151
|
Chemokine triggered integrin activation and actin remodeling events guiding lymphocyte migration across vascular barriers. Exp Cell Res 2011; 317:632-41. [PMID: 21376176 DOI: 10.1016/j.yexcr.2010.12.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 01/13/2023]
Abstract
Chemokine signals activate leukocyte integrins and actin remodeling machineries critical for leukocyte adhesion and motility across vascular barriers. The arrest of leukocytes at target blood vessel sites depends on rapid conformational activation of their α4 and β2 integrins by the binding of endothelial-displayed chemokines to leukocyte Gi-protein coupled receptors (GPCRs). A universal regulator of this event is the integrin-actin adaptor, talin1. Chemokine-stimulated GPCRs can transmit within fractions of seconds signals via multiple Rho GTPases, which locally raise plasma membrane levels of the talin activating phosphatidyl inositol, PtdIns(4,5)P2 (PIP2). Additional pools of GPCR stimulated Rac-1 and Rap-1 GTPases together with GPCR stimulated PLC and PI3K family members regulate the turnover of focal contacts of leukocyte integrins, induce the collapse of leukocyte microvilli, and promote polarized leukocyte crawling in search of exit cues. Concomitantly, other leukocyte GTPases trigger invasive protrusions into and between endothelial cells in search of basolateral chemokine exit cues. We will review here major findings and open questions related to these sequential guiding activities of endothelial presented chemokines, focusing mainly on lymphocyte-endothelial interactions as a paradigm for other leukocytes.
Collapse
|
152
|
Sylvain NR, Nguyen K, Bunnell SC. Vav1-mediated scaffolding interactions stabilize SLP-76 microclusters and contribute to antigen-dependent T cell responses. Sci Signal 2011; 4:ra14. [PMID: 21386095 DOI: 10.1126/scisignal.2001178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 synergizes with the adaptor protein SLP-76 (Src homology 2 domain--containing leukocyte phosphoprotein of 76 kD) to support T cell development and activation. In response to ligation of the T cell receptor (TCR), SLP-76 is assembled into microclusters that provide an essential platform for the signaling events that drive T cell activation. We found that Vav1 selectively entered SLP-76 microclusters, rather than TCR microclusters, influencing their stability and function. The carboxyl terminus of Vav1, which consists of Src homology domains, was both necessary and sufficient for the entry of Vav1 into SLP-76 microclusters; however, this fragment of Vav1 was insufficient to stabilize the microclusters, and it potently suppressed T cell activation. This indicated that the amino terminus of Vav1, which has the GEF domain, also contributed to the integrity of SLP-76 microclusters and thereby to T cell activation. These microcluster-stabilizing functions were independent of the GEF activity in the amino terminus of Vav1 and were unaffected if the GEF function of Vav1 was either inactivated or constitutively activated by mutation. In contrast, Vav1 deletion mutants lacking either the calponin homology domain or the catalytic core of the GEF exhibited mild scaffolding defects, but they differentially affected TCR-dependent calcium ion (Ca²+) responses. We conclude that multiple GEF-independent scaffolding functions distributed throughout the amino terminus of Vav1 contribute to the activation of T cells by acting synergistically to increase the stability and function of SLP-76 microclusters.
Collapse
Affiliation(s)
- Nicholas R Sylvain
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
153
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
154
|
Ramachandran IR, Song W, Lapteva N, Seethammagari M, Slawin KM, Spencer DM, Levitt JM. The phosphatase SRC homology region 2 domain-containing phosphatase-1 is an intrinsic central regulator of dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2011; 186:3934-45. [PMID: 21357539 DOI: 10.4049/jimmunol.1001675] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) initiate proinflammatory or regulatory T cell responses, depending on their activation state. Despite extensive knowledge of DC-activating signals, the understanding of DC inhibitory signals is relatively limited. We show that Src homology region 2 domain-containing phosphatase-1 (SHP-1) is an important inhibitor of DC signaling, targeting multiple activation pathways. Downstream of TLR4, SHP-1 showed increased interaction with several proteins including IL-1R-associated kinase-4, and modulated LPS signaling by inhibiting NF-κB, AP-1, ERK, and JNK activity, while enhancing p38 activity. In addition, SHP-1 inhibited prosurvival signaling through AKT activation. Furthermore, SHP-1 inhibited CCR7 protein expression. Inhibiting SHP-1 in DCs enhanced proinflammatory cytokines, IL-6, IL-12, and IL-1β production, promoted survival, and increased DC migration to draining lymph nodes. Administration of SHP-1-inhibited DCs in vivo induced expansion of Ag-specific cytotoxic T cells and inhibited Foxp3(+) regulatory T cell induction, resulting in an enhanced immune response against pre-established mouse melanoma and prostate tumors. Taken together, these data demonstrate that SHP-1 is an intrinsic global regulator of DC function, controlling many facets of T cell-mediated immune responses.
Collapse
Affiliation(s)
- Indu R Ramachandran
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
March ME, Long EO. β2 integrin induces TCRζ-Syk-phospholipase C-γ phosphorylation and paxillin-dependent granule polarization in human NK cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2998-3005. [PMID: 21270398 DOI: 10.4049/jimmunol.1002438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of lytic granules at the immunological synapse. In human NK cells, signals for granule polarization and for degranulation can be uncoupled: Binding of β(2) integrin LFA-1 to ICAM is sufficient to induce polarization but not degranulation, whereas CD16 binding to IgG triggers unpolarized degranulation. In this study, we investigated the basis for this difference. IL-2-expanded human NK cells were stimulated by incubation with plate-bound ligands of LFA-1 (ICAM-1) and CD16 (human IgG). Surprisingly, LFA-1 elicited signals similar to those induced by CD16, including tyrosine phosphorylation of the TCR ζ-chain, tyrosine kinase Syk, and phospholipase C-γ. Whereas CD16 activated Ca(2+) mobilization and LAT phosphorylation, LFA-1 did not, but induced strong Pyk2 and paxillin phosphorylation. LFA-1-dependent granule polarization was blocked by inhibition of Syk, phospholipase C-γ, and protein kinase C, as well as by paxillin knockdown. Therefore, common signals triggered by CD16 and LFA-1 bifurcate to provide independent control of Ca(2+)-dependent degranulation and paxillin-dependent granule polarization.
Collapse
Affiliation(s)
- Michael E March
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
156
|
T-cell receptor ligation induces distinct signaling pathways in naive vs. antigen-experienced T cells. Proc Natl Acad Sci U S A 2011; 108:1549-54. [PMID: 21205892 DOI: 10.1073/pnas.1017340108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Naïve T lymphocytes display weaker and slower responses than antigen-experienced cells for reasons that are not well understood. Here we show that T-cell receptor (TCR) stimulation induces distinct ERK and p38 phosphorylation patterns in naïve and antigen-experienced human T cells, and that these contribute to the differential responses shown by these cells. Specifically, TCR ligation triggers the activation of the ERK pathway in naïve cells. This phosphorylation of ERK attenuates subsequent calcium influx and accelerates the degradation of the signalsome. In contrast, anti-CD3 stimulation of experienced cells results in the phosphorylation of p38 via an association with Discs large (Dlg). Thus, there are distinct signaling pathways triggered by TCR ligation that impair signaling in naïve cells and facilitate it in antigen-experienced cells.
Collapse
|
157
|
Garcia GG, Miller RA. Age-related defects in the cytoskeleton signaling pathways of CD4 T cells. Ageing Res Rev 2011; 10:26-34. [PMID: 19941976 DOI: 10.1016/j.arr.2009.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022]
Abstract
It has been postulated that the cytoskeleton controls many aspects of T cell function, including activation, proliferation and apoptosis. Recent advances in our understanding of F-actin polymerization and the Ezrin-Radixin-Moesin (ERM) family of cytoskeleton signal proteins have provided new insights into immunological synapse formation during T cell activation. During aging there is a significant decline of T cell function largely attributable to declines in activation of CD4 T cells and defects in the formation of the immunological synapse. Here we discuss recent progress in the understanding of how aging alters F-actin and ERM proteins in mouse CD4 T cells, and the implications of these changes for the T cell activation process.
Collapse
|
158
|
Yin J, Wan YJ, Li SY, Du MJ, Zhang CZ, Zhou XL, Cao YJ. The distinct role of guanine nucleotide exchange factor Vav1 in Bcl-2 transcription and apoptosis inhibition in Jurkat leukemia T cells. Acta Pharmacol Sin 2011; 32:99-107. [PMID: 21151158 PMCID: PMC4003318 DOI: 10.1038/aps.2010.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/28/2010] [Indexed: 11/09/2022]
Abstract
AIM To investigate a novel function of proto-oncogene Vav1 in the apoptosis of human leukemia Jurkat cells. METHODS Jurkat cells, Jurkat-derived vav1-null cells (J.Vav1) and Vav1-reconstituted J.WT cells were treated with a Fas agonist antibody, IgM clone CH11. Apoptosis was determined using propidium iodide (PI) staining, Annexin-V staining, DNA fragmentation, cleavage of caspase 3/caspase 8, and poly (ADP-ribose) polymerase (PARP). Mitochondria transmembrane potential (ΔΨ(m)) was measured using DiOC(6)(3) staining. Transcription and expression of the Bcl-2 family of proteins were evaluated using semi-quantitative RT-PCR and Western blot, respectively. Bcl-2 promoter activity was analyzed using luciferase reporter assays. RESULTS Cells lacking Vav1 were more sensitive to Fas-mediated apoptosis than Jurkat and J.WT cells. J.Vav1 cells lost mitochondria transmembrane potential (ΔΨ(m)) more rapidly upon Fas induction. These phenotypes could be rescued by re-expression of Vav1 in J.Vav1 cells. The expression of Vav1 increased the transcription of pro-survival Bcl-2. The guanine nucleotide exchange activity of Vav1 was required for enhancing Bcl-2 promoter activity, and the Vav1 downstream substrate, small GTPase Rac2, was likely involved in the control of Bcl-2 expression. CONCLUSION Vav1 protects Jurkat cells from Fas-mediated apoptosis by promoting Bcl-2 transcription through its GEF activity.
Collapse
Affiliation(s)
- Jie Yin
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ya-juan Wan
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shi-yang Li
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ming-juan Du
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cui-zhu Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xing-long Zhou
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - You-jia Cao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
159
|
Park H, Chan MM, Iritani BM. Hem-1: putting the "WAVE" into actin polymerization during an immune response. FEBS Lett 2010; 584:4923-32. [PMID: 20969869 PMCID: PMC3363972 DOI: 10.1016/j.febslet.2010.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/28/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
Abstract
Most active processes by immune cells including adhesion, migration, and phagocytosis require the coordinated polymerization and depolymerization of filamentous actin (F-actin), which is an essential component of the actin cytoskeleton. This review focuses on a newly characterized hematopoietic cell-specific actin regulatory protein called hematopoietic protein-1 [Hem-1, also known as Nck-associated protein 1-like (Nckap1l or Nap1l)]. Hem-1 is a component of the "WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein]" complex, which signals downstream of activated Rac to stimulate F-actin polymerization in response to immuno-receptor signaling. Genetic studies in cell lines and in mice suggest that Hem-1 regulates F-actin polymerization in hematopoietic cells, and may be essential for most active processes dependent on reorganization of the actin cytoskeleton in immune cells.
Collapse
Affiliation(s)
- Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| | - Maia M. Chan
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| |
Collapse
|
160
|
de Wet B, Zech T, Salek M, Acuto O, Harder T. Proteomic characterization of plasma membrane-proximal T cell activation responses. J Biol Chem 2010; 286:4072-80. [PMID: 21127068 PMCID: PMC3039341 DOI: 10.1074/jbc.m110.165415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Early downstream responses of T lymphocytes following T cell antigen receptor (TCR) activation are mediated by protein complexes that assemble in domains of the plasma membrane. Using stable isotope labeling with amino acids in cell culture and mass spectrometry, we quantitatively related the proteome of αCD3 immunoisolated native TCR signaling plasma membrane domains to that of control plasma membrane fragments not engaged in TCR signaling. Proteins were sorted according to their relative enrichment in isolated TCR signaling plasma membrane domains, identifying a complex protein network that is anchored in the vicinity of activated TCR. These networks harbor widespread mediators of plasma membrane-proximal T cell activities, including propagation, balancing, and attenuation of TCR signaling, immune synapse formation, as well as cytoskeletal arrangements relative to TCR activation clusters. These results highlight the unique potential of systematic characterizations of plasma membrane-proximal T cell activation proteome in the context of its native lipid bilayer platform.
Collapse
Affiliation(s)
- Ben de Wet
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
161
|
Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans. Biotechnol J 2010; 5:1261-76. [PMID: 21154667 DOI: 10.1002/biot.201000183] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 01/15/2023]
Abstract
Genes linked to human diseases often function in evolutionarily conserved pathways, which can be readily dissected in simple model organisms. Because of its short lifespan and well-known biology, coupled with a completely sequenced genome that shares extensive homology with that of mammals, Caenorhabditis elegans is one of the most versatile and powerful model organisms. Research in C. elegans has been instrumental for the elucidation of molecular pathways implicated in many human diseases. In this review, we introduce C. elegans as a model organism for biomedical research and we survey recent relevant findings that shed light on the basic molecular determinants of human disease pathophysiology. The nematode holds promise of providing clear leads towards the identification of potential targets for the development of new therapeutic interventions against human diseases.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | | |
Collapse
|
162
|
Das A, Long EO. Lytic granule polarization, rather than degranulation, is the preferred target of inhibitory receptors in NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:4698-704. [PMID: 20833835 PMCID: PMC3842026 DOI: 10.4049/jimmunol.1001220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural cytotoxicity is achieved by polarized release of perforin and granzymes at the NK cell-target cell immunological synapse. Signals for granule polarization and degranulation can be uncoupled in NK cells, which raises the question of their respective sensitivity to inhibitory receptors. Expression of either HLA-C or HLA-E on the human cell line 721.221 blocked granule polarization, degranulation, and CD16-dependent MIP-1α secretion by NK cell clones that expressed inhibitory receptors of matching HLA specificity. To test inhibition of signals for polarization and degranulation separately, Drosophila S2 cells expressing ICAM-1 with either HLA-C or HLA-E were used. CD16-dependent degranulation and MIP-1α secretion were not fully inhibited, suggesting that other receptor-ligand interactions, which occur with 721.221 cells, contribute to inhibition. In contrast, HLA-C or HLA-E on S2 cells coexpressing ICAM-1 or ULBP1 were sufficient to block granule polarization induced by either LFA-1 or NKG2D, even during concomitant CD16-dependent degranulation. Similarly, expression of a ligand for NKR-P1A on S2 cells inhibited granule polarization but not CD16-induced degranulation. Therefore, granule polarization, rather than degranulation, is the preferred target of inhibitory receptors in NK cells.
Collapse
Affiliation(s)
- Asmita Das
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
163
|
Nischwitz S, Cepok S, Kroner A, Wolf C, Knop M, Müller-Sarnowski F, Pfister H, Roeske D, Rieckmann P, Hemmer B, Ising M, Uhr M, Bettecken T, Holsboer F, Müller-Myhsok B, Weber F. Evidence for VAV2 and ZNF433 as susceptibility genes for multiple sclerosis. J Neuroimmunol 2010; 227:162-6. [DOI: 10.1016/j.jneuroim.2010.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 01/01/2023]
|
164
|
Abstract
Reactive oxygen species (ROS) have been implicated in many intra- and intercellular processes. High levels of ROS are generated as part of the innate immunity in the respiratory burst of phagocytic cells. Low levels of ROS, however, are generated in a highly controlled manner by various cell types to act as second messengers in redox-sensitive pathways. A NADPH oxidase has been initially described as the respiratory burst enzyme in neutrophils. Stimulation of this complex enzyme system requires specific signaling cascades linking it to membrane-receptor activation. Subsequently, a family of NADPH oxidases has been identified in various nonphagocytic cells. They mainly differ in containing one out of seven homologous catalytic core proteins termed NOX1 to NOX5 and DUOX1 or 2. NADPH oxidase activity is controlled by regulatory subunits, including the NOX regulators p47phox and p67phox, their homologs NOXO1 and NOXA1, or the DUOX1 or 2 regulators DUOXA1 and 2. In addition, the GTPase Rac modulates activity of several of these enzymes. Recently, additional proteins have been identified that seem to have a regulatory function on NADPH oxidase activity under certain conditions. We will thus summarize molecular pathways linking activation of different membrane-bound receptors with increased ROS production of NADPH oxidases.
Collapse
Affiliation(s)
- Andreas Petry
- Experimental Pediatric Cardiology, Technical University Munich, Munich, Germany
| | | | | |
Collapse
|
165
|
ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling. Blood 2010; 116:3208-18. [PMID: 20634378 DOI: 10.1182/blood-2009-10-250415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming.
Collapse
|
166
|
Zhang TT, Li H, Cheung SM, Costantini JL, Hou S, Al-Alwan M, Marshall AJ. Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Immunol Rev 2010; 232:255-72. [PMID: 19909369 DOI: 10.1111/j.1600-065x.2009.00838.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Signaling via phosphoinositide 3-kinases (PI3Ks) has emerged as a central component of lymphocyte activation via immunoreceptors, costimulatory receptors, cytokine receptors, and chemokine receptors. The discovery of phosphoinositide-binding pleckstrin homology (PH) domains has substantially increased understanding of how PI3Ks activate cellular responses. Accumulating evidence indicates that PH-domain containing adapter molecules provide important links between PI3K and lymphocyte function. Here, we review data on PI3K-regulated adapter proteins of the Grb-associated binder (GAB), Src kinase-associated phosphoprotein (SKAP), and B-lymphocyte adapter molecule of 32 kDa (Bam32)/ dual-adapter for phosphotyrosine and 3-phosphoinositides (DAPP)/TAPP families, with a focus on the latter group. Current data support the model that recruitment of these adapters to the plasma membrane of activated lymphocytes is driven by the phosphoinositides phosphatidylinositol-3,4,5-tris-phosphate and phosphatidylinositol-3,4-bisphosphate, generated through the action of PI3Ks and under the regulatory control of lipid phosphatases Src homology 2 domain-containing inositol phosphatase (SHIP), phosphatase and tensin homolog, and inositol polyphosphate 4-phosphatase. At the plasma membrane, these adapters serve to assemble distinct protein complexes. Bam32/DAPP1 and SKAPs function to promote activation of monomeric guanosine triphosphatases, including Rac and Rap, and promote integrin activation, lymphocyte adhesion to matrix proteins, and cell:cell interactions between B and T lymphocytes. GABs can provide feedforward amplification or feedback inhibition of PI3K signaling. Current work is further defining the molecular interactions driven by these molecules and identifying the functions of TAPP adapters, which also appear to be involved in lymphocyte adhesion and are specific effectors downstream of the SHIP product phosphatidylinositol-3,4-bisphosphate.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
167
|
Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J 2010; 29:2315-28. [PMID: 20562827 DOI: 10.1038/emboj.2010.133] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/25/2010] [Indexed: 12/22/2022] Open
Abstract
T-cell antigen receptor (TCR) engagement induces formation of multi-protein signalling complexes essential for regulating T-cell functions. Generation of a complex of SLP-76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP-76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP-76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C-terminal SH3 domain of Nck and the VAV1 N-terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T-cell activation.
Collapse
|
168
|
Ishida M, Itsukaichi T, Kobayashi D, Kikuchi H. Alteration of the PKC theta-Vav1 complex and phosphorylation of Vav1 in TCDD-induced apoptosis in the lymphoblastic T cell line, L-MAT. Toxicology 2010; 275:72-8. [PMID: 20561557 DOI: 10.1016/j.tox.2010.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/05/2010] [Accepted: 06/08/2010] [Indexed: 01/22/2023]
Abstract
We have previously reported that protein kinase C (PKC) theta (theta) and protein tyrosine kinase are involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced apoptosis of L-MAT, a human lymphoblastic T cell line. In the current report, we show that Vav1, a GDP/GTP exchange factor for Rho-like small GTPases, could be detected by Western blotting in the membrane fraction of L-MAT cells after TCDD treatment and was precipitated by incubating with an antibody against PKC theta. Furthermore, the degree of phosphorylation of Vav1, which can be detected using the phosphotyrosine-specific antibody PY-20 or 4G10, is significantly increased after treatment with TCDD. In addition, pretreatment of the cells with genistein, a protein tyrosine kinase inhibitor, abolished the phosphorylation of Vav1 and inhibited the apoptosis. These results suggest that TCDD treatment may activate an unidentified protein tyrosine kinase. Accordingly we hypothesize that this kinase phosphorylates Vav1, following which phosphorylated Vav1 may translocate to the membrane with PKC theta. Finally, PKC theta may mediate the transfer of the apoptotic signal to downstream components.
Collapse
Affiliation(s)
- Masato Ishida
- Division of Cell Technology, Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan. onigiri
| | | | | | | |
Collapse
|
169
|
T-cell receptor early signalling complex activation in response to interferon-alpha receptor stimulation. Biochem J 2010; 428:429-37. [PMID: 20388118 PMCID: PMC2888567 DOI: 10.1042/bj20091660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signalling through the IFNalphaR (interferon-alpha receptor) and TCR (T-cell receptor) in Jurkat T lymphocytes results in distinct immune responses. Despite this both receptors elicit ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) phosphorylation. Vav and Slp76 are shown to be required for IFNalpha (interferon-alpha)-stimulated ERK activity. These form a subset of proteins which behave identically on stimulation of both receptors. TCR deletion abrogates IFNalphaR-stimulated MAPK activity, whereas the canonical JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway is unaffected. Thus recruitment of the intact TCR ESC (early signalling complex) is necessary for this downstream MAPK response. Despite using a common ESC, stimulation of the IFNalphaR does not produce the transcriptional response associated with TCR. Up-regulation of the MAPK pathway by IFNalphaR might be important to ensure that the cell responds to only one stimulant.
Collapse
|
170
|
Al-Alwan M, Hou S, Zhang TT, Makondo K, Marshall AJ. Bam32/DAPP1 promotes B cell adhesion and formation of polarized conjugates with T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6961-9. [PMID: 20495066 DOI: 10.4049/jimmunol.0904176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell Ag receptors function in both signaling activation of Ag-specific cells and in collecting specific Ag for presentation to T lymphocytes. Signaling via PI3K is required for BCR-mediated activation and Ag presentation functions; however, the relevant downstream targets of PI3K in B cells are incompletely defined. In this study, we have investigated the roles of the PI3K effector molecule Bam32/DAPP1 in BCR signaling and BCR-mediated Ag presentation functions. In mouse primary B cells, Bam32 was required for efficient activation of the GTPase Rac1 and downstream signaling to JNK, but not activation of BLNK, phospholipase C gamma2, or calcium responses. Consistent with a role of this adaptor in Rac-mediated cytoskeletal rearrangement, Bam32 was required for BCR-induced cell adhesion and spreading responses on ICAM-1 or fibronectin-coated surfaces. The function of Bam32 in promoting Rac activation and adhesion required tyrosine 139, a known site of phosphorylation by Lyn kinase. After BCR crosslinking by Ag, Bam32-deficient B cells are able to carry out the initial steps of Ag endocytosis and processing, but show diminished ability to form Ag-specific conjugates with T cells and polarize F-actin at the B-T interface. As a result, Bam32-deficient B cells were unable to efficiently activate Ag-specific T cells. Together, these results indicate that Bam32 serves to integrate PI3K and Src kinase signaling to promote Rac-dependent B cell adhesive interactions important for Ag presentation function.
Collapse
Affiliation(s)
- Monther Al-Alwan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
171
|
Lazer G, Pe'er L, Farago M, Machida K, Mayer BJ, Katzav S. Tyrosine residues at the carboxyl terminus of Vav1 play an important role in regulation of its biological activity. J Biol Chem 2010; 285:23075-85. [PMID: 20457609 DOI: 10.1074/jbc.m109.094508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-gamma associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.
Collapse
Affiliation(s)
- Galit Lazer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
172
|
Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 2010; 11:366-78. [PMID: 20414258 DOI: 10.1038/nrm2889] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shuttling of leukocytes between the bloodstream and interstitial tissues involves different locomotion strategies that are governed by locally presented soluble and cell-bound signals. Recent studies have furthered our understanding of the rapidly advancing field of leukocyte migration, particularly regarding cellular and subcellular events at the level of the venular wall. Furthermore, emerging cellular models are now addressing the transition from an adherent mode to a non-adherent state, incorporating mechanisms that support an efficient migratory profile of leukocytes in the interstitial tissue beyond the venular wall.
Collapse
Affiliation(s)
- Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, William Harvey Research Institute, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
173
|
Bertagnolo V, Grassilli S, D'Aguanno S, Brugnoli F, Bavelloni A, Faenza I, Nika E, Urbani A, Cocco L, Capitani S. Mass spectrometry-based identification of Y745 of Vav1 as a tyrosine residue crucial in maturation of acute promyelocytic leukemia-derived cells. J Proteome Res 2010; 9:752-60. [PMID: 20028078 DOI: 10.1021/pr900581y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vav1, whose physiological expression is restricted to hematopoietic system, is one of the signaling proteins up-regulated by all-trans retinoic acid (ATRA) in acute promyelocytic leukemia (APL)-derived precursors, in which it promotes the overcoming of the differentiation blockade. High levels of tyrosine phosphorylated Vav1 accumulate in differentiating APL-derived cells, suggesting that one or more Vav1 tyrosine residues are involved in neutrophil differentiation of tumoral promyelocytes. Here, we have found that phosphorylation of Vav1 Y174, that is known to regulate Vav1 activity in mature neutrophils, is up-regulated by ATRA in NB4 cells. Nevertheless, this tyrosine residue does not seem crucial for the agonist-induced phenotypical differentiation of APL-derived cells. Mass spectrometry analysis performed on Vav1 from differentiating NB4 cells allowed to identify the highly conserved Y745 residue as a phosphorylated tyrosine that plays crucial roles in the completion of the maturation program of this cell line. In fact, the overexpression of a mutated form of Vav1, in which Y745 was replaced with a phenylalanine, significantly reduced the ATRA-induced CD11b expression and essentially abrogated the differentiation-related acquisition of the migratory capability. Even though the intracellular signaling involving Vav1 phosphorylated in Y745 is unknown, the identification of a tyrosine residue essential for differentiation of tumoral precursors may constitute the basis to identify new specific targets for differentiation therapy of APL.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Henderson RB, Grys K, Vehlow A, de Bettignies C, Zachacz A, Henley T, Turner M, Batista F, Tybulewicz VL. A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. J Exp Med 2010; 207:837-53. [PMID: 20308364 PMCID: PMC2856036 DOI: 10.1084/jem.20091489] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/22/2010] [Indexed: 01/03/2023] Open
Abstract
Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD- transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection.
Collapse
Affiliation(s)
- Robert B. Henderson
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Katarzyna Grys
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Anne Vehlow
- Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | - Carine de Bettignies
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Agnieszka Zachacz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Tom Henley
- The Babraham Institute, Cambridge CB2 4AT, England, UK
| | - Martin Turner
- The Babraham Institute, Cambridge CB2 4AT, England, UK
| | - Facundo Batista
- Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | - Victor L.J. Tybulewicz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| |
Collapse
|
175
|
Kim HS, Das A, Gross CC, Bryceson YT, Long EO. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 2010; 32:175-86. [PMID: 20189481 PMCID: PMC2843589 DOI: 10.1016/j.immuni.2010.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 11/12/2009] [Accepted: 12/08/2009] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cell cytotoxicity toward target cells depends on synergistic coactivation by NK cell receptors such as NKG2D and 2B4. How synergy occurs is not known. Synergistic phosphorylation of phospholipase PLC-gamma2, Ca(2+) mobilization, and degranulation triggered by NKG2D and 2B4 coengagement were blocked by Vav1 siRNA knockdown, but enhanced by knockdown of c-Cbl. c-Cbl inhibited Vav1-dependent signals, given that c-Cbl knockdown did not rescue the Vav1 defect. Moreover, c-Cbl knockdown and Vav1 overexpression each circumvented the necessity for synergy because NKG2D or 2B4 alone became sufficient for activation. Thus, synergy requires not strict complementation but, rather, strong Vav1 signals to overcome inhibition by c-Cbl. Inhibition of NK cell cytotoxicity by CD94-NKG2A binding to HLA-E on target cells was dominant over synergistic activation, even after c-Cbl knockdown. Therefore, NK cell activation by synergizing receptors is regulated at the level of Vav1 by a hierarchy of inhibitory mechanisms.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Calcium/metabolism
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Mice
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Phospholipase C gamma/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-vav/genetics
- RNA, Small Interfering/genetics
- Receptor Cross-Talk/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Family
- Transfection
- HLA-E Antigens
Collapse
Affiliation(s)
- Hun Sik Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Asmita Das
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Catharina C. Gross
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Yenan T. Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| |
Collapse
|
176
|
Vav1 couples the T cell receptor to cAMP response element activation via a PKC-dependent pathway. Cell Signal 2010; 22:944-54. [PMID: 20138987 DOI: 10.1016/j.cellsig.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 12/21/2022]
Abstract
The transcription factor cAMP-responsive element binding protein (CREB) is a regulator of the expression of several genes important for lymphocyte activation and proliferation. However, the proximal signaling events leading to activation of CREB in T cells upon antigen receptor stimulation remain unknown. Here we identify a role for Vav1 in the activation of the cAMP response element (CRE), the binding site for CREB. T cell receptor (TCR)/CD28 - induced costimulation of Jurkat T cells expressing Vav1 but not a GEF-deficient mutant showed increased CRE activation (7.2+/-2.4 fold over control), whereas Vav1 downregulation by siRNA reduced activation of CRE by 2.6+/-1.3 fold. Inhibition of PKC and MEK but not p38 could reduce Vav1-mediated CRE activation, suggesting that Vav1 transmits TCR and CD28 signals to activation of CRE via PKC and ERK signaling pathways. As a consequence, downregulation of Vav1 impaired the expression of several CRE-containing genes like cyclin D1, INFgamma and IL-2, whereas overexpression of Vav1 enhanced CRE-dependent gene expression. Furthermore, cAMP-induced CRE-dependent transcription and gene expression was also modulated by Vav1, but did not require activation of PKC and the GEF function of Vav1. Our data provide insights into the signal transduction events regulating CRE-mediated gene expression in T cells, which affects T cell development, proliferation and activation. We identify Vav1 as an essential component of TCR-induced CRE activation and gene expression, which underlines the central role for Vav1 as key player for TCR signal transduction and gene expression.
Collapse
|
177
|
Yu B, Martins IRS, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME, Billadeau DD, Machius M, Tomchick DR, Rosen MK. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Cell 2010; 140:246-56. [PMID: 20141838 PMCID: PMC2825156 DOI: 10.1016/j.cell.2009.12.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/09/2009] [Accepted: 12/17/2009] [Indexed: 12/24/2022]
Abstract
Vav proteins are guanine nucleotide exchange factors (GEFs) for Rho family GTPases. They control processes including T cell activation, phagocytosis, and migration of normal and transformed cells. We report the structure and biophysical and cellular analyses of the five-domain autoinhibitory element of Vav1. The catalytic Dbl homology (DH) domain of Vav1 is controlled by two energetically coupled processes. The DH active site is directly, but weakly, inhibited by a helix from the adjacent Acidic domain. This core interaction is strengthened 10-fold by contacts of the calponin homology (CH) domain with the Acidic, pleckstrin homology, and DH domains. This construction enables efficient, stepwise relief of autoinhibition: initial phosphorylation events disrupt the modulatory CH contacts, facilitating phosphorylation of the inhibitory helix and consequent GEF activation. Our findings illustrate how the opposing requirements of strong suppression of activity and rapid kinetics of activation can be achieved in multidomain systems.
Collapse
Affiliation(s)
- Bingke Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Ilídio R. S. Martins
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Departamento de Bioquímica, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Coimbra 3001-401, Portugal
| | - Pilong Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Gaya K. Amarasinghe
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Junko Umetani
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Martin E. Fernandez-Zapico
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Mischa Machius
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Michael K. Rosen
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| |
Collapse
|
178
|
Nie B, Cheng N, Dinauer MC, Ye RD. Characterization of P-Rex1 for its role in fMet-Leu-Phe-induced superoxide production in reconstituted COS(phox) cells. Cell Signal 2010; 22:770-82. [PMID: 20074642 DOI: 10.1016/j.cellsig.2010.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/20/2009] [Accepted: 01/05/2010] [Indexed: 12/19/2022]
Abstract
P-Rex1 (phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1) is a Rac-specific guanine nucleotide exchange factor activated by Gbetagamma subunits and by PtdIns((3,4,5))P(3). Recent studies indicate that P-Rex1 plays an important role in signaling downstream of neutrophil chemoattractant receptors. Here we report that heterologous expression of P-Rex1, but not Vav1, reconstitutes formyl peptide receptor 1 (FPR1)-mediated NADPH oxidase activation in the transgenic COS(phox) cells expressing gp91(phox), p22(phox), p67(phox) and p47(phox). A successful reconstitution requires the expression of a full-length P-Rex1 with intact DH and PH domains, and is accompanied by P-Rex1 membrane localization as well as Rac1 activation. P-Rex1-dependent superoxide generation in the reconstituted COS(phox) cells was further enhanced by expression of the novel PKC isoform PKCdelta and by overexpression of Akt. Heterologous expression of P-Rex1 in COS(phox) cells potentiated fMet-Leu-Phe-induced Akt phosphorylation, whereas expression of a constitutively active form of Akt enhanced Rac1 activation. In contrast, a dominant negative Akt mutant reduced the fMet-Leu-Phe stimulated superoxide generation as well as Rac1 activation. These results demonstrate that in COS(phox) cells, P-Rex1 is a critical component for FPR1-mediated signaling leading to NADPH oxidase activation, and there is a crosstalk between the P-Rex1-Rac pathway and Akt in superoxide generation.
Collapse
Affiliation(s)
- Baoming Nie
- Department of Pharmacology, University of Illinois, Chicago, 60612, United States
| | | | | | | |
Collapse
|
179
|
Abstract
Accumulating evidence from murine and human studies supports a key role for interleukin-17 (IL-17) and IL-21 in the pathogenesis of inflammatory arthritis. The pathways and molecular mechanisms that underlie the production of IL-17 and IL-21 are being rapidly elucidated. This review focuses on interferon regulatory factor 4 (IRF4), a member of the IRF family of transcription factors, which has emerged as a crucial controller of both IL-17 and IL-21 production. We first outline the complex role of IRF4 in the function of CD4(+) T cells and then discuss recent studies from our laboratory that have revealed a surprising role for components of Rho GTPase-mediated pathways in controlling the activity of IRF4. A better understanding of these novel pathways will hopefully provide new insights into mechanisms responsible for the development of inflammatory arthritis and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Govind Bhagat
- Department of Pathology, Columbia University, New York, NY, USA
| | | |
Collapse
|
180
|
Kasahara M. Genome duplication and T cell immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:7-36. [PMID: 20800811 DOI: 10.1016/s1877-1173(10)92002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptive immune system (AIS) mediated by T cells and B cells arose ~450 million years ago in a common ancestor of jawed vertebrates. This system was so successful that, once established, it has been maintained in all classes of jawed vertebrates with only minor modifications. One event thought to have contributed to the emergence of this form of AIS is two rounds of whole-genome duplication. This event enabled jawed vertebrate ancestors to acquire many paralogous genes, known as ohnologs, with essential roles in T cell and B cell immunity. Ohnologs encode the key components of the antigen presentation machinery and signal transduction pathway for lymphocyte activation as well as numerous transcription factors important for lymphocyte development. Recently, it has been discovered that jawless vertebrates have developed an AIS employing antigen receptors unrelated to T/B cell receptors, but with marked overall similarities to the AIS of jawed vertebrates. Emerging evidence suggests that a common ancestor of all vertebrates was equipped with T-lymphoid and B-lymphoid lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido, University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
181
|
Saveliev A, Vanes L, Ksionda O, Rapley J, Smerdon SJ, Rittinger K, Tybulewicz VLJ. Function of the nucleotide exchange activity of vav1 in T cell development and activation. Sci Signal 2009; 2:ra83. [PMID: 20009105 PMCID: PMC3434450 DOI: 10.1126/scisignal.2000420] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal-regulated kinase and protein kinase D1, and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions.
Collapse
Affiliation(s)
- Alexander Saveliev
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | - Lesley Vanes
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | - Olga Ksionda
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | - Jonathan Rapley
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Stephen J. Smerdon
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Katrin Rittinger
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
182
|
García-Bernal D, Parmo-Cabañas M, Dios-Esponera A, Samaniego R, Hernán-P de la Ossa D, Teixidó J. Chemokine-induced Zap70 kinase-mediated dissociation of the Vav1-talin complex activates alpha4beta1 integrin for T cell adhesion. Immunity 2009; 31:953-64. [PMID: 20005136 DOI: 10.1016/j.immuni.2009.09.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 08/31/2009] [Accepted: 09/25/2009] [Indexed: 01/13/2023]
Abstract
Lymphocyte integrins mediate cell arrest on endothelium during immune surveillance after activation by chemokine-stimulated inside-out signals. Here we show that a Vav1-talin complex in T cells is a key target for chemokine-triggered inside-out signaling leading to integrin alpha4beta1 activation. Thus, Vav1 dissociation from talin was required to generate high-affinity alpha4beta1 conformations. Assembly of the Vav1-talin complex required PtdIns(4,5)P(2), which was provided by talin-bound phosphatidylinositol phosphate kinase Igamma. Chemokine-promoted Vav1 dissociation from talin followed an initial increase in talin binding to alpha4beta1. This process was dependent on ZAP-70, which binds to and phosphorylates Vav1 in the complex, leading to further alpha4beta1 activation and cell adhesion strengthening. Moreover, Vav1-talin dissociation was needed for Rac1 activation, thus indicating that alpha4beta1 and Rac1 activation can be coupled by chemokine-stimulated ZAP-70 function. Our data suggest that Vav1 might function as a repressive adaptor of talin that must dissociate from alpha4beta1-talin complexes for efficient integrin activation.
Collapse
Affiliation(s)
- David García-Bernal
- Cellular and Molecular Medicine Program, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
183
|
Kim K, Wang L, Hwang I. Acute inhibition of selected membrane-proximal mouse T cell receptor signaling by mitochondrial antagonists. PLoS One 2009; 4:e7738. [PMID: 19901985 PMCID: PMC2768903 DOI: 10.1371/journal.pone.0007738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/09/2009] [Indexed: 12/20/2022] Open
Abstract
T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide/major histocompatibility complex (MHC) plus lymphocyte function-associated antigen 1 (LFA-1) with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS) platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour) with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin), resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s). Thus, activation of Akt and PLC-gamma1 and entry of extracellular Ca(2+) following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption) could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours) on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function.
Collapse
Affiliation(s)
- Kwangmi Kim
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lin Wang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Inkyu Hwang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
184
|
Bécart S, Altman A. SWAP-70-like adapter of T cells: a novel Lck-regulated guanine nucleotide exchange factor coordinating actin cytoskeleton reorganization and Ca2+ signaling in T cells. Immunol Rev 2009; 232:319-33. [PMID: 19909373 PMCID: PMC2801603 DOI: 10.1111/j.1600-065x.2009.00839.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SWAP-70-like adapter of T cells (SLAT) is a recently identified guanine nucleotide exchange factor (GEF) for Cdc42 and Rac1, which is highly expressed in both thymocytes and peripheral T cells. Here, we present and discuss findings resulting from biochemical and genetic analyses aimed at unveiling the role of SLAT in CD4+ T-cell development, activation, and T-helper (Th) cell differentiation. Slat(-/-) mice display a developmental defect at one of the earliest stages of thymocyte differentiation, the double negative 1 (DN1) stage, leading to decreased peripheral T-cell numbers. Slat(-/-) peripheral CD4+ T cells demonstrate impaired T-cell receptor/CD28-induced proliferation and IL-2 production. Moreover, SLAT positively regulates the development of Th1 and Th2 inflammatory responses by controlling Ca2+/NFAT signaling. SLAT is also a positive regulator of the recently emerging Th subset, i.e., Th17 cells, as evidenced by its critical role in Th17 cell-mediated central nervous system inflammation. Furthermore, TCR engagement induces SLAT translocation to the immunological synapse, a process mediated by its Lck-dependent phosphorylation, which thereafter facilitates the triggering of SLAT GEF activity towards Cdc42 and Rac1, leading to NFAT activation and Th1/Th2 differentiation. Future work will aim to dissect the interacting partners of SLAT and may thus shed light on the poorly understood events that coordinate and link actin cytoskeleton reorganization to Ca2+ signaling and gene transcription in T cells.
Collapse
Affiliation(s)
- Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
185
|
Chang JW, Koike T, Iwashima M. hnRNP-K is a nuclear target of TCR-activated ERK and required for T-cell late activation. Int Immunol 2009; 21:1351-61. [PMID: 19880579 DOI: 10.1093/intimm/dxp106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sustained extracellular signal-regulated kinase (ERK)-signaling plays a critical role in T-cell-mediated IL-2 production. Although many downstream targets are known for ERK, details remain unknown about which molecules play functional roles in IL-2 production. Here, we addressed this question using proteomic analysis of nuclear proteins from TCR-activated T cells and identified hnRNP-K as one of the ERK targets essential for IL-2 production. hnRNP-K was previously shown by others to be a direct substrate of ERK and form complexes with multiple signaling proteins as well as DNA and RNA. Our data showed a clear ERK-dependent increase in one form of hnRNP-K after TCR stimulation. Small interfering RNA-mediated gene knockdown of hnRNP-K expression abrogated IL-2 production by T cells. Moreover, reduction of hnRNP-K expression caused a notable increase in proteolysis of Vav1, a binding target of hnRNP-K. Since Vav1 is an essential molecule for T-cell activation, the data suggest that ERK signaling is required for T-cell activation partly by inhibiting activation-induced proteolysis of Vav1.
Collapse
Affiliation(s)
- Jing-Wen Chang
- Department of Medicine, Immunotherapy Center, Medical College of Georgia, Augusta, GA 30912-2600, USA
| | | | | |
Collapse
|
186
|
Horn J, Wang X, Reichardt P, Stradal TE, Warnecke N, Simeoni L, Gunzer M, Yablonski D, Schraven B, Kliche S. Src homology 2-domain containing leukocyte-specific phosphoprotein of 76 kDa is mandatory for TCR-mediated inside-out signaling, but dispensable for CXCR4-mediated LFA-1 activation, adhesion, and migration of T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5756-67. [PMID: 19812192 DOI: 10.4049/jimmunol.0900649] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of the TCR or of chemokine receptors such as CXCR4 induces adhesion and migration of T cells via so-called inside-out signaling pathways. The molecular processes underlying inside-out signaling events are as yet not completely understood. In this study, we show that TCR- and CXCR4-mediated activation of integrins critically depends on the membrane recruitment of the adhesion- and degranulation-promoting adapter protein (ADAP)/Src kinase-associated phosphoprotein of 55 kDa (SKAP55)/Rap1-interacting adapter protein (RIAM)/Rap1 module. We further demonstrate that the Src homology 2 domain containing leukocyte-specific phosphoprotein of 76 kDa (SLP76) is crucial for TCR-mediated inside-out signaling and T cell/APC interaction. Besides facilitating membrane recruitment of ADAP, SKAP55, and RIAM, SLP76 regulates TCR-mediated inside-out signaling by controlling the activation of Rap1 as well as Rac-mediated actin polymerization. Surprisingly, however, SLP76 is not mandatory for CXCR4-mediated inside-out signaling. Indeed, both CXCR4-induced T cell adhesion and migration are not affected by loss of SLP76. Moreover, after CXCR4 stimulation, the ADAP/SKAP55/RIAM/Rap1 module is recruited to the plasma membrane independently of SLP76. Collectively, our data indicate a differential requirement for SLP76 in TCR- vs CXCR4-mediated inside-out signaling pathways regulating T cell adhesion and migration.
Collapse
Affiliation(s)
- Jessica Horn
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Ying Z, Giachini FRC, Tostes RC, Webb RC. PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA. Arterioscler Thromb Vasc Biol 2009; 29:1657-63. [PMID: 19759375 DOI: 10.1161/atvbaha.109.190892] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Ras homolog gene family member A (RhoA)/Rho-kinase-mediated Ca(2+) sensitization is a critical component of constrictor responses. The present study investigates how angiotensin II activates RhoA. METHODS AND RESULTS Adenoviral vectors were used to manipulate the expression of regulator of G protein signaling (RGS) domain containing Rho-specific guanine exchange factors (RhoGEFs) and proline-rich tyrosine kinase 2 (PYK2), a nonreceptor tyrosine kinase, in primary rat vascular smooth muscle cells. As an evidence of RhoA activation, RhoA translocation and MYPT1 (the regulatory subunit of myosin light chain phosphatase) phosphorylation were analyzed by Western blot. Results showed that overexpression of PDZ-RhoGEF, but not p115-RhoGEF or leukemia-associated RhoGEF (LARG), enhanced RhoA activation by angiotensin II. Knockdown of PDZ-RhoGEF decreased RhoA activation by angiotensin II. PDZ-RhoGEF was phosphorylated and activated by PYK2 in vitro, and knockdown of PDZ-RhoGEF reduced RhoA activation by constitutively active PYK2, indicating that PDZ-RhoGEF links PYK2 to RhoA. Knockdown of PYK2 or PDZ-RhoGEF markedly decreased RhoA activation by A23187, a Ca(2+) ionophore, demonstrating that PYK2/PDZ-RhoGEF couples RhoA activation to Ca(2+). CONCLUSIONS PYK2 and PDZ-RhoGEF are necessary for angiotensin II-induced RhoA activation and for Ca(2+) signaling to RhoA.
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA.
| | | | | | | |
Collapse
|
188
|
Vav1 and PU.1 are recruited to the CD11b promoter in APL-derived promyelocytes: role of Vav1 in modulating PU.1-containing complexes during ATRA-induced differentiation. Exp Cell Res 2009; 316:38-47. [PMID: 19747912 DOI: 10.1016/j.yexcr.2009.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/03/2009] [Accepted: 09/02/2009] [Indexed: 02/08/2023]
Abstract
Vav1 plays an important role in the all-trans retinoic acid (ATRA)-induced completion of the differentiation program of acute promyelocytic leukemia (APL)-derived cells, in which it strengthens the drug effects and is involved in the regulation of maturation-related proteins, such as the CD11b surface antigen. In both myeloid and lymphoid cells, accumulating data attribute to the multidomain protein Vav1 a functional relevance in the control of gene expression, by direct interaction with chromatin remodeling and/or transcriptional proteins. The present study provides evidence that, in the APL-derived NB4 cell line, Vav1 and the transcription factor PU.1 cooperate in regulating the ATRA-induced CD11b expression. Both chromatin immunoprecipitation (ChIP) experiments and electrophoretic mobility shift assays (EMSA) indicate that Vav1 and PU.1 are recruited to CD11b promoter. Even if the two proteins may participate in diverse protein/DNA complexes, the amounts of complexes including PU.1 seem to be dependent on the interaction of this transcription factor with tyrosine-phosphorylated Vav1. The reported data suggest that the ATRA-induced increase of Vav1 expression and tyrosine phosphorylation may be involved in recruiting PU.1 to its consensus sequence on the CD11b promoter and, ultimately, in regulating CD11b expression during the late stages of neutrophil differentiation of APL-derived promyelocytes.
Collapse
|
189
|
Bhavsar PJ, Vigorito E, Turner M, Ridley AJ. Vav GEFs regulate macrophage morphology and adhesion-induced Rac and Rho activation. Exp Cell Res 2009; 315:3345-58. [PMID: 19715691 DOI: 10.1016/j.yexcr.2009.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/18/2022]
Abstract
The Vav family of proteins have the potential to act as both signalling adapters and GEFs for Rho GTPases. They have therefore been proposed as regulators of the cytoskeleton in various cell types. We have used macrophages from mice deficient in all three Vav isoforms to determine how their function affects cell morphology and migration. Macrophages lacking Vav proteins adopt an elongated morphology and have enhanced migratory persistence in culture. To investigate the pathways through which Vav proteins exert their effects we analysed the responses of macrophages to the chemoattractant CSF-1 and to adhesion. We found that morphological and signalling responses of macrophages to CSF-1 did not require Vav proteins. In contrast, adhesion-induced cell spreading, RhoA and Rac1 activation and cell signalling were all dependent on Vav proteins. We propose that Vav proteins affect macrophage morphology and motile behaviour by coupling adhesion receptors to Rac1 and RhoA activity and regulating adhesion signalling events such as paxillin and ERK1/2 phosphorylation by acting as adapters.
Collapse
Affiliation(s)
- Parag J Bhavsar
- King's College London, Randall Division of Cell and Molecular Biophysics, Guy's Campus, London, UK
| | | | | | | |
Collapse
|
190
|
Abstract
Rho family GTPases, and the proteins that regulate them, have important roles in many cellular processes, including cell division, survival, migration and adhesion. Although most of our understanding of these proteins has come from studies using cell lines, more recent gene targeting studies in mice are providing insights into the in vivo function of these proteins. Here we review recent progress revealing crucial roles for these proteins in lymphocyte development, activation, differentiation and migration. The emerging picture shows that Rho family GTPases transduce signals from receptors for antigens, chemokines and cytokines, as well as adhesion molecules and pattern recognition receptors, and that they function as focal points for crosstalk between different signalling pathways.
Collapse
|
191
|
Miletic AV, Graham DB, Sakata-Sogawa K, Hiroshima M, Hamann MJ, Cemerski S, Kloeppel T, Billadeau DD, Kanagawa O, Tokunaga M, Swat W. Vav links the T cell antigen receptor to the actin cytoskeleton and T cell activation independently of intrinsic Guanine nucleotide exchange activity. PLoS One 2009; 4:e6599. [PMID: 19672294 PMCID: PMC2719804 DOI: 10.1371/journal.pone.0006599] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/09/2009] [Indexed: 12/19/2022] Open
Abstract
Background T cell receptor (TCR) engagement leads to formation of signaling microclusters and induction of rapid and dynamic changes in the actin cytoskeleton, although the exact mechanism by which the TCR initiates actin polymerization is incompletely understood. The Vav family of guanine nucleotide exchange factors (GEF) has been implicated in generation of TCR signals and immune synapse formation, however, it is currently not known if Vav's GEF activity is required in T cell activation by the TCR in general, and in actin polymerization downstream of the TCR in particular. Methodology/Principal Findings Here, we report that Vav1 assembles into signaling microclusters at TCR contact sites and is critical for TCR-initiated actin polymerization. Surprisingly, Vav1 functions in TCR signaling and Ca++ mobilization via a mechanism that does not appear to strictly depend on the intrinsic GEF activity. Conclusions/Significance We propose here a model in which Vav functions primarily as a tyrosine phosphorylated linker-protein for TCR activation of T cells. Our results indicate that, contrary to expectations based on previously published studies including from our own laboratory, pharmacological inhibition of Vav1's intrinsic GEF activity may not be an effective strategy for T cell-directed immunosuppressive therapy.
Collapse
Affiliation(s)
- Ana V. Miletic
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Daniel B. Graham
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Kumiko Sakata-Sogawa
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Michio Hiroshima
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Michael J. Hamann
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Saso Cemerski
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Tracie Kloeppel
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Daniel D. Billadeau
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Osami Kanagawa
- Laboratory for Autoimmune Regulation, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Makio Tokunaga
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Wojciech Swat
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
192
|
Abstract
Tumor immunotherapy harnesses the potential of the host immune system to recognize and eradicate neoplastic tissue. The efficiency of the immune system in mediating tumor regression depends on the induction of antigen-specific T-cell responses through physiologic immune surveillance, priming by vaccination, or following adoptive transfer of T-cells. Although a variety of tumor-associated antigens have been identified and many immunotherapeutic strategies have been tested, objective clinical responses are rare. The reasons for this include the inability of current immunotherapy approaches to generate efficient T-cell responses, the presence of regulatory cells that inhibit T-cell responses, and other tumor escape mechanisms. The activation of effector T-cells depends on interactions between the T-cell receptor (TCR) and cognate antigen presented as peptides within the major histocompatibility complex (MHC) and costimulatory signals delivered by CD28, which binds to B7.1 and B7.2. More recently, several new molecular receptors and ligands have been identified that integrate into stimulatory or inhibitory activity for T-cells. These signals have been loosely associated with the costimulatory molecules but actually represent a diverse group of molecular pathways that have unique and overlapping functions. This review will focus on these pathways and emphasize their role in mediating T-cell activation for the purpose of enhancing tumor immunotherapy. As we gain a better understanding of the molecular and cellular consequences of T-cell signaling through the costimulatory pathways, a more rational approach to the activation or inhibition of T-cell responses can be developed for the treatment of cancer and other immune-mediated diseases.
Collapse
Affiliation(s)
- Robert C Ward
- The Tumor Immunology Laboratory, Division of Surgical Oncology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
193
|
Kim K, Wang L, Hwang I. A novel flow cytometric high throughput assay for a systematic study on molecular mechanisms underlying T cell receptor-mediated integrin activation. PLoS One 2009; 4:e6044. [PMID: 19557182 PMCID: PMC2698288 DOI: 10.1371/journal.pone.0006044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/02/2009] [Indexed: 01/22/2023] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1), a member of β2-integrin family, exerts multiple roles in host T cell immunity and has been identified as a useful drug-development target for inflammatory and autoimmune diseases. Applying the findings that primary resting T cells absorb nanometric membrane vesicles derived from antigen presenting cells (APC) via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide-major histocompatibility complex (MHC) complex (pMHC) and LFA-1 with its ligand, intercellular adhesion molecule-1 (ICAM-1), and that signaling cascades triggered by TCR/pMHC interaction take a part in the vesicle-absorption, we established a cell-based high throughput assay for systematic investigation, via isolation of small molecules modulating the level of vesicle-absorption, of molecular mechanisms underlying the T cell absorption of APC-derived vesicles, i.e., structural basis of TCR/pMHC and LFA-1/ICAM-1 interactions and TCR-mediated LFA-1 activation. As primary T cells along with physiological ligands expressed in biological membrane are used and also individual cells in assay samples are analyzed by flow cytometry, results obtained using the assay system hold superior physiological and therapeutic relevance as well as statistical precision.
Collapse
Affiliation(s)
- Kwangmi Kim
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lin Wang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Inkyu Hwang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
194
|
Garcia GG, Miller RA. Age-related changes in lck-Vav signaling pathways in mouse CD4 T cells. Cell Immunol 2009; 259:100-4. [PMID: 19577230 PMCID: PMC2728147 DOI: 10.1016/j.cellimm.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/24/2022]
Abstract
Activation of lck-fyn kinases during T cell receptor signaling leads to Vav phosphorylation, activation of downstream targets including Rac1, and a transient decline in ezrin and moesin phosphorylation. We have shown that age increases Rac1 activity and lowers ezrin and moesin phosphorylation in resting mouse CD4 cells, changes that could be the results of alterations in lck-Vav signaling. Analysis of Vav in CD4 cells from old mice shows increases in the phosphorylation of two key regulatory residues, Tyr160 and Tyr174, suggesting enhancement of Vav GTPase activity. In addition, analysis of lck status also shows age-related increases in phosphorylation of two key residues, Tyr394 and Tyr505, which have opposite effects on lck function. These changes in lck-Vav signals in resting CD4 cells may contribute in turn to age-related increases in Rac1 activity and declines in phosphorylation of cytoskeletal proteins including Ezrin and Moesin.
Collapse
Affiliation(s)
- Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA.
| | | |
Collapse
|
195
|
Katzav S. Vav1: A hematopoietic signal transduction molecule involved in human malignancies. Int J Biochem Cell Biol 2009; 41:1245-8. [DOI: 10.1016/j.biocel.2008.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 11/23/2008] [Accepted: 11/24/2008] [Indexed: 11/29/2022]
|
196
|
Lazer G, Idelchuk Y, Schapira V, Pikarsky E, Katzav S. The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumourigenesis. J Pathol 2009; 219:25-34. [DOI: 10.1002/path.2579] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
197
|
PI3 kinase function is vital for the function but not formation of LAT-mediated signaling complexes. Mol Immunol 2009; 46:2274-83. [PMID: 19427038 DOI: 10.1016/j.molimm.2009.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 11/20/2022]
Abstract
The induction of the T cell receptor (TCR) is necessary for the activation and function of human T cells. TCR activation results in the tyrosine phosphorylation of LAT, leading to the direct interaction with several proteins, including PLC-gamma 1, Grb2 and Gads. These direct ligands then mediate the indirect interaction of LAT with proteins, such as SLP-76, Vav1 and Itk. PLC-gamma 1, Vav1 and Itk contain pleckstrin homology (PH) domains that interact with the enzymatic product of phosphoinositide-3-kinase (PI3K), suggesting the function of PI3K may modulate LAT-mediated complexes. Therefore, we characterized the poorly understood role of PI3K activity in the formation and function of multiprotein signaling complexes that form at LAT. Inhibition of PI3K catalytic function had little effect on the phosphorylation of LAT, SLP-76, Vav1 or PLC-gamma 1 or on the ability of PLC-gamma 1 to interact with LAT or SLP-76. However, PI3K activity appeared to be required for the induction of downstream signaling events. These data indicate that the formation of LAT-mediated complexes do not appear to depend on PI3K activity, whereas the optimal downstream function of these complexes requires the catalytic function of PI3K.
Collapse
|
198
|
Bartelt RR, Cruz-Orcutt N, Collins M, Houtman JCD. Comparison of T cell receptor-induced proximal signaling and downstream functions in immortalized and primary T cells. PLoS One 2009; 4:e5430. [PMID: 19412549 PMCID: PMC2673025 DOI: 10.1371/journal.pone.0005430] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human T cells play an important role in pathogen clearance, but their aberrant activation is also linked to numerous diseases. T cells are activated by the concurrent induction of the T cell receptor (TCR) and one or more costimulatory receptors. The characterization of signaling pathways induced by TCR and/or costimulatory receptor activation is critical, since these pathways are excellent targets for novel therapies for human disease. Although studies using human T cell lines have provided substantial insight into these signaling pathways, no comprehensive, direct comparison of these cell lines to activated peripheral blood T cells (APBTs) has been performed to validate their usefulness as a model of primary T cells. METHODOLOGY/PRINCIPAL FINDINGS We used quantitative biochemical techniques to compare the activation of two widely used human T cell lines, Jurkat E6.1 and HuT78 T cells, to APBTs. We found that HuT78 cells were similar to APBTs in proximal TCR-mediated signaling events. In contrast, Jurkat E6.1 cells had significantly increased site-specific phosphorylation of Pyk2, PLCgamma1, Vav1, and Erk1/Erk2 and substantially more Ca2+ flux compared to HuT78 cells and APBTs. In part, these effects appear to be due to an overexpression of Itk in Jurkat E6.1 cells compared to HuT78 cells and APBTs. Both cell lines differ from APBTs in the expression and function of costimulatory receptors and in the range of cytokines and chemokines released upon TCR and costimulatory receptor activation. CONCLUSIONS/SIGNIFICANCE Both Jurkat E6.1 and HuT78 T cells had distinct similarities and differences compared to APBTs. Both cell lines have advantages and disadvantages, which must be taken into account when choosing them as a model T cell line.
Collapse
Affiliation(s)
- Rebekah R. Bartelt
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Noemi Cruz-Orcutt
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Michaela Collins
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon C. D. Houtman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
199
|
Gao C, Blystone SD. A Pyk2-Vav1 complex is recruited to beta3-adhesion sites to initiate Rho activation. Biochem J 2009; 420:49-56. [PMID: 19207108 DOI: 10.1042/bj20090037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Integrin alphavbeta3-mediated adhesion of haemopoietic cells to vitronectin results in beta3 tyrosine phosphorylation and Rho activation which is necessary for adhesion. Previously, we have shown that the RhoGEF (Rho guanine-nucleotide-exchange factor) Vav1 could associate indirectly with alphavbeta3 during leucocyte adhesion to vitronectin. In the present study, we have identified the non-receptor tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2) as the adaptor protein that links Vav1 with alphavbeta3. The association of Pyk2 and Vav1 with beta3 relies on the presence of Tyr747 in beta3, the primary site of beta3 phosphorylation. However, association of Pyk2 with Vav1 is independent of beta3 tyrosine phosphorylation. Formation of a Pyk2-Vav1 complex occurs upon cell adhesion and Pro717 of Pyk2 plays a key role in Pyk2 interaction with Vav1. Utilizing purified recombinant proteins, we confirmed the direct interaction between Pyk2 and Vav1 In vitro. Cells transfected with GFP (green fluorescent protein)-Pyk2-P717A demonstrated severely suppressed cytoskeletal reorganization, impaired Vav1 recruitment, decreased Rho GTPase activation and loss of cell adhesion. Using siRNA (small interfering RNA) to specifically reduce Pyk2 levels in cells resulted in disrupted association between Vav1 and beta3 and impaired cell adhesion. These results indicate that Pyk2 is a critical signalling molecule downstream of beta3 integrin tyrosine phosphorylation and mediates Vav1 recruitment to accomplish actin reorganization necessary for adhesion.
Collapse
Affiliation(s)
- Chunlei Gao
- Department of Cell and Development Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
200
|
Dumont C, Corsoni-Tadrzak A, Ruf S, de Boer J, Williams A, Turner M, Kioussis D, Tybulewicz VLJ. Rac GTPases play critical roles in early T-cell development. Blood 2009; 113:3990-8. [PMID: 19088377 PMCID: PMC2673125 DOI: 10.1182/blood-2008-09-181180] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/14/2008] [Indexed: 01/11/2023] Open
Abstract
The Rac1 and Rac2 GTPases play important roles in many processes including cytoskeletal reorganization, proliferation, and survival, and are required for B-cell development. Previous studies had shown that deficiency in Rac2 did not affect T-cell development, whereas the function of Rac1 in this process has not been investigated. We now show that simultaneous absence of both GTPases resulted in a very strong developmental block at the pre-TCR checkpoint and in defective positive selection. Unexpectedly, deficiency of Rac1 and Rac2 also resulted in the aberrant survival of thymocytes lacking expression of TCR beta, showing hallmarks of hyperactive Notch signaling. Furthermore, we found a similar novel phenotype in the absence of Vav1, Vav2, and Vav3, which function as guanine nucleotide exchange factors for Rac1 and Rac2. These results show that a pathway containing Vav and Rac proteins may negatively regulate Notch signaling during early thymic development.
Collapse
Affiliation(s)
- Celine Dumont
- Division of Immune Cell Biology, Medical Research Council (MRC) National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | |
Collapse
|