151
|
Chen H, Gesumaria L, Park YK, Oliver TG, Singer DS, Ge K, Schrump DS. BET Inhibitors Target the SCLC-N Subtype of Small-Cell Lung Cancer by Blocking NEUROD1 Transactivation. Mol Cancer Res 2023; 21:91-101. [PMID: 36378541 PMCID: PMC9898120 DOI: 10.1158/1541-7786.mcr-22-0594] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant malignancy that urgently needs new therapies. Four master transcription factors (ASCL1, NEUROD1, POU2F3, and YAP1) have been identified in SCLC, and each defines the transcriptome landscape of one molecular subtype. However, these master transcription factors have not been found directly druggable. We hypothesized that blocking their transcriptional coactivator(s) could provide an alternative approach to target these master transcription factors. Here, we identify that BET proteins physically interact with NEUROD1 and function as transcriptional coactivators. Using CRISPR knockout and ChIP-seq, we demonstrate that NEUROD1 plays a critical role in defining the landscapes of BET proteins in the SCLC genome. Blocking BET proteins by inhibitors led to broad suppression of the NEUROD1-target genes, especially those associated with superenhancers, resulting in the inhibition of SCLC growth in vitro and in vivo. LSAMP, a membrane protein in the IgLON family, was identified as one of the NEUROD1-target genes mediating BET inhibitor sensitivity in SCLC. Altogether, our study reveals that BET proteins are essential in regulating NEUROD1 transactivation and are promising targets in SCLC-N subtype tumors. IMPLICATIONS Our findings suggest that targeting transcriptional coactivators could be a novel approach to blocking the master transcription factors in SCLC for therapeutic purposes.
Collapse
Affiliation(s)
- Haobin Chen
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Gesumaria
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Kwon Park
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trudy G. Oliver
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
152
|
Centonze G, Maisonneuve P, Simbolo M, Lagano V, Grillo F, Prinzi N, Pusceddu S, Missiato L, Colantuono M, Sabella G, Bercich L, Mangogna A, Rolli L, Grisanti S, Benvenuti MR, Pastorino U, Roz L, Scarpa A, Berruti A, Capella C, Milione M. Ascl1 and OTP tumour expressions are associated with disease-free survival in lung atypical carcinoids. Histopathology 2023; 82:870-884. [PMID: 36720841 DOI: 10.1111/his.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023]
Abstract
According to World Health Organization guidelines, atypical carcinoids (ACs) are well-differentiated lung neuroendocrine tumours with 2-10 mitoses/2 mm2 and/or foci of necrosis (usually punctate). Besides morphological criteria, no further tools in predicting AC clinical outcomes are proposed. The aim of this work was to identify novel factors able to predict AC disease aggressiveness and progression. METHODS AND RESULTS: Three hundred-seventy lung carcinoids were collected and centrally reviewed by two expert pathologists. Morphology and immunohistochemical markers (Ki-67, TTF-1, CD44, OTP, SSTR2A, Ascl1, p53, and Rb1) were studied and correlated with disease-free survival (DFS) and overall survival (OS). Fifty-eight of 370 tumours were defined as AC. Survival analysis showed that patients with Ascl1 + ACs and those with OTP-ACs had a significantly worse DFS than patients with Ascl1-ACs and OTP + ACs, respectively. Combining Ascl1 and OTP expressions, groups were formed reflecting the aggressiveness of disease (P = 0.0005). Ki-67 ≥10% patients had a significantly worse DFS than patients with Ki-67 <10%. At multivariable analysis, Ascl1 (present versus absent, hazard ratio [HR] = 3.42, 95% confidence interval [CI] 1.35-8.65, P = 0.009) and OTP (present versus absent, HR = 0.26, 95% CI 0.10-0.68, P = 0.006) were independently associated with DFS. The prognosis of patients with Ki-67 ≥10% tended to be worse compared to that with Ki-67 <10%. On the contrary, OTP (present versus absent, HR = 0.28, 95% CI 0.09-0.89, P = 0.03), tumour stage (III-IV versus I-II, HR = 4.25, 95% CI 1.42-12.73, P = 0.01) and increasing age (10-year increase, HR = 1.67, 95% CI 1.04-2.68, P = 0.03) were independently associated with OS. CONCLUSION: This retrospective analysis of lung ACs showed that Ascl1 and OTP could be the main prognostic drivers of postoperative recurrence.
Collapse
Affiliation(s)
- Giovanni Centonze
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Vincenzo Lagano
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Grillo
- Unit of Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loretta Missiato
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marilena Colantuono
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luisa Bercich
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Luigi Rolli
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy.,ARC-NET Research Center for Applied Research on Cancer, and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Carlo Capella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
153
|
Yoshida M, Oda C, Mishima K, Tsuji I, Obika S, Shimojo M. An antisense amido-bridged nucleic acid gapmer oligonucleotide targeting SRRM4 alters REST splicing and exhibits anti-tumor effects in small cell lung cancer and prostate cancer cells. Cancer Cell Int 2023; 23:8. [PMID: 36650528 PMCID: PMC9847160 DOI: 10.1186/s12935-022-02842-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Antisense oligonucleotide (ASO) medicine for clinical applications has been becoming a reality. We previously developed a gapmer ASO targeting Ser/Arg repetitive matrix 4 (SRRM4) that is abnormally expressed in small cell lung cancer (SCLC). However the detailed mechanism of ASO through repressing SRRM4 has not been completely elucidated. Further, effectiveness of SRRM4 ASO to prostate cancer (PCa) cells expressing SRRM4 similar to SCLC remains to be elucidated. RE1-silencing transcription factor (REST) is a tumor suppressor, and its splicing isoform (sREST) is abnormally expressed by SRRM4 and causes carcinogenesis with neuroendocrine phenotype in SCLC. The present study aimed to understand the contribution of REST splicing by SRRM4 ASO administration. METHODS SRRM4 expression and REST splicing were analyzed by RT-qPCR and conventional RT-PCR after treating SRRM4 ASO, and cell viability was analyzed in vitro. Exogenous reconstitution of Flag-tagged REST plasmid in SCLC cells and the splice-switching oligonucleotide (SSO) specific for REST was analyzed for cell viability. Furthermore, we expanded the application of SRRM4 ASO in PCa cells abnormally expressing SRRM4 mRNA in vitro. RESULTS SRRM4 ASO successfully downregulated SRRM4 expression, followed by repressed cell viability of SCLC and PCa cells in a dose-dependent manner. Administration of SRRM4 ASO then modified the alternative splicing of REST, resulting reduced cell viability. REST SSO specifically modified REST splicing increased REST expression, resulting in reduced cell viability. CONCLUSIONS Our data demonstrate that a gapmer ASO targeting SRRM4 (SRRM4 ASO) reduces cell viability through splicing changes of REST, followed by affecting REST-controlled genes in recalcitrant tumors SCLC and PCa cells.
Collapse
Affiliation(s)
- Misa Yoshida
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Chihiro Oda
- grid.136593.b0000 0004 0373 3971School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Keishiro Mishima
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Itsuki Tsuji
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Satoshi Obika
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871 Japan ,grid.482562.fNational Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka 567-0085 Japan
| | - Masahito Shimojo
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
154
|
Sreekumar A, Saini S. Role of transcription factors and chromatin modifiers in driving lineage reprogramming in treatment-induced neuroendocrine prostate cancer. Front Cell Dev Biol 2023; 11:1075707. [PMID: 36711033 PMCID: PMC9879360 DOI: 10.3389/fcell.2023.1075707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (NEPC) is a highly lethal variant of prostate cancer that is increasing in incidence with the increased use of next-generation of androgen receptor (AR) pathway inhibitors. It arises via a reversible trans-differentiation process, referred to as neuroendocrine differentiation (NED), wherein prostate cancer cells show decreased expression of AR and increased expression of neuroendocrine (NE) lineage markers including enolase 2 (ENO2), chromogranin A (CHGA) and synaptophysin (SYP). NEPC is associated with poor survival rates as these tumors are aggressive and often metastasize to soft tissues such as liver, lung and central nervous system despite low serum PSA levels relative to disease burden. It has been recognized that therapy-induced NED involves a series of genetic and epigenetic alterations that act in a highly concerted manner in orchestrating lineage switching. In the recent years, we have seen a spurt in research in this area that has implicated a host of transcription factors and epigenetic modifiers that play a role in driving this lineage switching. In this article, we review the role of important transcription factors and chromatin modifiers that are instrumental in lineage reprogramming of prostate adenocarcinomas to NEPC under the selective pressure of various AR-targeted therapies. With an increased understanding of the temporal and spatial interplay of transcription factors and chromatin modifiers and their associated gene expression programs in NEPC, better therapeutic strategies are being tested for targeting NEPC effectively.
Collapse
|
155
|
Sanada M, Yamazaki M, Yamada T, Fujino K, Kudoh S, Tenjin Y, Saito H, Kudo N, Sato Y, Matsuo A, Suzuki M, Ito T. Heterogeneous expression and role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in small cell lung cancer. Hum Cell 2023; 36:409-420. [PMID: 36463543 DOI: 10.1007/s13577-022-00830-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 12/07/2022]
Abstract
The present study investigated the expression and role of ROR2 in small cell lung cancer (SCLC). To examine the expression of ROR2, 27 surgically resected SCLC tissue samples were immunostained for ROR2. Sixteen tissue samples were positive and some showed intratumor heterogeneity in staining intensity. The heterogeneity of ROR2 expression was also observed in tumor tissues from a PDX model of SCLC, in which there were cells with high ROR2 expression (ROR2high cells) and without its expression (ROR2low cells). These cells were subjected to a RNA sequence analysis. GSEA was performed and the results obtained revealed the enrichment of molecules such as G2M checkpoint, mitotic spindle, and E2F targets in ROR2high cells. The rate of EdU incorporation was significantly higher in ROR2high cells than ROR2low cells from the PDX model and the SCLC cell lines. Cell proliferation was suppressed in ROR2 KO SBC3 cells in vitro and in vivo. Comparisons of down-regulated differentially expressed genes in ROR2 KO SBC3 cells with up-regulated DEG in ROR2high cells from the PDX model revealed 135 common genes. After a Metascape analysis of these genes, we focused on Aurora kinases. In SCLC cell lines, the knockdown of ROR2 suppressed Aurora kinases. Therefore, ROR2 appears to regulate the cell cycle through Aurora kinases. The present results reveal a role for ROR2 in SCLC and afford a candidate system (ROR2-Aurora kinase) accompanying tumor heterogeneity in SCLC.
Collapse
Affiliation(s)
- Mune Sanada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masaya Yamazaki
- Department of Medical Biochemistry, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Tatsuya Yamada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Kosuke Fujino
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Tenjin
- Department of Respiratory Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Haruki Saito
- Departments of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Noritaka Kudo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan. .,Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, 325 Izumi, Kita-Ku, Kumamoto, Kumamoto, 861-5598, Japan.
| |
Collapse
|
156
|
Wang Q, Gümüş ZH, Colarossi C, Memeo L, Wang X, Kong CY, Boffetta P. SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection. J Thorac Oncol 2023; 18:31-46. [PMID: 36243387 PMCID: PMC10797993 DOI: 10.1016/j.jtho.2022.10.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022]
Abstract
We review research regarding the epidemiology, risk factors, genetic susceptibility, molecular pathology, and early detection of SCLC, a deadly tumor that accounts for 14% of lung cancers. We first summarize the changing incidences of SCLC globally and in the United States among males and females. We then review the established risk factor (i.e., tobacco smoking) and suspected nonsmoking-related risk factors for SCLC, and emphasize the importance of continued effort in tobacco control worldwide. Review of genetic susceptibility and molecular pathology suggests different molecular pathways in SCLC development compared with other types of lung cancer. Last, we comment on the limited utility of low-dose computed tomography screening in SCLC and on several promising blood-based molecular biomarkers as potential tools in SCLC early detection.
Collapse
Affiliation(s)
- Qian Wang
- University Hospitals Seidman Cancer Center, Cleveland, Ohio.
| | - Zeynep H Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Thoracic Oncology, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Xintong Wang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chung Yin Kong
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paolo Boffetta
- Department of Family, Population & Preventive Medicine, Stony Brook University, Stony Brook, New York; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
157
|
Leung ELH, Fan XX, Huang JM, Huang C, Lin H, Cao YB. Holistic immunomodulation for small cell lung cancer. Semin Cancer Biol 2023; 88:96-105. [PMID: 36470543 DOI: 10.1016/j.semcancer.2022.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is characterized by a high mortality rate, rapid growth, and early metastasis, which lead to a poor prognosis. Moreover, limited clinical treatment options further lower the survival rate of patients. Therefore, novel technology and agents are urgently required to enhance clinical efficacy. In this review, from a holistic perspective, we summarized the therapeutic targets, agents and strategies with the most potential for treating SCLC, including chimeric antigen receptor (CAR) T therapy, immunomodulating antibodies, traditional Chinese medicines (TCMs), and the microbiota, which have been found recently to improve the clinical outcomes and prognosis of SCLC. Multiomics technologies can be integrated to develop effective diagnostic methods and identify new targets for new drug discovery in SCLC. We discussed in depth the feasibility, potential, and challenges of these new strategies, as well as their combinational treatments, which may provide promising alternatives for enhancing the clinical efficacy of SCLC in the future.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao Special Administrative Region of China.
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao Special Administrative Region of China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Hong Lin
- Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China
| | - Ya-Bing Cao
- Department of Oncology, Kiang Wu Hospital, Macao Special Administrative Region of China.
| |
Collapse
|
158
|
Kong R, Patel AS, Sato T, Jiang F, Yoo S, Bao L, Sinha A, Tian Y, Fridrikh M, Liu S, Feng J, He X, Jiang J, Ma Y, Grullon K, Yang D, Powell CA, Beasley MB, Zhu J, Snyder EL, Li S, Watanabe H. Transcriptional Circuitry of NKX2-1 and SOX1 Defines an Unrecognized Lineage Subtype of Small-Cell Lung Cancer. Am J Respir Crit Care Med 2022; 206:1480-1494. [PMID: 35848993 PMCID: PMC9757094 DOI: 10.1164/rccm.202110-2358oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale: The current molecular classification of small-cell lung cancer (SCLC) on the basis of the expression of four lineage transcription factors still leaves its major subtype SCLC-A as a heterogeneous group, necessitating more precise characterization of lineage subclasses. Objectives: To refine the current SCLC classification with epigenomic profiles and to identify features of the redefined SCLC subtypes. Methods: We performed unsupervised clustering of epigenomic profiles on 25 SCLC cell lines. Functional significance of NKX2-1 (NK2 homeobox 1) was evaluated by cell growth, apoptosis, and xenograft using clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-associated protein 9)-mediated deletion. NKX2-1-specific cistromic profiles were determined using chromatin immunoprecipitation followed by sequencing, and its functional transcriptional partners were determined using coimmunoprecipitation followed by mass spectrometry. Rb1flox/flox; Trp53flox/flox and Rb1flox/flox; Trp53flox/flox; Nkx2-1flox/flox mouse models were engineered to explore the function of Nkx2-1 in SCLC tumorigenesis. Epigenomic landscapes of six human SCLC specimens and 20 tumors from two mouse models were characterized. Measurements and Main Results: We identified two epigenomic subclusters of the major SCLC-A subtype: SCLC-Aα and SCLC-Aσ. SCLC-Aα was characterized by the presence of a super-enhancer at the NKX2-1 locus, which was observed in human SCLC specimens and a murine SCLC model. We found that NKX2-1, a dual lung and neural lineage factor, is uniquely relevant in SCLC-Aα. In addition, we found that maintenance of this neural identity in SCLC-Aα is mediated by collaborative transcriptional activity with another neuronal transcriptional factor, SOX1 (SRY-box transcription factor 1). Conclusions: We comprehensively describe additional epigenomic heterogeneity of the major SCLC-A subtype and define the SCLC-Aα subtype by the core regulatory circuitry of NKX2-1 and SOX1 super-enhancers and their functional collaborations to maintain neuronal linage state.
Collapse
Affiliation(s)
- Ranran Kong
- Department of Thoracic Surgery and
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Ayushi S. Patel
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, Langone Medical Center, New York University, New York, New York
| | - Takashi Sato
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, and
- Sema4, Stamford, Connecticut
| | - Li Bao
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Abhilasha Sinha
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Yang Tian
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Maya Fridrikh
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Shuhui Liu
- Division of Infectious Diseases, Department of Medicine
| | - Jie Feng
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xi’an International Medical Center, Xi’an, China
| | | | | | - Karina Grullon
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Dawei Yang
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China; and
| | - Charles A. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Mary Beth Beasley
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Tisch Cancer Institute
- Department of Genetics and Genomic Sciences, and
- Sema4, Stamford, Connecticut
| | - Eric L. Snyder
- Department of Pathology
- Department of Oncological Sciences, and
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Department of Genetics and Genomic Sciences, and
| |
Collapse
|
159
|
Gopal P, Petty A, Rogacki K, Bera T, Bareja R, Peacock CD, Abazeed ME. Multivalent state transitions shape the intratumoral composition of small cell lung carcinoma. SCIENCE ADVANCES 2022; 8:eabp8674. [PMID: 36516249 PMCID: PMC9750150 DOI: 10.1126/sciadv.abp8674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Studies to date have not resolved how diverse transcriptional programs contribute to the intratumoral heterogeneity of small cell lung carcinoma (SCLC), an aggressive tumor associated with a dismal prognosis. Here, we identify distinct and commutable transcriptional states that confer discrete functional attributes in individual SCLC tumors. We combine an integrative approach comprising the transcriptomes of 52,975 single cells, high-resolution measurement of cell state dynamics at the single-cell level, and functional and correlative studies using treatment naïve xenografts with associated clinical outcomes. We show that individual SCLC tumors contain distinctive proportions of stable cellular states that are governed by bidirectional cell state transitions. Using drugs that target the epigenome, we reconfigure tumor state composition in part by altering individual state transition rates. Our results reveal new insights into how single-cell transition behaviors promote cell state equilibrium in SCLC and suggest that facile plasticity underlies its resistance to therapy and lethality.
Collapse
Affiliation(s)
- Priyanka Gopal
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
| | - Aaron Petty
- Department of Translational Hematology Oncology Research, Cleveland Clinic, 2111 East 96th St./NE-6, Cleveland, OH 44195, USA
| | - Kevin Rogacki
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
| | - Titas Bera
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
| | - Rohan Bareja
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Ave., New York, NY 10021, USA
| | - Craig D. Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University, 2109 Adelbert Road, Biomedical Research Building 647B, Cleveland, OH 44106, USA
| | - Mohamed E. Abazeed
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, 251 E. Huron St., Galter Pavilion LC-178, Chicago, IL 60611, USA
- Robert H. Lurie Cancer Center, Northwestern University, 303 E. Superior St./Lurie 7, Chicago, IL 60611, USA
| |
Collapse
|
160
|
He P, Lim K, Sun D, Pett JP, Jeng Q, Polanski K, Dong Z, Bolt L, Richardson L, Mamanova L, Dabrowska M, Wilbrey-Clark A, Madissoon E, Tuong ZK, Dann E, Suo C, Goh I, Yoshida M, Nikolić MZ, Janes SM, He X, Barker RA, Teichmann SA, Marioni JC, Meyer KB, Rawlins EL. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 2022; 185:4841-4860.e25. [PMID: 36493756 DOI: 10.1016/j.cell.2022.11.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.
Collapse
Affiliation(s)
- Peng He
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Quitz Jeng
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Ziqi Dong
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge CB2 0 QQ, UK
| | - Isaac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Masahiro Yoshida
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Marko Z Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
161
|
Tenjin Y. Molecular basis of heterogeneity in small cell lung cancer. Transl Cancer Res 2022; 11:4237-4240. [PMID: 36644189 PMCID: PMC9834598 DOI: 10.21037/tcr-22-2224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Yuki Tenjin
- Department of Respiratory Medicine, Kumamoto University, Graduate School of Medical Science Kumamoto University, Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan;,Department of Respiratory Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Miyazaki, Japan
| |
Collapse
|
162
|
Khan P, Fatima M, Khan MA, Batra SK, Nasser MW. Emerging role of chemokines in small cell lung cancer: Road signs for metastasis, heterogeneity, and immune response. Semin Cancer Biol 2022; 87:117-126. [PMID: 36371025 PMCID: PMC10199458 DOI: 10.1016/j.semcancer.2022.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant, relatively immune-cold, and deadly subtype of lung cancer. SCLC has been viewed as a single or homogenous disease that includes deletion or inactivation of the two major tumor suppressor genes (TP53 and RB1) as a key hallmark. However, recent sightings suggest the complexity of SCLC tumors that comprises highly dynamic multiple subtypes contributing to high intratumor heterogeneity. Furthermore, the absence of targeted therapies, the understudied tumor immune microenvironment (TIME), and subtype plasticity are also responsible for therapy resistance. Secretory chemokines play a crucial role in immunomodulation by trafficking immune cells to the tumors. Chemokines and cytokines modulate the anti-tumor immune response and wield a pro-/anti-tumorigenic effect on SCLC cells after binding to cognate receptors. In this review, we summarize and highlight recent findings that establish the role of chemokines in SCLC growth and metastasis, and sophisticated intratumor heterogeneity. We also discuss the chemokine networks that are putative targets or modulators for augmenting the anti-tumor immune responses in targeted or chemo-/immuno-therapeutic strategies, and how these combinations may be utilized to conquer SCLC.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
163
|
Cortinovis DL, Colonese F, Abbate MI, Sala L, Meazza Prina M, Cordani N, Sala E, Canova S. Harnessing DLL3 inhibition: From old promises to new therapeutic horizons. Front Med (Lausanne) 2022; 9:989405. [PMID: 36530878 PMCID: PMC9751403 DOI: 10.3389/fmed.2022.989405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 10/15/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a high relapse rate, limited therapeutic options, and poor prognosis. The combination of chemotherapy and immune-checkpoint inhibitors brings a new therapeutic era, although the lack of predictive biomarkers of response reduces the efficacy of applying the treatment to the entire population of patients with SCLC. The lack of treatments able to bind to a specific target has always been a substantial difference to the non-small cell lung cancer (NSCLC) counterpart. Delta-like canonical Notch ligand 3 is a protein frequently overexpressed in SCLC and is therefore being explored as a potentially promising therapeutic target in high-grade neuroendocrine lung cancer. In this article, we critically review the activity and efficacy of old DLL3 inhibitors antibody-drug conjugate (ADC) and their failures through new compounds and their possible applications in clinical practice, with a focus on new molecular classification of SCLC.
Collapse
Affiliation(s)
- Diego Luigi Cortinovis
- Department of Medical Oncology, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | | | - Maria Ida Abbate
- Department of Medical Oncology, San Gerardo Hospital, Monza, Italy
| | - Luca Sala
- Department of Medical Oncology, San Gerardo Hospital, Monza, Italy
| | | | - Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Elisa Sala
- Department of Medical Oncology, San Gerardo Hospital, Monza, Italy
| | - Stefania Canova
- Department of Medical Oncology, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
164
|
Transcriptional Profiling Reveals Mesenchymal Subtypes of Small Cell Lung Cancer with Activation of the Epithelial-to-Mesenchymal Transition and Worse Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14225600. [PMID: 36428693 PMCID: PMC9688413 DOI: 10.3390/cancers14225600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
While molecular subtypes of small cell lung cancers (SCLC) based on neuroendocrine (NE) and non-NE transcriptional regulators have been established, the association between these molecular subtypes and recently recognized SCLC-inflamed (SCLC-I) tumors is less understood. In this study, we used gene expression profiles of SCLC primary tumors and cell lines to discover and characterize SCLC-M (mesenchymal) tumors distinct from SCLC-I tumors for molecular features, clinical outcomes, and cross-species developmental trajectories. SCLC-M tumors show elevated epithelial-to-mesenchymal transformation (EMT) and YAP1 activity but a low level of anticancer immune activity and worse clinical outcomes than SCLC-I tumors. The prevalence of SCLC-M tumors was 3.2-7.4% in primary SCLC cohorts, which was further confirmed by immunohistochemistry in an independent cohort. Deconvoluted gene expression of tumor epithelial cells showed that EMT and increased immune function are tumor-intrinsic characteristics of SCLC-M and SCLC-I subtypes, respectively. Cross-species analysis revealed that human primary SCLC tumors recapitulate the NE-to-non-NE progression murine model providing insight into the developmental relationships among SCLC subtypes, e.g., early NE (SCLC-A and -N)- vs. late non-NE tumors (SCLC-M and -P). Newly identified SCLC-M tumors are biologically and clinically distinct from SCLC-I tumors which should be taken into account for the diagnosis and treatment of the disease.
Collapse
|
165
|
Sun X, Liu L, Wan T, Huang Q, Chen J, Luo R, Liu J. The prognostic impact of the immune microenvironment in small-cell neuroendocrine carcinoma of the uterine cervix: PD-L1 and immune cell subtypes. Cancer Cell Int 2022; 22:348. [PMCID: PMC9664608 DOI: 10.1186/s12935-022-02716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
We investigate the correlation between programmed cell death-ligand 1 (PD-L1) and tumor-associated immune cell (TAIC) density in small-cell neuroendocrine carcinoma of the uterine cervix (SCNEC) and their correlation with clinicopathologic features.
Methods
PD-L1 and mismatch repair protein (MMR) expression in cancer cells and the density of TAIC were evaluated by immunohistochemistry in 89 SCNEC patients. The combined positive score (CPS), tumor proportion score (TPS), and immune cell score (ICS) of PD-L1 were measured, along with their correlation with clinicopathologic features in SCNEC patients using statistical analyses.
Results
CPS of PD-L1 ≥ 1 was seen in 68.5% of patients, positive TPS and ICS of PD-L1 were detected in 59.6% and 33.7% of patients, respectively. PD-L1CPS was higher in tumor-infiltrating immune cells (r = 0.387, p = 0.001) and positively correlated with programmed cell death-1 and forkhead box P3 + regulatory T cell (FOXP3 + Treg) infiltration (r = 0.443, p < 0.001; r = 0.532, p < 0.001). There was no statistical correlation between PD-L1 and MMR status. PD-L1CPS and PD-L1ICS positivity were independent prognostic factors, correlating with a favorable survival (HR (95%CI) = 0.363(0.139–0.950), p = 0.039 and HR (95% CI) = 0.199(0.050–0.802), p = 0.023, respectively). PD-L1ICS positivity was an independent indicator of recurrence in SCNEC patients and associated with better disease-free survival (HR (95% CI) = 0.124(0.036–0425), p = 0.001). TAIC and MMR levels had no statistical impact on survival results.
Conclusions
PD-L1 positivity was seen in over half of SCNEC tumors. It may work synergistically with FOXP3 + Treg and other infiltrating immune cells to support an adaptive immune response. PD-L1 positivity may be a favorable prognostic factor in SCNEC.
Collapse
|
166
|
Pongor LS, Tlemsani C, Elloumi F, Arakawa Y, Jo U, Gross JM, Mosavarpour S, Varma S, Kollipara RK, Roper N, Teicher BA, Aladjem MI, Reinhold W, Thomas A, Minna JD, Johnson JE, Pommier Y. Integrative epigenomic analyses of small cell lung cancer cells demonstrates the clinical translational relevance of gene body methylation. iScience 2022; 25:105338. [DOI: 10.1016/j.isci.2022.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022] Open
|
167
|
Stefani A, Piro G, Schietroma F, Strusi A, Vita E, Fiorani S, Barone D, Monaca F, Sparagna I, Valente G, Ferrara MG, D’Argento E, Di Salvatore M, Carbone C, Tortora G, Bria E. Unweaving the mitotic spindle: A focus on Aurora kinase inhibitors in lung cancer. Front Oncol 2022; 12:1026020. [PMID: 36387232 PMCID: PMC9647054 DOI: 10.3389/fonc.2022.1026020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is one of the most aggressive malignancies, classified into two major histological subtypes: non-small cell lung cancer (NSCLC), that accounts for about 85% of new diagnosis, and small cell lung cancer (SCLC), the other 15%. In the case of NSCLC, comprehensive genome sequencing has allowed the identification of an increasing number of actionable targets, which have become the cornerstone of treatment in the advanced setting. On the other hand, the concept of oncogene-addiction is lacking in SCLC, and the only innovation of the last 30 years has been the introduction of immune checkpoint inhibitors in extensive stage disease. Dysregulation of cell cycle is a fundamental step in carcinogenesis, and Aurora kinases (AURKs) are a family of serine/threonine kinases that play a crucial role in the correct advance through the steps of the cycle. Hyperexpression of Aurora kinases is a common protumorigenic pathway in many cancer types, including NSCLC and SCLC; in addition, different mechanisms of resistance to anticancer drugs rely on AURK expression. Hence, small molecule inhibitors of AURKs have been developed in recent years and tested in several malignancies, with different results. The aim of this review is to analyze the current evidences of AURK inhibition in lung cancer, starting from preclinical rationale to finish with clinical trials available up to now.
Collapse
Affiliation(s)
- Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Schietroma
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Strusi
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Fiorani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diletta Barone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ettore D’Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariantonietta Di Salvatore
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
168
|
Hiatt JB, Sandborg H, Garrison SM, Arnold HU, Liao SY, Norton JP, Friesen TJ, Wu F, Sutherland KD, Rienhoff HY, Martins R, Houghton AM, Srivastava S, MacPherson D. Inhibition of LSD1 with Bomedemstat Sensitizes Small Cell Lung Cancer to Immune Checkpoint Blockade and T-Cell Killing. Clin Cancer Res 2022; 28:4551-4564. [PMID: 35920742 PMCID: PMC9844673 DOI: 10.1158/1078-0432.ccr-22-1128] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE The addition of immune checkpoint blockade (ICB) to platinum/etoposide chemotherapy changed the standard of care for small cell lung cancer (SCLC) treatment. However, ICB addition only modestly improved clinical outcomes, likely reflecting the high prevalence of an immunologically "cold" tumor microenvironment in SCLC, despite high mutational burden. Nevertheless, some patients clearly benefit from ICB and recent reports have associated clinical responses to ICB in SCLC with (i) decreased neuroendocrine characteristics and (ii) activation of NOTCH signaling. We previously showed that inhibition of the lysine-specific demethylase 1a (LSD1) demethylase activates NOTCH and suppresses neuroendocrine features of SCLC, leading us to investigate whether LSD1 inhibition would enhance the response to PD-1 inhibition in SCLC. EXPERIMENTAL DESIGN We employed a syngeneic immunocompetent model of SCLC, derived from a genetically engineered mouse model harboring Rb1/Trp53 inactivation, to investigate combining the LSD1 inhibitor bomedemstat with anti-PD-1 therapy. In vivo experiments were complemented by cell-based studies in murine and human models. RESULTS Bomedemstat potentiated responses to PD-1 inhibition in a syngeneic model of SCLC, resulting in increased CD8+ T-cell infiltration and strong tumor growth inhibition. Bomedemstat increased MHC class I expression in mouse SCLC tumor cells in vivo and augmented MHC-I induction by IFNγ and increased killing by tumor-specific T cells in cell culture. CONCLUSIONS LSD1 inhibition increased MHC-I expression and enhanced responses to PD-1 inhibition in vivo, supporting a new clinical trial to combine bomedemstat with standard-of-care PD-1 axis inhibition in SCLC.
Collapse
Affiliation(s)
- Joseph B. Hiatt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Veterans Affairs Puget Sound Healthcare System - Seattle Branch, Seattle, Washington 98108, USA,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Holly Sandborg
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sarah M. Garrison
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Henry U. Arnold
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sheng-You Liao
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Justin P. Norton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Travis J. Friesen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Kate D. Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Renato Martins
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - A. McGarry Houghton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Pulmonary and Critical Care Division, University of Washington, Seattle, Washington, USA
| | - Shivani Srivastava
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
169
|
NDR1 activates CD47 transcription by increasing protein stability and nuclear location of ASCL1 to enhance cancer stem cell properties and evasion of phagocytosis in small cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:254. [PMID: 36224405 DOI: 10.1007/s12032-022-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/21/2022] [Indexed: 10/17/2022]
Abstract
Small cell lung cancer (SCLC) is one of the most malignant types of lung cancer. Cancer stem cell (CSC) and tumor immune evasion are critical for the development of SCLC. We previously reported that NDR1 enhances breast CSC properties. NDR1 might also have a role in the regulation of immune responses. In the current study, we explore the function of NDR1 in the control of CSC properties and evasion of phagocytosis in SCLC. We find that NDR1 enhances the enrichment of the ALDEFLUORhigh and CD133high population, and promotes sphere formation in SCLC cells. Additionally, NDR1 upregulates CD47 expression to enhance evasion of phagocytosis in SCLC. Furthermore, the effects of NDR1 enhanced CD47 expression and evasion of phagocytosis are more prominent in CSC than in non-CSC. Importantly, NDR1 promotes ASCL1 expression to enhance NDR1-promoted CSC properties and evasion of phagocytosis in SCLC cells. Mechanically, NDR1 enhances protein stability and the nuclear location of ASCL1 to activate the transcription of CD47 in SCLC. Finally, CD47-blocking antibody can be used to target NDR1 enhanced CSC properties and evasion of phagocytosis by suppressing EGFR activation in SCLC. In summary, our data indicate that NDR1 could be a critical factor for modulating CSC properties and phagocytosis in SCLC.
Collapse
|
170
|
Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, Stauffer PE, Wasdin PT, Huang X, Qiao Y, Lim JS, Bader J, Liu Q, Simmons AJ, Lau KS, Iams WT, Hardin DP, Saff EB, Holmes WR, Tyson DR, Lovly CM, Rathmell JC, Marth G, Sage J, Oliver TG, Weaver AM, Quaranta V. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. Cell Syst 2022; 13:690-710.e17. [PMID: 35981544 PMCID: PMC9615940 DOI: 10.1016/j.cels.2022.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Geena V Ildefonso
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin O McAtee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip E Stauffer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Perry T Wasdin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Shan Lim
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jackie Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Wade T Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Doug P Hardin
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
| | - Edward B Saff
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA
| | - William R Holmes
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA; Department of Physics, Vanderbilt University, Nashville, TN 37235, USA
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine M Lovly
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
171
|
German B, Ellis L. Polycomb Directed Cell Fate Decisions in Development and Cancer. EPIGENOMES 2022; 6:28. [PMID: 36135315 PMCID: PMC9497807 DOI: 10.3390/epigenomes6030028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The polycomb group (PcG) proteins are a subset of transcription regulators highly conserved throughout evolution. Their principal role is to epigenetically modify chromatin landscapes and control the expression of master transcriptional programs to determine cellular identity. The two mayor PcG protein complexes that have been identified in mammals to date are Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). These protein complexes selectively repress gene expression via the induction of covalent post-translational histone modifications, promoting chromatin structure stabilization. PRC2 catalyzes the histone H3 methylation at lysine 27 (H3K27me1/2/3), inducing heterochromatin structures. This activity is controlled by the formation of a multi-subunit complex, which includes enhancer of zeste (EZH2), embryonic ectoderm development protein (EED), and suppressor of zeste 12 (SUZ12). This review will summarize the latest insights into how PRC2 in mammalian cells regulates transcription to orchestrate the temporal and tissue-specific expression of genes to determine cell identity and cell-fate decisions. We will specifically describe how PRC2 dysregulation in different cell types can promote phenotypic plasticity and/or non-mutational epigenetic reprogramming, inducing the development of highly aggressive epithelial neuroendocrine carcinomas, including prostate, small cell lung, and Merkel cell cancer. With this, EZH2 has emerged as an important actionable therapeutic target in such cancers.
Collapse
Affiliation(s)
- Beatriz German
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
172
|
Kelenis DP, Rodarte KE, Kollipara RK, Pozo K, Choudhuri SP, Spainhower KB, Wait SJ, Stastny V, Oliver TG, Johnson JE. Inhibition of Karyopherin β1-Mediated Nuclear Import Disrupts Oncogenic Lineage-Defining Transcription Factor Activity in Small Cell Lung Cancer. Cancer Res 2022; 82:3058-3073. [PMID: 35748745 PMCID: PMC9444950 DOI: 10.1158/0008-5472.can-21-3713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Genomic studies support the classification of small cell lung cancer (SCLC) into subtypes based on the expression of lineage-defining transcription factors ASCL1 and NEUROD1, which together are expressed in ∼86% of SCLC. ASCL1 and NEUROD1 activate SCLC oncogene expression, drive distinct transcriptional programs, and maintain the in vitro growth and oncogenic properties of ASCL1 or NEUROD1-expressing SCLC. ASCL1 is also required for tumor formation in SCLC mouse models. A strategy to inhibit the activity of these oncogenic drivers may therefore provide both a targeted therapy for the predominant SCLC subtypes and a tool to investigate the underlying lineage plasticity of established SCLC tumors. However, there are no known agents that inhibit ASCL1 or NEUROD1 function. In this study, we identify a novel strategy to pharmacologically target ASCL1 and NEUROD1 activity in SCLC by exploiting the nuclear localization required for the function of these transcription factors. Karyopherin β1 (KPNB1) was identified as a nuclear import receptor for both ASCL1 and NEUROD1 in SCLC, and inhibition of KPNB1 led to impaired ASCL1 and NEUROD1 nuclear accumulation and transcriptional activity. Pharmacologic targeting of KPNB1 preferentially disrupted the growth of ASCL1+ and NEUROD1+ SCLC cells in vitro and suppressed ASCL1+ tumor growth in vivo, an effect mediated by a combination of impaired ASCL1 downstream target expression, cell-cycle activity, and proteostasis. These findings broaden the support for targeting nuclear transport as an anticancer therapeutic strategy and have implications for targeting lineage-transcription factors in tumors beyond SCLC. SIGNIFICANCE The identification of KPNB1 as a nuclear import receptor for lineage-defining transcription factors in SCLC reveals a viable therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Demetra P. Kelenis
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K. Kollipara
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karine Pozo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Kyle B. Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah J. Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
173
|
Metovic J, La Salvia A, Rapa I, Napoli F, Birocco N, Pia Bizzi M, Garcia-Carbonero R, Ciuffreda L, Scagliotti G, Papotti M, Volante M. Molecular Subtypes of Extra-pulmonary Neuroendocrine Carcinomas Identified by the Expression of Neuroendocrine Lineage-Specific Transcription Factors. Endocr Pathol 2022; 33:388-399. [PMID: 35608806 PMCID: PMC9420091 DOI: 10.1007/s12022-022-09722-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
Abstract
Extra-pulmonary neuroendocrine carcinomas (EPNEC) represent a group of rare and heterogenous neoplasms with adverse clinical outcome. Their molecular profile is largely unexplored. Our aim was to investigate if the major transcriptional drivers recently described in high-grade pulmonary neuroendocrine carcinomas characterize distinct molecular and clinical subgroups of EPNEC. Gene expression of ASCL1, NEUROD1, DLL3, NOTCH1, INSM1, MYCL1, POU2F3, and YAP1 was investigated in a series of 54 EPNEC (including 10 cases with mixed components analyzed separately) and in a group of 48 pulmonary large cell neuroendocrine carcinomas (P-LCNEC). Unsupervised hierarchical cluster analysis classified the whole series into four major clusters. P-LCNEC were classified into two major clusters, the first ASCL1/DLL3/INSM1-high and the second (including four EPNEC) ASCL1/DLL3-low but INSM1-high. The remaining EPNEC cases were sub-classified into two other clusters. The first showed INSM1-high and alternative ASCL1/DLL3 or NEUROD1 high expression. The second was characterized mainly by MYCL1 and YAP1 overexpression. In the ten cases with mixed histology, ASCL1, DLL3, INSM1, and NEUROD1 genes were significantly upregulated in the neuroendocrine component. Higher gene-expression levels of NOTCH1 and INSM1 were associated with lower pT stage and negative nodal status. Low INSM1 gene expression was associated with shorter overall survival in the entire case series (p = 0.0017) and with a trend towards significance in EPNEC, only (p = 0.06). In conclusion, our results show that EPNEC possess distinct neuroendocrine-lineage-specific transcriptional profiles; moreover, low INSM1 gene expression represents a novel potential unfavorable prognostic marker in high-grade NECs including those in extra-pulmonary location.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin; Pathology Unit at Città della Salute e della Scienza Hospital, via Santena 7, Turin, Italy
| | - Anna La Salvia
- Division of Medical Oncology, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Ida Rapa
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Nadia Birocco
- Medical Oncology Unit, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Maria Pia Bizzi
- Medical Oncology Unit, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Libero Ciuffreda
- Medical Oncology Unit, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin; Medical Oncology Unit at San Luigi Hospital, Orbassano, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin; Pathology Unit at Città della Salute e della Scienza Hospital, via Santena 7, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
174
|
Szeitz B, Megyesfalvi Z, Woldmar N, Valkó Z, Schwendenwein A, Bárány N, Paku S, László V, Kiss H, Bugyik E, Lang C, Szász AM, Pizzatti L, Bogos K, Hoda MA, Hoetzenecker K, Marko-Varga G, Horvatovich P, Döme B, Schelch K, Rezeli M. In-depth proteomic analysis reveals unique subtype-specific signatures in human small-cell lung cancer. Clin Transl Med 2022; 12:e1060. [PMID: 36149789 PMCID: PMC9506422 DOI: 10.1002/ctm2.1060] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Small‐cell lung cancer (SCLC) molecular subtypes have been primarily characterized based on the expression pattern of the following key transcription regulators: ASCL1 (SCLC‐A), NEUROD1 (SCLC‐N), POU2F3 (SCLC‐P) and YAP1 (SCLC‐Y). Here, we investigated the proteomic landscape of these molecular subsets with the aim to identify novel subtype‐specific proteins of diagnostic and therapeutic relevance. Methods Pellets and cell media of 26 human SCLC cell lines were subjected to label‐free shotgun proteomics for large‐scale protein identification and quantitation, followed by in‐depth bioinformatic analyses. Proteomic data were correlated with the cell lines’ phenotypic characteristics and with public transcriptomic data of SCLC cell lines and tissues. Results Our quantitative proteomic data highlighted that four molecular subtypes are clearly distinguishable at the protein level. The cell lines exhibited diverse neuroendocrine and epithelial–mesenchymal characteristics that varied by subtype. A total of 367 proteins were identified in the cell pellet and 34 in the culture media that showed significant up‐ or downregulation in one subtype, including known druggable proteins and potential blood‐based markers. Pathway enrichment analysis and parallel investigation of transcriptomics from SCLC cell lines outlined unique signatures for each subtype, such as upregulated oxidative phosphorylation in SCLC‐A, DNA replication in SCLC‐N, neurotrophin signalling in SCLC‐P and epithelial–mesenchymal transition in SCLC‐Y. Importantly, we identified the YAP1‐driven subtype as the most distinct SCLC subgroup. Using sparse partial least squares discriminant analysis, we identified proteins that clearly distinguish four SCLC subtypes based on their expression pattern, including potential diagnostic markers for SCLC‐Y (e.g. GPX8, PKD2 and UFO). Conclusions We report for the first time, the protein expression differences among SCLC subtypes. By shedding light on potential subtype‐specific therapeutic vulnerabilities and diagnostic biomarkers, our results may contribute to a better understanding of SCLC biology and the development of novel therapies.
Collapse
Affiliation(s)
- Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
| | - Nicole Woldmar
- Division of Clinical Protein Science, & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden.,Laboratory of Molecular Biology and Proteomics of Blood/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zsuzsanna Valkó
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Nándor Bárány
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktória László
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Helga Kiss
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary.,University of Pécs, Pécs, Hungary
| | - Edina Bugyik
- National Korányi Institute of Pulmonology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Marcell Szász
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Luciana Pizzatti
- Laboratory of Molecular Biology and Proteomics of Blood/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Krisztina Bogos
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - György Marko-Varga
- Division of Clinical Protein Science, & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Balázs Döme
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary.,Department of Translational Medicine, Lund University, Lund, Sweden
| | - Karin Schelch
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melinda Rezeli
- Division of Clinical Protein Science, & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
175
|
Korsen JA, Kalidindi TM, Khitrov S, Samuels ZV, Chakraborty G, Gutierrez JA, Poirier JT, Rudin CM, Chen Y, Morris MJ, Pillarsetty N, Lewis JS. Molecular Imaging of Neuroendocrine Prostate Cancer by Targeting Delta-Like Ligand 3. J Nucl Med 2022; 63:1401-1407. [PMID: 35058323 PMCID: PMC9454466 DOI: 10.2967/jnumed.121.263221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer. Using the 89Zr-labeled delta-like ligand 3 (DLL3) targeting antibody SC16 (89Zr-desferrioxamine [DFO]-SC16), we have developed a PET agent to noninvasively identify the presence of DLL3-positive NEPC lesions. Methods: Quantitative polymerase chain reaction and immunohistochemistry were used to compare relative levels of androgen receptor (AR)-regulated markers and the NEPC marker DLL3 in a panel of prostate cancer cell lines. PET imaging with 89Zr-DFO-SC16, 68Ga-PSMA-11, and 68Ga-DOTATATE was performed on H660 NEPC-xenografted male nude mice. 89Zr-DFO-SC16 uptake was corroborated by biodistribution studies. Results: In vitro studies demonstrated that H660 NEPC cells are positive for DLL3 and negative for AR, prostate-specific antigen, and prostate-specific membrane antigen (PSMA) at both the transcriptional and the translational levels. PET imaging and biodistribution studies confirmed that 89Zr-DFO-SC16 uptake is restricted to H660 xenografts, with background uptake in non-NEPC lesions (both AR-dependent and AR-independent). Conversely, H660 xenografts cannot be detected with imaging agents targeting PSMA (68Ga-PSMA-11) or somatostatin receptor subtype 2 (68Ga-DOTATATE). Conclusion: These studies demonstrated that H660 NEPC cells selectively express DLL3 on their cell surface and can be noninvasively identified with 89Zr-DFO-SC16.
Collapse
Affiliation(s)
- Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Teja M Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Khitrov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary V Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Julia A Gutierrez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, New York; and
| | - Charles M Rudin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
176
|
Corbett V, Hallenbeck P, Rychahou P, Chauhan A. Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Front Mol Biosci 2022; 9:930207. [PMID: 36090051 PMCID: PMC9458967 DOI: 10.3389/fmolb.2022.930207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have made a significant inroad in cancer drug development. Numerous clinical trials are currently investigating oncolytic viruses both as single agents or in combination with various immunomodulators. Oncolytic viruses (OV) are an integral pillar of immuno-oncology and hold potential for not only delivering durable anti-tumor responses but also converting “cold” tumors to “hot” tumors. In this review we will discuss one such promising oncolytic virus called Seneca Valley Virus (SVV-001) and its therapeutic implications. SVV development has seen seismic evolution over the past decade and now boasts of being the only OV with a practically applicable biomarker for viral tropism. We discuss relevant preclinical and clinical data involving SVV and how bio-selecting for TEM8/ANTXR1, a negative tumor prognosticator can lead to first of its kind biomarker driven oncolytic viral cancer therapy.
Collapse
Affiliation(s)
- Virginia Corbett
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Piotr Rychahou
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Aman Chauhan,
| |
Collapse
|
177
|
Chen HY, Durmaz YT, Li Y, Sabet AH, Vajdi A, Denize T, Walton E, Laimon YN, Doench JG, Mahadevan NR, Losman JA, Barbie DA, Tolstorukov MY, Rudin CM, Sen T, Signoretti S, Oser MG. Regulation of neuroendocrine plasticity by the RNA-binding protein ZFP36L1. Nat Commun 2022; 13:4998. [PMID: 36008402 PMCID: PMC9411550 DOI: 10.1038/s41467-022-31998-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Some small cell lung cancers (SCLCs) are highly sensitive to inhibitors of the histone demethylase LSD1. LSD1 inhibitors are thought to induce their anti-proliferative effects by blocking neuroendocrine differentiation, but the mechanisms by which LSD1 controls the SCLC neuroendocrine phenotype are not well understood. To identify genes required for LSD1 inhibitor sensitivity in SCLC, we performed a positive selection genome-wide CRISPR/Cas9 loss of function screen and found that ZFP36L1, an mRNA-binding protein that destabilizes mRNAs, is required for LSD1 inhibitor sensitivity. LSD1 binds and represses ZFP36L1 and upon LSD1 inhibition, ZFP36L1 expression is restored, which is sufficient to block the SCLC neuroendocrine differentiation phenotype and induce a non-neuroendocrine "inflammatory" phenotype. Mechanistically, ZFP36L1 binds and destabilizes SOX2 and INSM1 mRNAs, two transcription factors that are required for SCLC neuroendocrine differentiation. This work identifies ZFP36L1 as an LSD1 target gene that controls the SCLC neuroendocrine phenotype and demonstrates that modulating mRNA stability of lineage transcription factors controls neuroendocrine to non-neuroendocrine plasticity.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Amin H Sabet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Amir Vajdi
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yasmin Nabil Laimon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
178
|
Redin E, Garrido-Martin EM, Valencia K, Redrado M, Solorzano JL, Carias R, Echepare M, Exposito F, Serrano D, Ferrer I, Nunez-Buiza A, Garmendia I, García-Pedrero JM, Gurpide A, Paz-Ares L, Politi K, Montuenga LM, Calvo A. YES1 is a druggable oncogenic target in Small Cell Lung Cancer. J Thorac Oncol 2022; 17:1387-1403. [PMID: 35988891 DOI: 10.1016/j.jtho.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Small cell lung cancer (SCLC) is an extremely aggressive subtype of lung cancer without approved targeted therapies. Here we identified YES1 as a novel targetable oncogene driving SCLC maintenance and metastasis. OBJECTIVES To investigate the role of YES1 in SCLC prognosis and evaluate its inhibition as a new therapeutic strategy. METHODS Association between YES1 levels and prognosis was evaluated in SCLC clinical samples. In vitro functional experiments for proliferation, apoptosis, cell cycle and cytotoxicity were performed. Genetic and pharmacological inhibition of YES1 was evaluated in vivo in cell-/patient-derived xenografts (PDXs) and in metastasis. YES1 levels were evaluated in mouse and patients' plasma-derived exosomes MEASUREMENTS AND MAIN RESULTS: Overexpression or gain/amplification of YES1 was identified in 31% and 26% of cases, respectively, across molecular subgroups, and was found as an independent predictor of poor prognosis. Genetic depletion of YES1 dramatically reduced cell proliferation, 3D organoid formation, tumor growth and distant metastasis, leading to extensive apoptosis and tumor regressions. Mechanistically, YES1-inhibited cells showed alterations in the replisome and DNA repair processes, that conferred sensitivity to irradiation. Pharmacological blockade with the novel YES1 inhibitor CH6953755 or Dasatinib induced significant anti-tumor activity in organoid models and cell-/patient-derived xenografts. YES1 protein was detected in plasma exosomes from patients and mouse models, with levels matching those of tumors, suggesting that circulating YES1 could represent a biomarker for patient selection/monitoring. CONCLUSIONS Our results provide evidence that YES1 is a new druggable oncogenic target and biomarker to advance the clinical management of a subpopulation of SCLC patients.
Collapse
Affiliation(s)
- Esther Redin
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Eva M Garrido-Martin
- CIBERONC, ISCIII, Madrid, Spain; Cell Biology, Research and Development, Oncology Business Unit, PharmaMar, Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA
| | - Miriam Redrado
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IDISNA
| | - Jose Luis Solorzano
- Anatomic Pathology and Molecular Diagnostics, MD Anderson Cancer Center Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Rafael Carias
- Anatomic Pathology Unit, Fundacion Jimenez Diaz, Madrid, Spain
| | - Mirari Echepare
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Francisco Exposito
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Diego Serrano
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Irene Ferrer
- CIBERONC, ISCIII, Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Angel Nunez-Buiza
- Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Irati Garmendia
- Centre de Recherche des Cordeliers, Inserm, Inflammation, complement and cancer group, Paris, France
| | - Juana M García-Pedrero
- CIBERONC, ISCIII, Madrid, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Alfonso Gurpide
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis Paz-Ares
- CIBERONC, ISCIII, Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Katerina Politi
- Yale Cancer Center, New Haven; Department of Pathology, Yale School of Medicine, New Haven; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, USA
| | - Luis M Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
179
|
Keogh A, Finn S, Radonic T. Emerging Biomarkers and the Changing Landscape of Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14153772. [PMID: 35954436 PMCID: PMC9367597 DOI: 10.3390/cancers14153772] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Small cell lung cancer (SCLC) is an aggressive cancer representing 15% of all lung cancers. Unlike other types of lung cancer, treatments for SCLC have changed very little in the past 20 years and therefore, the survival rate remains low. This is due, in part, to the lack of understanding of the biological basis of this disease and the previous idea that all SCLCs are the same. Multiple recent studies have identified that SCLCs have varying biological activity and can be divided into four different groups. The advantage of this is that each of these four groups responds differently to new treatments, which hopefully will dramatically improve survival. Additionally, the aim of these new treatments is to specifically target these biological differences in SCLC so normal/non cancer cells are unaffected, leading to decreased side effects and a better quality of life. There is still a lot unknown about SCLC, but these new findings offer a glimmer of hope for patients in the future. Abstract Small cell lung cancer (SCLC) is a high-grade neuroendocrine malignancy with an aggressive behavior and dismal prognosis. 5-year overall survival remains a disappointing 7%. Genomically, SCLCs are homogeneous compared to non-small cell lung cancers and are characterized almost always by functional inactivation of RB1 and TP53 with no actionable mutations. Additionally, SCLCs histologically appear uniform. Thus, SCLCs are currently managed as a single disease with platinum-based chemotherapy remaining the cornerstone of treatment. Recent studies have identified expression of dominant transcriptional signatures which may permit classification of SCLCs into four biologically distinct subtypes, namely, SCLC-A, SCLC-N, SCLC-P, and SCLC-I. These groups are readily detectable by immunohistochemistry and also have potential predictive utility for emerging therapies, including PARPi, immune checkpoint inhibitors, and DLL3 targeted therapies. In contrast with their histology, studies have identified that SCLCs display both inter- and intra-tumoral heterogeneity. Identification of subpopulations of cells with high expression of PLCG2 has been linked with risk of metastasis. SCLCs also display subtype switching under therapy pressure which may contribute furthermore to metastatic ability and chemoresistance. In this review, we summarize the recent developments in the understanding of the biology of SCLCs, and discuss the potential diagnostic, prognostic, and treatment opportunities the four proposed subtypes may present for the future. We also discuss the emerging evidence of tumor heterogeneity and plasticity in SCLCs which have been implicated in metastasis and acquired therapeutic resistance seen in these aggressive tumors.
Collapse
Affiliation(s)
- Anna Keogh
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
- Correspondence:
| | - Stephen Finn
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Teodora Radonic
- Department of Pathology, Amsterdam University Medical Center, VUMC, University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
180
|
Iida Y, Nakanishi Y, Shimizu T, Nomoto M, Nakagawa Y, Ito R, Takahashi N, Masuda S, Gon Y. Comprehensive genetic analysis of histological components of combined small cell carcinoma. Thorac Cancer 2022; 13:2362-2370. [PMID: 35815661 PMCID: PMC9376179 DOI: 10.1111/1759-7714.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background Combined small‐cell lung cancer (cSCLC) is a rare type of small‐cell lung cancer (SCLC) that includes both SCLC and non‐small‐cell lung cancer (NSCLC). The molecular biological mechanisms underlying the heterogeneity of histological types in combined or metachronously transformed SCLC (mtSCLC) remain unclear. This study aimed to investigate the relationship between genetic alterations and each histological component heterogeneously detected in cSCLC and mtSCLC. Methods This study included four cSCLC cases and one mtSCLC case. Formalin‐fixed and paraffin‐embedded sections of each histological component of these tumors were subjected to next‐generation sequencing (NGS) and quantitative reverse transcription‐polymerase chain reaction to investigate the genetic mutations and expression levels of neuroendocrine cell‐specific transcription factors (achaete‐scute homolog‐1 [ASCL1], brain‐2 [BRN2] also known as POU domain class 3 transcription factor 2, nuclear factor 1 B [NF1B], insulinoma‐associated protein 1 [INSM1], and thyroid transcription factor‐1 [TTF‐1]). Results NGS analysis revealed that SCLC and NSCLC components share the same somatic mutations detected most frequently in TP53, and also in RB1 and EGFR. Gene expression analysis showed ASCL1 expression was significantly lower in the NSCLC component than in the SCLC component. Conclusion We conclude that the morphological evolution of heterogeneous histological components in cSCLC may be associated with differences in ASCL1 expression levels, but not in acquired somatic gene mutations.
Collapse
Affiliation(s)
- Yuko Iida
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masayuki Nomoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiko Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Reiko Ito
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Noriaki Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
181
|
Miyakawa K, Miyashita N, Horie M, Terasaki Y, Tanaka H, Urushiyama H, Fukuda K, Okabe Y, Ishii T, Kuwahara N, Suzuki HI, Nagase T, Saito A. ASCL1 regulates super-enhancer-associated miRNAs to define molecular subtypes of small cell lung cancer. Cancer Sci 2022; 113:3932-3946. [PMID: 35789143 PMCID: PMC9633298 DOI: 10.1111/cas.15481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with dismal prognosis. Recently, molecular subtypes of SCLC have been defined by the expression status of ASCL1, NEUROD1, YAP1, and POU2F3 transcription regulators. ASCL1 is essential for neuroendocrine differentiation and is expressed in the majority of SCLC. Although previous studies investigated ASCL1 target genes in SCLC cells, ASCL1‐mediated regulation of miRNAs and its relationship to molecular subtypes remain poorly explored. Here, we performed genome‐wide profiling of chromatin modifications (H3K27me3, H3K4me3, and H3K27ac) by CUT&Tag assay and ASCL1 knockdown followed by RNA sequencing and miRNA array analyses in SCLC cells. ASCL1 could preferentially regulate genes associated with super‐enhancers (SEs) defined by enrichment of H3K27ac marking. Moreover, ASCL1 positively regulated several SE‐associated miRNAs, such as miR‐7, miR‐375, miR‐200b‐3p, and miR‐429, leading to repression of their targets, whereas ASCL1 suppressed miR‐455‐3p, an abundant miRNA in other molecular subtypes. We further elucidated unique patterns of SE‐associated miRNAs in different SCLC molecular subtypes, highlighting subtype‐specific miRNA networks with functional relevance. Notably, we found apparent de‐repression of common target genes of different miRNAs following ASCL1 knockdown, suggesting combinatorial action of multiple miRNAs underlying molecular heterogeneity of SCLC (e.g., co‐targeting of YAP1 by miR‐9 and miR‐375). Our comprehensive analyses provide novel insights into SCLC pathogenesis and a clue to understanding subtype‐dependent phenotypic differences.
Collapse
Affiliation(s)
- Kazuko Miyakawa
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hidenori Tanaka
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirokazu Urushiyama
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Fukuda
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Okabe
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Ishii
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Naomi Kuwahara
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
182
|
Korsen JA, Gutierrez JA, Tully KM, Carter LM, Samuels ZV, Khitrov S, Poirier JT, Rudin CM, Chen Y, Morris MJ, Bodei L, Pillarsetty N, Lewis JS. Delta-like ligand 3-targeted radioimmunotherapy for neuroendocrine prostate cancer. Proc Natl Acad Sci U S A 2022; 119:e2203820119. [PMID: 35759660 PMCID: PMC9271187 DOI: 10.1073/pnas.2203820119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer with limited meaningful treatment options. NEPC lesions uniquely express delta-like ligand 3 (DLL3) on their cell surface. Taking advantage of DLL3 overexpression, we developed and evaluated lutetium-177 (177Lu)-labeled DLL3-targeting antibody SC16 (177Lu-DTPA-SC16) as a treatment for NEPC. SC16 was functionalized with DTPA-CHX-A" chelator and radiolabeled with 177Lu to produce 177Lu-DTPA-SC16. Specificity and selectivity of 177Lu-DTPA-SC16 were evaluated in vitro and in vivo using NCI-H660 (NEPC, DLL3-positive) and DU145 (adenocarcinoma, DLL3-negative) cells and xenografts. Dose-dependent treatment efficacy and specificity of 177Lu-DTPA-SC16 radionuclide therapy were evaluated in H660 and DU145 xenograft-bearing mice. Safety of the agent was assessed by monitoring hematologic parameters. 177Lu-DTPA-SC16 showed high tumor uptake and specificity in H660 xenografts, with minimal uptake in DU145 xenografts. At all three tested doses of 177Lu-DTPA-SC16 (4.63, 9.25, and 27.75 MBq/mouse), complete responses were observed in H660-bearing mice; 9.25 and 27.75 MBq/mouse doses were curative. Even the lowest tested dose proved curative in five (63%) of eight mice, and recurring tumors could be successfully re-treated at the same dose to achieve complete responses. In DU145 xenografts, 177Lu-DTPA-SC16 therapy did not inhibit tumor growth. Platelets and hematocrit transiently dropped, reaching nadir at 2 to 3 wk. This was out of range only in the highest-dose cohort and quickly recovered to normal range by week 4. Weight loss was observed only in the highest-dose cohort. Therefore, our data demonstrate that 177Lu-DTPA-SC16 is a potent and safe radioimmunotherapeutic agent for testing in humans with NEPC.
Collapse
Affiliation(s)
- Joshua A. Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021
| | - Julia A. Gutierrez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kathryn M. Tully
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021
| | - Lukas M. Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zachary V. Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Samantha Khitrov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - John T. Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016
| | - Charles M. Rudin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
183
|
Jin Y, Zhao Q, Zhu W, Feng Y, Xiao T, Zhang P, Jiang L, Hou Y, Guo C, Huang H, Chen Y, Tong X, Cao J, Li F, Zhu X, Qin J, Gao D, Liu XY, Zhang H, Chen L, Thomas RK, Wong KK, Zhang L, Wang Y, Hu L, Ji H. Identification of TAZ as the essential molecular switch in orchestrating SCLC phenotypic transition and metastasis. Natl Sci Rev 2022; 9:nwab232. [PMID: 35967587 PMCID: PMC9365451 DOI: 10.1093/nsr/nwab232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant cancer characterized by high metastasis. However, the exact cell type contributing to metastasis remains elusive. Using a Rb1 L/L /Trp53 L/L mouse model, we identify the NCAMhiCD44lo/- subpopulation as the SCLC metastasizing cell (SMC), which is progressively transitioned from the non-metastasizing NCAMloCD44hi cell (non-SMC). Integrative chromatin accessibility and gene expression profiling studies reveal the important role of the SWI/SNF complex, and knockout of its central component, Brg1, significantly inhibits such phenotypic transition and metastasis. Mechanistically, TAZ is silenced by the SWI/SNF complex during SCLC malignant progression, and its knockdown promotes SMC transition and metastasis. Importantly, ectopic TAZ expression reversely drives SMC-to-non-SMC transition and alleviates metastasis. Single-cell RNA-sequencing analyses identify SMC as the dominant subpopulation in human SCLC metastasis, and immunostaining data show a positive correlation between TAZ and patient prognosis. These data uncover high SCLC plasticity and identify TAZ as the key molecular switch in orchestrating SCLC phenotypic transition and metastasis.
Collapse
Affiliation(s)
- Yujuan Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Feng
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Peng Zhang
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China
| | - Liyan Jiang
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yingyong Hou
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yabin Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Department of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
184
|
Williams JF, Vivero M. Diagnostic criteria and evolving molecular characterization of pulmonary neuroendocrine carcinomas. Histopathology 2022; 81:556-568. [PMID: 35758205 DOI: 10.1111/his.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Neuroendocrine carcinomas of the lung are currently classified into two categories: small cell lung carcinoma and large cell neuroendocrine carcinoma. Diagnostic criteria for small cell- and large cell neuroendocrine carcinoma are based solely on tumor morphology; however, overlap in histologic and immunophenotypic features between the two types of carcinoma can potentially make their classification challenging. Accurate diagnosis of pulmonary neuroendocrine carcinomas is paramount for patient management, as clinical course and treatment differ between small cell and large cell neuroendocrine carcinoma. Molecular-genetic, transcriptomic, and proteomic data published over the past decade suggest that small cell and large cell neuroendocrine carcinomas are not homogeneous categories but rather comprise multiple groups of distinctive malignancies. Nuances in the susceptibility of small cell lung carcinoma subtypes to different chemotherapeutic regimens and the discovery of targetable mutations in large cell neuroendocrine carcinoma suggest that classification and treatment of neuroendocrine carcinomas may be informed by ancillary molecular and protein expression testing going forward. This review summarizes current diagnostic criteria, prognostic and predictive correlates of classification, and evidence of previously unrecognized subtypes of small cell and large cell neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
185
|
Chen MY, Zeng YC, Zhao XH. Chemotherapy- and Immune-Related Gene Panel in Prognosis Prediction and Immune Microenvironment of SCLC. Front Cell Dev Biol 2022; 10:893490. [PMID: 35784467 PMCID: PMC9240612 DOI: 10.3389/fcell.2022.893490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly proliferative, invasive lung cancer with poor prognosis. Chemotherapy is still the standard first-line treatment for SCLC, but many patients relapse due to chemoresistance. Along with advances in immunology, it is essential to investigate potential indicators of the immune response and the prognosis of SCLC. Using bioinformatics analysis, we identified 313 differentially expressed genes (DEGs) in SCLC and normal lung samples, and we found that four upregulated genes (TOP2A, CDKN2A, BIRC5, and MSH2) were associated with platinum resistance, while immune-related genes (HLA family genes) were downregulated in SCLC. Then, a prognostic prediction model was constructed for SCLC based on those genes. Immune cell infiltration analysis showed that antigen presentation was weak in SCLC, and TOP2A expression was negatively correlated with CD8+ T cells, while HLA-ABC expression was positively correlated with M1 macrophages, memory B cells, and CD8+ T cells. We also found that TOP2A was related to poor prognosis and inversely correlated with HLA-ABC, which was verified with immunohistochemical staining in 151 SCLC specimens. Our study findings indicated that TOP2A may be a potential prognosis indicator and a target to reverse the immunosuppressive tumor microenvironment of SCLC.
Collapse
Affiliation(s)
- Meng-Yu Chen
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Breast Oncology, The Third Hospital of Nanchang, Nanchang, China
| | - Yue-Can Zeng
- Department of Radiation Oncology, Cancer Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xi-He Zhao,
| |
Collapse
|
186
|
Ma NX, Puls B, Chen G. Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion. Dev Neurobiol 2022; 82:375-391. [PMID: 35606902 PMCID: PMC9540770 DOI: 10.1002/dneu.22882] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022]
Abstract
Ectopic expression of a single neural transcription factor NeuroD1 can reprogram reactive glial cells into functional neurons both in vitro and in vivo, but the underlying mechanisms are not well understood yet. Here, we used RNA-sequencing technology to capture the transcriptomic changes at different time points during the reprogramming process. We found that following NeuroD1 overexpression, astroglial genes (ACTG1, ALDH1A3, EMP1, CLDN6, SOX21) were significantly downregulated, whereas neuronal genes (DCX, RBFOX3/NeuN, CUX2, RELN, SNAP25) were significantly upregulated. NeuroD family members (NeuroD1/2/6) and signaling pathways (Wnt, MAPK, cAMP) as well as neurotransmitter receptors (acetylcholine, somatostatin, dopamine) were also significantly upregulated. Gene co-expression analysis identified many central genes among the NeuroD1-interacting network, including CABP7, KIAA1456, SSTR2, GADD45G, LRRTM2, and INSM1. Compared to chemical conversion, we found that NeuroD1 acted as a strong driving force and triggered fast transcriptomic changes during astrocyte-to-neuron conversion process. Together, this study reveals many important downstream targets of NeuroD1 such as HES6, BHLHE22, INSM1, CHRNA1/3, CABP7, and SSTR2, which may play critical roles during the transcriptomic landscape shift from a glial profile to a neuronal profile.
Collapse
Affiliation(s)
- Ning-Xin Ma
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Puls
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.,GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
187
|
Shue YT, Drainas AP, Li NY, Pearsall SM, Morgan D, Sinnott-Armstrong N, Hipkins SQ, Coles GL, Lim JS, Oro AE, Simpson KL, Dive C, Sage J. A conserved YAP/Notch/REST network controls the neuroendocrine cell fate in the lungs. Nat Commun 2022; 13:2690. [PMID: 35577801 PMCID: PMC9110333 DOI: 10.1038/s41467-022-30416-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
The Notch pathway is a conserved cell-cell communication pathway that controls cell fate decisions. Here we sought to determine how Notch pathway activation inhibits the neuroendocrine cell fate in the lungs, an archetypal process for cell fate decisions orchestrated by Notch signaling that has remained poorly understood at the molecular level. Using intratumoral heterogeneity in small-cell lung cancer as a tractable model system, we uncovered a role for the transcriptional regulators REST and YAP as promoters of the neuroendocrine to non-neuroendocrine transition. We further identified the specific neuroendocrine gene programs repressed by REST downstream of Notch in this process. Importantly, we validated the importance of REST and YAP in neuroendocrine to non-neuroendocrine cell fate switches in both developmental and tissue repair processes in the lungs. Altogether, these experiments identify conserved roles for REST and YAP in Notch-driven inhibition of the neuroendocrine cell fate in embryonic lungs, adult lungs, and lung cancer.
Collapse
Affiliation(s)
- Yan Ting Shue
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Alexandros P Drainas
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Nancy Yanzhe Li
- Departments of Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Sarah M Pearsall
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Derrick Morgan
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | | | - Susan Q Hipkins
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Garry L Coles
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Jing Shan Lim
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Departments of Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Kathryn L Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Julien Sage
- Departments of Pediatrics, Stanford University, Stanford, CA, USA.
- Departments of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
188
|
Liang J, Guan X, Bao G, Yao Y, Zhong X. Molecular subtyping of small cell lung cancer. Semin Cancer Biol 2022; 86:450-462. [DOI: 10.1016/j.semcancer.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
|
189
|
Kashima J, Okuma Y. Advances in biology and novel treatments of SCLC: The four-color problem in uncharted territory. Semin Cancer Biol 2022; 86:386-395. [DOI: 10.1016/j.semcancer.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 10/31/2022]
|
190
|
Megyesfalvi Z, Barany N, Lantos A, Valko Z, Pipek O, Lang C, Schwendenwein A, Oberndorfer F, Paku S, Ferencz B, Dezso K, Fillinger J, Lohinai Z, Moldvay J, Galffy G, Szeitz B, Rezeli M, Rivard C, Hirsch FR, Brcic L, Popper H, Kern I, Kovacevic M, Skarda J, Mittak M, Marko-Varga G, Bogos K, Renyi-Vamos F, Hoda MA, Klikovits T, Hoetzenecker K, Schelch K, Laszlo V, Dome B. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer: an international multicenter study. J Pathol 2022; 257:674-686. [PMID: 35489038 PMCID: PMC9541929 DOI: 10.1002/path.5922] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The tissue distribution and prognostic relevance of subtype‐specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small‐cell lung cancer (SCLC). The expression of subtype‐specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype‐specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC‐A (ASCL1‐dominant), SCLC‐AN (combined ASCL1/NEUROD1), SCLC‐N (NEUROD1‐dominant), and SCLC‐P (POU2F3‐dominant), IHC and cluster analyses identified a quadruple‐negative SCLC subtype (SCLC‐QN). No unique YAP1‐subtype was found. The highest overall survival rates were associated with non‐neuroendocrine subtypes (SCLC‐P and SCLC‐QN) and the lowest with neuroendocrine subtypes (SCLC‐A, SCLC‐N, SCLC‐AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard‐of‐care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype‐specific protein abundances. In conclusion, we investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1, and POU2F3 defines SCLC subtypes. No YAP1‐subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines revealed distinct vulnerability profiles defined by transcription regulators. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nandor Barany
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zsuzsanna Valko
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Ferencz
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Janos Fillinger
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Moldvay
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, Torokbalint, Hungary
| | - Beata Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Izidor Kern
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Mile Kovacevic
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Medical Faculty, Palacky University Olomouc, Olomouc, Czech Republic.,Department of Pathology, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Marcel Mittak
- Department of Surgery, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | | | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Klikovits
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Klinik Floridsdorf, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
191
|
Quaranta V, Linkous A. Organoids as a Systems Platform for SCLC Brain Metastasis. Front Oncol 2022; 12:881989. [PMID: 35574308 PMCID: PMC9096159 DOI: 10.3389/fonc.2022.881989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Small Cell Lung Cancer (SCLC) is a highly aggressive, neuroendocrine tumor. Traditional reductionist approaches have proven ineffective to ameliorate the uniformly dismal outcomes for SCLC - survival at 5 years remains less than 5%. A major obstacle to improving treatment is that SCLC tumor cells disseminate early, with a strong propensity for metastasizing to the brain. Accumulating evidence indicates that, contrary to previous textbook knowledge, virtually every SCLC tumor is comprised of multiple subtypes. Important questions persist regarding the role that this intra-tumor subtype heterogeneity may play in supporting the invasive properties of SCLC. A recurrent hypothesis in the field is that subtype interactions and/or transition dynamics are major determinants of SCLC metastatic seeding and progression. Here, we review the advantages of cerebral organoids as an experimentally accessible platform for SCLC brain metastasis, amenable to genetic manipulations, drug perturbations, and assessment of subtype interactions when coupled, e.g., to temporal longitudinal monitoring by high-content imaging or high-throughput omics data generation. We then consider systems approaches that can produce mathematical and computational models useful to generalize lessons learned from ex vivo organoid cultures, and integrate them with in vivo observations. In summary, systems approaches combined with ex vivo SCLC cultures in brain organoids may effectively capture both tumor-tumor and host-tumor interactions that underlie general principles of brain metastasis.
Collapse
Affiliation(s)
| | - Amanda Linkous
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
192
|
ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nat Commun 2022; 13:2282. [PMID: 35477723 PMCID: PMC9046280 DOI: 10.1038/s41467-022-29963-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 12/21/2022] Open
Abstract
Treatment with androgen receptor pathway inhibitors (ARPIs) in prostate cancer leads to the emergence of resistant tumors characterized by lineage plasticity and differentiation toward neuroendocrine lineage. Here, we find that ARPIs induce a rapid epigenetic alteration mediated by large-scale chromatin remodeling to support activation of stem/neuronal transcriptional programs. We identify the proneuronal transcription factor ASCL1 motif to be enriched in hyper-accessible regions. ASCL1 acts as a driver of the lineage plastic, neuronal transcriptional program to support treatment resistance and neuroendocrine phenotype. Targeting ASCL1 switches the neuroendocrine lineage back to the luminal epithelial state. This effect is modulated by disruption of the polycomb repressive complex-2 through UHRF1/AMPK axis and change the chromatin architecture in favor of luminal phenotype. Our study provides insights into the epigenetic alterations induced by ARPIs, governed by ASCL1, provides a proof of principle of targeting ASCL1 to reverse neuroendocrine phenotype, support luminal conversion and re-addiction to ARPIs. Following androgen receptor pathway inhibition prostate cancers can differentiate towards the neuroendocrine lineage. Here, the authors identify epigenetic alterations regulated by ASCL1 and suggest targeting ASCL1 to reverse the neuroendocrine phenotype.
Collapse
|
193
|
Lissa D, Takahashi N, Desai P, Manukyan I, Schultz CW, Rajapakse V, Velez MJ, Mulford D, Roper N, Nichols S, Vilimas R, Sciuto L, Chen Y, Guha U, Rajan A, Atkinson D, El Meskini R, Weaver Ohler Z, Thomas A. Heterogeneity of neuroendocrine transcriptional states in metastatic small cell lung cancers and patient-derived models. Nat Commun 2022; 13:2023. [PMID: 35440132 PMCID: PMC9018864 DOI: 10.1038/s41467-022-29517-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular subtypes of small cell lung cancer (SCLC) defined by the expression of key transcription regulators have recently been proposed in cell lines and limited number of primary tumors. The clinical and biological implications of neuroendocrine (NE) subtypes in metastatic SCLC, and the extent to which they vary within and between patient tumors and in patient-derived models is not known. We integrate histology, transcriptome, exome, and treatment outcomes of SCLC from a range of metastatic sites, revealing complex intra- and intertumoral heterogeneity of NE differentiation. Transcriptomic analysis confirms previously described subtypes based on ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 expression, and reveal a clinical subtype with hybrid NE and non-NE phenotypes, marked by chemotherapy-resistance and exceedingly poor outcomes. NE tumors are more likely to have RB1, NOTCH, and chromatin modifier gene mutations, upregulation of DNA damage response genes, and are more likely to respond to replication stress targeted therapies. In contrast, patients preferentially benefited from immunotherapy if their tumors were non-NE. Transcriptional phenotypes strongly skew towards the NE state in patient-derived model systems, an observation that was confirmed in paired patient-matched tumors and xenografts. We provide a framework that unifies transcriptomic and genomic dimensions of metastatic SCLC. The marked differences in transcriptional diversity between patient tumors and model systems are likely to have implications in development of novel therapeutic agents.
Collapse
Affiliation(s)
- Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
- Medical Oncology Department, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Irena Manukyan
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Moises J Velez
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Deborah Mulford
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Yuanbin Chen
- Cancer and Hematology Centers of Western Michigan, Grand Rapids, MI, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Arun Rajan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA.
| |
Collapse
|
194
|
Kondo K, Harada Y, Nakano M, Suzuki T, Fukushige T, Hanzawa K, Yagi H, Takagi K, Mizuno K, Miyamoto Y, Taniguchi N, Kato K, Kanekura T, Dohmae N, Machida K, Maruyama I, Inoue H. Identification of distinct N-glycosylation patterns on extracellular vesicles from small-cell and non-small-cell lung cancer cells. J Biol Chem 2022; 298:101950. [PMID: 35447118 PMCID: PMC9117544 DOI: 10.1016/j.jbc.2022.101950] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 10/24/2022] Open
Abstract
Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6β4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immuno-purified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.
Collapse
Affiliation(s)
- Kiyotaka Kondo
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan.
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoko Fukushige
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ken Hanzawa
- Departiment of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yasuhide Miyamoto
- Departiment of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| |
Collapse
|
195
|
Investigation of the RB1-SOX2 axis constitutes a tool for viral status determination and diagnosis in Merkel cell carcinoma. Virchows Arch 2022; 480:1239-1254. [PMID: 35412101 DOI: 10.1007/s00428-022-03315-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/30/2022]
Abstract
MCC (Merkel cell carcinoma) is an aggressive neuroendocrine cutaneous neoplasm. Integration of the Merkel cell polyomavirus (MCPyV) is observed in about 80% of the cases, while the remaining 20% are related to UV exposure. Both MCPyV-positive and -negative MCCs-albeit by different mechanisms-are associated with RB1 inactivation leading to overexpression of SOX2, a major contributor to MCC biology. Moreover, although controversial, loss of RB1 expression seems to be restricted to MCPyV-negative cases.The aim of the present study was to assess the performances of RB1 loss and SOX2 expression detected by immunohistochemistry to determine MCPyV status and to diagnose MCC, respectively.Overall, 196 MCC tumors, 233 non-neuroendocrine skin neoplasms and 70 extra-cutaneous neuroendocrine carcinomas (NEC) were included. SOX2 and RB1 expressions were assessed by immunohistochemistry in a tissue micro-array. Diagnostic performances were determined using the likelihood ratio (LHR).RB1 expression loss was evidenced in 27% of the MCC cases, 12% of non-neuroendocrine skin tumors and 63% of extra-cutaneous NEC. Importantly, among MCC cases, RB1 loss was detected in all MCPyV(-) MCCs, while MCPyV( +) cases were consistently RB1-positive (p < 0.001). SOX2 diffuse expression was observed in 92% of the MCC cases and almost never observed in non-neuroendocrine skin epithelial neoplasms (2%, p < 0.0001, LHR + = 59). Furthermore, SOX2 diffuse staining was more frequently observed in MCCs than in extra-cutaneous NECs (30%, p < 0.001, LHR + = 3.1).These results confirm RB1 as a robust predictor of MCC viral status and further suggest SOX2 to be a relevant diagnostic marker of MCC.
Collapse
|
196
|
Woods LM, Ali FR, Gomez R, Chernukhin I, Marcos D, Parkinson LM, Tayoun ANA, Carroll JS, Philpott A. Elevated ASCL1 activity creates de novo regulatory elements associated with neuronal differentiation. BMC Genomics 2022; 23:255. [PMID: 35366798 PMCID: PMC8977041 DOI: 10.1186/s12864-022-08495-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background The pro-neural transcription factor ASCL1 is a master regulator of neurogenesis and a key factor necessary for the reprogramming of permissive cell types to neurons. Endogenously, ASCL1 expression is often associated with neuroblast stem-ness. Moreover, ASCL1-mediated reprogramming of fibroblasts to differentiated neurons is commonly achieved using artificially high levels of ASCL1 protein, where ASCL1 acts as an “on-target” pioneer factor. However, the genome-wide effects of enhancing ASCL1 activity in a permissive neurogenic environment has not been thoroughly investigated. Here, we overexpressed ASCL1 in the neuronally-permissive context of neuroblastoma (NB) cells where modest endogenous ASCL1 supports the neuroblast programme. Results Increasing ASCL1 in neuroblastoma cells both enhances binding at existing ASCL1 sites and also leads to creation of numerous additional, lower affinity binding sites. These extensive genome-wide changes in ASCL1 binding result in significant reprogramming of the NB transcriptome, redirecting it from a proliferative neuroblastic state towards one favouring neuronal differentiation. Mechanistically, ASCL1-mediated cell cycle exit and differentiation can be increased further by preventing its multi-site phosphorylation, which is associated with additional changes in genome-wide binding and gene activation profiles. Conclusions Our findings show that enhancing ASCL1 activity in a neurogenic environment both increases binding at endogenous ASCL1 sites and also results in additional binding to new low affinity sites that favours neuronal differentiation over the proliferating neuroblast programme supported by the endogenous protein. These findings have important implications for controlling processes of neurogenesis in cancer and cellular reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08495-8.
Collapse
|
197
|
Wang WZ, Shulman A, Amann JM, Carbone DP, Tsichlis PN. Small cell lung cancer: Subtypes and therapeutic implications. Semin Cancer Biol 2022; 86:543-554. [DOI: 10.1016/j.semcancer.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
|
198
|
Tully KM, Tendler S, Carter LM, Sharma SK, Samuels ZV, Mandleywala K, Korsen JA, Delos Reyes AM, Piersigilli A, Travis WD, Sen T, Pillarsetty N, Poirier JT, Rudin CM, Lewis JS. Radioimmunotherapy Targeting Delta-like Ligand 3 in Small Cell Lung Cancer Exhibits Antitumor Efficacy with Low Toxicity. Clin Cancer Res 2022; 28:1391-1401. [PMID: 35046060 PMCID: PMC8976830 DOI: 10.1158/1078-0432.ccr-21-1533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Small cell lung cancer (SCLC) is an exceptionally lethal form of lung cancer with limited treatment options. Delta-like ligand 3 (DLL3) is an attractive therapeutic target as surface expression is almost exclusive to tumor cells. EXPERIMENTAL DESIGN We radiolabeled the anti-DLL3 mAb SC16 with the therapeutic radioisotope, Lutetium-177. [177Lu]Lu-DTPA-CHX-A"-SC16 binds to DLL3 on SCLC cells and delivers targeted radiotherapy while minimizing radiation to healthy tissue. RESULTS [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated high tumor uptake with DLL3-target specificity in tumor xenografts. Dosimetry analyses of biodistribution studies suggested that the blood and liver were most at risk for toxicity from treatment with high doses of [177Lu]Lu-DTPA-CHX-A"-SC16. In the radioresistant NCI-H82 model, survival studies showed that 500 μCi and 750 μCi doses of [177Lu]Lu-DTPA-CHX-A"-SC16 led to prolonged survival over controls, and 3 of the 8 mice that received high doses of [177Lu]Lu-DTPA-CHX-A"-SC16 had pathologically confirmed complete responses (CR). In the patient-derived xenograft model Lu149, all doses of [177Lu]Lu-DTPA-CHX-A"-SC16 markedly prolonged survival. At the 250 μCi and 500 μCi doses, 5 of 10 and 7 of 9 mice demonstrated pathologically confirmed CRs, respectively. Four of 10 mice that received 750 μCi of [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated petechiae severe enough to warrant euthanasia, but the remaining 6 mice demonstrated pathologically confirmed CRs. IHC on residual tissues from partial responses confirmed retained DLL3 expression. Hematologic toxicity was dose-dependent and transient, with full recovery within 4 weeks. Hepatotoxicity was not observed. CONCLUSIONS Together, the compelling antitumor efficacy, pathologic CRs, and mild and transient toxicity profile demonstrate strong potential for clinical translation of [177Lu]Lu-DTPA-CHX-A"-SC16.
Collapse
Affiliation(s)
- Kathryn M. Tully
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salomon Tendler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Lukas M. Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary V. Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua A. Korsen
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY USA
| | - William D. Travis
- Department of Thoracic Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | | | - John T. Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY USA
| | - Charles M. Rudin
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Jason S. Lewis
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
199
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 518] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
200
|
Qi J, Zhang J, Liu N, Zhao L, Xu B. Prognostic Implications of Molecular Subtypes in Primary Small Cell Lung Cancer and Their Correlation With Cancer Immunity. Front Oncol 2022; 12:779276. [PMID: 35311069 PMCID: PMC8924463 DOI: 10.3389/fonc.2022.779276] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Small cell lung cancer (SCLC) has recently been characterized as heterogeneous tumors due to consensus nomenclature for distinct molecular subtypes on the basis of differential expression of four transcription markers (ASCL1, NEUROD1, POU2F3, and YAP1). It is necessary to validate molecular subtype classification in primary SCLC tumors by immunohistochemical (IHC) staining and investigate its relevance to survival outcomes. Methods Using a large number of surgically resected primary SCLC tumors, we assessed the mRNA and protein levels of the four subtype markers (ASCL1, NEUROD1, POU2F3 and YAP1) in two independent cohorts, respectively. Next, molecular subtypes defined by the four subtype markers was conducted to identify the association with clinicopathologic characteristics, survival outcomes, the expression of classic neuroendocrine markers, and molecules related to tumor immune microenvironment. Results Samples were categorized into four subtypes based on the relative expression levels of the four subtype markers, yielding to ASCL1, NEUROD1, POU2F3 and YAP1 subtypes, respectively. The combined neuroendocrine differentiation features were more prevalent in either ASCL1 or NEUROD1 subtypes. Kaplan-Meier analyses found that patients with tumors of the YAP1 subtype and ASCL1 subtype obtained the best and worst prognosis on both mRNA and IHC levels, respectively. Based on multivariate Cox proportional-hazards regression model, molecular subtype classification determined by IHC was identified as an independent indicator for survival outcomes in primary SCLC tumors. Correlation analyses indicated that the four subtype markers in SCLC cancer cells were interacted with its tumor immune microenvironment. Specifically, tumors positive for YAP1 was associated with fewer CTLA4+ T cell infiltration, while more immune-inhibitory receptors (FoxP3,PD1, and CTLA4) and fewer immune-promoting receptor (CD8) were found in tumors positive for ASCL1. Conclusions We validated the new molecular subtype classification and clinical relevance on both mRNA and protein levels from primary SCLC tumors. The molecular subtypes determined by IHC could be a pre-selected effective biomarker significantly influenced on prognosis in patients with SCLC, which warrants further studies to provide better preventative and therapeutic options for distinct molecular subtypes.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|