigated the effect of Shp2 deficiency on liver tumorigenesis driven by classical oncoproteins c-Met (receptor for HGF), β-catenin and PIK3CA. METHODS We performed hydrodynamic tail vein injection of two pairs of plasmids expressing c-Met and ΔN90-β-catenin (MET/CAT), or c-Met and PIK3CAH1047R (MET/PIK), into WT and Shp2hep-/- mice. We compared liver tumor loads and investigated the pathogenesis and molecular mechanisms involved using multidisciplinary approaches. RESULTS Despite the induction of oxidative and metabolic stresses, Shp2 deletion in hepatocytes suppressed hepatocarcinogenesis driven by overexpression of oncoproteins MET/CAT or MET/PIK. Shp2 loss inhibited proliferative signaling from c-Met, Wnt/β-catenin, Ras/Erk and PI3K/Akt pathways, but triggered cell senescence following exogenous expression of the oncogenes. CONCLUSIONS Shp2, acting downstream of RTKs, is positively required for hepatocyte-intrinsic tumorigenic signaling from these oncoproteins, even if Shp2 deficiency induces a tumor-promoting hepatic microenvironment. These data suggest a new and more effective therapeutic strategy for HCCs driven by oncogenic RTKs and other upstream molecules, by inhibiting Shp2 and also suppressing any tumor-enhancing stromal factors produced because of Shp2 inhibition. LAY SUMMARY Primary liver cancer is a malignant disease with poor prognosis, largely because there are limited systemic therapies available. We show here that a cytoplasmic tyrosine phosphatase Shp2 is required for liver tumorigenesis. This tumorigenesis is driven by two oncoproteins that are implicated in human liver cancer. This, together with our previous studies, uncovers the complexity of liver tumorigenesis, by elucidating the pro- and anti-tumor effects of Shp2 in mouse models. This data can be used to guide new therapies.
Collapse
Affiliation(s)
- Jacey J. Liu
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yanjie Li
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA,Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wendy S. Chen
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yan Liang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Min Zong
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kota Kaneko
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
154
|
Differential Sensitivity of Human Hepatocellular Carcinoma Xenografts to an IGF-II Neutralizing Antibody May Involve Activated STAT3. Transl Oncol 2018; 11:971-978. [PMID: 29933129 PMCID: PMC6020079 DOI: 10.1016/j.tranon.2018.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is highly refractory to current therapeutics used in the clinic. DX-2647, a recombinant human antibody, potently neutralizes the action of insulin-like growth factor-II (IGF-II), a ligand for three cell-surface receptors (IGF-IR, insulin receptor A and B isoforms, and the cation-independent mannose-6-phosphate receptor) which is overexpressed in primary human HCC. DX-2647 impaired the growth of tumor xenografts of the HCC cell line, Hep3B; however, xenografts of the HCC cell line, HepG2, were largely unresponsive to DX-2647 treatment. Analysis of a number of aspects of the IGF signaling axis in both cell lines did not reveal any significant differences between the two. However, while DX-2647 abolished phospho (p)-IGF-IR, p-IR and p-AKT signaling in both cell lines, HepG2 showed high levels of p-STAT3, which was unaffected by DX-2647 treatment and was absent from the Hep3B cell line. The driver of p-STAT3 was found to be a secreted cytokine, and treatment of HepG2 cells with a pan- JAK kinase inhibitor resulted in a loss of p-STAT3. These findings implicate the activation of STAT3 as one pathway that may mediate resistance to IGF-II-targeted therapy in HCC.
Collapse
|
155
|
Dhar D, Antonucci L, Nakagawa H, Kim JY, Glitzner E, Caruso S, Shalapour S, Yang L, Valasek MA, Lee S, Minnich K, Seki E, Tuckermann J, Sibilia M, Zucman-Rossi J, Karin M. Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell 2018; 33:1061-1077.e6. [PMID: 29894692 PMCID: PMC6005359 DOI: 10.1016/j.ccell.2018.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
How fully differentiated cells that experience carcinogenic insults become proliferative cancer progenitors that acquire multiple initiating mutations is not clear. This question is of particular relevance to hepatocellular carcinoma (HCC), which arises from differentiated hepatocytes. Here we show that one solution to this problem is provided by CD44, a hyaluronic acid receptor whose expression is rapidly induced in carcinogen-exposed hepatocytes in a STAT3-dependent manner. Once expressed, CD44 potentiates AKT activation to induce the phosphorylation and nuclear translocation of Mdm2, which terminates the p53 genomic surveillance response. This allows DNA-damaged hepatocytes to escape p53-induced death and senescence and respond to proliferative signals that promote fixation of mutations and their transmission to daughter cells that go on to become HCC progenitors.
Collapse
Affiliation(s)
- Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Hayato Nakagawa
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Gastroenterology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Stefano Caruso
- Inserm UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75010 Paris, France
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Ling Yang
- Department of Medicine, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark A Valasek
- Department of Pathology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Sooyeon Lee
- Institute for Comparative Molecular Endocrinology (CME), University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kerstin Minnich
- Leibniz Institute of Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ekihiro Seki
- Department of Medicine, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Medicine, Cedars-Sinai, 8700 Beverly Boulevard, Davis Building, Los Angeles, CA 90048, USA
| | - Jan Tuckermann
- Institute for Comparative Molecular Endocrinology (CME), University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany; Leibniz Institute of Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75010 Paris, France
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Pathology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Moores Cancer Center, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0723, USA.
| |
Collapse
|
156
|
Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol 2018; 117:993-1001. [PMID: 29782972 DOI: 10.1016/j.ijbiomac.2018.05.121] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Several studies have processed conceivable evidence for the vital role of Signal Transducer and Activator of Transcription 3 (STAT3) in cancer transformation and carcinogenesis. Therefore, one of the important factors in formation of cancer is STAT3 and for design of novel anticancer drugs is a suitable target. On the other hand, apoptosis pathway has a critical role in the cancers pathogenesis. Generally, increasing developments have been existed to expression, production, phosphorylation or activation of STAT3 in the effective or responsible cells of most of the cancers. In return, apoptosis process in this cells have been suffered inhibition, decrease in expression, produce or activation in some related factors which lead to debilitation or inhibition of the process. Further understanding of the STAT3 related signaling and apoptosis pathway can lead to the invention of novel approaches for therapies in unstudied disease. In this manuscript, review and highlight recent knowledge of the STAT3 pathway and its connection with apoptosis process in cancers and discuss STAT3-targeting agents to therapeutic developments.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golnaz Rashidi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahriar Shahi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
157
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
158
|
Activation of Signal Transduction and Activator of Transcription 3 Signaling Contributes to Helicobacter-Associated Gastric Epithelial Proliferation and Inflammation. Gastroenterol Res Pract 2018; 2018:9050715. [PMID: 29849601 PMCID: PMC5911338 DOI: 10.1155/2018/9050715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/25/2017] [Accepted: 01/14/2018] [Indexed: 02/08/2023] Open
Abstract
Background/Aim Although IL-6-mediated activation of the signal transduction and activator of transcription 3 (STAT3) axis is involved in inflammation and cancer, the role of STAT3 in Helicobacter-associated gastric inflammation and carcinogenesis is unclear. This study investigated the role of STAT3 in gastric inflammation and carcinogenesis and examined the molecular mechanism of Helicobacter-induced gastric phenotypes. Methods To evaluate the contribution of STAT3 to gastric inflammation and carcinogenesis, we used wild-type (WT) and gastric epithelial conditional Stat3-knockout (Stat3Δgec) mice. Mice were infected with Helicobacter felis and euthanized at 18 months postinfection. Mouse gastric organoids were treated with recombinant IL-6 (rIL-6) or rIL-11 and a JAK inhibitor (JAKi) to assess the role of IL-6/STAT3 signaling in vitro. Results Inflammation and mucous metaplasia were more severe in WT mice than in Stat3Δgec mice. The epithelial cell proliferation rate and STAT3 activation were increased in WT mice. Application of rIL-6 and rIL-11 induced expression of intestinal metaplasia-associated genes, such as Tff2; this induction was suppressed by JAKi administration. Conclusions Loss of STAT3 signaling in the gastric mucosa leads to decreased epithelial cell proliferation, atrophy, and metaplasia in the setting of Helicobacter infection. Therefore, activation of STAT3 signaling may play a key role in Helicobacter-associated gastric carcinogenesis.
Collapse
|
159
|
Abstract
Signal transducer and activator of transcription (STAT) 3 is a key signalling protein engaged by a multitude of growth factors and cytokines to elicit diverse biological outcomes including cellular growth, differentiation, and survival. The complete loss of STAT3 is not compatible with life and even partial loss of function mutations lead to debilitating pathologies like hyper IgE syndrome. Conversely, augmented STAT3 activity has been reported in as many as 50% of all human tumours. The dogma of STAT3 activity posits that it is a tyrosine phosphorylated transcription factor which modulates the expression of hundreds of genes. However, the regulation and biological consequences of STAT3 activation are far more complex. In addition to tyrosine phosphorylation, STAT3 is decorated with a plethora of post-translational modifications which regulate STAT3's nuclear function in addition to its non-genomic activities. In addition to these emerging complexities in the biochemical regulation of STAT3 activity, recent studies reveal that STAT3 is either oncogenic or a tumour suppressor. This review will explore these complexities.
Collapse
Affiliation(s)
- Aleks C Guanizo
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Chamira Dilanka Fernando
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Daniel J Garama
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Daniel J Gough
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| |
Collapse
|
160
|
Cho SO, Kim MH, Kim H. β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes. J Cancer Prev 2018; 23:37-43. [PMID: 29629347 PMCID: PMC5886493 DOI: 10.15430/jcp.2018.23.1.37] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Oxidative stress occurs in white adipose tissue and dysregulates the expression of adipokines secreted from adipocytes. Since adipokines influence inflammation, supplementation with antioxidants might be beneficial for preventing oxidative stress-mediated inflammation in adipocytes and inflammation-associated complications. β-Carotene is the most prominent antioxidant carotenoid and scavenges reactive oxygen species in various tissues. The purpose of this study was to determine whether β-carotene regulates the expression of adipokines, such as adiponectin, monocyte chemoattractant protein-1 (MCP-1), and regulated on activation, normal T cell expressed and secreted (RANTES) in 3T3-L1 adipocytes treated with glucose/glucose oxidase (G/GO). Methods 3T3-L1 adipocytes were cultured with or without β-carotene and treated with G/GO, which produces H2O2. mRNA and protein levels in the medium were determined by a real-time PCR and an ELISA. DNA binding activities of transcription factors were assessed using an electrophoretic mobility shift assay. Results G/GO treatment increased DNA binding affinities of redox-sensitive transcription factors, such as NF-κB, activator protein-1 (AP-1), and STAT3. G/GO treatment reduced the expression of adiponectin and increased the expression of MCP-1 and RANTES. G/GO-induced activations of NF-κB, AP-1, and STAT3 were inhibited by β-carotene. G/GO-induced dysregulation of adiponectin, MCP-1, and RANTES were significantly recovered by treatment with β-carotene. Conclusions β-Carotene inhibits oxidative stress-induced inflammation by suppressing pro-inflammatory adipokines MCP-1 and RANTES, and by enhancing adiponectin in adipocytes. β-Carotene may be beneficial for preventing oxidative stress-mediated inflammation, which is related to adipokine dysfunction.
Collapse
Affiliation(s)
- Soon Ok Cho
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
161
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
162
|
Kang HJ, Chung DH, Sung CO, Yoo SH, Yu E, Kim N, Lee SH, Song JY, Kim CJ, Choi J. SHP2 is induced by the HBx-NF-κB pathway and contributes to fibrosis during human early hepatocellular carcinoma development. Oncotarget 2018; 8:27263-27276. [PMID: 28460481 PMCID: PMC5432333 DOI: 10.18632/oncotarget.15930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
The non-receptor tyrosine phosphatase SHP2 has scaffolding functions in signal transduction cascades downstream of growth receptors. A recent study suggested that SHP2 acts as a tumor suppressor during hepatocellular carcinoma (HCC) development. Herein we examined whether SHP2 links the HBx-NF-κB pathway to EGFR signaling during HCC development. The overexpression of HBx or NF-κB led to increased SHP2 expression via NF-κB binding to the Shp2 promoter. EGF treatment induced ERK activation as well as the rapid assembly of SHP2, EGFR, and Gab1. Upon LPS stimulation, NF-κB-SHP2-ERK activation and phosphorylated STAT3 levels exhibited a negative correlation in vitro. By contrast, in patients with HBV-associated HCC, NF-κB-SHP2-ERK and IL-6-JAK-STAT3 pathway activity levels were concomitantly higher in adjacent non-neoplastic tissues than in HCC tissues. The immunohistochemical analysis of 162 tissues of patients with HCC revealed that SHP2 levels were significantly higher in non-neoplastic background tissues than in corresponding HCC tissues and considerably increased in background liver tissues with advanced fibrosis (P < 0.001). SHP2 expression increased gradually from normal liver to chronic hepatitis, cirrhosis, and background liver with a dysplastic nodule, but was decreased or lost in dysplastic nodules and HCC. This is the first report to describe the existence of the HBx-NF-κB-SHP2 pathway, linking HBV infection to the EGFR-RAS-RAF-MAPK pathway in the liver. SHP2 depletion from the negative crosstalk between NF-κB and STAT3 accelerates HCC development.
Collapse
Affiliation(s)
- Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dal-Hee Chung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Su Hyun Yoo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nayoung Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Sy-Hye Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Ji-Young Song
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
163
|
Verzella D, Bennett J, Fischietti M, Thotakura AK, Recordati C, Pasqualini F, Capece D, Vecchiotti D, D'Andrea D, Di Francesco B, De Maglie M, Begalli F, Tornatore L, Papa S, Lawrence T, Forbes SJ, Sica A, Alesse E, Zazzeroni F, Franzoso G. GADD45β Loss Ablates Innate Immunosuppression in Cancer. Cancer Res 2018; 78:1275-1292. [PMID: 29279355 PMCID: PMC5935595 DOI: 10.1158/0008-5472.can-17-1833] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022]
Abstract
T-cell exclusion from the tumor microenvironment (TME) is a major barrier to overcoming immune escape. Here, we identify a myeloid-intrinsic mechanism governed by the NF-κB effector molecule GADD45β that restricts tumor-associated inflammation and T-cell trafficking into tumors. In various models of solid cancers refractory to immunotherapies, including hepatocellular carcinoma and ovarian adenocarcinoma, Gadd45b inhibition in myeloid cells restored activation of proinflammatory tumor-associated macrophages (TAM) and intratumoral immune infiltration, thereby diminishing oncogenesis. Our results provide a basis to interpret clinical evidence that elevated expression of GADD45B confers poor clinical outcomes in most human cancers. Furthermore, they suggest a therapeutic target in GADD45β for reprogramming TAM to overcome immunosuppression and T-cell exclusion from the TME.Significance: These findings define a myeloid-based immune checkpoint that restricts T-cell trafficking into tumors, with potentially important therapeutic implications to generally improve the efficacy of cancer immunotherapy. Cancer Res; 78(5); 1275-92. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Female
- Humans
- Immune Tolerance/immunology
- Immunosuppression Therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Tumor Cells, Cultured
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mariafausta Fischietti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anil K Thotakura
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Camilla Recordati
- Mouse & Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Fabio Pasqualini
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Salvatore Papa
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
- Current address: Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, United Kingdom
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonio Sica
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale 'Amedeo Avogadro', Novara, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
164
|
Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2:6. [PMID: 29872724 PMCID: PMC5871907 DOI: 10.1038/s41698-018-0048-z] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related death, making the elucidation of its underlying mechanisms an urgent priority. Inflammation is an adaptive response to infection and tissue injury under strict regulations. When the host regulatory machine runs out of control, nonresolving inflammation occurs. Nonresolving inflammation is a recognized hallmark of cancer that substantially contributes to the development and progression of HCC. The HCC-associated inflammation can be initiated and propagated by extrinsic pathways through activation of pattern-recognition receptors (PRRs) by pathogen-associated molecule patterns (PAMPs) derived from gut microflora or damage-associated molecule patterns (DAMPs) released from dying liver cells. The inflammation can also be orchestrated by the tumor itself through secreting factors that recruit inflammatory cells to the tumor favoring the buildup of a microenvironment. Accumulating datas from human and mouse models showed that inflammation promotes HCC development by promoting proliferative and survival signaling, inducing angiogenesis, evading immune surveillance, supporting cancer stem cells, activating invasion and metastasis as well as inducing genomic instability. Targeting inflammation may represent a promising avenue for the HCC treatment. Some inhibitors targeting inflammatory pathways have been developed and under different stages of clinical trials, and one (sorafenib) have been approved by FDA. However, as most of the data were obtained from animal models, and there is a big difference between human HCC and mouse HCC models, it is challenging on successful translation from bench to bedside.
Collapse
|
165
|
Li D, Hu M, Liu Y, Ye P, Du P, Li CS, Cheng L, Liu P, Jiang J, Su L, Wang S, Zheng P, Liu Y. CD24-p53 axis suppresses diethylnitrosamine-induced hepatocellular carcinogenesis by sustaining intrahepatic macrophages. Cell Discov 2018; 4:6. [PMID: 29423273 PMCID: PMC5799181 DOI: 10.1038/s41421-017-0007-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
It is generally assumed that inflammation following diethylnitrosamine (DEN) treatment promotes development of hepatocellular carcinoma (HCC) through the activity of intrahepatic macrophages. However, the tumor-promoting function of macrophages in the model has not been confirmed by either macrophage depletion or selective gene depletion in macrophages. Here we show that targeted mutation of Cd24 dramatically increased HCC burden while reducing intrahepatic macrophages and DEN-induced hepatocyte apoptosis. Depletion of macrophages also increased HCC burden and reduced hepatocyte apoptosis, thus establishing macrophages as an innate effector recognizing DEN-induced damaged hepatocytes. Mechanistically, Cd24 deficiency increased the levels of p53 in macrophages, resulting in their depletion in Cd24-/- mice following DEN treatment. These data demonstrate that the Cd24-p53 axis maintains intrahepatic macrophages, which can remove hepatocytes with DNA damage. Our data establish a critical role for macrophages in suppressing HCC development and call for an appraisal of the current dogma that intrahepatic macrophages promote HCC development.
Collapse
Affiliation(s)
- Dongling Li
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,OncoImmune-Suzhou, Suzhou, China
| | - Minling Hu
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peiying Ye
- 3Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System and Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20010 USA
| | - Peishuang Du
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chi-Shan Li
- 4Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Liang Cheng
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Liu
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Jiang
- 5The first affiliated hospital, Jilin University, Changchun, China
| | - Lishan Su
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,6Lineberg Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC USA
| | - Shengdian Wang
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pan Zheng
- 3Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System and Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20010 USA
| | - Yang Liu
- 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,OncoImmune-Suzhou, Suzhou, China.,3Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System and Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20010 USA
| |
Collapse
|
166
|
Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19:222-232. [PMID: 29379119 DOI: 10.1038/s41590-018-0044-z] [Citation(s) in RCA: 721] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
In contrast to most other malignancies, hepatocellular carcinoma (HCC), which accounts for approximately 90% of primary liver cancers, arises almost exclusively in the setting of chronic inflammation. Irrespective of etiology, a typical sequence of chronic necroinflammation, compensatory liver regeneration, induction of liver fibrosis and subsequent cirrhosis often precedes hepatocarcinogenesis. The liver is a central immunomodulator that ensures organ and systemic protection while maintaining immunotolerance. Deregulation of this tightly controlled liver immunological network is a hallmark of chronic liver disease and HCC. Notably, immunotherapies have raised hope for the successful treatment of advanced HCC. Here we summarize the roles of specific immune cell subsets in chronic liver disease, with a focus on non-alcoholic steatohepatitis and HCC. We review new advances in immunotherapeutic approaches for the treatment of HCC and discuss the challenges posed by the immunotolerant hepatic environment and the dual roles of adaptive and innate immune cells in HCC.
Collapse
Affiliation(s)
- Marc Ringelhan
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Virology, Technical University of Munich/Helmholtz Zentrum Munich, Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Tracy O'Connor
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum Munich, Munich, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada and Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany. .,Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
167
|
|
168
|
Page A, Navarro M, Suárez-Cabrera C, Bravo A, Ramirez A. Context-Dependent Role of IKKβ in Cancer. Genes (Basel) 2017; 8:E376. [PMID: 29292732 PMCID: PMC5748694 DOI: 10.3390/genes8120376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) is a kinase principally known as a positive regulator of the ubiquitous transcription factor family Nuclear Factor-kappa B (NF-κB). In addition, IKKβ also phosphorylates a number of other proteins that regulate many cellular processes, from cell cycle to metabolism and differentiation. As a consequence, IKKβ affects cell physiology in a variety of ways and may promote or hamper tumoral transformation depending on hitherto unknown circumstances. In this article, we give an overview of the NF-κB-dependent and -independent functions of IKKβ. We also summarize the current knowledge about the relationship of IKKβ with cellular transformation and cancer, obtained mainly through the study of animal models with cell type-specific modifications in IKKβ expression or activity. Finally, we describe the most relevant data about IKKβ implication in cancer obtained from the analysis of the human tumoral samples gathered in The Cancer Genome Atlas (TCGA) and the Catalogue of Somatic Mutations in Cancer (COSMIC).
Collapse
Affiliation(s)
- Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Angel Ramirez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
169
|
Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB. Biomed Pharmacother 2017; 96:1403-1410. [DOI: 10.1016/j.biopha.2017.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/17/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
|
170
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
171
|
Lee J, Liao R, Wang G, Yang BH, Luo X, Varki NM, Qiu SJ, Ren B, Fu W, Feng GS. Preventive Inhibition of Liver Tumorigenesis by Systemic Activation of Innate Immune Functions. Cell Rep 2017; 21:1870-1882. [PMID: 29141219 PMCID: PMC5737819 DOI: 10.1016/j.celrep.2017.10.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Liver cancer has become the second most deadly malignant disease, with no efficient targeted or immune therapeutic agents available yet. While dissecting the roles of cytoplasmic signaling molecules in hepatocarcinogenesis using an inducible mouse gene targeting system, Mx1-cre, we identified a potent liver tumor-inhibitory effect of synthetic double-stranded RNA (dsRNA), polyinosinic-polycytidylic acid (pIC), an inducer of the Mx1-cre system. Injection of pIC at the pre-cancer stage robustly suppressed liver tumorigenesis either induced by chemical carcinogens or by Pten loss and associated hepatosteatosis. The immunostimulatory dsRNA inhibited liver cancer initiation, apparently by boosting multiple anti-tumor activities of innate immunity, including induction of immunoregulatory cytokines, activation of NK cells and dendritic cells, and reprogramming of macrophage polarization. This study paves the way for the development of preventive and early interfering strategies for liver cancer to reduce the rapidly increasing incidences of liver cancer in an ever-growing population with chronic liver disorders.
Collapse
Affiliation(s)
- Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liao
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gaowei Wang
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bi-Huei Yang
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Xiaolin Luo
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Ren
- Ludwig Cancer Research Institute, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
172
|
Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017; 551:340-345. [PMID: 29144460 DOI: 10.1038/nature24302] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/22/2017] [Indexed: 12/15/2022]
Abstract
The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA+) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8+ T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8+ T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA+ cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8+ T-lymphocyte activation as a tumour-promoting mechanism.
Collapse
|
173
|
Pais R, Fartoux L, Goumard C, Scatton O, Wendum D, Rosmorduc O, Ratziu V. Temporal trends, clinical patterns and outcomes of NAFLD-related HCC in patients undergoing liver resection over a 20-year period. Aliment Pharmacol Ther 2017; 46:856-863. [PMID: 28857208 DOI: 10.1111/apt.14261] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/09/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of hepatocellular carcinoma (HCC) worldwide. NAFLD-HCC often occurs in noncirrhotic liver raising important surveillance issues. AIM To determine the temporal trends for prevalence, clinical characteristics and outcomes of NAFLD-HCC in patients undergoing liver resection. METHODS Consecutive patients with histologically confirmed HCC who underwent liver resection over a 20-year period (1995-2014). NAFLD was diagnosed based on past or present exposure to obesity or diabetes without other causes of chronic liver disease. RESULTS A total of 323 HCC patients were included, 12% with NAFLD. From 1995-1999 to 2010-2014, the prevalence of NAFLD-HCC increased from 2.6% to 19.5%, respectively, P = .003, and followed the temporal trends in the prevalence of metabolic risk factors (28% vs 52%, P = .017), while hepatitis C-HCC decreased (from 43.6% to 19.5%, P = .003). NAFLD-HCC occurred more frequently in the absence of bridging fibrosis/cirrhosis (63% of cases, P < .001 compared to other aetiologies). Within the NAFLD group, tumour characteristics were similar between F0-F2 and F3-F4 patients, except for a higher proportion of single nodules (95% vs 54%, P < .01). A total of 53% patients had tumour recurrence and 40% died. NAFLD-HCC had similar time to recurrence and survival as HCCs of other aetiologies. Satellite nodules, tumour size, microvascular invasion and male sex but not the aetiology were independently associated with recurrence. CONCLUSION Non-alcoholic fatty liver disease increased substantially over the past 20 years among resectable HCCs. It is now the leading cause of HCC occuring without/or with only minimal fibrosis. NAFLD patients are older, with larger tumours while survival and recurrence rates are as severe as in other aetiologies.
Collapse
Affiliation(s)
- R Pais
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, UMR_S 938, INSERM - CDR Saint Antoine, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - L Fartoux
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, UMR_S 938, INSERM - CDR Saint Antoine, Paris, France
| | - C Goumard
- Service de Chirurgie Hépatobiliaire et Transplantation Hépatique, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, UMR_S 938, INSERM - CDR Saint Antoine, Paris, France
| | - O Scatton
- Service de Chirurgie Hépatobiliaire et Transplantation Hépatique, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, UMR_S 938, INSERM - CDR Saint Antoine, Paris, France
| | - D Wendum
- Service d'Anatomopathologie, Assistance Publique Hôpitaux de Paris, Hôpital Saint Antoine - Université Pierre et Marie Curie, UMR_S 938, INSERM - CDR Saint Antoine, Paris, France
| | - O Rosmorduc
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, UMR_S 938, INSERM - CDR Saint Antoine, Paris, France
| | - V Ratziu
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, UMR_S 938, INSERM - CDR Saint Antoine, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
174
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
175
|
Sakurai T, Yada N, Hagiwara S, Arizumi T, Minaga K, Kamata K, Takenaka M, Minami Y, Watanabe T, Nishida N, Kudo M. Gankyrin induces STAT3 activation in tumor microenvironment and sorafenib resistance in hepatocellular carcinoma. Cancer Sci 2017; 108:1996-2003. [PMID: 28777492 PMCID: PMC5623735 DOI: 10.1111/cas.13341] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022] Open
Abstract
Most hepatocellular carcinomas (HCC) develop as a result of chronic liver inflammation. We have shown that the oncoprotein gankyrin is critical for inflammation‐induced tumorigenesis in the colon. Although the in vitro function of gankyrin is well known, its role in vivo remains to be elucidated. We investigated the effect of gankyrin in the tumor microenvironment of mice with liver parenchymal cell‐specific gankyrin ablation (Alb‐Cre;gankyrinf/f) and gankyrin deletion both in liver parenchymal and non‐parenchymal cells (Mx1‐Cre;gankyrinf/f). Gankyrin upregulates vascular endothelial growth factor expression in tumor cells. Gankyrin binds to Src homology 2 domain‐containing protein tyrosine phosphatase‐1 (SHP‐1), mainly expressed in liver non‐parenchymal cells, resulting in phosphorylation and activation of signal transducer and activator of transcription 3 (STAT3). Gankyrin deficiency in non‐parenchymal cells, but not in parenchymal cells, reduced STAT3 activity, interleukin (IL)‐6 production, and cancer stem cell marker (Bmi1 and epithelial cell adhesion molecule [EpCAM]) expression, leading to attenuated tumorigenic potential. Chronic inflammation enhances gankyrin expression in the human liver. Gankyrin expression in the tumor microenvironment is negatively correlated with progression‐free survival in patients undergoing sorafenib treatment for HCC. Thus, gankyrin appears to play a critical oncogenic function in tumor microenvironment and may be a potential target for developing therapeutic and preventive strategies against HCC.
Collapse
Affiliation(s)
- Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Norihisa Yada
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Tadaaki Arizumi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
176
|
Kim T, Wahyudi LD, Gonzalez FJ, Kim JH. Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice. Biomol Ther (Seoul) 2017; 25:504-510. [PMID: 28190320 PMCID: PMC5590794 DOI: 10.4062/biomolther.2016.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/15/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase beta (IKKβ) plays a critical role in cell proliferation and inflammation in various cells by activating NF-κB signaling. However, the interrelationship between peroxisome proliferator-activated receptor α (PPARα) and IKKβ in cell proliferation is not clear. In this study, we investigated the possible role of PPARα in the hepatic cell death in the absence of IKKβ gene using liver-specific Ikkb-null (IkkbF/F-AlbCre) mice. To examine the function of PPARα activation in hepatic cell death, wild-type (IkkbF/F) and IkkbF/F-AlbCre mice were treated with PPARα agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the IkkbF/F-AlbCre mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and IkkbF/F-AlbCre mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that IKKβ-derived hepatic apoptosis could be altered by PPARα activation in conjunction with activation of NF-κB and STAT3 signaling.
Collapse
Affiliation(s)
- Taehyeong Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lilik Duwi Wahyudi
- Department of Pharmacology and Graduate School of Convergence Medical Science, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jung-Hwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Pharmacology and Graduate School of Convergence Medical Science, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
177
|
Resistance and tolerance defenses in cancer: Lessons from infectious diseases. Semin Immunol 2017; 32:54-61. [PMID: 28865876 DOI: 10.1016/j.smim.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
Abstract
Infectious disease and cancer are two maladies with multiple similarities. Both types of disease induce activation of the host immune response and induce pathologies that compromise host heath and survival. In infection biology, defense against pathogens can be broken down into two distinct components called resistance and tolerance. Resistance protects the host by killing pathogens. Tolerance protects the host by alleviating the pathology caused by the infection. The conceptual framework of resistance and tolerance, concepts explored during infectious disease, is applicable to cancer, a condition for which patient survival is dependent on tumor eradication (resistance) and the mitigation of pathologies that occur during disease (tolerance). Here, we propose that integration of the concept of disease tolerance into cancer studies will result in new therapies to complement current resistance-based treatment strategies to increase the likelihood of patient survival and to improve quality of life. Furthermore, by drawing parallels between infectious disease and cancer, we propose that host interactions with microbes could provide therapeutic insight for promoting tolerance defense and focus our discussion on cachexia, a pathology resulting in significant morbidity in cancer patients.
Collapse
|
178
|
Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:421-49. [PMID: 27193454 DOI: 10.1146/annurev-pathol-012615-044359] [Citation(s) in RCA: 577] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity.
Collapse
Affiliation(s)
- Tuo Deng
- Diabetes Research Center and Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030; .,Department of Medicine, Weill Cornell Medical College at Cornell University, New York, New York 10021
| | - Christopher J Lyon
- Diabetes Research Center and Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030;
| | - Stephen Bergin
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210.,The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Michael A Caligiuri
- The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Willa A Hsueh
- The Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
179
|
Fernandez-Rojo MA, Ramm GA. Filling the Gap on Caveolin-1 in Liver Carcinogenesis. Trends Cancer 2017; 2:701-705. [PMID: 28741517 DOI: 10.1016/j.trecan.2016.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022]
Abstract
Caveolin-1 (CAV1) has emerged as a promoter of proliferation, metastasis, and chemoresistance in hepatoma cells, as well as a marker of poor prognosis in liver cancer. We discuss here current knowledge and future approaches to elucidating the molecular mechanisms underlying CAV1 action during hepatocarcinogenesis and evaluate its potential use in clinical therapies.
Collapse
Affiliation(s)
- Manuel A Fernandez-Rojo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
180
|
Hepatitis B Virus Activates Signal Transducer and Activator of Transcription 3 Supporting Hepatocyte Survival and Virus Replication. Cell Mol Gastroenterol Hepatol 2017; 4:339-363. [PMID: 28884137 PMCID: PMC5581872 DOI: 10.1016/j.jcmgh.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The human hepatitis B virus (HBV) is a major cause of chronic hepatitis and hepatocellular carcinoma, but molecular mechanisms driving liver disease and carcinogenesis are largely unknown. We therefore studied cellular pathways altered by HBV infection. METHODS We performed gene expression profiling of primary human hepatocytes infected with HBV and proved the results in HBV-replicating cell lines and human liver tissue using real-time polymerase chain reaction and Western blotting. Activation of signal transducer and activator of transcription (STAT3) was examined in HBV-replicating human hepatocytes, HBV-replicating mice, and liver tissue from HBV-infected individuals using Western blotting, STAT3-luciferase reporter assay, and immunohistochemistry. The consequences of STAT3 activation on HBV infection and cell survival were studied by chemical inhibition of STAT3 phosphorylation and small interfering RNA-mediated knockdown of STAT3. RESULTS Gene expression profiling of HBV-infected primary human hepatocytes detected no interferon response, while genes encoding for acute phase and antiapoptotic proteins were up-regulated. This gene regulation was confirmed in liver tissue samples of patients with chronic HBV infection and in HBV-related hepatocellular carcinoma. Pathway analysis revealed activation of STAT3 to be the major regulator. Interleukin-6-dependent and -independent activation of STAT3 was detected in HBV-replicating hepatocytes in cell culture and in vivo. Prevention of STAT3 activation by inhibition of Janus tyrosine kinases as well as small interfering RNA-mediated knockdown of STAT3-induced apoptosis and reduced HBV replication and gene expression. CONCLUSIONS HBV activates STAT3 signaling in hepatocytes to foster its own replication but also to prevent apoptosis of infected cells. This very likely supports HBV-related carcinogenesis.
Collapse
Key Words
- APR, acute phase response
- Apoptosis
- CRP, C-reactive protein
- DMSO, dimethyl sulfoxide
- FCS, fetal calf serum
- HBV pg RNA, hepatitis B pregenomic RNA
- HBV, Hepatitis B virus
- HBVtg, hepatitis B transgenic
- HBeAg, hepatitis B early antigen
- HCC, hepatocellular carcinoma
- HNF, hepatocyte nuclear factor
- Hepatitis B Virus Infection
- Hepatocellular Carcinoma
- IFN, interferon
- IL-6, interleukin 6
- IRF3, interferon regulatory factor 3
- NAC, N-acetyl-L-cysteine
- PCR, polymerase chain reaction
- PHH, primary human hepatocyte
- ROS, reactive oxygen species
- RT, reverse transcription
- STAT3 Signaling
- STAT3, signal transducer and activator of transcription 3
- cDNA, complementary DNA
- cRNA, complementary RNA
- cccDNA, covalently closed circular DNA
- mRNA, messenger RNA
- p.i., postinfection
- pSTAT3, phosphorylated signal transducer and activator of transcription 3
- pgRNA, pregenomic RNA
- siRNA, small interfering RNA
Collapse
|
181
|
In vivo inhibitory activity of andrographolide derivative ADN-9 against liver cancer and its mechanisms involved in inhibition of tumor angiogenesis. Toxicol Appl Pharmacol 2017; 327:1-12. [DOI: 10.1016/j.taap.2017.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
|
182
|
Peng C, Hu W, Weng X, Tong R, Cheng S, Ding C, Xiao H, Lv Z, Xie H, Zhou L, Wu J, Zheng S. Over Expression of Long Non-Coding RNA PANDA Promotes Hepatocellular Carcinoma by Inhibiting Senescence Associated Inflammatory Factor IL8. Sci Rep 2017; 7:4186. [PMID: 28646235 PMCID: PMC5482898 DOI: 10.1038/s41598-017-04045-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 05/16/2017] [Indexed: 02/08/2023] Open
Abstract
It has been reported that long non-coding RNA PANDA was disregulated in varieties types of tumor, but its expression level and biological role in hepatocellular carcinoma (HCC) remains contradictory. We detected PANDA expression in two independent cohorts (48 HCC patients following liver transplantation and 84 HCC patients following liver resection), and found that PANDA was down-regulated in HCC. Thereafter we explored its function in cancer biology by inversing its low expression. Surprisingly, overexpression of PANDA promoted HCC proliferation and carcinogenesis in vitro and in vivo. Mechanistically, PANDA repressed transcriptional activity of senescence associated inflammatory factor IL8, which leaded to inhibition of cellular senescence. Therefore, our research help to better understand the complex role of PANDA in HCC, and suggest more thoughtful strategies should be applied before it can be treated as a potential therapeutic target.
Collapse
Affiliation(s)
- Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Xiaoyu Weng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Shaobing Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Chaofeng Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.
- Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China.
| |
Collapse
|
183
|
Shimizu Y, Peltzer N, Sevko A, Lafont E, Sarr A, Draberova H, Walczak H. The Linear ubiquitin chain assembly complex acts as a liver tumor suppressor and inhibits hepatocyte apoptosis and hepatitis. Hepatology 2017; 65:1963-1978. [PMID: 28120397 PMCID: PMC5485060 DOI: 10.1002/hep.29074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 02/05/2023]
Abstract
Linear ubiquitination is a key posttranslational modification that regulates immune signaling and cell death pathways, notably tumor necrosis factor receptor 1 (TNFR1) signaling. The only known enzyme complex capable of forming linear ubiquitin chains under native conditions to date is the linear ubiquitin chain assembly complex, of which the catalytic core component is heme-oxidized iron regulatory protein 2 ubiquitin ligase-1-interacting protein (HOIP). To understand the underlying mechanisms of maintenance of liver homeostasis and the role of linear ubiquitination specifically in liver parenchymal cells, we investigated the physiological role of HOIP in the liver parenchyma. To do so, we created mice harboring liver parenchymal cell-specific deletion of HOIP (HoipΔhep mice) by crossing Hoip-floxed mice with albumin-Cre mice. HOIP deficiency in liver parenchymal cells triggered tumorigenesis at 18 months of age preceded by spontaneous hepatocyte apoptosis and liver inflammation within the first month of life. In line with the emergence of inflammation, HoipΔhep mice displayed enhanced liver regeneration and DNA damage. In addition, consistent with increased apoptosis, HOIP-deficient hepatocytes showed enhanced caspase activation and endogenous formation of a death-inducing signaling complex which activated caspase-8. Unexpectedly, exacerbated caspase activation and apoptosis were not dependent on TNFR1, whereas ensuing liver inflammation and tumorigenesis were promoted by TNFR1 signaling. CONCLUSION The linear ubiquitin chain assembly complex serves as a previously undescribed tumor suppressor in the liver, restraining TNFR1-independent apoptosis in hepatocytes which, in its absence, is causative of TNFR1-mediated inflammation, resulting in hepatocarcinogenesis. (Hepatology 2017;65:1963-1978).
Collapse
Affiliation(s)
- Yutaka Shimizu
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Nieves Peltzer
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Alexandra Sevko
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Elodie Lafont
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Aida Sarr
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Helena Draberova
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer InstituteUniversity College LondonLondonUK
| |
Collapse
|
184
|
APOBEC3B and IL-6 form a positive feedback loop in hepatocellular carcinoma cells. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-016-9058-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
185
|
Jung KH, Yoo W, Stevenson HL, Deshpande D, Shen H, Gagea M, Yoo SY, Wang J, Eckols TK, Bharadwaj U, Tweardy DJ, Beretta L. Multifunctional Effects of a Small-Molecule STAT3 Inhibitor on NASH and Hepatocellular Carcinoma in Mice. Clin Cancer Res 2017; 23:5537-5546. [PMID: 28533225 DOI: 10.1158/1078-0432.ccr-16-2253] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/16/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
Purpose: The incidence of hepatocellular carcinoma is increasing in the United States, and liver cancer is the second leading cause of cancer-related mortality worldwide. Nonalcoholic steatohepatitis (NASH) is becoming an important risk for hepatocellular carcinoma, and most patients with hepatocellular carcinoma have underlying liver cirrhosis and compromised liver function, which limit treatment options. Thus, novel therapeutic strategies to prevent or treat hepatocellular carcinoma in the context of NASH and cirrhosis are urgently needed.Experimental Design: Constitutive activation of STAT3 is frequently detected in hepatocellular carcinoma tumors. STAT3 signaling plays a pivotal role in hepatocellular carcinoma survival, growth, angiogenesis, and metastasis. We identified C188-9, a novel small-molecule STAT3 inhibitor using computer-aided rational drug design. In this study, we evaluated the therapeutic potential of C188-9 for hepatocellular carcinoma treatment and prevention.Results: C188-9 showed antitumor activity in vitro in three hepatocellular carcinoma cell lines. In mice with hepatocyte-specific deletion of Pten (HepPten- mice), C188-9 treatment blocked hepatocellular carcinoma tumor growth, reduced tumor development, and reduced liver steatosis, inflammation, and bile ductular reactions, resulting in improvement of the pathological lesions of NASH. Remarkably, C188-9 also greatly reduced liver injury in these mice as measured by serum aspartate aminotransferase and alanine transaminase levels. Analysis of gene expression showed that C188-9 treatment of HepPten- mice resulted in inhibition of signaling pathways downstream of STAT3, STAT1, TREM-1, and Toll-like receptors. In contrast, C188-9 treatment increased liver specification and differentiation gene pathways.Conclusions: Our results suggest that C188-9 should be evaluated further for the treatment and/or prevention of hepatocellular carcinoma. Clin Cancer Res; 23(18); 5537-46. ©2017 AACR.
Collapse
Affiliation(s)
- Kwang Hwa Jung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wonbeak Yoo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Dipti Deshpande
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suk-Young Yoo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Kris Eckols
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
186
|
Non-cell-autonomous activation of IL-6/STAT3 signaling mediates FGF19-driven hepatocarcinogenesis. Nat Commun 2017; 8:15433. [PMID: 28508871 PMCID: PMC5440856 DOI: 10.1038/ncomms15433] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is the second leading cause of cancer mortality worldwide. Fibroblast Growth Factor 19 (FGF19) is one of the most frequently amplified genes in HCC patients. Moreover, mice expressing an FGF19 transgene have been shown to develop HCC. However, the downstream signalling pathways that mediate FGF19-dependent tumorigenesis remain to be deciphered. Here we show that FGF19 triggers a previously unsuspected, non-cell-autonomous program to activate STAT3 signalling in hepatocytes through IL-6 produced in the liver microenvironment. We show that the hepatocyte-specific deletion of Stat3, genetic ablation of Il6, treatment with a neutralizing anti-IL-6 antibody or administration of a small-molecule JAK inhibitor, abolishes FGF19-induced tumorigenesis, while the regulatory functions of FGF19 in bile acid, glucose and energy metabolism remain intact. Collectively, these data reveal a key role for the IL-6/STAT3 axis in potentiating FGF19-driven HCC in mice, a finding which may have translational relevance in HCC pathogenesis. Fibroblast Growth Factor 19 (FGF19) neutralizing antibodies inhibit hepatocellular carcinoma (HCC) growth but have safety issues. Here, the authors show that FGF19 promotes HCC by activating STAT3 signalling via IL-6 production and that targeting IL-6 pathway abolishes FGF19-induced HCC without side effects.
Collapse
|
187
|
Jin C, Yuan FL, Gu YL, Li X, Liu MF, Shen XM, Liu B, Zhu MQ. Over-expression of ASIC1a promotes proliferation via activation of the β-catenin/LEF-TCF axis and is associated with disease outcome in liver cancer. Oncotarget 2017; 8:25977-25988. [PMID: 27462920 PMCID: PMC5432231 DOI: 10.18632/oncotarget.10774] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Acid-sensing ion channels 1a (ASIC1a) has been reported to promote migration and invasion in liver cancer. However, the clinical significance and molecular mechanism of ASIC1a in liver cancer remain unknown. In the study, we found that ASIC1a is frequently up-regulated in liver cancer tissues. The over-expression of ASIC1a is associated with advanced clinical stage and poor prognosis. The pro-proliferative of ASIC1a is pH dependent. Knockout of ASIC1a by CRISPR/CAS9 inhibited liver cancer cell proliferation and tumorigenicity in vitro and in vivo through β-catenin degradation and LEF-TCF inactivation. Our results indicated a potential diagnostic marker and chemotherapeutic target for liver cancer.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Hepatobiliary Pancreatic Center, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - Feng-Lai Yuan
- Department of Research Institute, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - Yuan-Long Gu
- Department of Hepatobiliary Pancreatic Center, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - Xia Li
- Department of Research Institute, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - Min-Feng Liu
- Department of Hepatobiliary Pancreatic Center, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - Xiao-Min Shen
- Department of Hepatobiliary Pancreatic Center, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - Bo Liu
- Department of Hepatobiliary Pancreatic Center, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | - Mao-Qun Zhu
- Department of Hepatobiliary Pancreatic Center, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| |
Collapse
|
188
|
Zhao Y, Sun H, Ma L, Liu A. Polysaccharides from the peels of Citrus aurantifolia induce apoptosis in transplanted H22 cells in mice. Int J Biol Macromol 2017; 101:680-689. [PMID: 28363658 DOI: 10.1016/j.ijbiomac.2017.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/19/2022]
Abstract
In this study, an acidic polysaccharide (CAs) was extracted and purified from the peels of Citrus aurantifolia by Sephadex G-150. HPGPC showed the molecular weight of CAs was about 7.94×106Da. Ion chromatography (IC) analysis showed CAs was mainly composed of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glu), mannose (Man) and galacturonic acid (GalA), with the molar ratio of 0.67: 7.67: 10.83: 3.83: 4.00: 1.00. 1H and 13C NMR spectra of CAs also identified the presence of five kinds of monosaccharides and galacturonic acid. Moreover, the antitumor activity of CAs was evaluated in mice transplanted H22 hepatoma cells. It was shown that CAs dose-dependently suppressed tumor cells growth with few toxic effects on host. Further investigations revealed that CAs increased the levels of tumor infiltrating CD8+ T lymphocytes, blocked tumor cell cycle in S phase, down-regulated anti-apoptotic protein Bcl-xL and Mcl-1 expression, and led to the activation of caspase 3. These results suggested that CAs had capacity of inducing tumor cells apoptosis in vivo, and it supported considering CAs as an adjuvant reagent in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Yana Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongyan Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ling Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
189
|
The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes? Cancer Lett 2017; 387:46-60. [DOI: 10.1016/j.canlet.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
190
|
Hepatocyte-specific Smad7 deletion accelerates DEN-induced HCC via activation of STAT3 signaling in mice. Oncogenesis 2017; 6:e294. [PMID: 28134936 PMCID: PMC5294248 DOI: 10.1038/oncsis.2016.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022] Open
Abstract
TGF-β signaling in liver cells has variant roles in the dynamics of liver diseases, including hepatocellular carcinoma (HCC). We previously found a correlation of high levels of the important endogenous negative TGF-β signaling regulator SMAD7 with better clinical outcome in HCC patients. However, the underlying tumor-suppressive molecular mechanisms are still unclear. Here, we show that conditional (TTR-Cre) hepatocyte-specific SMAD7 knockout (KO) mice develop more tumors than wild-type and corresponding SMAD7 transgenic mice 9 months after diethylnitrosamine (DEN) challenge, verifying SMAD7 as a tumor suppressor in HCC. In line with our findings in patients, Smad7 levels in both tumor tissue as well as surrounding tissue show a significant inverse correlation with tumor numbers. SMAD7 KO mice presented with increased pSMAD2/3 levels and decreased apoptosis in the tumor tissue. Higher tumor incidence was accompanied by reduced P21 and upregulated c-MYC expression in the tumors. Activation of signal transducer and activator of transcription factor 3 signaling was found in Smad7-deficient mouse tumors and in patients with low tumoral SMAD7 expression as compared with surrounding tissue. Together, our results provide new mechanistic insights into the tumor-suppressive functions of SMAD7 in hepatocarcinogenesis.
Collapse
|
191
|
Dmitrieva OS, Shilovskiy IP, Khaitov MR, Grivennikov SI. Interleukins 1 and 6 as Main Mediators of Inflammation and Cancer. BIOCHEMISTRY (MOSCOW) 2017; 81:80-90. [PMID: 27260388 DOI: 10.1134/s0006297916020024] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The idea of a potential link between cancer and inflammation was first proposed by R. Virchow in the nineteenth century. However, clear evidence regarding a key role of inflammation in oncogenesis appeared only during the last decade. Now the tumor microenvironment is commonly considered as an obligatory and significant component of almost all types of cancer, and the cells infiltrating such microenvironment are a source of inflammatory cytokines. Such cytokines play a key role in regulating inflammation during both normal immune response and developing cancer. In this review, we explore the role of two inflammatory cytokines interleukin 1 and interleukin 6 in cancer development. These cytokines have pleiotropic effects on various cell types in the tumor microenvironment, particularly being able to regulate pro-oncogenic transcription factors NF-κB and STAT3. For this reason, such cytokines influence key parameters of oncogenesis, increasing cell resistance to apoptosis, proliferation of cancer cells, angiogenesis, invasion and malignancy as well as the ability of tumor cells to respond to anticancer therapy. Here we summarize novel experimental data regarding mechanisms underlying the interaction between chronic inflammation and malignant neoplasms.
Collapse
Affiliation(s)
- O S Dmitrieva
- Fox Chase Cancer Center, Cancer Prevention and Control program, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
192
|
Enculescu M, Metzendorf C, Sparla R, Hahnel M, Bode J, Muckenthaler MU, Legewie S. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms. PLoS Comput Biol 2017; 13:e1005322. [PMID: 28068331 PMCID: PMC5261815 DOI: 10.1371/journal.pcbi.1005322] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/24/2017] [Accepted: 12/19/2016] [Indexed: 01/01/2023] Open
Abstract
Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms. The importance of iron in many physiological processes relies on its ability to participate in reduction-oxidation reactions. This property also leads to potential toxicity if concentrations of free iron are not properly managed by cells and tissues. Multicellular organisms therefore evolved intricate regulatory mechanisms to control systemic iron levels. A central regulatory mechanism is the binding of the hormone hepcidin to the iron exporter ferroportin, which controls the major fluxes of iron into blood plasma. Here, we present a mathematical model that is fitted and validated against experimental data to simulate the iron content in different organs following dietary changes and/or inflammatory states, or genetic perturbation of the hepcidin/ferroportin regulatory system. We find that hepcidin mediated ferroportin control is essential, but not sufficient to quantitatively explain several of our experimental findings. Thus, further regulatory mechanisms had to be included in the model to reproduce reduced serum iron levels in response to inflammation, the preferential accumulation of iron in the liver in the case of iron overload, or the maintenance of physiological serum iron concentrations if dietary iron levels are very high. We conclude that hepcidin-independent mechanisms play an important role in maintaining systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Christoph Metzendorf
- Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | - Richard Sparla
- Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | - Maximilian Hahnel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina U Muckenthaler
- Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
193
|
Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, Yang Y. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2017. [PMID: 27869648 DOI: 10.1172/jci88486.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/WW domain containing transcription regulator 1 (YAP/TAZ), STAT3, Wnt/β-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/β-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when mammalian sterile 20-like kinase 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.
Collapse
|
194
|
A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun 2016; 7:13781. [PMID: 28000790 PMCID: PMC5187498 DOI: 10.1038/ncomms13781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, but its molecular heterogeneity hampers the design of targeted therapies. Currently, the only therapeutic option for advanced HCC is Sorafenib, an inhibitor whose targets include RAF. Unexpectedly, RAF1 expression is reduced in human HCC samples. Modelling RAF1 downregulation by RNAi increases the proliferation of human HCC lines in xenografts and in culture; furthermore, RAF1 ablation promotes chemical hepatocarcinogenesis and the proliferation of cultured (pre)malignant mouse hepatocytes. The phenotypes depend on increased YAP1 expression and STAT3 activation, observed in cultured RAF1-deficient cells, in HCC xenografts, and in autochthonous liver tumours. Thus RAF1, although essential for the development of skin and lung tumours, is a negative regulator of hepatocarcinogenesis. This unexpected finding highlights the contribution of the cellular/tissue environment in determining the function of a protein, and underscores the importance of understanding the molecular context of a disease to inform therapy design.
The kinase RAF1 usually exerts pro-tumorigenic functions promoting proliferation in RAS-driven cancers. Here, the authors using a mouse model of HCC and clinical data describe an unexpected oncosuppressor role of RAF1 in hepatocarcinoma development linked to a gp130-dependent Stat3 activation and YAP1 regulation.
Collapse
|
195
|
Luo X, Liao R, Hanley KL, Zhu HH, Malo KN, Hernandez C, Wei X, Varki NM, Alderson N, Chu C, Li S, Fan J, Loomba R, Qiu SJ, Feng GS. Dual Shp2 and Pten Deficiencies Promote Non-alcoholic Steatohepatitis and Genesis of Liver Tumor-Initiating Cells. Cell Rep 2016; 17:2979-2993. [PMID: 27974211 PMCID: PMC5330282 DOI: 10.1016/j.celrep.2016.11.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 01/14/2023] Open
Abstract
The complexity of liver tumorigenesis is underscored by the recently observed anti-oncogenic effects of oncoproteins, although the mechanisms are unclear. Shp2/Ptpn11 is a proto-oncogene in hematopoietic cells and antagonizes the effect of tumor suppressor Pten in leukemogenesis. In contrast, we show here cooperative functions of Shp2 and Pten in suppressing hepatocarcinogenesis. Ablating both Shp2 and Pten in hepatocytes induced early-onset non-alcoholic steatohepatitis (NASH) and promoted genesis of liver tumor-initiating cells likely due to augmented cJun expression/activation and elevated ROS and inflammation in the hepatic microenvironment. Inhibiting cJun partially suppressed NASH-driven liver tumorigenesis without improving NASH. SHP2 and PTEN deficiencies were detected in liver cancer patients with poor prognosis. These data depict a mechanism of hepato-oncogenesis and suggest a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaolin Luo
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liao
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 40016, China
| | - Kaisa L Hanley
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen He Zhu
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kirsten N Malo
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carolyn Hernandez
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xufu Wei
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 40016, China
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nazilla Alderson
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Catherine Chu
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuangwei Li
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rohit Loomba
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
196
|
Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, Yang Y. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2016; 127:137-152. [PMID: 27869648 DOI: 10.1172/jci88486] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/WW domain containing transcription regulator 1 (YAP/TAZ), STAT3, Wnt/β-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/β-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when mammalian sterile 20-like kinase 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Cycle Proteins
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Hippo Signaling Pathway
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Serine-Threonine Kinase 3
- Wnt Signaling Pathway
- YAP-Signaling Proteins
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
|
197
|
Todoric J, Antonucci L, Karin M. Targeting Inflammation in Cancer Prevention and Therapy. Cancer Prev Res (Phila) 2016; 9:895-905. [PMID: 27913448 DOI: 10.1158/1940-6207.capr-16-0209] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022]
Abstract
Inflammation is associated with the development and malignant progression of most cancers. As most of the cell types involved in cancer-associated inflammation are genetically stable and thus are not subjected to rapid emergence of drug resistance, the targeting of inflammation represents an attractive strategy both for cancer prevention and for cancer therapy. Tumor-extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, tobacco smoking, asbestos exposure, and excessive alcohol consumption, all of which increase cancer risk and stimulate malignant progression. In contrast, cancer-intrinsic or cancer-elicited inflammation can be triggered by cancer-initiating mutations and can contribute to malignant progression through the recruitment and activation of inflammatory cells. Both extrinsic and intrinsic inflammation can result in immunosuppression, thereby providing a preferred background for tumor development. In clinical trials, lifestyle modifications including healthy diet, exercise, alcohol, and smoking cessation have proven effective in ameliorating inflammation and reducing the risk of cancer-related deaths. In addition, consumption of certain anti-inflammatory drugs, including aspirin, can significantly reduce cancer risk, suggesting that common nonsteroidal anti-inflammatory drugs (NSAID) and more specific COX2 inhibitors can be used in cancer prevention. In addition to being examined for their preventative potential, both NSAIDs and more potent anti-inflammatory antibody-based drugs need to be tested for their ability to augment the efficacy of more conventional therapeutic approaches on the basis of tumor resection, radiation, and cytotoxic chemicals. Cancer Prev Res; 9(12); 895-905. ©2016 AACR.
Collapse
Affiliation(s)
- Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California. .,Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
198
|
Allaire M, Nault JC. Type 2 diabetes-associated hepatocellular carcinoma: A molecular profile. Clin Liver Dis (Hoboken) 2016; 8:53-58. [PMID: 31041063 PMCID: PMC6490195 DOI: 10.1002/cld.569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/26/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Manon Allaire
- Service d'Hépato‐GastroentérologieCHU Côte de NacreCaenFrance
| | - Jean Charles Nault
- Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris‐Seine‐Saint‐DenisAssistance‐Publique Hôpitaux de ParisBondyFrance,Unité Mixte de Recherche 1162, Génomique Fonctionnelle des Tumeurs SolidesInstitut National de la Santé et de la Recherche MédicaleParisFrance,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13Communauté d'Universités et Etablissements Sorbonne Paris CitéParisFrance
| |
Collapse
|
199
|
Ilamathi M, Prabu P, Ayyappa KA, Sivaramakrishnan V. Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling. Biomed Pharmacother 2016; 82:72-9. [DOI: 10.1016/j.biopha.2016.04.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
|
200
|
Hepatic B cell leukemia-3 suppresses chemically-induced hepatocarcinogenesis in mice through altered MAPK and NF-κB activation. Oncotarget 2016; 8:56095-56109. [PMID: 28915576 PMCID: PMC5593547 DOI: 10.18632/oncotarget.10893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
The transcriptional nuclear factor kappa B (NF-κB)-coactivator B cell leukemia-3 (Bcl-3) is a molecular regulator of cell death and proliferation. Bcl-3 has been shown to be widely expressed in different cancer types including hepatocellular carcinoma (HCC). Its influence on hepatocarcinogenesis is still undetermined. To examine the role of Bcl-3 in hepatocarcinogenesis mice with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) were exposed to diethylnitrosamine (DEN) and phenobarbital (PB). Hepatic Bcl-3 overexpression attenuated DEN/PB-induced hepatocarcinogenesis. Bcl-3Hep mice exhibited a lower number and smaller tumor nodules in response to DEN/PB at 40 weeks of age. Reduced HCC formation was accompanied by a lower rate of cell proliferation and a distinct expression pattern of growth and differentiation-related genes. Activation of c-Jun N-terminal kinase (JNK) and especially extracellular-signal regulated kinase (ERK) was reduced in tumor and tumor-surrounding liver tissue of Bcl-3Hep mice, while p38 and NF-κB p65 were phosphorylated to a higher extent compared to the wild type. In parallel, the absolute number of intrahepatic macrophages, CD8+ T cells and activated B cells was reduced in DEN/PB-treated Bcl-3Hep mice mirroring a reduction of tumor-associated inflammation. Interestingly, at the early time point of 7 weeks following tumor initiation, a higher rate of apoptotic cell death was observed in Bcl-3Hep mice. In summary, hepatocyte-restricted Bcl-3 overexpression reduced hepatocarcinogenesis related to prolonged liver injury early after tumor initiation likely due to decreased survival of DEN/PB-damaged, premalignant cells. Therefore, Bcl-3 could become a novel player in the development of therapeutic and diagnostic tools for HCC.
Collapse
|