151
|
Abstract
The interaction between the metabolic activities of the intestinal microbiome and its host forms an important part of health. The basis of this interaction is in part mediated by the release of microbially-derived metabolites that enter the circulation. These products of microbial metabolism thereby interface with the immune, metabolic, or nervous systems of the host to influence physiology. Here, we review the interactions between the metabolic activities of the microbiome and the systemic metabolism of the host. The concept that the endocrine system includes more than just the eukaryotic host component enables the rational design of exogenous interventions that shape human metabolism. An improved mechanistic understanding of the metabolic microbiome-host interaction may therefore pioneer actionable microbiota-based diagnostics or therapeutics that allow the control of host systemic metabolism via the microbiome.
Collapse
Affiliation(s)
- Timothy O Cox
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirti Nath
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
152
|
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022; 11:2296. [PMID: 35892593 PMCID: PMC9330295 DOI: 10.3390/cells11152296] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Tryptophan is an essential amino acid from dietary proteins. It can be metabolized into different metabolites in both the gut microbiota and tissue cells. Tryptophan metabolites such as indole-3-lactate (ILA), indole-3-acrylate (IAC), indole-3-propionate (IPA), indole-3-aldehyde (IAID), indoleacetic acid (IAA), indole-3-acetaldehyde and Kyn can be produced by intestinal microorganisms through direct Trp transformation and also, partly, the kynurenine (Kyn) pathway. These metabolites play a critical role in maintaining the homeostasis of the gut and systematic immunity and also potentially affect the occurrence and development of diseases such as inflammatory bowel diseases, tumors, obesity and metabolic syndrome, diseases in the nervous system, infectious diseases, vascular inflammation and cardiovascular diseases and hepatic fibrosis. They can not only promote the differentiation and function of anti-inflammatory macrophages, Treg cells, CD4+CD8αα+ regulatory cells, IL-10+ and/or IL-35+B regulatory cells but also IL-22-producing innate lymphoid cells 3 (ILC3), which are involved in maintaining the gut mucosal homeostasis. These findings have important consequences in the immunotherapy against tumor and other immune-associated diseases. We will summarize here the recent advances in understanding the generation and regulation of tryptophan metabolites in the gut microbiota, the role of gut microbiota-derived tryptophan metabolites in different immune cells, the occurrence and development of diseases and immunotherapy against immune-associated diseases.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
153
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
154
|
Levraud JP, Rawls JF, Clatworthy AE. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J Neuroinflammation 2022; 19:170. [PMID: 35765004 PMCID: PMC9238045 DOI: 10.1186/s12974-022-02506-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710 USA
| | - Anne E. Clatworthy
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
155
|
Wessels AG. Influence of the Gut Microbiome on Feed Intake of Farm Animals. Microorganisms 2022; 10:microorganisms10071305. [PMID: 35889024 PMCID: PMC9315566 DOI: 10.3390/microorganisms10071305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/04/2022] Open
Abstract
With the advancement of microbiome research, the requirement to consider the intestinal microbiome as the “last organ” of an animal emerged. Through the production of metabolites and/or the stimulation of the host’s hormone and neurotransmitter synthesis, the gut microbiota can potentially affect the host’s eating behavior both long and short-term. Based on current evidence, the major mediators appear to be short-chain fatty acids (SCFA), peptide hormones such as peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), as well as the amino acid tryptophan with the associated neurotransmitter serotonin, dopamine and γ-Aminobutyrate (GABA). The influence appears to extend into central neuronal networks and the expression of taste receptors. An interconnection of metabolic processes with mechanisms of taste sensation suggests that the gut microbiota may even influence the sensations of their host. This review provides a summary of the current status of microbiome research in farm animals with respect to general appetite regulation and microbiota-related observations made on the influence on feed intake. This is briefly contrasted with the existing findings from research with rodent models in order to identify future research needs. Increasing our understanding of appetite regulation could improve the management of feed intake, feed frustration and anorexia related to unhealthy conditions in farm animals.
Collapse
Affiliation(s)
- Anna Grete Wessels
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
156
|
Shute A, Bihan DG, Lewis IA, Nasser Y. Metabolomics: The Key to Unraveling the Role of the Microbiome in Visceral Pain Neurotransmission. Front Neurosci 2022; 16:917197. [PMID: 35812241 PMCID: PMC9260117 DOI: 10.3389/fnins.2022.917197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is limited such that 5-25% of IBD outpatients are treated with narcotics, with associated morbidity and mortality. IBD patients commonly present with substantial alterations to the microbial community structure within the gastrointestinal tract, known as dysbiosis. The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized by altered bowel habits and abdominal pain, in the absence of inflammation. An emerging body of literature suggests that the gut microbiome plays an important role in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship with host receptors that are highly expressed on host cell and neurons, suggesting that microbial metabolites play a key role in visceral hypersensitivity. In this review, we will discuss the techniques used to analysis the metabolome, current potential metabolite targets for visceral hypersensitivity, and discuss the current literature that evaluates the role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.
Collapse
Affiliation(s)
- Adam Shute
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Dominique G. Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yasmin Nasser
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
157
|
Ye X, Li H, Anjum K, Zhong X, Miao S, Zheng G, Liu W, Li L. Dual Role of Indoles Derived From Intestinal Microbiota on Human Health. Front Immunol 2022; 13:903526. [PMID: 35784338 PMCID: PMC9248744 DOI: 10.3389/fimmu.2022.903526] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Endogenous indole and its derivatives (indoles), considered as promising N-substituted heterocyclic compounds, are tryptophan metabolites derived from intestinal microbiota and exhibit a range of biological activities. Recent studies indicate that indoles contribute to maintaining the biological barrier of the human intestine, which exert the anti-inflammatory activities mainly through activating AhR and PXR receptors to affect the immune system’s function, significantly improving intestinal health (inflammatory bowel disease, hemorrhagic colitis, colorectal cancer) and further promote human health (diabetes mellitus, central system inflammation, and vascular regulation). However, the revealed toxic influences cannot be ignored. Indoxyl sulfate, an indole derivative, performs nephrotoxicity and cardiovascular toxicity. We addressed the interaction between indoles and intestinal microbiota and the indoles’ effects on human health as double-edged swords. This review provides scientific bases for the correlation of indoles with diseases moreover highlights several directions for subsequent indoles-related studies.
Collapse
Affiliation(s)
- Xuewei Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haiyi Li
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Komal Anjum
- Department of Medicine and pharmacy, Ocean University of China, Qingdao, China
| | - Xinye Zhong
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuping Miao
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guowan Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lanjuan Li, ; Wei Liu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- *Correspondence: Lanjuan Li, ; Wei Liu,
| |
Collapse
|
158
|
Jardon KM, Canfora EE, Goossens GH, Blaak EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 2022; 71:1214-1226. [PMID: 35135841 PMCID: PMC9120404 DOI: 10.1136/gutjnl-2020-323715] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the gut microbiome is an important regulator of body weight, glucose and lipid metabolism, and inflammatory processes, and may thereby play a key role in the aetiology of obesity, insulin resistance and type 2 diabetes. Interindividual responsiveness to specific dietary interventions may be partially determined by differences in baseline gut microbiota composition and functionality between individuals with distinct metabolic phenotypes. However, the relationship between an individual's diet, gut microbiome and host metabolic phenotype is multidirectional and complex, yielding a challenge for practical implementation of targeted dietary guidelines. In this review, we discuss the latest research describing interactions between dietary composition, the gut microbiome and host metabolism. Furthermore, we describe how this knowledge can be integrated to develop precision-based nutritional strategies to improve bodyweight control and metabolic health in humans. Specifically, we will address that (1) insight in the role of the baseline gut microbial and metabolic phenotype in dietary intervention response may provide leads for precision-based nutritional strategies; that (2) the balance between carbohydrate and protein fermentation by the gut microbiota, as well as the site of fermentation in the colon, seems important determinants of host metabolism; and that (3) 'big data', including multiple omics and advanced modelling, are of undeniable importance in predicting (non-)response to dietary interventions. Clearly, detailed metabolic and microbial phenotyping in humans is necessary to better understand the link between diet, the gut microbiome and host metabolism, which is required to develop targeted dietary strategies and guidelines for different subgroups of the population.
Collapse
Affiliation(s)
- Kelly M Jardon
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands,TiFN, Wageningen, The Netherlands
| | - Emanuel E Canfora
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gijs H Goossens
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen E Blaak
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands .,TiFN, Wageningen, The Netherlands
| |
Collapse
|
159
|
Lee JH, Park JH. Host-microbial interactions in metabolic diseases: from diet to immunity. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:561-575. [PMID: 35511325 DOI: 10.1007/s12275-022-2087-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that the gut microbiome is an important contributor to metabolic diseases. Alterations in microbial communities are associated with changes in lipid metabolism, glucose homeostasis, intestinal barrier functions, and chronic inflammation, all of which can lead to metabolic disorders. Therefore, the gut microbiome may represent a novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic fatty liver disease. This review discusses how gut microbes and their products affect metabolic diseases and outlines potential treatment approaches via manipulation of the gut microbiome. Increasing our understanding of the interactions between the gut microbiome and host metabolism may help restore the healthy symbiotic relationship between them.
Collapse
Affiliation(s)
- Ju-Hyung Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
160
|
Cheng WY, Ho YS, Chang RCC. Linking circadian rhythms to microbiome-gut-brain axis in aging-associated neurodegenerative diseases. Ageing Res Rev 2022; 78:101620. [PMID: 35405323 DOI: 10.1016/j.arr.2022.101620] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that both disruption of circadian rhythms and gut dysbiosis are closely related to aging-associated neurodegenerative diseases. Over the last decade, the microbiota-gut-brain axis has been an emerging field and revolutionized studies in pathology, diagnosis, and treatment of neurological disorders. Crosstalk between the brain and gut microbiota can be accomplished via the endocrine, immune, and nervous system. Recent studies have shown that the composition and diurnal oscillation of gut microbiota are influenced by host circadian rhythms. This provides a new perspective for investigating the microbiome-gut-brain axis. We aim to review current understanding and research on the dynamic interaction between circadian rhythms and the microbiome-gut-brain axis. Furthermore, we will address the possible neurodegenerative disease contribution through circadian rhythms and microbiome-gut-brain axis crosstalk.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
161
|
Role of dietary amino acids and microbial metabolites in the regulation of pig intestinal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:1-6. [PMID: 35949980 PMCID: PMC9344294 DOI: 10.1016/j.aninu.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
With the rapid development of sequencing technology, research on pigs has focused on intestinal microbes. Accumulating evidence suggests that the metabolites of intestinal microbes are the key medium for interactions between microbes and the host. Amino acid metabolism is involved in the growth and immune processes of pigs. The gut microbes of pigs are heavily involved in the metabolism of amino acids in their hosts. Here, we review the latest relevant literature. Research findings show that microbial metabolites, such as indoles, short-chain fatty acids, and ammonia, play a key role in gut health. Moreover, we summarize the effects of amino acids on the structure of the gut microbial community and the metabolism of amino acids by pig gut microbes. Evidence shows that microbial amino acid metabolites act as signal molecules in the intestine and play an important role in the intestinal health of pigs.
Collapse
|
162
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
163
|
Gupta R, Rhee KY, Beagle SD, Chawla R, Perdomo N, Lockless SW, Lele PP. Indole modulates cooperative protein-protein interactions in the flagellar motor. PNAS NEXUS 2022; 1. [PMID: 35719892 PMCID: PMC9205328 DOI: 10.1093/pnasnexus/pgac035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indole is a major component of the bacterial exometabolome, and the mechanisms for its wide-ranging effects on bacterial physiology are biomedically significant, although they remain poorly understood. Here, we determined how indole modulates the functions of a widely conserved motility apparatus, the bacterial flagellum. Our experiments in Escherichia coli revealed that indole influences the rotation rates and reversals in the flagellum’s direction of rotation via multiple mechanisms. At concentrations higher than 1 mM, indole decreased the membrane potential to dissipate the power available for the rotation of the motor that operates the flagellum. Below 1 mM, indole did not dissipate the membrane potential. Instead, experiments and modeling indicated that indole weakens cooperative protein interactions within the flagellar complexes to inhibit motility. The metabolite also induced reversals in the rotational direction of the motor to promote a weak chemotactic response, even when the chemotaxis response regulator, CheY, was lacking. Experiments further revealed that indole does not require the transporter Mtr to cross the membrane and influence motor functions. Based on these findings, we propose that indole modulates intra- and inter-protein interactions in the cell to influence several physiological functions.
Collapse
Affiliation(s)
- Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Kathy Y Rhee
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Sarah D Beagle
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Ravi Chawla
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Nicolas Perdomo
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| |
Collapse
|
164
|
L’intestin un organe endocrine : de la physiologie aux implications thérapeutiques en nutrition. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
165
|
Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother 2022; 149:112839. [PMID: 35325852 DOI: 10.1016/j.biopha.2022.112839] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most risk factors threatening human health. Although genetic and environmental factors contribute to the development of T2DM, gut microbiota has also been found to be involved. Gut microbiota-derived metabolites are a key factor in host-microbe crosstalk, and have been revealed to play a central role in the physiology and physiopathology of T2DM. In this review, we provide a timely and comprehensive summary of the microbial metabolites that are protective or causative for T2DM, including some amino acids-derived metabolites, short-chain fatty acids, trimethylamine N-oxide, and bile acids. The mechanisms by which metabolites affect T2DM have been elaborated. Knowing more about these processes will increase our understanding of the causal relationship between gut microbiota and T2DM. Moreover, some frontier therapies that target gut microbes and their metabolites to improve T2DM, including dietary intervention, fecal microbiota transplantation, probiotics, prebiotics or synbiotics intervention, and drugging microbial metabolism, have been critically discussed. This review may provide novel insights for the development of targeted and personalized treatments for T2DM based on gut microbial metabolites. More high-quality clinical trials are needed to accelerate the clinical translation of gut-targeted therapies for T2DM.
Collapse
Affiliation(s)
- Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Tang
- Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611130, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
166
|
Benech N, Rolhion N, Sokol H. Gut Microbiota Reprogramming of Tryptophan Metabolism During Pregnancy Shapes Host Insulin Resistance. Gastroenterology 2022; 162:1587-1589. [PMID: 35247461 DOI: 10.1053/j.gastro.2022.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Nicolas Benech
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France; Institut National de la Recherche Agronomique, UMR1319, Micalis & AgroParisTech, Jouy en Josas, France.
| |
Collapse
|
167
|
Production of Indole and Indole-Related Compounds by the Intestinal Microbiota and Consequences for the Host: The Good, the Bad, and the Ugly. Microorganisms 2022; 10:microorganisms10050930. [PMID: 35630374 PMCID: PMC9145683 DOI: 10.3390/microorganisms10050930] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiota metabolic activity towards the available substrates generates myriad bacterial metabolites that may accumulate in the luminal fluid. Among them, indole and indole-related compounds are produced by specific bacterial species from tryptophan. Although indole-related compounds are, first, involved in intestinal microbial community communication, these molecules are also active on the intestinal mucosa, exerting generally beneficial effects in different experimental situations. After absorption, indole is partly metabolized in the liver into the co-metabolite indoxyl sulfate. Although some anti-inflammatory actions of indole on liver cells have been shown, indoxyl sulfate is a well-known uremic toxin that aggravates chronic kidney disease, through deleterious effects on kidney cells. Indoxyl sulfate is also known to provoke endothelial dysfunction. Regarding the central nervous system, emerging research indicates that indole at excessive concentrations displays a negative impact on emotional behavior. The indole-derived co-metabolite isatin appears, in pre-clinical studies, to accumulate in the brain, modulating brain function either positively or negatively, depending on the doses used. Oxindole, a bacterial metabolite that enters the brain, has shown deleterious effects on the central nervous system in experimental studies. Lastly, recent studies performed with indoxyl sulfate report either beneficial or deleterious effects depending once again on the dose used, with missing information on the physiological concentrations that are reaching the central nervous system. Any intervention aiming at modulating indole and indole-related compound concentrations in the biological fluids should crucially take into account the dual effects of these compounds according to the host tissues considered.
Collapse
|
168
|
Feng Y, Cao H, Hua J, Zhang F. Anti-Diabetic Intestinal Mechanisms: Foods, Herbs, and Western Medicines. Mol Nutr Food Res 2022; 66:e2200106. [PMID: 35481618 DOI: 10.1002/mnfr.202200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/16/2022] [Indexed: 12/12/2022]
Abstract
The role of intestinal factors in the pathogenesis of diabetes, such as a decrease in the incretin effect, has recently attracted considerable attention. An imbalance in the gut microbiota inhibits the secretion of incretins, which are metabolic hormones can reduce blood glucose levels, and promotes the occurrence and development of diabetes. Numerous studies have demonstrated that foods are environmental factors that are important in the modulation of gut microbial-mediated glucose metabolism. In general, functional foods trigger the gut microbiota to produce beneficial metabolites or reduce harmful products through metabolic pathways and then regulate glucose and lipid metabolism. Recent studies have shown that similar to functional foods, the regulatory effects of some herbs and Western medicines are closely related to alterations in the gut microbiota. In this review, the intestinal mechanism of foods, herbs, and Western medicine in affecting the process of glucose metabolism is summarized.
Collapse
Affiliation(s)
- Yuwei Feng
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hong Cao
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Jiao Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.,Hospital Infection-Control Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feng Zhang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Chinese Society of Nutritional Oncology, Beijing, 100022, China
| |
Collapse
|
169
|
Hertli S, Zimmermann P. Molecular interactions between the intestinal microbiota and the host. Mol Microbiol 2022; 117:1297-1307. [PMID: 35403275 PMCID: PMC9325447 DOI: 10.1111/mmi.14905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
The intestine is the most densely colonized region of the body, inhabited by a diverse community of microbes. The functional significance of the intestinal microbiota is not yet fully understood, but it is known that the microbiota is implicated in numerous physiological processes of the host, such as metabolism, nutrition, the immune system, and regulation of behavior and mood. This article reviews recent findings on how bacteria of the intestinal microbiota interact with the host. Microbiota‐microbiota and microbiota‐host interactions are mediated by direct cell contact and by metabolites either produced by bacteria or produced by the host or the environment and metabolized by bacteria. Among them are short‐chain fatty, including butyrate, propionate, and acetate. Other examples include polyamines, linoleic acid metabolites, tryptophan metabolites, trimethylamine‐N‐oxide, vitamins, and secondary bile acids. These metabolites are involved in regulating the cell cycle, neurobiological signaling, cholesterol and bile acid metabolism, immune responses, and responses to antioxidants. Understanding the host‐microbiota pathways and their modulation will allow the identification of individualized therapeutic targets for many diseases. This overview helps to facilitate and promote further research in this field.
Collapse
Affiliation(s)
- Salomé Hertli
- Department of Community Health, Faculty of Science and Medicine University of Fribourg Fribourg Switzerland
| | - Petra Zimmermann
- Department of Community Health, Faculty of Science and Medicine University of Fribourg Fribourg Switzerland
- Department of Paediatrics Hospital HFR Fribourg Fribourg Switzerland
- Infectious Diseases Research Group, Murdoch Children’s Research Institute Parkville Australia
| |
Collapse
|
170
|
Rodríguez-Romero JDJ, Durán-Castañeda AC, Cárdenas-Castro AP, Sánchez-Burgos JA, Zamora-Gasga VM, Sáyago-Ayerdi SG. What we know about protein gut metabolites: Implications and insights for human health and diseases. Food Chem X 2022; 13:100195. [PMID: 35499004 PMCID: PMC9039920 DOI: 10.1016/j.fochx.2021.100195] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gut microbiota is a complex ecosystem of symbiotic bacteria that contribute to human metabolism and supply intestinal metabolites, whose production is mainly influenced by the diet. Dietary patterns characterized by a high intake of protein promotes the growth of proteolytic bacteria's, which produce metabolites from undigested protein fermentation. Microbioal protein metabolites can regulate immune, metabolic and neuronal responses in different target organs. Metabolic pathways of these compounds and their mechanisms of action on different pathologies can lead to the discovery of new diagnostic techniques, drugs and the potential use as functional ingredients in food. This review discusses the potential mechanisms by which amino acid catabolism is involved in microbial protein metabolites. In addition, results from several studies on the association of products from the intestinal metabolism of indigestible proteins and the state of health or disease of the host are revised.
Collapse
Affiliation(s)
- José de Jesús Rodríguez-Romero
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit, México
| | - Alba Cecilia Durán-Castañeda
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit, México
| | - Alicia Paulina Cárdenas-Castro
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit, México
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit, México
| | - Victor Manuel Zamora-Gasga
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit, México
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit, México
| |
Collapse
|
171
|
Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front Endocrinol (Lausanne) 2022; 13:841703. [PMID: 35370963 PMCID: PMC8972051 DOI: 10.3389/fendo.2022.841703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of metabolic syndrome has become a serious public health problem. Certain bacteria-derived metabolites play a key role in maintaining human health by regulating the host metabolism. Recent evidence shows that indole-3-propionic acid content can be used to predict the occurrence and development of metabolic diseases. Supplementing indole-3-propionic acid can effectively improve metabolic disorders and is considered a promising metabolite. Therefore, this article systematically reviews the latest research on indole-3-propionic acid and elaborates its source of metabolism and its association with metabolic diseases. Indole-3-propionic acid can improve blood glucose and increase insulin sensitivity, inhibit liver lipid synthesis and inflammatory factors, correct intestinal microbial disorders, maintain the intestinal barrier, and suppress the intestinal immune response. The study of the mechanism of the metabolic benefits of indole-3-propionic acid is expected to be a potential compound for treating metabolic syndrome.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Weidong Du
- Zhejiang Traditional Chinese Medicine Hospital, Hangzhou, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
172
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
173
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
174
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
175
|
Abstract
The aim of this review is to provide an overview of how person-specific interactions between diet and the gut microbiota could play a role in affecting diet-induced weight loss responses. The highly person-specific gut microbiota, which is shaped by our diet, secretes digestive enzymes and molecules that affect digestion in the colon. Therefore, weight loss responses could in part depend on personal colonic fermentation responses, which affect energy extraction of food and production of microbial metabolites, such as short-chain fatty acids (SCFAs), which exert various effects on host metabolism. Colonic fermentation is the net result of the complex interplay between availability of dietary substrates, the functional capacity of the gut microbiome and environmental (abiotic) factors in the gut such as pH and transit time. While animal studies have demonstrated that the gut microbiota can causally affect obesity, causal and mechanistic evidence from human studies is still largely lacking. However, recent human studies have proposed that the baseline gut microbiota composition may predict diet-induced weight loss-responses. In particular, individuals characterised by high relative abundance of Prevotella have been found to lose more weight on diets rich in dietary fibre compared to individuals with low Prevotella abundance. Although harnessing of personal diet-microbiota interactions holds promise for more personalised nutrition and obesity management strategies to improve human health, there is currently insufficient evidence to unequivocally link the gut microbiota and weight loss in human subjects. To move the field forward, a greater understanding of the mechanistic underpinnings of personal diet-microbiota interactions is needed.
Collapse
|
176
|
Zhou Z, Sun B, Yu D, Zhu C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:834485. [PMID: 35242721 PMCID: PMC8886906 DOI: 10.3389/fcimb.2022.834485] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| |
Collapse
|
177
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
178
|
Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function. Amino Acids 2022; 54:57-70. [PMID: 35038025 DOI: 10.1007/s00726-022-03123-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
Abstract
The metabolism of dietary tryptophan occurs locally in the gut primarily via host enzymes, with ~ 5% metabolized by gut microbes. Three major tryptophan metabolic pathways are serotonin (beyond the scope of this review), indole, kynurenine and related derivatives. We introduce the gut microbiome, dietary tryptophan and the potential interplay of host and bacterial enzymes in tryptophan metabolism. Examples of bacterial transformation to indole and its derivative indole-3 propionic acid demonstrate associations with human metabolic disease and gut permeability, although causality remains to be determined. This review will focus on less well-known data, suggestive of local generation and functional significance in the gut, where kynurenine is converted to kynurenic acid and xanthurenic acid via enzymatic action present in both host and bacteria. Our functional data demonstrate a limited effect on intestinal epithelial cell monolayer permeability and on healthy mouse ileum. Other data suggest a modulatory effect on the microbiome, potentially in pathophysiology. Supportive of this, we found that the expression of mRNA for three kynurenine pathway enzymes were increased in colon from high-fat-fed mice, suggesting that this host pathway is perturbed in metabolic disease. These data, along with that from bacterial genomic analysis and germ-free mice, confirms expression and functional machinery of enzymes in this pathway. Therefore, the host and microbiota may play a significant dual role in either the production or regulation of these kynurenine metabolites which, in turn, can influence both host and microbiome, especially in the context of obesity and intestinal permeability.
Collapse
|
179
|
Abstract
Environmental chemicals can alter gut microbial community composition, known as dysbiosis. However, the gut microbiota is a highly dynamic system and its functions are still largely underexplored. Likewise, it is unclear whether xenobiotic exposure affects host health through impairing host-microbiota interactions. Answers to this question not only can lead to a more precise understanding of the toxic effects of xenobiotics but also can provide new targets for the development of new therapeutic strategies. Here, we aim to identify the major challenges in the field of microbiota-exposure research and highlight the need to exam the health effects of xenobiotic-induced gut microbiota dysbiosis in host bodies. Although the changes of gut microbiota frequently co-occur with the xenobiotic exposure, the causal relationship of xenobiotic-induced microbiota dysbiosis and diseases is rarely established. The high dynamics of the gut microbiota and the complex interactions among exposure, microbiota, and host, are the major challenges to decipher the specific health effects of microbiota dysbiosis. The next stage of study needs to combine various technologies to precisely assess the xenobiotic-induced gut microbiota perturbation and the subsequent health effects in host bodies. The exposure, gut microbiota dysbiosis, and disease outcomes have to be causally linked. Many microbiota-host interactions are established by previous studies, including signaling metabolites and response pathways in the host, which may use as start points for future research to examine the mechanistic interactions of exposure, gut microbiota, and host health. In conclusion, to precisely understand the toxicity of xenobiotics and develop microbiota-based therapies, the causal and mechanistic links of exposure and microbiota dysbiosis have to be established in the next stage study.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States,CONTACT Kun Lu Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC27599, United States
| |
Collapse
|
180
|
Petersen N, Greiner TU, Torz L, Bookout A, Gerstenberg MK, Castorena CM, Kuhre RE. Targeting the Gut in Obesity: Signals from the Inner Surface. Metabolites 2022; 12:metabo12010039. [PMID: 35050161 PMCID: PMC8778595 DOI: 10.3390/metabo12010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is caused by prolonged energy surplus. Current anti-obesity medications are mostly centralized around the energy input part of the energy balance equation by increasing satiety and reducing appetite. Our gastrointestinal tract is a key organ for regulation of food intake and supplies a tremendous number of circulating signals that modulate the activity of appetite-regulating areas of the brain by either direct interaction or through the vagus nerve. Intestinally derived messengers are manifold and include absorbed nutrients, microbial metabolites, gut hormones and other enterokines, collectively comprising a fine-tuned signalling system to the brain. After a meal, nutrients directly interact with appetite-inhibiting areas of the brain and induce satiety. However, overall feeding behaviour also depends on secretion of gut hormones produced by highly specialized and sensitive enteroendocrine cells. Moreover, circulating microbial metabolites and their interactions with enteroendocrine cells further contribute to the regulation of feeding patterns. Current therapies exploiting the appetite-regulating properties of the gut are based on chemically modified versions of the gut hormone, glucagon-like peptide-1 (GLP-1) or on inhibitors of the primary GLP-1 inactivating enzyme, dipeptidyl peptidase-4 (DPP-4). The effectiveness of these approaches shows that that the gut is a promising target for therapeutic interventions to achieve significant weigh loss. We believe that increasing understanding of the functionality of the intestinal epithelium and new delivery systems will help develop selective and safe gut-based therapeutic strategies for improved obesity treatment in the future. Here, we provide an overview of the major homeostatic appetite-regulating signals generated by the intestinal epithelial cells and how these signals may be harnessed to treat obesity by pharmacological means.
Collapse
Affiliation(s)
- Natalia Petersen
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Correspondence:
| | - Thomas U. Greiner
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Lola Torz
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Angie Bookout
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Marina Kjærgaard Gerstenberg
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
| | - Carlos M. Castorena
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Rune Ehrenreich Kuhre
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
181
|
Waclawiková B, Codutti A, Alim K, El Aidy S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 2022; 14:1997296. [PMID: 34978524 PMCID: PMC8741295 DOI: 10.1080/19490976.2021.1997296] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The human gastrointestinal tract is home to trillions of microbes. Gut microbial communities have a significant regulatory role in the intestinal physiology, such as gut motility. Microbial effect on gut motility is often evoked by bioactive molecules from various sources, including microbial break down of carbohydrates, fibers or proteins. In turn, gut motility regulates the colonization within the microbial ecosystem. However, the underlying mechanisms of such regulation remain obscure. Deciphering the inter-regulatory mechanisms of the microbiota and bowel function is crucial for the prevention and treatment of gut dysmotility, a comorbidity associated with many diseases. In this review, we present an overview of the current knowledge on the impact of gut microbiota and its products on bowel motility. We discuss the currently available techniques employed to assess the changes in the intestinal motility. Further, we highlight the open challenges, and incorporate biophysical elements of microbes-motility interplay, in an attempt to lay the foundation for describing long-term impacts of microbial metabolite-induced changes in gut motility.
Collapse
Affiliation(s)
- Barbora Waclawiková
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Agnese Codutti
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Physics Department and Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
182
|
Yan M, Guo X, Ji G, Huang R, Huang D, Li Z, Zhang D, Chen S, Cao R, Yang X, Wu W. Mechanismbased role of the intestinal microbiota in gestational diabetes mellitus: A systematic review and meta-analysis. Front Immunol 2022; 13:1097853. [PMID: 36936475 PMCID: PMC10020587 DOI: 10.3389/fimmu.2022.1097853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 03/06/2023] Open
Abstract
Background Metabolic disorders caused by intestinal microbial dysregulation are considered to be important causes of gestational diabetes mellitus (GDM). Increasing evidence suggests that the diversity and composition of gut microbes are altered in disease states, yet the critical microbes and mechanisms of disease regulation remain unidentified. Methods PubMed® (National Library of Medicine, Bethesda, MD, USA), Embase® (Elsevier, Amsterdam, the Netherlands), the Web of Science™ (Clarivate™, Philadelphia, PA, USA), and the Cochrane Library databases were searched to identify articles published between 7 July 2012 and 7 July 2022 reporting on case-control and controlled studies that analyzed differences in enterobacteria between patients with GDM and healthy individuals. Information on the relative abundance of enterobacteria was collected for comparative diversity comparison, and enterobacterial differences were analyzed using random effects to calculate standardized mean differences at a p-value of 5%. Results A total of 22 studies were included in this review, involving a total of 965 GDM patients and 1,508 healthy control participants. Alpha diversity did not differ between the participant groups, but beta diversity was significantly different. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the dominant bacteria, but there was no significant difference between the two groups. Qualitative analysis showed differences between the groups in the Firmicutes/Bacteroidetes ratio, Blautia, and Collinsella, but these differences were not statistically different. Conclusion Enterobacterial profiles were significantly different between the GDM and non-GDM populations. Alpha diversity in patients with GDM is similar to that in healthy people, but beta diversity is significantly different. Firmicutes/Bacteroidetes ratios were significantly increased in GDM, and this, as well as changes in the abundance of species of Blautia and Collinsella, may be responsible for changes in microbiota diversity. Although the results of our meta-analysis are encouraging, more well-conducted studies are needed to clarify the role of the gut microbiome in GDM. The systematic review was registered with PROSPERO (https://www.crd.york.ac.uk/prospero/) as CRD42022357391.
Collapse
Affiliation(s)
- Min Yan
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaoying Guo
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Dongyi Huang
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhifeng Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Dantao Zhang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Siyi Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Rong Cao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xingfen Yang, ; Wei Wu,
| | - Wei Wu
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- *Correspondence: Xingfen Yang, ; Wei Wu,
| |
Collapse
|
183
|
Cheng Z, Zhang L, Yang L, Chu H. The critical role of gut microbiota in obesity. Front Endocrinol (Lausanne) 2022; 13:1025706. [PMID: 36339448 PMCID: PMC9630587 DOI: 10.3389/fendo.2022.1025706] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a global epidemic characterized by energy disequilibrium, metabolic disorder, fat mass development, and chronic low-grade inflammation, which significantly affects the health state of individuals of all ages and strains the socioeconomic system. The prevalence of obesity is rising at alarming rates and its etiology involves complicated interplay of diet, genetic, and environmental factors. The gut microbiota, as an important constituent of environmental factors, has been confirmed to correlate with the onset and progression of obesity. However, the specific relationship between obesity and the gut microbiota, and its associated mechanisms, have not been fully elucidated. In this review, we have summarized that the microbial diversity was significantly decreased and the Firmicutes/Bacteroidetes ratio was significantly increased in obesity. The altered gut microbiota and associated metabolites contributed to the progression of the disease by disrupting energy homeostasis, promoting lipid synthesis and storage, modulating central appetite and feeding behavior, as well as triggering chronic inflammation, and that the intentional manipulation of gut microbiota held promise as novel therapies for obesity, including probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
| | | | - Ling Yang
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| | - Huikuan Chu
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| |
Collapse
|
184
|
Abstract
The enteroendocrine system coordinates the physiological response to food intake by regulating rates of digestion, nutrient absorption, insulin secretion, satiation and satiety. Gut hormones with important anorexigenic and/or insulinotropic roles include glucagon-like peptide 1 (GLP-1), peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP). High BMI or obesogenic diets do not markedly disrupt this enteroendocrine system, which represents a critical target for inducing weight loss and treating co-morbidities in individuals with obesity.
Collapse
|
185
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
186
|
Wang D, Liu J, Zhou L, Zhang Q, Li M, Xiao X. Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Front Endocrinol (Lausanne) 2022; 13:905171. [PMID: 35909556 PMCID: PMC9326154 DOI: 10.3389/fendo.2022.905171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The current research and existing facts indicate that type 2 diabetes mellitus (T2DM) is characterized by gut microbiota dysbiosis and disturbed microbial metabolites. Oral glucose-lowering drugs are reported with pleiotropic beneficial effects, including not only a decrease in glucose level but also weight loss, antihypertension, anti-inflammation, and cardiovascular protection, but the underlying mechanisms are still not clear. Evidence can be found showing that oral glucose-lowering drugs might modify the gut microbiome and thereby alter gastrointestinal metabolites to improve host health. Although the connections among gut microbial communities, microbial metabolites, and T2DM are complex, figuring out how antidiabetic agents shape the gut microbiome is vital for optimizing the treatment, meaningful for the instruction for probiotic therapy and gut microbiota transplantation in T2DM. In this review, we focused on the literatures in gut microbiota and its metabolite profile alterations beneficial from oral antidiabetic drugs, trying to provide implications for future study in the developing field of these drugs, such as combination therapies, pre- and probiotics intervention in T2DM, and subjects with pregestational diabetes and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- *Correspondence: Xinhua Xiao,
| |
Collapse
|
187
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
188
|
Zheng Z, Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol 2021; 12:775526. [PMID: 34956204 PMCID: PMC8703161 DOI: 10.3389/fimmu.2021.775526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.
Collapse
Affiliation(s)
- Zhipeng Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
189
|
Intestinal microbiota and their metabolic contribution to type 2 diabetes and obesity. J Diabetes Metab Disord 2021; 20:1855-1870. [PMID: 34900829 PMCID: PMC8630233 DOI: 10.1007/s40200-021-00858-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are common, chronic metabolic disorders with associated significant long-term health problems at global epidemic levels. It is recognised that gut microbiota play a central role in maintaining host homeostasis and through technological advances in both animal and human models it is becoming clear that gut microbiota are heavily involved in key pathophysiological roles in the aetiology and progression of both conditions. This review will focus on current knowledge regarding microbiota interactions with short chain fatty acids, the host inflammatory response, signaling pathways, integrity of the intestinal barrier, the interaction of the gut-brain axis and the subsequent impact on the metabolic health of the host.
Collapse
|
190
|
Li X, Zhang B, Hu Y, Zhao Y. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front Pharmacol 2021; 12:769501. [PMID: 34966278 PMCID: PMC8710772 DOI: 10.3389/fphar.2021.769501] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction between host and microorganism widely affects the immune and metabolic status. Indole and its derivatives are metabolites produced by the metabolism of tryptophan catalyzed by intestinal microorganisms. By activating nuclear receptors, regulating intestinal hormones, and affecting the biological effects of bacteria as signaling molecules, indole and its derivatives maintain intestinal homeostasis and impact liver metabolism and the immune response, which shows good therapeutic prospects. We reviewed recent studies on indole and its derivatives, including related metabolism, the influence of diets and intestinal commensal bacteria, and the targets and mechanisms in pathological conditions, especially progress in therapeutic strategies. New research insights into indoles will facilitate a better understanding of their druggability and application in intestinal and liver diseases.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
191
|
Li L, Zhang Y, Speakman JR, Hu S, Song Y, Qin S. The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obes Rev 2021; 22:e13341. [PMID: 34490704 DOI: 10.1111/obr.13341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms not only participate in the metabolism of carbohydrate, lipids, protein, and polypeptides in the intestine but also directly affect the metabolic phenotypes of the host. Although many studies have described the apparent effects of gut microbiota on human health, the development of metagenomics and culturomics in the past decade has generated a large amount of evidence suggesting a causal relationship between gut microbiota and obesity. The interaction between the gut microbiota and host is realized by microbial metabolites with multiple biological functions. We concentrated here on several representative beneficial species connected with obesity as well as the mechanisms, with particular emphasis on microbiota-dependent metabolites. Finally, we consider the potential clinical significance of these relationships to fuel the conception and realization of novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - John Roger Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
192
|
Nakamori H, Iida K, Hashitani H. Mechanisms underlying the prokinetic effects of endogenous glucagon-like peptide-1 in the rat proximal colon. Am J Physiol Gastrointest Liver Physiol 2021; 321:G617-G627. [PMID: 34643099 DOI: 10.1152/ajpgi.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), a well-known insulin secretagogue, is released from enteroendocrine L cells both luminally and basolaterally to exert different effects. Basolaterally released GLP-1 increases epithelial ion transport by activating CGRP-containing enteric afferent neurons. Although bath-applied GLP-1 reduced the contractility of colonic segments, GLP-1-induced stimulation of afferent neurons could also accelerate peristaltic contractions. Here, the roles of endogenous GLP-1 in regulating colonic peristalsis were investigated using isolated colonic segments. Isolated segments of rat proximal colon were placed in an organ bath, serosally perfused with oxygenated physiological salt solution, and luminally perfused with degassed 0.9% saline. Colonic wall motion was recorded using a video camera and converted into spatiotemporal maps. Intraluminal administration of GLP-1 (100 nM) stimulating the secretion of GLP-1 from L cells increased the frequency of oro-aboral propagating peristaltic contractions. The acceleratory effect of GLP-1 was blocked by luminally applied exendin-3 (9-39) (100 nM), a GLP-1 receptor antagonist. GLP-1-induced acceleration of peristaltic contractions was also prevented by bath-applied BIBN4069 (1 μM), a CGRP receptor antagonist. In colonic segments that had been exposed to bath-applied capsaicin (100 nM) that desensitizes extrinsic afferents, GLP-1 was still capable of exerting its prokinetic effect. Stimulation of endogenous GLP-1 secretion with a luminally applied cocktail of short-chain fatty acids (1 mM) increased the frequency of peristaltic waves in an exendin-3 (9-39)-sensitive manner. Thus, GLP-1 activates CGRP-expressing intrinsic afferents to accelerate peristalsis in the proximal colon. Short-chain fatty acids appear to stimulate endogenous GLP-1 secretion from L cells resulting in the acceleration of colonic peristalsis.NEW & NOTEWORTHY Glucagon-like peptide-1 (GLP-1) activates CGRP-containing intrinsic afferent neurons resulting in the acceleration of colonic peristalsis. Short-chain fatty acids stimulate the secretion of endogenous GLP-1 from L cells that accelerates colonic peristalsis. Thus, besides the well-known humoral insulinotropic action, GLP-1 exerts a local action via the activation of the enteric nervous system to accelerate colonic motility. Such a prokinetic action of GLP-1 could underlie the mechanisms causing diarrhea in patients with type-2 diabetes treated with GLP-1 analogs.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koji Iida
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
193
|
Ní Dhonnabháín R, Xiao Q, O’Malley D. Aberrant Gut-To-Brain Signaling in Irritable Bowel Syndrome - The Role of Bile Acids. Front Endocrinol (Lausanne) 2021; 12:745190. [PMID: 34917022 PMCID: PMC8669818 DOI: 10.3389/fendo.2021.745190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Functional bowel disorders such as irritable bowel syndrome (IBS) are common, multifactorial and have a major impact on the quality of life of individuals diagnosed with the condition. Heterogeneity in symptom manifestation, which includes changes in bowel habit and visceral pain sensitivity, are an indication of the complexity of the underlying pathophysiology. It is accepted that dysfunctional gut-brain communication, which incorporates efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones and local paracrine and neurocrine factors, such as host and microbially-derived signaling molecules, underpins symptom manifestation. This review will focus on the potential role of hepatic bile acids in modulating gut-to-brain signaling in IBS patients. Bile acids are amphipathic molecules synthesized in the liver, which facilitate digestion and absorption of dietary lipids. They are also important bioactive signaling molecules however, binding to bile acid receptors which are expressed on many different cell types. Bile acids have potent anti-microbial actions and thereby shape intestinal bacterial profiles. In turn, bacteria with bile salt hydrolase activity initiate the critical first step in transforming primary bile acids into secondary bile acids. Individuals with IBS are reported to have altered microbial profiles and modified bile acid pools. We have assessed the evidence to support a role for bile acids in the pathophysiology underlying the manifestation of IBS symptoms.
Collapse
Affiliation(s)
- Róisín Ní Dhonnabháín
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Qiao Xiao
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dervla O’Malley
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
194
|
Zhai L, Wu J, Lam YY, Kwan HY, Bian ZX, Wong HLX. Gut-Microbial Metabolites, Probiotics and Their Roles in Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms222312846. [PMID: 34884651 PMCID: PMC8658018 DOI: 10.3390/ijms222312846] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D) is a worldwide prevalent metabolic disorder defined by high blood glucose levels due to insulin resistance (IR) and impaired insulin secretion. Understanding the mechanism of insulin action is of great importance to the continuing development of novel therapeutic strategies for the treatment of T2D. Disturbances of gut microbiota have been widely found in T2D patients and contribute to the development of IR. In the present article, we reviewed the pathological role of gut microbial metabolites including gaseous products, branched-chain amino acids (BCAAs) products, aromatic amino acids (AAAs) products, bile acids (BA) products, choline products and bacterial toxins in regulating insulin sensitivity in T2D. Following that, we summarized probiotics-based therapeutic strategy for the treatment of T2D with a focus on modulating gut microbiota in both animal and human studies. These results indicate that gut-microbial metabolites are involved in the pathogenesis of T2D and supplementation of probiotics could be beneficial to alleviate IR in T2D via modulation of gut microbiota.
Collapse
Affiliation(s)
- Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, New Territories, Hong Kong, China;
| | - Jiayan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
| | - Yan Y. Lam
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, New Territories, Hong Kong, China;
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, New Territories, Hong Kong, China;
- Correspondence: (Z.-X.B.); (H.L.X.W.)
| | - Hoi Leong Xavier Wong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
- Correspondence: (Z.-X.B.); (H.L.X.W.)
| |
Collapse
|
195
|
Dai Z, Wu Z, Zhu W, Wu G. Amino Acids in Microbial Metabolism and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:127-143. [PMID: 34807440 DOI: 10.1007/978-3-030-85686-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids (AAs) not only serve as building blocks for protein synthesis in microorganisms but also play important roles in their metabolism, survival, inter-species crosstalk, and virulence. Different AAs have their distinct functions in microbes of the digestive tract and this in turn has important impacts on host nutrition and physiology. Deconjugation and re-conjugation of glycine- or taurine- conjugated bile acids in the process of their enterohepatic recycling is a good example of the bacterial adaptation to harsh gut niches, inter-kingdom cross-talk with AA metabolism, and cell signaling as the critical control point. It is also a big challenge for scientists to modulate the homeostasis of the pools of AAs and their metabolites in the digestive tract with the aim to improve nutrition and regulate AA metabolism related to anti-virulence reactions. Diversity of the metabolic pathways of AAs and their multi-functions in modulating bacterial growth and survival in the digestive tract should be taken into consideration in recommending nutrient requirements for animals. Thus, the concept of functional amino acids can guide not only microbiological studies but also nutritional and physiological investigations. Cutting edge discoveries in this research area will help to better understand the mechanisms responsible for host-microbe interactions and develop new strategies for improving the nutrition, health, and well-being of both animals and humans.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiyun Zhu
- National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, 77843, TX, USA
| |
Collapse
|
196
|
Li Y, Cao H, Wang X, Guo L, Ding X, Zhao W, Zhang F. Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34802351 DOI: 10.1080/10408398.2021.2004993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent years, the concept of metaorganism expands our insight into how diet-microbe-host interactions contribute to human health and diseases. We realized that many biological metabolic processes in the host can be summarized into metaorganismal relay pathways, in which metabolites such as trimethylamine-N‑oxide, short-chain fatty acids and bile acids act as double-edged swords (beneficial or harmful effects) in the initiation and progression of diseases. Pleiotropic effects of metabolites are derived from several influencing factors including dose level, targeted organ of effect, action duration and species of these metabolites. Based on the pleiotropic effects of metabolites, personalized therapeutic approaches including microecological agents, enzymatic regulators and changes in dietary habits to govern related metabolite production may provide a new insight in promoting human health. In this review, we summarize our current knowledge of metaorganismal relay pathways and elaborate on the pleiotropic effects of metabolites in these pathways, with special emphasis on related therapeutic nutritional interventions.
Collapse
Affiliation(s)
- Yanmin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoqian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
197
|
Zhang M, Wang Y, Zhao X, Liu C, Wang B, Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutr Res 2021; 95:1-18. [PMID: 34757305 DOI: 10.1016/j.nutres.2021.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
A key event featured in the early stage of chronic gut inflammatory diseases is the disordered recruitment and excess accumulation of immune cells in the gut lamina propria. This process is followed by the over-secretion of pro-inflammatory factors and the prolonged overactive inflammatory responses. Growing evidence has suggested that gut inflammatory diseases may be mitigated by butyric acid (BA) or butyrate sodium (NaB). Laboratory studies show that BA and NaB can enhance gut innate immune function through G-protein-mediated signaling pathways while mitigating the overactive inflammatory responses by inhibiting histone deacetylase. The regulatory effects may occur in both epithelial enterocytes and the immune cells in the lamina propria. Prior to further clinical trials, comprehensive literature reviews and rigid examination concerning the underlying mechanism are necessary. To this end, we collected and reviewed 197 published reports regarding the mechanisms, bioactivities, and clinical effects of BA and NaB to modulate gut inflammatory diseases. Our review found insufficient evidence to guarantee the safety of clinical practice of BA and NaB, either by anal enema or oral administration of capsule or tablet. The safety of clinical use of BA and NaB should be further evaluated. Alternatively, dietary patterns rich in "fruits, vegetables and beans" may be an effective and safe approach to prevent gut inflammatory disease, which elevates gut microbiota-dependent production of BA. Our review provides a comprehensive reference to future clinical trials of BA and NaB to treat gut inflammatory diseases.
Collapse
Affiliation(s)
- Mingbao Zhang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Yanan Wang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Baozhen Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| |
Collapse
|
198
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
199
|
Neacsu M, Vaughan NJ, Multari S, Haljas E, Scobbie L, Duncan GJ, Cantlay L, Fyfe C, Anderson S, Horgan G, Johnstone AM, Russell WR. Hemp and buckwheat are valuable sources of dietary amino acids, beneficially modulating gastrointestinal hormones and promoting satiety in healthy volunteers. Eur J Nutr 2021; 61:1057-1072. [PMID: 34716790 PMCID: PMC8854285 DOI: 10.1007/s00394-021-02711-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Purpose This study evaluated the postprandial effects following consumption of buckwheat, fava bean, pea, hemp and lupin compared to meat (beef); focussing on biomarkers of satiety, gut hormones, aminoacids and plant metabolites bioavailability and metabolism. Methods Ten subjects (n = 3 men; n = 7 women; 42 ± 11.8 years of age; BMI 26 ± 5.8 kg/m2) participated in six 1-day independent acute interventions, each meal containing 30 g of protein from buckwheat, fava bean, pea, hemp, lupin and meat (beef). Blood samples were collected during 24-h and VAS questionnaires over 5-h. Results Volunteers consumed significantly higher amounts of most amino acids from the meat meal, and with few exceptions, postprandial composition of plasma amino acids was not significantly different after consuming the plant-based meals. Buckwheat meal was the most satious (300 min hunger scores, p < 0.05).Significant increase in GLP-1 plasma (AUC, iAUC p = 0.01) found after hemp compared with the other plant-based meals. Decreased plasma ghrelin concentrations (iAUC p < 0.05) found on plant (hemp) vs. meat meal. Several plasma metabolites after hemp meal consumption were associated with hormone trends (partial least squares-discriminant analysis (PLS-DA): 4-hydroxyphenylpyruvic acid, indole 3-pyruvic acid, 5-hydoxytryptophan, genistein and biochanin A with GLP-1, PYY and insulin; 3-hydroxymandelic acid and luteolidin with GLP-1 and ghrelin and 4-hydroxymandelic acid, benzoic acid and secoisolariciresinol with insulin and ghrelin. Plasma branched-chain amino acids (BCAAs), (iAUC, p < 0.001); and phenylalanine and tyrosine (iAUC, p < 0.05) were lower after buckwheat comparison with meat meal. Conclusion Plants are valuable sources of amino acids which are promoting satiety. The impact of hemp and buckwheat on GLP-1 and, respectively, BCAAs should be explored further as could be relevant for aid and prevention of chronic diseases such as type 2 diabetes. Study registered with clinicaltrial.gov on 12th July 2013, study ID number: NCT01898351. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02711-z.
Collapse
Affiliation(s)
- Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - Nicholas J Vaughan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Salvatore Multari
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Elisabeth Haljas
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Lorraine Scobbie
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Gary J Duncan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Claire Fyfe
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Susan Anderson
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Wendy R Russell
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| |
Collapse
|
200
|
Debnath N, Kumar R, Kumar A, Mehta PK, Yadav AK. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev 2021; 37:105-153. [PMID: 34678130 DOI: 10.1080/02648725.2021.1989847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Every individual harbours a complex, diverse and mutualistic microbial flora in their intestine and over the time it became an integral part of the body, affecting a plethora of activities of the host. Interaction between host and gut-microbiota affects several aspects of host physiology. Gut-microbiota affects host metabolism by fermenting unabsorbed/undigested carbohydrates in the large intestine. Not only the metabolic functions, any disturbances in the composition of the gut-microbiota during first 2-3 years of life may impact on the brain development and later affects cognition and behaviour. Thus, gut-dysbiosis causes certain serious pathological conditions in the host including metabolic disorders, inflammatory bowel disease and mood alterations, etc. Microbial-metabolites in recent times have emerged as key mediators and are responsible for microbiota induced beneficial effects on host. This review provides an overview of the mechanism of microbial-metabolite production, their respective physiological functions and the impact of gut-microbiome in health and diseases. Metabolites from dietary fibres, aromatic amino acids such as tryptophan, primary bile acids and others are the potential substances and link microbiota to host physiology. Many of these metabolites act as signalling molecules to a number of cells types and also help in the secretion of hormones. Moreover, interaction of microbiota derived metabolites with their host, immunity boosting mechanisms, protection against pathogens and modulation of metabolism is also highlighted here. Understanding all these functional attributes of metabolites produced from gut-microbiota may lead to the opening of a new avenue for preventing and developing potent therapies against several diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | | | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| |
Collapse
|