151
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Wu C, Pan X. Cellular defense system-destroying nanoparticles as a platform for enhanced chemotherapy against drug-resistant cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112494. [PMID: 34857280 DOI: 10.1016/j.msec.2021.112494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Cellular defense system represented by glutathione (GSH) greatly weakens the outcomes of cancer therapy by antioxidation and detoxification. GSH depletion has been proved to be an effective way to enhance the efficacy of reactive oxygen species (ROS)-based therapies and chemotherapy. However, the existing strategies of GSH depletion still face the problems of unclear biosafety and high complexity of multicomponent co-delivery. In this study, we developed a GSH-depleting carrier platform based on disulfide-bridged mesoporous organosilica nanoparticles (MONs) to destroy the cellular defense system for cancer therapy. Responding to the high level of GSH in cancer cells, the disulfide bonds in the framework of MONs could be broken and consumed substantial GSH at the same time. Moreover, this process also promoted the degradation of MONs. In order to evaluate the effect of this platform in cancer therapy, chemotherapeutic drug cisplatin was loaded into MONs (Pt@MONs) to treat drug-resistant non-small cell lung cancer. In vitro and in vivo results indicated that Pt@MONs efficiently triggered GSH depletion, promoted platinum-DNA adduct formation, and induced cell apoptosis, resulting in significant tumor growth inhibition without marked toxicity. Taken together, the cellular defense system-destroying nanoparticles provide a promising platform for enhanced cancer therapy.
Collapse
Affiliation(s)
- Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
152
|
Zheng C, Song Q, Zhao H, Kong Y, Sun L, Liu X, Feng Q, Wang L. A nanoplatform to boost multi-phases of cancer-immunity-cycle for enhancing immunotherapy. J Control Release 2021; 339:403-415. [PMID: 34655676 DOI: 10.1016/j.jconrel.2021.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022]
Abstract
The failure of any phase in continuous multi-link immune response process can cause unsatisfactory outcomes, which might be improved by all-cancer-immunity-cycle boosted strategy. Herein, a nanoplatform Mn/CaCO3@PL/SLC is developed, which is based on palmitoyl ascorbate (PA)-liposome (PL) loaded with Mn-doped CaCO3 nanoparticles (Mn/CaCO3 NPs) and carbonic anhydrase (CAIX) inhibitor SLC-0111. The nanoplatform comprehensively amplifies all immune stages including tumor-associated antigens (TAAs) release and presentation, T cells activation and infiltration, as well as tumor cells destruction. In detail, Mn-triggered lipid peroxidation facilitates TAAs release and subsequent T cells activation to initiate immunity cycle. Additionally, SLC-0111 and PA amplify the infiltration and tumor killing activity of these effector T cells. The former polarizes the immunosuppressive tumor microenvironment to an immune-active phenotype and the latter enhances the function of tumor-infiltrating T lymphocytes. Importantly, Mn augments the all-immunity-cycle by promoting cGAS-STING pathway activation. In summary, the Mn/CaCO3@PL/SLC nanoplatform is verified to boost anti-tumor immunity and achieve outstanding immunotherapeutic effects in eradicating tumor and preventing tumor metastasis. Such an all-cancer-immunity-cycle boosted strategy is meaningful for antitumor immunotherapy.
Collapse
Affiliation(s)
- Cuixia Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueyue Kong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lingling Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
153
|
Zeng W, Liu C, Wang S, Wang Z, Huang Q. SnFe 2O 4 Nanozyme Based TME Improvement System for Anti-Cancer Combination Thermoradiotherapy. Front Oncol 2021; 11:768829. [PMID: 34746011 PMCID: PMC8564484 DOI: 10.3389/fonc.2021.768829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
High doses of radiotherapy (RT) are associated with resistance induction. Therefore, highly selective and controllable radiosensitizers are urgently needed. To address this issue, we developed a tin ferrite (SFO)-based tumor microenvironment (TME)-improved system (SIS) that can be used in combination with low-dose radiation. The SIS was delivered via intratumoral injection directly to the tumor site, where it was stored as a ration depot. Due to the photothermal properties of SFO, SIS steadily dissolved under near-infrared (NIR) laser irradiation. Simultaneously, the dual glutathione oxidase (GSH-OXD) and catalase (CAT) activities of the SFO nanozyme significantly lowered the content of GSH in tumor tissues and efficiently catalyzed the conversion of intracellular hydrogen peroxide to produce a large amount of oxygen (O2) for intracellular redox homeostasis disruption, thus reducing radiotherapy resistance. Our in vivo and in vitro studies suggested that combining the SIS and NIR irradiation with RT (2Gy) significantly reduced tumor proliferation without side effects such as inflammation. To conclude, this study revealed that SFO-based nanozymes show great promise as a catalytic, radiosensitizing anti-tumor therapy.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunping Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuntao Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
154
|
Kou Y, Dai Z, Cui P, Hu Z, Tian L, Zhang F, Duan H, Xia Q, Liu Q, Zheng X. A flowerlike FePt/MnO 2/GOx-based cascade nanoreactor with sustainable O 2 supply for synergistic starvation-chemodynamic anticancer therapy. J Mater Chem B 2021; 9:8480-8490. [PMID: 34553729 DOI: 10.1039/d1tb01539g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of versatile nanotheranostic agents has received increasing interest in cancer treatment. Herein, in this study, we rationally designed and prepared a novel flowerlike multifunctional cascade nanoreactor, BSA-GOx@MnO2@FePt (BGMFP), by integrating glucose oxidase (GOx), manganese dioxide (MnO2) and FePt for synergetic cancer treatment with satisfying therapeutic efficiency. In an acidic environment, intratumoral H2O2 could be decomposed to O2 to accelerate the consumption of glucose catalyzed by GOx to induce cancer starvation. Moreover, the accumulation of gluconic acid and H2O2 generated along with the consumption of glucose would in turn promote the catalytic efficiency of MnO2 and boost O2 evolution, which could enhance the efficiency of starvation therapy. Moreover, FePt as an excellent Fenton agent could simultaneously convert H2O2 to the toxic hydroxyl radical (˙OH), subsequently resulting in amplified intracellular oxidative stress and cell apoptosis. Therefore, BGMFP could catalyze a cascade of intracellular biochemical reactions and optimize the unique properties of MnO2, GOx and FePt via mutual promotion of each other to realize O2 supply, chemodynamic therapy (CDT) and starvation therapy. The anticancer results in vitro and in vivo demonstrated that BGMFP possessed remarkable tumor inhibition capacity through enhancing the starvation therapy and CDT. It is appreciated that BGMFP could be a promising platform for synergetic cancer treatment.
Collapse
Affiliation(s)
- Yunkai Kou
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Ping Cui
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Lu Tian
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Feifei Zhang
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Haiqiang Duan
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Qiying Xia
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials & Technology in Universities of Shandong, School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| |
Collapse
|
155
|
Cheng D, Wang X, Zhou X, Li J. Nanosonosensitizers With Ultrasound-Induced Reactive Oxygen Species Generation for Cancer Sonodynamic Immunotherapy. Front Bioeng Biotechnol 2021; 9:761218. [PMID: 34660560 PMCID: PMC8514668 DOI: 10.3389/fbioe.2021.761218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is a promising therapeutic strategy for cancer, while it has been demonstrated to encounter the issues of low immune responses and underlying immune-related adverse events. The sonodynamic therapy (SDT) that utilizes sonosensitizers to produce reactive oxygen species (ROS) triggered by ultrasound (US) stimulation can be used to ablate tumors, which also leads to the induction of immunogenic cell death (ICD), thus achieving SDT-induced immunotherapy. Further combination of SDT with immunotherapy is able to afford enhanced antitumor immunity for tumor regression. In this mini review, we summarize the recent development of nanosonosensitizers with US-induced ROS generation for cancer SDT immunotherapy. The uses of nanosonosensitizers to achieve SDT-induced immunotherapy, combinational therapy of SDT with immunotherapy, and combinational therapy of SDT with multiple immunotherapies are briefly introduced. Furthermore, the current concerns and perspectives for the development and further clinical applications of these nanosonosensitizers for SDT-combined immunotherapy of cancer are discussed.
Collapse
Affiliation(s)
- Danling Cheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
156
|
Zhang Y, Zhang X, Yang H, Yu L, Xu Y, Sharma A, Yin P, Li X, Kim JS, Sun Y. Advanced biotechnology-assisted precise sonodynamic therapy. Chem Soc Rev 2021; 50:11227-11248. [PMID: 34661214 DOI: 10.1039/d1cs00403d] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant advances, the therapeutic impact of photodynamic therapy is still substantially hampered by the restricted penetration depth of light and the reactive oxygen species (ROS)-mediated toxicity, which is impeded by the shorter effective half-life and radius of ROS produced during treatment. Sonodynamic therapy (SDT), on the other hand, provides unrivalled benefits in deep-seated tumour ablation due to its deep penetration depth and not totally ROS-dependent toxicity, exhibiting enormous preclinical and clinical potential. In this tutorial review, we highlight imaging-guided precise SDT, which allows choosing the best treatment option and monitoring the therapy response in real-time, as well as recent clinical trials based on SDT. Aside from that, the subtle design strategies of sonosensitizers based on tumour environment shaping and rational structure modification, as well as SDT combination treatment (chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, gas therapy and immunotherapy), aimed at a more effective treatment outcome, are summarized. Finally, we discussed the future of SDT for personalized cancer and other disease treatments.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiangqian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China. .,State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huocheng Yang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Le Yu
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, Hunan 410081, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
157
|
Ding B, Sheng J, Zheng P, Li C, Li D, Cheng Z, Ma P, Lin J. Biodegradable Upconversion Nanoparticles Induce Pyroptosis for Cancer Immunotherapy. NANO LETTERS 2021; 21:8281-8289. [PMID: 34591494 DOI: 10.1021/acs.nanolett.1c02790] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pyroptosis, which is a mode of programmed cell death, has proven effective for cancer therapy. However, efficient pyroptosis inducers for tumor treatment are limited. This study proposes biodegradable K3ZrF7:Yb/Er upconversion nanoparticles (ZrNPs) as pyroptosis inducers for cancer immunotherapy. ZrNPs, which are similar to ion reservoirs, can be dissolved inside cancer cells and release high amounts of K+ and [ZrF7]3- ions, resulting a surge in intracellular osmolarity and homeostasis imbalance. This further induces an increase in reactive oxygen species (ROS), caspase-1 protein activation, gasdermin D (GSDMD) cleavage, and interleukin-1β (IL-1β) maturity, and results in cytolysis. In vivo tests confirm that ZrNPs-induced pyroptosis exhibits superior antitumor immunity activity confirmed by enhanced dendritic cells (DCs) maturity and frequency of effector-memory T cells, as well as observably inhibiting tumor growth and pulmonary metastasis. This work is believed to extend the biomedical applications of upconversion nanomaterials and deepen the understanding of intrinsic immunomodulatory activity of nanomaterials.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Dong Li
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
158
|
Luo Y, Yan P, Li X, Hou J, Wang Y, Zhou S. pH-Sensitive Polymeric Vesicles for GOx/BSO Delivery and Synergetic Starvation-Ferroptosis Therapy of Tumor. Biomacromolecules 2021; 22:4383-4394. [PMID: 34533297 DOI: 10.1021/acs.biomac.1c00960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Typical glucose oxidase (GOx)-based starvation therapy is a promising strategy for tumor treatment; however, it is still difficult to achieve an effective therapeutic effect via a single starvation therapy. Herein, we designed a pH-sensitive polymeric vesicle (PV) self-assembled by histamine-modified chondroitin sulfate (CS-his) for codelivery of GOx and l-buthionine sulfoximine (BSO). GOx can consume glucose to induce the starvation therapy after the PVs reach cancer cell. Moreover, the product H2O2 will be reduced by a high concentration of glutathione (GSH) in the tumor cell, resulting in a reduction of the GSH content. The released BSO finally further reduced the GSH level. As a result, the signaling pathway of the ferroptosis will be activated. The in vivo results demonstrated that GOx/BSO@CS PVs exhibit a good inhibitory effect on the growth of 4T1 tumors in mice. Thus, this work provides a facile strategy to prepare pH-sensitive nanomedicine for synergistic starvation-ferroptosis therapy of tumor.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Peng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xinyang Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
159
|
Xing X, Zhao S, Xu T, Huang L, Zhang Y, Lan M, Lin C, Zheng X, Wang P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
160
|
Zhang H, Pan X, Wu Q, Guo J, Wang C, Liu H. Manganese carbonate nanoparticles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy. EXPLORATION (BEIJING, CHINA) 2021; 1:20210010. [PMID: 37323218 PMCID: PMC10190974 DOI: 10.1002/exp.20210010] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) has attracted widespread attention due to its non-invasiveness and deep tissue penetration. However, the development of efficient sonodynamic nanoplatforms to improve the therapeutic efficiency is still one of the main challenges of current research. In this work, a new type of sonosensitizer prepared by a simple method, manganese carbonate nanoparticles (MnCO3 NPs), is used for enhanced SDT. MnCO3 NPs could generate large amounts of 1O2 and •OH under ultrasound irradiation. At the same time, CO2 and Mn ions could be released in a weak acid environment due to the excellent degradability of MnCO3 NPs. The CO2 bubbles caused cell necrosis by ultrasonic cavitation and used for ultrasound imaging. And Mn ions activated the mitochondrial cell apoptosis pathway. In vivo experiments proved that this sonosensitizer with mitochondrial regulatory capacity showed high tumor inhibition rates for enhanced sonodynamic tumor therapy.
Collapse
Affiliation(s)
- Haoyuan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic–Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of BioprocessBeijing University of Chemical TechnologyBeijingP. R. China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic–Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of BioprocessBeijing University of Chemical TechnologyBeijingP. R. China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic–Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of BioprocessBeijing University of Chemical TechnologyBeijingP. R. China
| | - Juan Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic–Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of BioprocessBeijing University of Chemical TechnologyBeijingP. R. China
| | - Chaohui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic–Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of BioprocessBeijing University of Chemical TechnologyBeijingP. R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic–Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of BioprocessBeijing University of Chemical TechnologyBeijingP. R. China
| |
Collapse
|
161
|
Geng B, Yang X, Li P, Shi W, Pan D, Shen L. W-Doped TiO 2 Nanorods for Multimode Tumor Eradication in Osteosarcoma Models under Single Ultrasound Irradiation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45325-45334. [PMID: 34533945 DOI: 10.1021/acsami.1c14701] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sonosensitizers play crucial roles in the controlled production of reactive oxygen species (ROS) under ultrasound (US) irradiation with high tissue-penetration depth for noninvasive solid tumor therapy. It is desirable to fabricate structurally simple yet multifunctional sonosensitizers from ultrafine nanoparticles for ROS-based multimode therapy to overcome monomode limitations such as low ROS production yields and endogenous reductive glutathione (GSH) to ROS-based treatment resistance. We report the facile high-temperature solution synthesis of ultrafine W-doped TiO2 (W-TiO2) nanorods for exploration of their sonodynamic, chemodynamic, and GSH-depleting activities in sonodynamic-chemodynamic combination tumor therapy. We found that W5+ and W6+ ions doped in W-TiO2 nanorods play multiple roles in enhancing their ROS production. First, W doping narrows the band gap from 3.2 to 2.3 eV and introduces oxygen and Ti vacancies for enhancing their sonodynamic performance. Second, W5+ doping endows W-TiO2 nanorods with Fenton-like reaction activity to produce •OH from endogenous H2O2 in the tumor. Third, W6+ ions reduce endogenous GSH to glutathione disulfide (GSSG) and, in turn, form W5+ ions that further enhance their chemodynamic activity, which greatly modifies thae oxidation-reduction tumor microenvironment in the tumor. In vivo experiments display the excellent ability of W-TiO2 nanorods for enhanced tumor eradication in human osteosarcoma models under single US irradiation. Importantly, the ultrafine nanorod morphology facilitates rapid excretion from the body, displaying no significant systemic toxicity. Our work suggests that multivalent metal doping in ultrafine nanomaterials is an effective and simple strategy for the introduction of new functions for ROS-based multimode therapy.
Collapse
Affiliation(s)
- Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xue Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenyan Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
162
|
Sun Q, Liu B, Zhao R, Feng L, Wang Z, Dong S, Dong Y, Gai S, Ding H, Yang P. Calcium Peroxide-Based Nanosystem with Cancer Microenvironment-Activated Capabilities for Imaging Guided Combination Therapy via Mitochondrial Ca 2+ Overload and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44096-44107. [PMID: 34499466 DOI: 10.1021/acsami.1c13304] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondria are the "power plant" of the cell, providing a constant source of energy, and are involved in a variety of intracellular signaling pathways. Among these pathways, Ca2+ homeostasis is closely related to the normal function of mitochondria. By destroying the Ca2+ steady state of mitochondria and disrupting their multiple cellular activities, tumor cell killing can be achieved. In addition, the presence of an intracellular oxidative stress state triggers the closure of cellular calcium channels, which leads to intracellular Ca2+ retention and enrichment. We designed a targeted and tumor microenvironment (TME)-responsive CaO2-based nanosystem that can selectively target cancer cells for pH-controlled degradation and drug release, alter cellular physiological mechanisms by disrupting Ca2+ homeostasis in an artificial manner, and introduce mitochondrial Ca2+ excess-mediated apoptosis. Meanwhile, the production of Ca(OH)2 will raise the pH of the microenvironment and subsequently promote the oxidation process of glutathione by H2O2 released from CaO2 degradation, achieving the goal of remodeling TME. Moreover, calcium overload of tumor cells and calcification of tissues can both inhibit tumor growth and act as a contrast agent for computed tomography imaging.
Collapse
Affiliation(s)
- Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
163
|
Geng P, Yu N, Liu X, Zhu Q, Wen M, Ren Q, Qiu P, Zhang H, Li M, Chen Z. Sub 5 nm Gd 3+ -Hemoporfin Framework Nanodots for Augmented Sonodynamic Theranostics and Fast Renal Clearance. Adv Healthc Mater 2021; 10:e2100703. [PMID: 34363332 DOI: 10.1002/adhm.202100703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic nanomaterials have emerged as promising therapeutic agents to produce reactive oxygen species (ROS) under ultrasound (US) or light irradiation for tumor treatments. However, their relatively large sizes (ranging from tens to hundreds of nanometers) usually lead to low ROS utilization and body metabolism, thus enlarging their long-term toxicity and low therapeutic effect. To solve these shortcomings, herein the ultrasmall Gd3+ -hemoporfin framework nanodots (GdHF-NDs, ≈5 nm) is reported as efficient nano-sonosensitizers. Compared with GdHF aggregation (GdHF-A, ≈400 nm), the ultrasmall GdHF-NDs generate 2.3-fold toxic ROS amount under similar conditions, due to shorter diffusion path and larger relative specific surface area. When the GdHF-NDs dispersion is introvenously injected into tumor-bearing mouse, they are accumulated within tumors to provide high magnetic resonance imaging (MRI) contrast. Under US irradiation, the GdHF-NDs achieve a better sonodynamic therapeutic efficacy for tumors, compared with that from GdHF-A. More importantly, owing to ultrasmall size, most of GdHF-NDs can be rapidly cleared through the renal pathway. Therefore, GdHF-NDs can be used as a biosafety and high-performance sonodynamic agent for cancer theranostics.
Collapse
Affiliation(s)
- Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Xiaohan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Qin Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification Branden Biomedical Park Qihe Advanced Science & High Technology Development Zone Qihe Shandong 251100 China
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| |
Collapse
|
164
|
Liang S, Liu B, Xiao X, Yuan M, Yang L, Ma P, Cheng Z, Lin J. A Robust Narrow Bandgap Vanadium Tetrasulfide Sonosensitizer Optimized by Charge Separation Engineering for Enhanced Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101467. [PMID: 34296464 DOI: 10.1002/adma.202101467] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The development and optimization of sonosensitizers for elevating intratumoral reactive oxygen species (ROS) are definitely appealing in current sonodynamic therapy (SDT). Given this, branched vanadium tetrasulfide (VS4 ) nanodendrites with a narrower bandgap (compared with the most extensively explored sonosensitizers) are presented as a new source of sonosensitizer, which allows a more effortless separation of sono-triggered electron-hole pairs for ROS generation. Specifically, platinum (Pt) nanoparticles and endogenous high levels of glutathione (GSH) are rationally engineered to further optimize its sono-sensitized performance. As cocatalyst, Pt is conducive to trapping electrons, whereas GSH, as a natural hole-scavenger, tends to capture holes. Compared with the pristine VS4 sonosensitizer, the GSH-Pt-VS4 nanocomposite can greatly prolong the lifetime of the charge and confer a highly efficacious ROS production activity. Furthermore, such nanoplatforms are capable of reshaping tumor microenvironments to realize ROS overproduction, contributed by overcoming tumor hypoxia to improve SDT-triggered singlet oxygen production, catalyzing endogenic hydrogen peroxide into destructive hydroxyl radicals for chemodynamic therapy, and depleting GSH to amplify intratumoral oxidative stress. All these combined effects result in a significantly efficient tumor suppression outcome. This study enriches sonosensitizer research and proves that sonosensitizers can be rationally optimized by charge separation engineering strategy.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ling Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
165
|
Yuan M, Liang S, Zhou Y, Xiao X, Liu B, Yang C, Ma P, Cheng Z, Lin J. A Robust Oxygen-Carrying Hemoglobin-Based Natural Sonosensitizer for Sonodynamic Cancer Therapy. NANO LETTERS 2021; 21:6042-6050. [PMID: 34254814 DOI: 10.1021/acs.nanolett.1c01220] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of novel sonosensitizers with outstanding reactive oxygen (ROS) generation capacity and great biocompatibility poses a significant challenge for the clinical practice of sonodynamic therapy (SDT). In this work, hemoglobin (Hb) with natural metalloporphyrin was first shown to possess great potential as a sonosensitizer. Compared with traditional organic sonosensitizers, Hb had satisfactory sono-sensitizing efficiency because four the porphyrin molecules were separated by four polypeptide chains. This effectively avoided the problem of low ROS quantum yield caused by the stacking of hydrophobic porphyrins. Meanwhile, Hb is an efficient and safe oxygen carrier that may release O2 at hypoxic tumors site, which improved tumor oxygenation and subsequently enhanced SDT efficacy. Therefore, Hb was integrated with zeolitic imidazolate framework 8 (ZIF-8) to form a nanoplatform that demonstrated a potent suppression effect on deep-seated tumors under ultrasound irradiation.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ying Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
166
|
Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nat Commun 2021; 12:4299. [PMID: 34262038 PMCID: PMC8280226 DOI: 10.1038/s41467-021-24604-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is clinically adopted to destruct solid tumors, but is often incapable of completely ablating large tumors and those with multiple metastatic sites. Here we develop a CaCO3-assisted double emulsion method to encapsulate lipoxidase and hemin with poly(lactic-co-glycolic acid) (PLGA) to enhance RFA. We show the HLCaP nanoreactors (NRs) with pH-dependent catalytic capacity can continuously produce cytotoxic lipid radicals via the lipid peroxidation chain reaction using cancer cell debris as the fuel. Upon being fixed inside the residual tumors post RFA, HLCaP NRs exhibit a suppression effect on residual tumors in mice and rabbits by triggering ferroptosis. Moreover, treatment with HLCaP NRs post RFA can prime antitumor immunity to effectively suppress the growth of both residual and metastatic tumors, also in combination with immune checkpoint blockade. This work highlights that tumor-debris-fueled nanoreactors can benefit RFA by inhibiting tumor recurrence and preventing tumor metastasis.
Collapse
|
167
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
168
|
Liu B, Liang S, Wang Z, Sun Q, He F, Gai S, Yang P, Cheng Z, Lin J. A Tumor-Microenvironment-Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodal-Enhanced Enzyme Dynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101223. [PMID: 34145652 DOI: 10.1002/adma.202101223] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Recently, enzyme dynamic therapy (EDT) has drawn much attention as a new type of dynamic therapy. However, the selection of suitable nanocarriers to deliver chloroperoxidase (CPO) and enhancement of the level of hydrogen peroxide (H2 O2 ) in the tumor microenvironment (TME) are critical factors for improving the efficiency of EDT. In this study, a rapidly decomposing nanocomposite is designed using tetra-sulfide-bond-incorporating dendritic mesoporous organosilica (DMOS) as a nanocarrier, followed by loading CPO and sodium-hyaluronate-modified calcium peroxide nanoparticles (CaO2 -HA NPs). The nanocomposite can effectively generate singlet oxygen (1 O2 ) for tumor therapy without any exogenous stimulus via trimodal-enhanced EDT, including DMOS-induced depletion of glutathione (GSH), H2 O2 compensation from CaO2 -HA NPs in mildly acidic TME, and oxidative stress caused by overloading of Ca2+ . As tetra-sulfide bonds are sensitive to GSH, DMOS can generate hydrogen sulfide (H2 S) gas as a new kind of H2 S gas nanoreactor. Additionally, the overloading of Ca2+ can cause tumor calcification to accelerate in vivo tumor necrosis and promote computed tomography imaging efficacy. Therefore, a novel H2 S gas, EDT, and Ca2+ -interference combined therapy strategy is developed.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
169
|
Du F, Liu L, Wu Z, Zhao Z, Geng W, Zhu B, Ma T, Xiang X, Ma L, Cheng C, Qiu L. Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101095. [PMID: 34096109 DOI: 10.1002/adma.202101095] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Indexed: 02/05/2023]
Abstract
The diversity, complexity, and heterogeneity of malignant tumor seriously undermine the efficiency of mono-modal treatment. Recently, multi-modal therapeutics with enhanced antitumor efficiencies have attracted increasing attention. However, designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies is still a great challenge. Here, new and facile Pd-single-atom coordinated porphyrin-based polymeric networks as biocatalysts, namely, Pd-Pta/Por, for chem-/sono-/photo-trimodal tumor therapies are designed. The atomic morphology and chemical structure analysis prove that the biocatalyst consists of atomic Pd-N coordination networks with a Pd-N2 -Cl2 catalytic center. The characterization of peroxidase-like catalytic activities displays that the Pd-Pta/Por can generate abundant •OH radicals for chemodynamic therapies. The ultrasound irradiation or laser excitation can significantly boost the catalytic production of 1 O2 by the porphyrin-based sono-/photosensitizers to achieve combined sono-/photodynamic therapies. The superior catalytic production of •OH is further verified by density functional theory calculation. Finally, the corresponding in vitro and in vivo experiments have demonstrated their synergistic chem-/sono-/photo-trimodal antitumor efficacies. It is believed that this study provides new promising single-atom-coordinated polymeric networks with highly efficient biocatalytic sites and synergistic trimodal therapeutic effects, which may inspire many new findings in reactive oxygen species-related biological applications across broad therapeutics and biomedical fields.
Collapse
Affiliation(s)
- Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Luchang Liu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zhenyang Zhao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bihui Zhu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Tian Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
170
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
171
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
172
|
Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
173
|
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50:6013-6041. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH), the main redox buffer, has long been recognized as a pivotal modulator of tumor initiation, progression and metastasis. It is also implicated in the resistance of platinum-based chemotherapy and radiation therapy. Therefore, depleting intracellular GSH was considered a potent solution to combating cancer. However, reducing GSH within cancer cells alone always failed to yield desirable therapeutic effects. In this regard, the convergence of GSH-scavenging agents with therapeutic drugs has thus been pursued in clinical practice. Unfortunately, the therapeutic outcomes are still unsatisfactory due to untargeted drug delivery. Advanced nanomedicine of synergistic GSH depletion and cancer treatment has attracted tremendous interest because they promise to deliver superior therapeutic benefits while alleviating life-threatening side effects. In the past five years, the authors and others have demonstrated that numerous nanomedicines, by simultaneously delivering GSH-depleting agents and therapeutic components, boost not only traditional chemotherapy and radiotherapy but also multifarious emerging treatment modalities, including photodynamic therapy, sonodynamic therapy, chemodynamic therapy, ferroptosis, and immunotherapy, to name a few, and achieved decent treatment outcomes in a large number of rodent tumor models. In this review, we summarize the most recent progress in engineering nanomedicine for GSH depletion-enhanced cancer therapies. Biosynthesis of GSH and various types of GSH-consuming strategies will be briefly introduced. The challenges and perspectives of leveraging nanomedicine for GSH consumption-augmented cancer therapies will be discussed at the end.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
174
|
Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, Ma L, Cheng C, Guo Q, Qiu L. Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202101804] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Liyun Wang
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Bihui Zhu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Yuting Deng
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Tiantian Li
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Qinyu Tian
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Zhiguo Yuan
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Lang Ma
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610064 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| | - Quanyi Guo
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| |
Collapse
|
175
|
Ke L, Wei F, Liao X, Rees TW, Kuang S, Liu Z, Chen Y, Ji L, Chao H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. NANOSCALE 2021; 13:7590-7599. [PMID: 33884385 DOI: 10.1039/d1nr00773d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is a promising noninvasive cancer treatment. PDT in the clinic faces several hurdles due to the unique tumor environment, a feature of which is high levels of glutathione (GSH). An excess amount of GSH consumes reactive oxygen species (ROS) generated by photosensitizers (PSs), reducing PDT efficiency. Herein, nano-photosensitizers (RuS1 NPs and RuS2 NPs) are reported. These consist of ruthenium complexes joined by disulfide bonds forming GSH sensitive polymer nanoparticles. The NPs achieve enhanced uptake compared to their constituent monomers. Inside cancer cells, high levels of GSH break the S-S bonds releasing PS molecules in the cell. The level of GSH is also then reduced leading to excellent PDT activity. Furthermore, RuS2 NPs functionalized with tumor targeting hyaluronic acid (HA@RuS2 NPs) assessed in vivo were highly effective with minimal side effects. To the best of our knowledge, RuS NPs are the first metal complex-based nano-assembled photosensitizers which exhibit enhanced specificity and consume endogenous GSH simultaneously, thus achieving excellent two-photon PDT efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
176
|
Injectable Hydrogel for Cu 2+ Controlled Release and Potent Tumor Therapy. Life (Basel) 2021; 11:life11050391. [PMID: 33925834 PMCID: PMC8147102 DOI: 10.3390/life11050391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Disulfiram (DSF) is an important drug for the treatment and management of alcohol dependency. This drug has been approved by US-FDA, and its activity against the tumor is dependent on copper ion (Cu2+). However, the copper toxicity (caused via external copper) and its intrinsic anfractuous distribution in the human body have adversely suppressed the mechanism of DSF in in vivo. In this study, we aimed to design an injectable hydrogel, as CRC (Cu2+ release controller) for the effective treatment of tumors. The hydrogels of agarose have been used for wrapping of CuCl2, and hierarchical microparticles (HMP) for the generation of CRC system. When the laser irradiations (808 nm) have been provided to the system, light energy is transferred into heat energy, which results in the hydrogel hydrolysis (reversible) due to the overheating effect. This is followed by a reaction with DSF (pre-injected) to suppress tumor progression. Hence, the CRC system brings innovative ideas for designing of a Cu2+ delivery system.
Collapse
|
177
|
Fu L, Zhou X, He C. Polymeric Nanosystems for Immunogenic Cell Death-Based Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100075. [PMID: 33885225 DOI: 10.1002/mabi.202100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Immunotherapy has pointed out a scientific and promising direction for cancer treatment through the rouse of immunosurveillance and the decrease of possible side effects in recent years. In immunotherapy, immunogenic cancer cell death (ICD) plays a critical role in regulating anti-cancer immune system in vivo via the release of damage-associated molecular patterns. ICD can not only induce in situ cancer cells apoptosis, but also arouse the immune response against metastatic tumors, which is of great clinical significance to eradicate tumors. In cancer immunotherapy, polymer nanoparticles have drawn increasing attention as an important component of ICD-based immunotherapy attributing to their controllable size, excellent biocompatibility, promising ability of protecting cargo from surrounding environment, which delivers the antigens or immune inducers to antigen-presenting cells, and further triggers sinnvoll T cell response. In this review, the recent advances in the development of polymeric material-based nanosystems for ICD-mediated cancer immunotherapy are summarized. The mechanism of ICD and some current restrictions inhibiting the efficiency of immunotherapy and future prospects are also discussed.
Collapse
Affiliation(s)
- Liwen Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
178
|
Zheng P, Ding B, Shi R, Jiang Z, Xu W, Li G, Ding J, Chen X. A Multichannel Ca 2+ Nanomodulator for Multilevel Mitochondrial Destruction-Mediated Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007426. [PMID: 33675268 DOI: 10.1002/adma.202007426] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/30/2020] [Indexed: 05/22/2023]
Abstract
Subcellular organelle-targeted nanoformulations for cancer theranostics are receiving increasing attention owing to their benefits of precise drug delivery, maximized therapeutic index, and reduced off-target side effects. Herein, a multichannel calcium ion (Ca2+ ) nanomodulator (CaNMCUR+CDDP ), i.e., a cisplatin (CDDP) and curcumin (CUR) co-incorporating calcium carbonate (CaCO3 ) nanoparticle, is prepared by a facile one-pot strategy in a sealed container with in situ synthesized polydopamine (PDA) as a template to enhance Ca2+ -overload-induced mitochondrial dysfunction in cancer therapy. After systemic administration, the PEGylated CaNMCUR+CDDP (PEG CaNMCUR+CDDP ) selectively accumulates in tumor tissues, enters tumor cells, and induces multilevel destruction of mitochondria by the combined effects of burst Ca2+ release, Ca2+ efflux inhibition by CUR, and chemotherapeutic CDDP, thereby observably boosting mitochondria-targeted tumor inhibition. Fluorescence imaging of CUR combined with photoacoustic imaging of PDA facilitates the visualization of the nanomodulator. The facile and practical design of this multichannel Ca2+ nanomodulator will contribute to the development of multimodal bioimaging-guided organelle-targeted cancer therapy in the future.
Collapse
Affiliation(s)
- Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Run Shi
- Faculty of Medicine, Ludwig-Maximilians-Universität München, Theresienstraße 39, D-80333, München, Germany
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
179
|
Recent advances of redox-responsive nanoplatforms for tumor theranostics. J Control Release 2021; 332:269-284. [DOI: 10.1016/j.jconrel.2021.02.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023]
|
180
|
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021; 9:208-227. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) plays a central role in curing malignant tumors. However, the treatment outcome is often impeded by low radiation absorption coefficients and radiation resistance of tumors along with normal tissue radio-toxicity. With the development of nanotechnology, nanomaterials in combination with RT offer the possibility to improve the therapeutic efficacy yet reduce side-effects. Metal-ligand coordination nanomaterials, including nanoscale metal-organic frameworks (NMOFs) and nanoscale coordination polymers (NCPs), formed by coordination interactions between inorganic metal ions/clusters with organic bridging ligands, have shown great potential in the field of radiation oncology in recent years in view of their unique advantages including the porous structure, high surface area, periodic frameworks, and diverse selections of both metal ions/clusters and organic ligands. In this review, we summarize the recent advances in NMOF/NCP-mediated synergistic RT in combination with hypoxia relief, chemotherapy, photodynamic therapy, photothermal therapy, chemodynamic therapy or immunotherapy, which emerged in the last 3 years, and describe cooperative enhancement interactions among these synergistic combinations. Moreover, the potential challenges and future prospects of this rapidly growing direction were also addressed.
Collapse
Affiliation(s)
- Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
181
|
Fathi P, Roslend A, Mehta K, Moitra P, Zhang K, Pan D. UV-trained and metal-enhanced fluorescence of biliverdin and biliverdin nanoparticles. NANOSCALE 2021; 13:4785-4798. [PMID: 33434263 PMCID: PMC9297654 DOI: 10.1039/d0nr08485a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing the fluorescence quantum yield of fluorophores is of great interest for in vitro and in vivo biomedical imaging applications. At the same time, photobleaching and photodegradation resulting from continuous exposure to light are major considerations in the translation of fluorophores from research applications to industrial or healthcare applications. A number of tetrapyrrolic compounds, such as heme and its derivatives, are known to provide fluorescence contrast. In this work, we found that biliverdin (BV), a naturally-occurring tetrapyrrolic fluorophore, exhibits an increase in fluorescence quantum yield, without exhibiting photobleaching or degradation, in response to continuous ultraviolet (UV) irradiation. We attribute this increased fluorescence quantum yield to photoisomerization and conformational changes in BV in response to UV irradiation. This enhanced fluorescence can be further altered by chelating BV with metals. UV irradiation of BV led to an approximately 10-fold increase in its 365 nm fluorescence quantum yield, and the most favorable combination of UV irradiation and metal chelation led to an approximately 18.5-fold increase in its 365 nm fluorescence quantum yield. We also evaluated these stimuli-responsive behaviors in biliverdin nanoparticles (BVNPs) at the bulk-state and single-particle level. We determined that UV irradiation led to an approximately 2.4-fold increase in BVNP 365 nm quantum yield, and the combination of UV irradiation and metal chelation led to up to a 6.75-fold increase in BVNP 365 nm quantum yield. Altogether, these findings suggest that UV irradiation and metal chelation can be utilized alone or in combination to tailor the fluorescence behavior of imaging probes such as BV and BVNPs at selected wavelengths.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Ayman Roslend
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Kritika Mehta
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Parikshit Moitra
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Departments of Diagnostic Radiology Nuclear Medicine, Pediatrics, and Chemical and Biomolecular Engineering, University of Maryland School of Medicine and University of Maryland Baltimore County, Baltimore, MD 21201, USA
| |
Collapse
|
182
|
Zheng P, Ding B, Jiang Z, Xu W, Li G, Ding J, Chen X. Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death. NANO LETTERS 2021; 21:2088-2093. [PMID: 33596078 DOI: 10.1021/acs.nanolett.0c04778] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Immunogenic cell death (ICD), a manner of tumor cell death that can trigger antitumor immune responses, has received extensive attention as a potential synergistic modality for cancer immunotherapy. Although many calcium ion (Ca2+) nanomodulators have been developed for cancer therapy through mitochondrial Ca2+ overload, their ICD-inducing properties have not been explored. Herein, an acid-sensitive PEG-decorated calcium carbonate (CaCO3) nanoparticle incorporating curcumin (CUR; a Ca2+ enhancer) (PEGCaCUR) was prepared using a simple one-pot strategy. PEGCaCUR served as not only a Ca2+ nanomodulator inducing efficient mitochondrial Ca2+ overload but also an ICD inducer during improved synergistic cancer therapy. Combination of PEGCaCUR with ultrasound (US), PEGCaCUR+US, led to an enhanced ICD effect attributable to the enhanced mitochondrial Ca2+ overload, along with subsequent upregulation of reactive oxygen species levels. PEGCaCUR also facilitates photoacoustic/fluorescence dual-mode imaging, as well as effectively suppressing tumor growth and metastasis, indicating promising theranostic properties.
Collapse
Affiliation(s)
- Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
183
|
Geng P, Yu N, Zhang J, Jin Z, Wen M, Jiang Q, Kang L, Peng C, Li M, Zhang H, Zhu M, Chen Z. One Responsive Stone, Three Birds: Mn(III)-Hemoporfin Frameworks with Glutathione-Enhanced Degradation, MRI, and Sonodynamic Therapy. Adv Healthc Mater 2021; 10:e2001463. [PMID: 33274856 DOI: 10.1002/adhm.202001463] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Indexed: 02/05/2023]
Abstract
Ultrasound-driven sonodynamic therapy (SDT) catches numerous attentions for destroying deep-seated tumors, but its applications suffer from unsatisfactory therapeutic effects and metabolism. Furthermore, SDT is usually weakened by the complex tumor microenvironment, such as the overexpression of glutathione (GSH). To address these issues, Mn(III)-hemoporfin frameworks (Mn(III)-HFs) are reported as nanosonosensitizers by using biocompatible hematoporphyrin monomethyl-ether (HMME) to coordinate with Mn(III) ions. Mn(III)-HFs/PEG can react with GSH to produce Mn(II) ions and oxidized glutathione (GSSG), resulting in three fascinating features: 1) the redox reaction facilitates the decomposition of Mn(III)-HFs/PEG and then collapse of nanostructures, improving the biodegradability; 2) Mn(II) ions with five unpaired 3d-electrons exhibit better magnetic resonance imaging (MRI) ability compared to Mn(III) ions with four electrons; 3) both the depletion of endogenous GSH and the dissociated HMME boost 1 O2 generation ability under US irradiation. As a result, when Mn(III)-HFs/PEG dispersion is intravenously administered into mice, it exhibits high-contrast T1 /T2 dual-modal MRI and significant suppression for the growth rate of the deep-seated tumor. Furthermore, Mn(III)-HFs/PEG can be efficiently metabolized from the mice. Therefore, Mn(III)-HFs/PEG exhibit GSH-enhanced degradation, MRI, and SDT effects, which provide some insights on the developments of other responsive nanosonosensitizers.
Collapse
Affiliation(s)
- Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Jiulong Zhang
- Department of Radiology Shanghai Public Health Clinical Center Fudan University Shanghai 201508 China
| | - Zilin Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Qin Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Li Kang
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Chen Peng
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Haijun Zhang
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
- National United Engineering Laboratory for Biomedical Material Modification Branden Biomedical Park Qihe Advanced Science & High Technology Development Zone Qihe Dezhou Shandong 251100 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| |
Collapse
|
184
|
Yang Y, Wu X, Ma L, He C, Cao S, Long Y, Huang J, Rodriguez RD, Cheng C, Zhao C, Qiu L. Bioinspired Spiky Peroxidase-Mimics for Localized Bacterial Capture and Synergistic Catalytic Sterilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005477. [PMID: 33475193 DOI: 10.1002/adma.202005477] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/18/2020] [Indexed: 02/05/2023]
Abstract
Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.
Collapse
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xizheng Wu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Lang Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chao He
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Yanping Long
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Jianbo Huang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | | | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- College of Biomedical Engineering National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
- College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| |
Collapse
|
185
|
Sun L, Wang P, Zhang J, Sun Y, Sun S, Xu M, Zhang L, Wang S, Liang X, Cui L. Design and application of inorganic nanoparticles for sonodynamic cancer therapy. Biomater Sci 2021; 9:1945-1960. [PMID: 33522523 DOI: 10.1039/d0bm01875a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focus on the recent developments in inorganic nanomaterials for tumor SDT.
Collapse
Affiliation(s)
- Lihong Sun
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Ping Wang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Jinxia Zhang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Yang Sun
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Suhui Sun
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Menghong Xu
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Lulu Zhang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Shumin Wang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| | - Ligang Cui
- Department of Ultrasound
- Peking University Third Hospital
- Beijing 100191
- China
| |
Collapse
|
186
|
Sun L, Xu Y, Zhang X, Gao Y, Chen J, Zhou A, Lu Q, Wang Z, Shao K, Wu H, Ning X. Mesenchymal Stem Cells Functionalized Sonodynamic Treatment for Improving Therapeutic Efficacy and Compliance of Orthotopic Oral Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005295. [PMID: 33118267 DOI: 10.1002/adma.202005295] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Despite multiple treatment options being available, many critical challenges are still ongoing in the treatment of oral squamous cell carcinoma (OSCC). Particularly, the major hurdle is to avoid facial disfigurement and oral function disability during treatment. Herein, nanoengineered mesenchymal stem cells (MSCs) are developed as a supersonosensitizer, named M/LPV/O2 , for improving nondestructive sonodynamic therapy (SDT) against OSCC along with good therapeutic compliance. M/LPV/O2 is composed of an MSCs membrane functionalized liposomal formulation of oxygen-loading perfluorocarbon and sonosensitizer verteporfin (M/LPV/O2 ), which can not only increase circulation and targeting efficacy but also supply oxygen to overcome tumor-hypoxia-associated resistance in SDT, resulting in enhanced therapeutic outcomes in vitro and in vivo. It is identified that M/LPV/O2 effectively stimulates the generation of reactive oxygen species even in hypoxic conditions, and consequently tremendously induces cancer cell death. In addition, M/LPV/O2 displays good tumor accumulation and penetration under ultrasound stimulation, and efficiently induces tumor inhibition and even abrogation, leading to prolonged survival of tumor-bearing mice. Importantly, M/LPV/O2 -based SDT exhibits minimal systemic adverse effects and successfully maintains oral functions with no facial tissue damage. Therefore, these studies provide a promising therapeutic strategy for OSCC, which has a potential to enhance life quality and compliance after treatment.
Collapse
Affiliation(s)
- Lei Sun
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xiaomin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Ya Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Qiangbing Lu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Zeyu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Kaifeng Shao
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
187
|
Bai S, Yang N, Wang X, Gong F, Dong Z, Gong Y, Liu Z, Cheng L. Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic Cancer Therapy. ACS NANO 2020; 14:15119-15130. [PMID: 33185089 DOI: 10.1021/acsnano.0c05235] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sonodynamic therapy (SDT), which can generate reactive oxygen species (ROS) based on sonosensitizers under ultrasound (US) to kill tumor cells, has emerged as a noninvasive therapeutic modality with high tissue-penetration depth. Herein, ultrasmall iron-doped titanium oxide nanodots (Fe-TiO2 NDs) are synthesized via a thermal decomposition strategy as a type of sonosensitizers to enhance SDT. Interestingly, the Fe doping in this system appears to be crucial in not only enhancing the US-triggered ROS generation of those NDs but also offering NDs the Fenton-catalytic function to generate ROS from tumor endogenous H2O2 for chemodynamic therapy (CDT). After polyethylene glycol (PEG) modification, Fe-TiO2-PEG NDs demonstrate good physiological stability and biocompatibility. With efficient tumor retention after intravenous injection as revealed by in vivo magnetic resonance (MR) and fluorescent imaging, our Fe-TiO2 NDs demonstrate much better in vivo therapeutic performance than commercial TiO2 nanoparticles owing to the combination of CDT and SDT. Moreover, most of those ultrasmall Fe-TiO2 NDs can be effectively excreted within one month, rendering no obvious long-term toxicity to the treated mice. Our work thus presents a type of multifunctional sonosensitizer for highly efficient cancer treatment via simply doping TiO2 nanostructures with metal ions.
Collapse
Affiliation(s)
- Shang Bai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Yuehan Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
188
|
Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003214. [PMID: 33064322 DOI: 10.1002/adma.202003214] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT), as a promising noninvasive therapeutic modality, has received ever-increasing attention in recent years. Its specialized chemical agents, named sonosensitizers, are activated by low-intensity US to produce lethal reactive oxygen species (ROS) for oncotherapy. Compared with phototherapeutic strategies, SDT provides many noteworthy opportunities and benefits, such as deeper penetration depth, absence of phototoxicity, and fewer side effects. Nevertheless, previous studies have also demonstrated its intrinsic limitations. Thanks to the facile engineering nature of nanotechnology, numerous novel nanoplatforms are being applied in this emerging field to tackle these intrinsic barriers and achieve continuous innovations. In particular, the combination of SDT with other treatment strategies has demonstrated a superior efficacy in improving anticancer activity relative to that of monotherapies alone. Therefore, it is necessary to summarize the nanomaterial-assisted combinational sonodynamic cancer therapy applications. Herein, the design principles in achieving synergistic therapeutic effects based on nanomaterial engineering methods are highlighted. The ultimate goals are to stimulate the design of better-quality combined sonodynamic treatment schemes and provide innovative ideas for the perspectives of SDT in promoting its future transformation to clinical application.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoran Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
189
|
Tian Z, Liu H, Guo Z, Gou W, Liang Z, Qu Y, Han L, Liu L. A pH-Responsive Polymer-CeO 2 Hybrid to Catalytically Generate Oxidative Stress for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004654. [PMID: 33136308 DOI: 10.1002/smll.202004654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Catalytic generation of reactive oxygen species has been developed as a promising methodology for tumor therapy. Direct O2•- production from intratumor oxygen exhibits exceptional tumor therapeutic efficacy. Herein, this therapy strategy is demonstrated by a pH-responsive hybrid of porous CeO2 nanorods and sodium polystyrene sulfonate that delivers high oxidative activity for O2•- generation within acidic tumor microenvironments for chemodynamic therapy and only limited oxidative activity in neutral media to limit damage to healthy organs. The hydrated polymer-nanorod hybrids with large hydrodynamic diameters form nanoreactors that locally trap oxygen and biological substrates inside and improve the charge transfer between the catalysts and substrates in the tumor microenvironment, leading to enhanced catalytic O2•- production and consequent oxidation. Together with successful in vitro and in vivo experiments, these data show that the use of hybrids provides a compelling opportunity for the delivery selective chemodynamic tumor therapy.
Collapse
Affiliation(s)
- Zhimin Tian
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, No. 1, Xinsi Road, Xi'an, 710038, China
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 99, YanXiang Road, Xi'an, 710094, China
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, No. 1, Xinsi Road, Xi'an, 710038, China
| | - Zhixiong Guo
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 99, YanXiang Road, Xi'an, 710094, China
| | - Wangyan Gou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an, 710129, China
| | - Zechen Liang
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 99, YanXiang Road, Xi'an, 710094, China
| | - Yongquan Qu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 99, YanXiang Road, Xi'an, 710094, China
| | - Lili Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710004, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, No. 1, Xinsi Road, Xi'an, 710038, China
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| |
Collapse
|
190
|
Wang D, Wu H, Yang G, Qian C, Gu L, Wang H, Zhou W, Liu J, Wu Y, Zhang X, Guo Z, Chen H, Jana D, Zhao Y. Metal-Organic Framework Derived Multicomponent Nanoagent as a Reactive Oxygen Species Amplifier for Enhanced Photodynamic Therapy. ACS NANO 2020; 14:13500-13511. [PMID: 32910637 DOI: 10.1021/acsnano.0c05499] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Intracellular antioxidants such as glutathione (GSH) play a critical role in protecting malignant tumor cells from apoptosis induced by reactive oxygen species (ROS) and in mechanisms of multidrug and radiation resistance. Herein, we rationally design two multicomponent self-assembled photodynamic therapy (PDT) nanoagents, that is, Glup-MFi-c and Glud-MFo-c, which consist of respective GSH-passivation and GSH-depletion linkers in metal-organic frameworks encapsulated with photosensitizers for a deeply comprehensive understanding of GSH-based tumor PDT. Multicomponent coordination, π-π stacking, and electrostatic interactions among metal ions, photosensitizers, and bridging linkers under the protection of a biocompatible polymer generate homogeneous nanoparticles with satisfied size, good colloid stability, and ultrahigh loading capacity. Compared to the GSH-passivated Glup-MFi-c, the GSH-depleted Glud-MFo-c shows pH-responsive release of photosensitizer and [FeIII(CN)6] linker in tumor cells to efficiently deplete intracellular GSH, thus amplifying the cell-killing efficiency of ROS and suppressing the tumor growth in vivo. This study demonstrates that Glud-MFo-c acts as a ROS amplifier, providing a useful strategy to deeply understand the role of GSH in combating cancer.
Collapse
Affiliation(s)
- Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Huihui Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheng Qian
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hou Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yinglong Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
191
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
192
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
193
|
Yang W, Yang S, Jiang L, Zhou Y, Yang C, Deng C. Tumor microenvironment triggered biodegradation of inorganic nanoparticles for enhanced tumor theranostics. RSC Adv 2020; 10:26742-26751. [PMID: 35515788 PMCID: PMC9055506 DOI: 10.1039/d0ra04651e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Inorganic nanoparticles (NPs)-mediated tumor theranostics have attracted widespread attention due to their unique physicochemical properties, such as optical, electrical, magnetic, and thermal properties. In the past decade, great advancements have been made in inorganic NPs-associated drug delivery, multimodal tumor imaging, and tumor therapy. However, the potential toxicity of inorganic NPs due to their low biodegradability, background signals interference and treatment side effects limit their clinical application. Therefore, developing biodegradable and intelligent NPs is beneficial to avoid excessive metal ions deposition, specific tumor imaging and treatment. In this review, we summarize the recent advances in tumor microenvironment (TME)-triggered biodegradation of inorganic NPs accompanied by imaging signal amplification and the released ions-mediated tumor therapy. First, the feature characteristics of the TME are introduced, including mild acidity, hypoxia, overexpressed reactive oxygen species (ROS), glutathione (GSH), and enzymes et al.; then, the biodegradation of NPs in a TME-induced activation of imaging signals, such as magnetic resonance (MR) imaging and fluorescence imaging is described; furthermore, tumor therapies through "Fenton", "Fenton-like" reactions, and interference of biological effects in cells is presented. Finally, the challenges and outlook for improving the degradation efficiency, imaging, specificity and efficiency of tumor imaging and treatment are discussed.
Collapse
Affiliation(s)
- Weitao Yang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine Shanghai 200072 China
| | - Suhong Yang
- Department of Respiratory and Intensive Care Unit, Anqiu People's Hospital Weifang 262100 China
| | - Liping Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai China 200438
| | - Yujuan Zhou
- Department of Respiratory and Intensive Care Unit, Anqiu People's Hospital Weifang 262100 China
| | - Cuiling Yang
- Department of Respiratory and Intensive Care Unit, Anqiu People's Hospital Weifang 262100 China
| | - Cuijun Deng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine Shanghai 200072 China
| |
Collapse
|