151
|
Liu J, Jia J, Yu H, Zhang J, Li J, Ge H, Zhao Y. Graphite felt modified by nanoporous carbon as a novel cathode material for the EF process. NEW J CHEM 2022. [DOI: 10.1039/d2nj01679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoporous carbon prepared by carbonizing ZIF-8@MWCNTs can greatly improve the performance of graphite felt as an electro-Fenton cathode.
Collapse
Affiliation(s)
- Jiaman Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiping Jia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaqiang Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
152
|
Wang S, Yao Y, Zhao J, Han X, Chai C, Dai P. A novel electrochemical sensor for glyphosate detection based on Ti3C2Tx/Cu-BTC nanocomposite. RSC Adv 2022; 12:5164-5172. [PMID: 35425566 PMCID: PMC8981420 DOI: 10.1039/d1ra08064d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The copper benzene-1,3,5-tricarboxylate (Cu-BTC) with outstanding chemical and physical properties, is a novel and promising material in the field of electrochemical sensing. However, it has significant limitations for direct application in electrochemical sensing due to the relatively weak conductivity of Cu-BTC. Here, the conductivity of Cu-BTC was improved by loading Cu-BTC onto two-dimensional Ti3C2Tx nanosheets with high conductivity. Thanks to the synergistic effect produced by the high conductivity of Ti3C2Tx and the unique catalytic activity of Cu-BTC, the Ti3C2Tx/Cu-BTC nanocomposite exhibits excellent sensing performance for glyphosate, with a low limit of detection (LOD) of 2.6 × 10−14 M and wider linear sensing range of 1.0 × 10−13 to 1.0 × 10−6 M. Moreover, the electrochemical sensor based on Ti3C2Tx/Cu-BTC also shows excellent selectivity, good reproducibility and stability. The Ti3C2Tx/Cu-BTC nanocomposite exhibits excellent sensing performance for glyphosate with a low detection limit and wide detection range. Moreover, the electrochemical sensor also shows excellent selectivity, good reproducibility and stability.![]()
Collapse
Affiliation(s)
- Shan Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanqing Yao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xuhui Han
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chunpeng Chai
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pei Dai
- Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application Co.,Ltd., Beijing 100015, China
| |
Collapse
|
153
|
Ge X, Wong R, Anisa A, Ma S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2021; 281:121322. [PMID: 34959029 DOI: 10.1016/j.biomaterials.2021.121322] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Albeit metal-organic framework (MOF) composites have been extensively explored, reducing the size and dimensions of various contents within the composition, to the nanoscale regime, has recently presented unique opportunities for enhanced properties with the formation of MOF-based nanocomposites. Many distinctive strategies have been used to fabricate these nanocomposites such as through the introduction of nanoparticles (NPs) into a MOF precursor solution or vice versa to achieve a core-shell or heterostructure configuration. As such, MOF-based nanocomposites offer seemingly limitless possibilities and promising solutions for the vast range of applications across biomedical disciplines especially for improving in vivo implementation. In this review, we focus on the recent development of MOF-based nanocomposites, outline their classification according to the type of integrations (NPs, coating materials, and different MOF-derived nanocomposites), and direct special attention towards the various approaches and strategies employed to construct these nanocomposites for their prospective utilization in biomedical applications including biomimetic enzymes and photo, chemo, sonodynamic, starvation and hyperthermia therapies. Lastly, our work aims to highlight the exciting potential as well as the challenges of MOF-based nanocomposites to help guide future research as well as to contribute to the progress of MOF-based nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Raymond Wong
- Department of Cell and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| | - Anee Anisa
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States.
| |
Collapse
|
154
|
Kinik FP, Ortega-Guerrero A, Ebrahim FM, Ireland CP, Kadioglu O, Mace A, Asgari M, Smit B. Toward Optimal Photocatalytic Hydrogen Generation from Water Using Pyrene-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57118-57131. [PMID: 34817166 PMCID: PMC8662633 DOI: 10.1021/acsami.1c16464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 05/15/2023]
Abstract
Metal-organic frameworks (MOFs) are promising materials for the photocatalytic H2 evolution reaction (HER) from water. To find the optimal MOF for a photocatalytic HER, one has to consider many different factors. For example, studies have emphasized the importance of light absorption capability, optical band gap, and band alignment. However, most of these studies have been carried out on very different materials. In this work, we present a combined experimental and computation study of the photocatalytic HER performance of a set of isostructural pyrene-based MOFs (M-TBAPy, where M = Sc, Al, Ti, and In). We systematically studied the effects of changing the metal in the node on the different factors that contribute to the HER rate (e.g., optical properties, the band structure, and water adsorption). In addition, for Sc-TBAPy, we also studied the effect of changes in the crystal morphology on the photocatalytic HER rate. We used this understanding to improve the photocatalytic HER efficiency of Sc-TBAPy, to exceed the one reported for Ti-TBAPy, in the presence of a co-catalyst.
Collapse
Affiliation(s)
- F. Pelin Kinik
- Laboratory
of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie
Chimiques (ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Valais, Switzerland
| | - Andres Ortega-Guerrero
- Laboratory
of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie
Chimiques (ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Valais, Switzerland
| | - Fatmah Mish Ebrahim
- Laboratory
of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie
Chimiques (ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Valais, Switzerland
| | - Christopher P. Ireland
- Laboratory
of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie
Chimiques (ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Valais, Switzerland
| | - Ozge Kadioglu
- Laboratory
of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie
Chimiques (ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Valais, Switzerland
| | - Amber Mace
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Uppsala SE-751 21, Sweden
| | - Mehrdad Asgari
- Laboratory
of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie
Chimiques (ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Valais, Switzerland
| | - Berend Smit
- Laboratory
of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie
Chimiques (ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Valais, Switzerland
| |
Collapse
|
155
|
Zhang W, Cai G, Wu R, He Z, Yao HB, Jiang HL, Yu SH. Templating Synthesis of Metal-Organic Framework Nanofiber Aerogels and Their Derived Hollow Porous Carbon Nanofibers for Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004140. [PMID: 33522114 DOI: 10.1002/smll.202004140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Indexed: 06/12/2023]
Abstract
A kind of metal-organic framework (MOF) aerogels are synthesized by the self-assembly of uniform and monodisperse MOF nanofibers. Such MOF nanofiber aerogels as carbon precursors can effectively avoid the aggregation of nanofibers during calcination, resulting in the formation of well-dispersed hollow porous carbon nanofibers (HPCNs). Moreover, HPCNs with well-dispersion are investigated as sulfur host materials for Li-S batteries and electrocatalysts for cathode oxygen reduction reaction (ORR). On the one hand, HPCNs act as hosts for the encapsulation of sulfur into their hierarchical micro- and mesopores as well as hollow nanostructures. The obtained sulfur cathode exhibits excellent electrochemical features, good cycling stability and high coulombic efficiency. On the other hand, HPCNs exhibit better electrocatalytic activity than aggregated counterparts for ORR. Furthermore, a highly active single atom electrocatalyst can be prepared by the carbonization of bimetallic MOF nanofiber aerogels. The results indicate that well-dispersed HPCNs show enhanced electrochemical properties in contrast to their aggregated counterparts, suggesting that the dispersion situation of nanomaterials significantly influence their final performance. The present concept of employing MOF nanofiber aerogels as precursors will provide a new strategy to the design of MOF-derived nanomaterials with well-dispersion for their applications in energy storage and conversion.
Collapse
Affiliation(s)
- Wang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhen He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hong-Bin Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
156
|
Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. CHEMOSPHERE 2021; 284:131171. [PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
Collapse
Affiliation(s)
- Jessy Joseph
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Varsha Srivastava
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland.
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
157
|
Li C, Liu X, Wang H, He Y, Song L, Deng Y, Cai S, Li S. Metal-organic framework derived hexagonal layered cobalt oxides with {1 1 2} facets and rich oxygen vacancies: High efficiency catalysts for total oxidation of propane. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
158
|
Fang Y, Yang Y, Yang Z, Li H, Roesky HW. Advances in design of metal-organic frameworks activating persulfate for water decontamination. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
159
|
Chen K, Li Y, Wang M, Wang Y, Cheng K, Zhang Q, Kang J, Wang Y. Functionalized Carbon Materials in Syngas Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007527. [PMID: 33667030 DOI: 10.1002/smll.202007527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Functionalized carbon materials are widely used in heterogeneous catalysis due to their unique properties such as adjustable surface properties, excellent thermal conductivity, high surface areas, tunable porosity, and moderate interactions with guest metals. The transformation of syngas into hydrocarbons (known as the Fischer-Tropsch synthesis) or oxygenates is an exothermic reaction and is typically catalyzed by transition metals dispersed on functionalized supports. Various carbon materials have been employed in syngas conversions not only for improving the performance or decreasing the dosage of expensive active metals but also for building model catalysts for fundamental research. This article provides a critical review on recent advances in the utilization of carbon materials, in particular the recently developed functionalized nanocarbon materials, for syngas conversions to either hydrocarbons or oxygenates. The unique features of carbon materials in dispersing metal nanoparticles, heteroatom doping, surface modification, and building special nanoarchitectures are highlighted. The key factors that control the reaction course and the reaction mechanism are discussed to gain insights for the rational design of efficient carbon-supported catalysts for syngas conversions. The challenges and future opportunities in developing functionalized carbon materials for syngas conversions are briefly analyzed.
Collapse
Affiliation(s)
- Kuo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yubing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jincan Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
160
|
Synthesis, crystal structures, luminescence and magnetic property of two complexes based on 5-nitroisophthalic acid. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
161
|
Li J, Jiang Y, Sun Y, Wang X, Ma P, Song D, Fei Q. Extraction of parabens by melamine sponge with determination by high-performance liquid chromatography. J Sep Sci 2021; 45:697-705. [PMID: 34817924 DOI: 10.1002/jssc.202100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
In the present study, we propose a novel method for the extraction of parabens in personal care products. A new, simple adsorptive material was obtained by combining metal-organic frameworks and melamine sponges using the adhesive property of polyvinylidene fluoride. This new material, metal-organic frameworks/melamine sponges, was found to be particularly suitable for solid-phase extraction. The structural characteristics of metal-organic frameworks/melamine sponges were first analyzed by scanning electron microscopy. Subsequently, solid-phase extraction was performed on sample solutions, and the extracted substances were then analyzed by high-performance liquid chromatography. Following optimization of important experimental conditions, excellent recovery rates were obtained. Our novel method was then applied to the extraction of four parabens (methylparahydroxybenzoates, ethylparahydroxybenzoates, propylparahydroxybenzoates, and butylparahydroxybenzoates) from real samples. The results yielded LODs of 0.26-0.41 ng/mL. The inter- and intra-day recoveries were 104.0-109.7% and 91.2-98.1%, respectively (relative standard deviation, <13.8%).
Collapse
Affiliation(s)
- Jingkang Li
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Ying Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Daqian Song
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Qiang Fei
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| |
Collapse
|
162
|
Abstract
MIL-53 and the MIL-53–Al2O3 composite synthesized by a solvothermal procedure, with water as the only solvent besides CrCl3 and benzene-1,4-dicarboxylic acid (BDC), were used as catalytic supports to obtain the novel MIL-53-based catalysts Ni(10 wt.%)/MIL-53 and Ni(10 wt.%)/MIL-53–Al2O3. Ni nanoparticle deposition by an adapted double-solvent method leads to the uniform distribution of metallic particles, both smaller (≤10 nm) and larger ones (10–30 nm). MIL-53–Al2O3 and Ni/MIL-53–Al2O3 show superior thermal stability to MIL-53 and Ni/MIL-53, while MIL-53–Al2O3 samples combine the features of both MIL-53 and alumina in terms of porosity. The investigation of temperature’s effect on the catalytic performance in the methanation process (CO2:H2 = 1:5.2, GHSV = 4650 h−1) revealed that Ni/MIL-53 is more active at temperatures below 300 °C, and Ni/MIL-53–Al2O3 above 300 °C. Both catalysts show maximum CO2 conversion at 350 °C: 75.5% for Ni/MIL-53 (methane selectivity of 93%) and 88.8% for Ni/MIL-53–Al2O3 (methane selectivity of 98%). Stability tests performed at 280 °C prove that Ni/MIL-53–Al2O3 is a possible candidate for the CO2 methanation process due to its high CO2 conversion and CH4 selectivity, corroborated by the preservation of the structure and crystallinity of MIL-53 after prolonged exposure in the reaction medium.
Collapse
|
163
|
Miyagawa A, Nagatomo S, Kazami H, Terada T, Nakatani K. Kinetic Analysis of the Mass Transfer of Zinc Myoglobin in a Single Mesoporous Silica Particle by Confocal Fluorescence Microspectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12697-12704. [PMID: 34672614 DOI: 10.1021/acs.langmuir.1c02127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The adsorption/desorption mechanisms of biomolecules in porous materials have attracted significant attention because of their applications in many fields, including environmental, medical, and industrial sciences. Here, we employ confocal fluorescence microspectroscopy to reveal the diffusion behavior of zinc myoglobin (ZnMb, 4.4 nm × 4.4 nm × 2.5 nm) as a spherical protein in a single mesoporous silica particle (pore size of 15 nm). The measurement of the time course of the fluorescence depth profile of the particle reveals that intraparticle diffusion is the rate-limiting process of ZnMb in the particle. The diffusion coefficients of ZnMb in the particle for the distribution (Ddis) and release (Dre) processes are determined from the rate constants, e.g., Ddis = 1.65 × 10-10 cm2 s-1 and Dre = 3.68 × 10-10 cm2 s-1, for a 10 mM buffer solution. The obtained D values for various buffer concentrations are analyzed using the pore and surface diffusion model. Although surface diffusion is the main distribution process, the release process involves pore and surface diffusion, which have not been observed with small organic molecules; the mechanism of transfer of small molecules is pore diffusion alone. We demonstrate that the mass transfer kinetics of ZnMb in the silica particle can be explained well on the basis of pore and surface diffusion.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kazami
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takuto Terada
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
164
|
Singh B, Singh A, Yadav A, Indra A. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
165
|
Li SR, Ren FD, Wang L, Chen YZ. Photocatalytic cascade reactions and dye degradation over CdS-metal-organic framework hybrids. RSC Adv 2021; 11:35326-35330. [PMID: 35493156 PMCID: PMC9043023 DOI: 10.1039/d1ra05957b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Two bifunctional CdS–MOF composites have been designed and fabricated. The hybrids exhibited synergistic photocatalytic performance toward two cascade reactions under visible light integrating photooxidation activity of CdS and Lewis acids/bases of the MOF. The composite further promoted the photodegradation of dyes benefiting from effective electron transfer between the MOF and CdS. Two bifunctional CdS–MOF composites have been successfully fabricated and exhibited synergistic photocatalytic performance toward two-step cascade reactions and dye photodegradation.![]()
Collapse
Affiliation(s)
- Shu-Rong Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Feng-Di Ren
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Lin Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Yu-Zhen Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University Qingdao Shandong 266071 P. R. China
| |
Collapse
|
166
|
Liu Z, Jin H, Liu R, Wang Z, Huang H. Design, Synthesis and Photoluminescence Sensing Property of a Ni‐Organic Material Achieved from 2,6‐Di(1
H
‐imidazol‐1‐yl) Naphthalene and Carboxylic Acid Ligands. ChemistrySelect 2021. [DOI: 10.1002/slct.202102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhi‐Qiang Liu
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
- State Key Laboratory of Coordination Chemistry College of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Heng‐Hui Jin
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Ran‐Ran Liu
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Zhi‐Ping Wang
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Hui‐Hui Huang
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| |
Collapse
|
167
|
Zafar N, Yun S, Sun M, Shi J, Arshad A, Zhang Y, Wu Z. Cobalt-Based Incorporated Metals in Metal–Organic Framework-Derived Nitrogen-Doped Carbon as a Robust Catalyst for Triiodide Reduction in Photovoltaics. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nosheen Zafar
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Menglong Sun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Jing Shi
- Department of Physics, Xi’an Jiaotong University City College, Xi’an, Shaanxi 710018, China
| | - Asim Arshad
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Zhanbo Wu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| |
Collapse
|
168
|
Kim J, Choi S, Cho J, Kim SY, Jang HW. Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS MATERIALS AU 2021; 2:1-20. [PMID: 36855696 PMCID: PMC9888646 DOI: 10.1021/acsmaterialsau.1c00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom catalysts (SACs) have recently emerged as the ultimate solution for overcoming the limitations of traditional catalysts by bridging the gap between homogeneous and heterogeneous catalysts. Atomically dispersed identical active sites enable a maximal atom utilization efficiency, high activity, and selectivity toward the wide range of electrochemical reactions, superior structural robustness, and stability over nanoparticles due to strong atomic covalent bonding with supports. Mononuclear active sites of SACs can be further adjusted by engineering with multicomponent elements, such as introducing dual-metal active sites or additional neighbor atoms, and SACs can be regarded as multicomponent SACs if the surroundings of the active sites or the active sites themselves consist of multiple atomic elements. Multicomponent engineering offers an increased combinational diversity in SACs and unprecedented routes to exceed the theoretical catalytic performance limitations imposed by single-component scaling relationships for adsorption and transition state energies of reactions. The precisely designed structures of multicomponent SACs are expected to be responsible for the synergistic optimization of the overall electrocatalytic performance by beneficially modulating the electronic structure, the nature of orbital filling, the binding energy of reaction intermediates, the reaction pathways, and the local structural transformations. This Review demonstrates these synergistic effects of multicomponent SACs by highlighting representative breakthroughs on electrochemical conversion reactions, which might mitigate the global energy crisis of high dependency on fossil fuels. General synthesis methods and characterization techniques for SACs are also introduced. Then, the perspective on challenges and future directions in the research of SACs is briefly summarized. We believe that careful tailoring of multicomponent active sites is one of the most promising approaches to unleash the full potential of SACs and reach the superior catalytic activity, selectivity, and stability at the same time, which makes SACs promising candidates for electrocatalysts in various energy conversion reactions.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungkyun Choi
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinhyuk Cho
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea,
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea,Advanced
Institute of Convergence Technology, Seoul
National University, Suwon 16229, Republic of Korea,
| |
Collapse
|
169
|
A Type of MOF-Derived Porous Carbon with Low Cost as an Efficient Catalyst for Phenol Hydroxylation. J CHEM-NY 2021. [DOI: 10.1155/2021/7978324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using MOF-5 as a template, the porous carbon (MDPC-600) possessing high specific surface area was obtained after carbonization and acid washing. After MDPC-600 was loaded with Cu ions, the catalyst Cu/MDPC-600 was acquired by heat treatment under nitrogen atmosphere. The catalyst was characterized by X-ray powder diffraction (XRD), N2 physical adsorption (BET), field emission electron microscope (SEM), energy spectrum, and transmission electron microscope (TEM). The results show that the Cu/MDPC-600 catalyst prepared by using MOF-5 as the template has a very high specific surface area, and Cu is uniformly supported on the carrier. The catalytic hydrogen peroxide oxidation reaction of phenol hydroxylation was investigated and exhibits better catalytic activity and stability in the phenol hydroxylation reaction. The catalytic effect was best when the reaction temperature was 80°C, the reaction time was 2 h, and the amount of catalyst was 0.05 g. The conversion rate of phenol was 47.6%; the yield and selectivity of catechol were 37.8% and 79.4%, respectively. The activity of the catalyst changes little after three cycles of use.
Collapse
|
170
|
Shi W, Quan Y, Lan G, Ni K, Song Y, Jiang X, Wang C, Lin W. Bifunctional Metal-Organic Layers for Tandem Catalytic Transformations Using Molecular Oxygen and Carbon Dioxide. J Am Chem Soc 2021; 143:16718-16724. [PMID: 34592814 DOI: 10.1021/jacs.1c07963] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tandem catalytic reactions improve atom- and step-economy over traditional synthesis but are limited by the incompatibility of the required catalysts. Herein, we report the design of bifunctional metal-organic layers (MOLs), HfOTf-Fe and HfOTf-Mn, consisting of triflate (OTf)-capped Hf6 secondary building units (SBUs) as strong Lewis acidic centers and metalated TPY ligands as metal active sites for tandem catalytic transformations using O2 and CO2 as coreactants. HfOTf-Fe effectively transforms hydrocarbons into cyanohydrins via tandem oxidation with O2 and silylcyanation whereas HfOTf-Mn converts styrenes into styrene carbonates via tandem epoxidation and CO2 insertion. Density functional theory calculations revealed the involvement of a high-spin FeIV (S = 2) center in the challenging oxidation of the sp3 C-H bond. This work highlights the potential of MOLs as a tunable platform to incorporate multiple catalysts for tandem transformations.
Collapse
Affiliation(s)
- Wenjie Shi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yangjian Quan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Cheng Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
171
|
Abstract
The market for industrial enzymes has witnessed constant growth, which is currently around 7% a year, projected to reach $10.5 billion in 2024. Lipases are hydrolase enzymes naturally responsible for triglyceride hydrolysis. They are the most expansively used industrial biocatalysts, with wide application in a broad range of industries. However, these biocatalytic processes are usually limited by the low stability of the enzyme, the half-life time, and the processes required to solve these problems are complex and lack application feasibility at the industrial scale. Emerging technologies create new materials for enzyme carriers and sophisticate the well-known immobilization principles to produce more robust, eco-friendlier, and cheaper biocatalysts. Therefore, this review discusses the trending studies and industrial applications of the materials and protocols for lipase immobilization, analyzing their advantages and disadvantages. Finally, it summarizes the current challenges and potential alternatives for lipases at the industrial level.
Collapse
|
172
|
Pinar Gumus Z, Soylak M. Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
173
|
Wang G, Yang S, Cao L, Jin P, Zeng X, Zhang X, Wei J. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214086] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
174
|
Wang Y, Kang C, Li X, Hu Q, Wang C. Ag NPs decorated C-TiO 2/Cd 0.5Zn 0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117305. [PMID: 33984774 DOI: 10.1016/j.envpol.2021.117305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In this study, heterojunction photocatalysts, XAg@C-TCZ, based on MOF-derived C-TiO2 and Cd0.5Zn0.5S decorated with Ag nanoparticles (Ag NPs) were successfully synthesized through hydrothermal and calcination methods. The catalytic effectiveness of XAg@C-TCZ was evaluated by simultaneous photocatalytic degradation of rhodamine B (RhB) and reduction of Cr(VI) under simulated sunlight irradiation. The presence of the Z-scheme heterojunction was demonstrated through trapping experiments, X-ray photoelectron spectroscopy (XPS), time-resolved photoluminescence (PL) investigations, and electron spin resonance (ESR) spectroscopy. With an initial RhB and Cr(VI) concentration of 7 mg L-1 and 5 mg L-1, the catalyst 10Ag@C-TCZ achieved a simultaneous removal of 95.2% and 95.5% within 120 min, respectively. With the same catalyst, the degradation rate of RhB was 2.75 times higher and the reduction rate of Cr(VI) was 9.3 times higher compared to pure Cd0.5Zn0.5S. Total organic carbon (TOC) analysis confirmed the extent of mineralization of RhB, while the reduction of Cr(VI) was corroborated by XPS. Compared to pure RhB and Cr(VI) solutions, the reaction rates are smaller in the solution containing both contaminants, which is attributed to the competition for ·O2-. 10Ag@C-TCZ also exhibited a stable catalytic performance in tap water and lake water. This work provides a new perspective on the construction of heterojunctions with doped MOF derivatives for the purification of complex pollutant systems.
Collapse
Affiliation(s)
- Yuhan Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130012, Jilin, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130012, Jilin, PR China.
| | - Xinyang Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130012, Jilin, PR China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China
| |
Collapse
|
175
|
Delińska K, Rakowska PW, Kloskowski A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
176
|
Grenev IV, Shubin AA, Solovyeva MV, Gordeeva LG. The impact of framework flexibility and defects on the water adsorption in CAU-10-H. Phys Chem Chem Phys 2021; 23:21329-21337. [PMID: 34545867 DOI: 10.1039/d1cp03242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum-based metal-organic framework (MOF) CAU-10-H is a promising candidate for heat transformation and water harvesting applications due to its hydrothermal stability, beneficial step-wise water adsorption isotherm and low toxicity. In this study, the effects of the framework flexibility and structural defects on the mechanism of water sorption in CAU-10-H were studied by grand canonical Monte Carlo (GCMC) methods. It was shown by the simulations that the rigid ideal MOF framework is hydrophobic. The account of the linker "flapping" motion during the simulations made the framework more hydrophilic due to unblocking of hydroxyl groups that are inaccessible to water molecules for the rigid structure model. However, this model cannot predict the experimental pressure, at which the step on the adsorption isotherm is observed. Based on this result, we suggested that the presence of structural defects could increase the MOF hydrophilicity. The investigation of the water adsorption using several models of defective structures demonstrated that even a small number of defects shift the calculated position of the step on the adsorption isotherm towards the experimental values. The results obtained in this study emphasize that the controlled synthesis of defective structures is one of the most efficient methods of regulating the MOF adsorption properties.
Collapse
Affiliation(s)
- Ivan V Grenev
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia. .,Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia
| | - Aleksandr A Shubin
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia. .,Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia
| | - Marina V Solovyeva
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia.
| | - Larisa G Gordeeva
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia.
| |
Collapse
|
177
|
Gosselin AJ, Antonio AM, Korman KJ, Deegan MM, Yap GPA, Bloch ED. Elaboration of Porous Salts. J Am Chem Soc 2021; 143:14956-14961. [PMID: 34498853 DOI: 10.1021/jacs.1c05613] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A large library of novel porous salts based on charged coordination cages was synthesized via straightforward salt metathesis reactions. For these, solutions of salts of oppositely charged coordination cages are mixed to precipitate MOF-like permanently porous products where metal identity, pore size, ligand functional groups, and surface area are highly tunable. For most of these materials, the constituent cages combine in the ratios expected based on their charge. Additional studies focused on the rate of salt metathesis or reaction stoichiometry as variables to tune particle size or product composition, respectively. It is expected that the design principles outlined here will be widely applicable for the synthesis of new porous salts based on a variety of charged porous molecular precursors.
Collapse
Affiliation(s)
- Aeri J Gosselin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alexandra M Antonio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kyle J Korman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Meaghan M Deegan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
178
|
Han JH, Hu BQ, Li T, Liang H, Yu F, Zhao Q, Li B. Synthesis, Structures, and Sorption Properties of Two New Metal-Organic Frameworks Constructed by the Polycarboxylate Ligand Derived from Cyclotriphosphazene. ACS OMEGA 2021; 6:23110-23116. [PMID: 34549112 PMCID: PMC8444217 DOI: 10.1021/acsomega.1c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Solvothermal reactions of hexakis(4-carboxyphenoxy)cyclotriphospazene (H6L1) with copper ions in DMF/H2O produced one complex, {[Cu6(L1)2(OH)(H2O)3]·guest} n (1), but with copper ions and auxiliary rigid 4,4-bipyridine (bpy) produced another new complex, namely, {[Cu3(L1)(bpy)(H2O)6]·guest} n (2). These complexes had been characterized by IR spectroscopy, elemental analysis, and X-ray structural determination. 1 exhibits a 3D anionic structure with the binodal 4,8-connected network with Schläfli symbol {46}2{49·618·8}, consisting of Cu6 clusters and L1 ligands. In contrast, complex 2 possesses a different 3D network with trinodal 3,4,6-c topology with Schläfli symbol {4·62}2{42·66·85·102}{64·8·10}. In these two complexes, the semirigid hexacarboxylate ligands adopt distinct conformations to connect metal ions/clusters, which must be ascribed to the addition of the auxiliary rigid ligand in reaction systems. In addition, gas absorption properties of 1 and 2 including CO2 and N2 were further investigated.
Collapse
Affiliation(s)
- Jing-hua Han
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of Ministry
of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People’s Republic of China
| | - Bing-qian Hu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of Ministry
of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People’s Republic of China
| | - Tangming Li
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of Ministry
of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People’s Republic of China
| | - Hao Liang
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of Ministry
of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People’s Republic of China
| | - Fan Yu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of Ministry
of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People’s Republic of China
- School
of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic
Chemistry & Materia Medica, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qiang Zhao
- School
of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic
Chemistry & Materia Medica, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Bao Li
- School
of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic
Chemistry & Materia Medica, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
179
|
She W, Wang J, Li X, Li J, Mao G, Li W, Li G. Highly chemoselective synthesis of imine over Co/Zn bimetallic MOFs derived Co3ZnC-ZnO embed in carbon nanosheet catalyst. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
180
|
Palladinized graphene oxide-MOF induced coupling of Volmer and Heyrovsky mechanisms, for the amplification of the electrocatalytic efficiency of hydrogen evolution reaction. Sci Rep 2021; 11:17219. [PMID: 34446753 PMCID: PMC8390760 DOI: 10.1038/s41598-021-96536-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
In this study, a nanocomposite of palladium supported graphene oxide (GO)/metal–organic framework (MOF) was prepared using electroless deposition of Pd on GO followed by impregnation method of Pd@GO and MOF. The prepared materials were characterized with various analytical techniques and their applications as HER electrocatalysts were evaluated using cyclic voltammetry (CV), Tafel plots, and turn over frequencies (TOFs). The HER results showed a radical increment of H2 production in the nanocomposite through the Volmer reaction together with Heyrovsky or Tafel mechanism. This disclosed that the addition of Pd@GO/MOF in the electrolytic system possessed better catalytic characteristics with enhanced current density which may open a new way for hydrogen production and storage via HER.
Collapse
|
181
|
Rangraz Y, Heravi MM, Elhampour A. Recent Advances on Heteroatom-Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. CHEM REC 2021; 21:1985-2073. [PMID: 34396670 DOI: 10.1002/tcr.202100124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Design and preparation of low-cost, effective, and novel catalysts are important topics in the field of heterogeneous catalysis from academic and industrial perspectives. Recently, heteroatom-doped porous carbon/metal materials have received significant attention as promising catalysts in divergent organic reactions. Incorporation of heteroatom into the carbon framework can tailor the properties of carbon, providing suitable interaction between support and metal, resulting in superior catalytic performance compared with those of traditional pure carbon/metal catalytic systems. In this review, we try to underscore the recent advances in the design, preparation, and application of heteroatom-doped porous carbon/metal catalysts towards various organic transformations.
Collapse
Affiliation(s)
- Yalda Rangraz
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Ali Elhampour
- Department of Chemistry, Semnan University, PO Box 35131-19111, Semnan, Iran
| |
Collapse
|
182
|
Li J, Xin WL, Dai YX, Shu G, Zhang XJ, Marks RS, Cosnier S, Shan D. Postmodulation of the Metal-Organic Framework Precursor toward the Vacancy-Rich Cu xO Transducer for Sensitivity Boost: Synthesis, Catalysis, and H 2O 2 Sensing. Anal Chem 2021; 93:11066-11071. [PMID: 34348024 DOI: 10.1021/acs.analchem.1c02183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-organic frameworks (MOFs) act as versatile coordinators for the subsequent synthesis of high-performance catalysts by providing dispersed metal-ion distribution, initial coordination condition, dopant atom ratios, and so on. In this work, a crystalline MOF trans-[Cu(NO3)2(Him)4] was synthesized as the novel precursor of a redox-alternating CuxO electrochemical catalyst. Through simple temperature modulation, the gradual transformation toward a highly active nanocomposite was characterized to ascertain the signal enhancing mechanism in H2O2 reduction. Owing to the proprietary structure of the transducer material and its ensuing high activity, a proof-of-principle sensor was able to provide an amplified sensitivity of 2330 μA mM-1 cm-2. The facile one-pot preparation and intrinsic nonenzymatic nature also suggests its wide potentials in medical settings.
Collapse
Affiliation(s)
- Junji Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Wen-Li Xin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Guofang Shu
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu, China
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| |
Collapse
|
183
|
Doustkhah E, Tahawy R, Simon U, Tsunoji N, Ide Y, Hanaor DAH, Assadi MHN. Bispropylurea bridged polysilsesquioxane: A microporous MOF-like material for molecular recognition. CHEMOSPHERE 2021; 276:130181. [PMID: 33735650 DOI: 10.1016/j.chemosphere.2021.130181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Microporous organosilicas assembled from polysilsesquioxane (POSS) building blocks are promising materials that are yet to be explored in-depth. Here, we investigate the processing and molecular structure of bispropylurea bridged POSS (POSS-urea), synthesised through the acidic condensation of 1,3-bis(3-(triethoxysilyl)propyl)urea (BTPU). Experimentally, we show that POSS-urea has excellent functionality for molecular recognition toward acetonitrile with an adsorption level of 74 mmol/g, which compares favourably to MOFs and zeolites, with applications in volatile organic compounds (VOC). The acetonitrile adsorption capacity was 132-fold higher relative to adsorption capacity for toluene, which shows the pores are highly selective towards acetonitrile adsorption due to their size and arrangement. Theoretically, our tight-binding density functional and molecular dynamics calculations demonstrated that this BTPU based POSS is microporous with an irregular placement of the pores. Structural studies confirm maximal pore sizes of ∼1 nm, with POSS cages possessing an approximate edge length of ∼3.16 Å.
Collapse
Affiliation(s)
- Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Rafat Tahawy
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ulla Simon
- Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, 10623 Berlin, Germany
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Applied Chemistry Program, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Yusuke Ide
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Dorian A H Hanaor
- Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, 10623 Berlin, Germany
| | - M Hussein N Assadi
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
184
|
Chen YP, Lin SY, Sun RM, Wang AJ, Zhang L, Ma X, Feng JJ. FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries. J Colloid Interface Sci 2021; 605:451-462. [PMID: 34340032 DOI: 10.1016/j.jcis.2021.07.082] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
Currently, it is critical but a tricky point to develop economical, high-efficiency, and durable non-precious metal electrocatalysts towards oxygen reduction and oxygen evolution reaction (ORR/OER) in rechargeable Zn-air batteries. Herein, N, Mn-codoped three-dimensional (3D) fluffy porous carbon nanostructures encapsulating FeCo/FeCoP alloyed nanoparticles (FeCo/FeCoP@NMn-CNS) are prepared by one-step pyrolysis of the metal precursors and polyinosinic acid. The optimized hybrid nanocomposite (obtained at 800 °C, named as FeCo/FeCoP@NMn-CNS-800) exhibits outstanding catalytic performance in the alkaline electrolyte with a half-wave potential (E1/2) of 0.84 V for the ORR and an overpotential of 325 mV towards the OER at 10 mA cm-2. Impressively, the FeCo/FeCoP@NMn-CNS-800-assembled rechargeable Zn-air battery presents an open-circuit voltage of 1.522 V (vs. RHE), a peak power density of 135.0 mW cm-2, and long-term durability by charge-discharge cycling for 200 h, surpassing commercial Pt/C + RuO2 based counterpart. This work affords valuable guidelines for exploring advanced bifunctional ORR and OER catalysts in rational construction of high-quality Zn-air batteries.
Collapse
Affiliation(s)
- Yu-Ping Chen
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Shi-Yi Lin
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Rui-Min Sun
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaohong Ma
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
185
|
Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev 2021; 121:12278-12326. [PMID: 34280313 DOI: 10.1021/acs.chemrev.1c00243] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.
Collapse
Affiliation(s)
- Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangliang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi 710072, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
186
|
|
187
|
Hussain MZ, Yang Z, Huang Z, Jia Q, Zhu Y, Xia Y. Recent Advances in Metal-Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100625. [PMID: 34032017 PMCID: PMC8292888 DOI: 10.1002/advs.202100625] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/20/2021] [Indexed: 05/19/2023]
Abstract
Solar energy is a key sustainable energy resource, and materials with optimal properties are essential for efficient solar energy-driven applications in photocatalysis. Metal-organic frameworks (MOFs) are excellent platforms to generate different nanocomposites comprising metals, oxides, chalcogenides, phosphides, or carbides embedded in porous carbon matrix. These MOF derived nanocomposites offer symbiosis of properties like high crystallinities, inherited morphologies, controllable dimensions, and tunable textural properties. Particularly, adjustable energy band positions achieved by in situ tailored self/external doping and controllable surface functionalities make these nanocomposites promising photocatalysts. Despite some progress in this field, fundamental questions remain to be addressed to further understand the relationship between the structures, properties, and photocatalytic performance of nanocomposites. In this review, different synthesis approaches including self-template and external-template methods to produce MOF derived nanocomposites with various dimensions (0D, 1D, 2D, or 3D), morphologies, chemical compositions, energy bandgaps, and surface functionalities are comprehensively summarized and analyzed. The state-of-the-art progress in the applications of MOF derived nanocomposites in photocatalytic water splitting for H2 generation, photodegradation of organic pollutants, and photocatalytic CO2 reduction are systemically reviewed. The relationships between the nanocomposite properties and their photocatalytic performance are highlighted, and the perspectives of MOF derived nanocomposites for photocatalytic applications are also discussed.
Collapse
Affiliation(s)
- Mian Zahid Hussain
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Zhuxian Yang
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Zheng Huang
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional CeramicsZhengzhou UniversityZhengzhou450052China
| | - Yanqiu Zhu
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Yongde Xia
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| |
Collapse
|
188
|
Yang S, Li X, Zeng G, Cheng M, Huang D, Liu Y, Zhou C, Xiong W, Yang Y, Wang W, Zhang G. Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213874] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
189
|
|
190
|
Antibacterial activity of three zinc-terephthalate MOFs and its relation to their structural features. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
191
|
Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213946] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
192
|
Wang D, Fan M, He T, Zeng F, Hu X, Li C, Su Z. Cu/Cu x S-Embedded N,S-Doped Porous Carbon Derived in Situ from a MOF Designed for Efficient Catalysis. Chemistry 2021; 27:11468-11476. [PMID: 34002909 DOI: 10.1002/chem.202101560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 01/25/2023]
Abstract
The reasonable design of the precursor of a carbon-based nanocatalyst is an important pathway to improve catalytic performance. In this study, a simple solvothermal method was used to synthesize [Cu(TPT)(2,5-tdc)] ⋅ 2H2 O (Cu-MOF), which contains N and S atoms, in one step. Further in-situ carbonization of the Cu-MOF as the precursor was used to synthesize Cu/Cux S-embedded N,S-doped porous carbon (Cu/Cux S/NSC) composites. The catalytic activities of the prepared Cu/Cux S/NSC were investigated through catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The results show that the designed Cu/Cux S/NSC has exceptional catalytic activity and recycling stability, with a reaction rate constant of 0.0256 s-1 , and the conversion rate still exceeds 90 % after 15 cycles. Meanwhile, the efficient catalytic reduction of dyes (CR, MO, MB and RhB) confirmed its versatility. Finally, the active sites of the Cu/Cux S/NSC catalysts were analyzed, and a possible multicomponent synergistic catalytic mechanism was proposed.
Collapse
Affiliation(s)
- Dongsheng Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Mingyue Fan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Tingyu He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Fanming Zeng
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Xiaoli Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Chun Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| |
Collapse
|
193
|
Jia JS, Cao Y, Wu TX, Tao Y, Pan YM, Huang FP, Tang HT. Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by High-Nuclearity {Co 14} Clusters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun-Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Yan Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Tai-Xue Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ye Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| |
Collapse
|
194
|
Yang LX, Yang JCE, Fu ML. Magnetic CoFe 2O 4 nanocrystals derived from MIL-101 (Fe/Co) for peroxymonosulfate activation toward degradation of chloramphenicol. CHEMOSPHERE 2021; 272:129567. [PMID: 33482517 DOI: 10.1016/j.chemosphere.2021.129567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In this study, porous magnetic CoFe2O4 nanocrystals (NCs) were successfully synthesized by using bimetal-organic framework (MOF) as a precursor, and used as catalysts to activate peroxymonosulfate (PMS) for the removal of chloramphenicol (CAP) in the solution. The structure and physicochemical properties of CoFe2O4 NCs were thoroughly examined by a series of characterization techniques. The results revealed as-synthesized CoFe2O4 had a nanorod-shaped structure with high specific surface area (83.00 m2 g-1) and pore volume (0.31 cm3 g-1). Furthermore, the degradation efficiency (100%) and the removal of total organic carbon (68.09%) were achieved after 120 min with 0.1 g/L CoFe2O4 NCs, 2 mM PMS and 10 mg/L CAP at pH of 8.20. In addition, effects of catalyst dosage, PMS dosage, initial pH values, CAP concentration and co-existing anions as well as natural organic matters in the solution on the degradation efficiencies were studied and all the removal can be well fitted with pseudo-first-order kinetic model (R2 > 0.96). Sulfate radicals (SO4•-) and hydroxyl radicals (HO•) were proved to be two main reactive species for CAP removal in CoFe2O4/PMS system based on quenching experiments. CAP was degraded by the main pathways of dichlorination, denitration, decarboxylation, hydroxylation, ring cleavage and chain cleavage on CoFe2O4/PMS system through high performance liquid chromatograph-mass spectrometry analysis. We believe that this study would be very meaningful to promote the applications of MOFs-derived catalysts on the SO4•- based advanced oxidation processes (SR-AOPs) for the environmental remediation.
Collapse
Affiliation(s)
- Liu-Xi Yang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Cheng E Yang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ming-Lai Fu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China; Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
195
|
Meenu PC, Datta SP, Singh SA, Dinda S, Chakraborty C, Roy S. A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
196
|
Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol Catalyzed by Pt Supported on Bi-Metallic MIL-100 (Fe, Mn/Co) MOFs Derivates Prepared by Hydrothermal Polyol Reduction Method. Catal Letters 2021. [DOI: 10.1007/s10562-021-03656-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
197
|
Martin CR, Leith GA, Shustova NB. Beyond structural motifs: the frontier of actinide-containing metal-organic frameworks. Chem Sci 2021; 12:7214-7230. [PMID: 34163816 PMCID: PMC8171348 DOI: 10.1039/d1sc01827b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
In this perspective, we feature recent advances in the field of actinide-containing metal-organic frameworks (An-MOFs) with a main focus on their electronic, catalytic, photophysical, and sorption properties. This discussion deviates from a strictly crystallographic analysis of An-MOFs, reported in several reviews, or synthesis of novel structural motifs, and instead delves into the remarkable potential of An-MOFs for evolving the nuclear waste administration sector. Currently, the An-MOF field is dominated by thorium- and uranium-containing structures, with only a few reports on transuranic frameworks. However, some of the reported properties in the field of An-MOFs foreshadow potential implementation of these materials and are the main focus of this report. Thus, this perspective intends to provide a glimpse into the challenges, triumphs, and future directions of An-MOFs in sectors ranging from the traditional realm of gas sorption and separation to recently emerging areas such as electronics and photophysics.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
198
|
Gao J, Huang Q, Wu Y, Lan YQ, Chen B. Metal–Organic Frameworks for Photo/Electrocatalysis. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/aesr.202100033] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junkuo Gao
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Qing Huang
- Department of Chemistry South China Normal University Guangzhou 510006 China
| | - Yuhang Wu
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Ya-Qian Lan
- Department of Chemistry South China Normal University Guangzhou 510006 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA circle San Antonio TX 78249-0689 USA
| |
Collapse
|
199
|
Habibi B, Pashazadeh S, Saghatforoush LA, Pashazadeh A. Direct electrochemical synthesis of the copper based metal-organic framework on/in the heteroatoms doped graphene/pencil graphite electrode: Highly sensitive and selective electrochemical sensor for sertraline hydrochloride. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
200
|
Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|