151
|
Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci U S A 2008; 105:8989-93. [PMID: 18577593 DOI: 10.1073/pnas.0800388105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animal eyes are morphologically diverse. Their assembly, however, always relies on the same basic principle, i.e., photoreceptors located in the vicinity of dark shielding pigment. Cnidaria as the likely sister group to the Bilateria are the earliest branching phylum with a well developed visual system. Here, we show that camera-type eyes of the cubozoan jellyfish, Tripedalia cystophora, use genetic building blocks typical of vertebrate eyes, namely, a ciliary phototransduction cascade and melanogenic pathway. Our findings indicative of parallelism provide an insight into eye evolution. Combined, the available data favor the possibility that vertebrate and cubozoan eyes arose by independent recruitment of orthologous genes during evolution.
Collapse
|
152
|
Marlétaz F, Gilles A, Caubit X, Perez Y, Dossat C, Samain S, Gyapay G, Wincker P, Le Parco Y. Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol 2008; 9:R94. [PMID: 18533022 PMCID: PMC2481426 DOI: 10.1186/gb-2008-9-6-r94] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/03/2008] [Accepted: 06/04/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The chaetognaths (arrow worms) have puzzled zoologists for years because of their astonishing morphological and developmental characteristics. Despite their deuterostome-like development, phylogenomic studies recently positioned the chaetognath phylum in protostomes, most likely in an early branching. This key phylogenetic position and the peculiar characteristics of chaetognaths prompted further investigation of their genomic features. RESULTS Transcriptomic and genomic data were collected from the chaetognath Spadella cephaloptera through the sequencing of expressed sequence tags and genomic bacterial artificial chromosome clones. Transcript comparisons at various taxonomic scales emphasized the conservation of a core gene set and phylogenomic analysis confirmed the basal position of chaetognaths among protostomes. A detailed survey of transcript diversity and individual genotyping revealed a past genome duplication event in the chaetognath lineage, which was, surprisingly, followed by a high retention rate of duplicated genes. Moreover, striking genetic heterogeneity was detected within the sampled population at the nuclear and mitochondrial levels but cannot be explained by cryptic speciation. Finally, we found evidence for trans-splicing maturation of transcripts through splice-leader addition in the chaetognath phylum and we further report that this processing is associated with operonic transcription. CONCLUSION These findings reveal both shared ancestral and unique derived characteristics of the chaetognath genome, which suggests that this genome is likely the product of a very original evolutionary history. These features promote chaetognaths as a pivotal model for comparative genomics, which could provide new clues for the investigation of the evolution of animal genomes.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| | - André Gilles
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Xavier Caubit
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
- CNRS UMR 6216, IBDML, Campus de Luminy, Route Léon Lachamp, 13288, Marseille, France
| | - Yvan Perez
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Carole Dossat
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Sylvie Samain
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Gabor Gyapay
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Patrick Wincker
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Yannick Le Parco
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| |
Collapse
|
153
|
Elias M, Novotny M. cpRAS: a novel circularly permuted RAS-like GTPase domain with a highly scattered phylogenetic distribution. Biol Direct 2008; 3:21. [PMID: 18510733 PMCID: PMC2430557 DOI: 10.1186/1745-6150-3-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 11/15/2022] Open
Abstract
A recent systematic survey suggested that the YRG (or YawG/YlqF) family with the G4-G5-G1-G2-G3 order of the conserved GTPase motifs represents the only possible circularly permuted variation of the canonical GTPase structure. Here we show that a different circularly permuted GTPase domain actually does exist, conforming to the pattern G3-G4-G5-G1-G2. The domain, dubbed cpRAS, is a variant of RAS family GTPases and occurs in two types of larger proteins, either inserted into a region homologous to a bacterial group of proteins classified as COG2373 and potentially related to the alpha-2-macroglobulin family (so far a single protein in Dictyostelium) or in combination with a von Willebrand factor type A (VWA) domain. For the latter protein type, which was found in a few metazoans and several distantly related protists, existence in the common ancestor of opisthokonts, Amoebozoa and excavates followed by at least eight independent losses may be inferred. Our findings thus bring further evidence for the importance of parallel reduction of ancestral complexity in the eukaryotic evolution. This article was reviewed by Lakshminarayan Iyer and Fyodor Kondrashov. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Marek Elias
- Charles University in Prague, Faculty of Science, Department of Botany, Benatska 2, 128 01 Prague 2, Czech Republic.
| | | |
Collapse
|
154
|
Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR. Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 2008; 23:369-76. [PMID: 18501991 DOI: 10.1016/j.tree.2008.03.004] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/16/2008] [Accepted: 03/11/2008] [Indexed: 01/02/2023]
Abstract
Corals provide the foundation of important tropical reef ecosystems but are in global decline for multiple reasons, including climate change. Coral health depends on a fragile partnership with intracellular dinoflagellate symbionts. We argue here that progress in understanding coral biology requires intensive study of the cellular processes underlying this symbiosis. Such study will inform us on how the coral symbiosis will be affected by climate change, mechanisms driving coral bleaching and disease, and the coevolution of this symbiosis in the context of other host-microbe interactions. Drawing lessons from the broader history of molecular and cell biology and the study of other host-microbe interactions, we argue that a model-systems approach is essential for making effective progress in understanding coral cell biology.
Collapse
Affiliation(s)
- Virginia M Weis
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
155
|
Knack BA, Iguchi A, Shinzato C, Hayward DC, Ball EE, Miller DJ. Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evol Biol 2008; 8:136. [PMID: 18466626 PMCID: PMC2397394 DOI: 10.1186/1471-2148-8-136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation. It has been suggested that Caenorhabditis elegans, which has a single beta and two alpha integrins, might reflect the ancestral integrin complement. Investigation of the integrin repertoire of anthozoan cnidarians such as the coral Acropora millepora is required to test this hypothesis and may provide insights into the original roles of these molecules. RESULTS Two novel integrins were identified in Acropora. AmItgalpha1 shows features characteristic of alpha integrins lacking an I-domain, but phylogenetic analysis gives no clear indication of its likely binding specificity. AmItgbeta2 lacks consensus cysteine residues at positions 8 and 9, but is otherwise a typical beta integrin. In situ hybridization revealed that AmItgalpha1, AmItgbeta1, and AmItgbeta2 are expressed in the presumptive endoderm during gastrulation. A second anthozoan, the sea anemone Nematostella vectensis, has at least four beta integrins, two resembling AmItgbeta1 and two like AmItgbeta2, and at least three alpha integrins, based on its genomic sequence. CONCLUSION In two respects, the cnidarian data do not fit expectations. First, the cnidarian integrin repertoire is more complex than predicted: at least two betas in Acropora, and at least three alphas and four betas in Nematostella. Second, whereas the bilaterian alphas resolve into well-supported groups corresponding to those specific for RGD-containing or laminin-type ligands, the known cnidarian alphas are distinct from these. During early development in Acropora, the expression patterns of the three known integrins parallel those of amphibian and echinoderm integrins.
Collapse
Affiliation(s)
- Brent A Knack
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | | | | | | | | | | |
Collapse
|
156
|
Surprising complexity of the ancestral apoptosis network. Genome Biol 2008; 8:R226. [PMID: 17958905 PMCID: PMC2246300 DOI: 10.1186/gb-2007-8-10-r226] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022] Open
Abstract
A comparative genomics approach revealed that the genes for several components of the apoptosis network with single copies in vertebrates have multiple paralogs in cnidarian-bilaterian ancestors, suggesting a complex evolutionary history for this network. Background Apoptosis, one of the main types of programmed cell death, is regulated and performed by a complex protein network. Studies in model organisms, mostly in the nematode Caenorhabditis elegans, identified a relatively simple apoptotic network consisting of only a few proteins. However, analysis of several recently sequenced invertebrate genomes, ranging from the cnidarian sea anemone Nematostella vectensis, representing one of the morphologically simplest metazoans, to the deuterostomes sea urchin and amphioxus, contradicts the current paradigm of a simple ancestral network that expanded in vertebrates. Results Here we show that the apoptosome-forming CED-4/Apaf-1 protein, present in single copy in vertebrate, nematode, and insect genomes, had multiple paralogs in the cnidarian-bilaterian ancestor. Different members of this ancestral Apaf-1 family led to the extant proteins in nematodes/insects and in deuterostomes, explaining significant functional differences between proteins that until now were believed to be orthologous. Similarly, the evolution of the Bcl-2 and caspase protein families appears surprisingly complex and apparently included significant gene loss in nematodes and insects and expansions in deuterostomes. Conclusion The emerging picture of the evolution of the apoptosis network is one of a succession of lineage-specific expansions and losses, which combined with the limited number of 'apoptotic' protein families, resulted in apparent similarities between networks in different organisms that mask an underlying complex evolutionary history. Similar results are beginning to surface for other regulatory networks, contradicting the intuitive notion that regulatory networks evolved in a linear way, from simple to complex.
Collapse
|
157
|
Yellowlees D, Rees TAV, Leggat W. Metabolic interactions between algal symbionts and invertebrate hosts. PLANT, CELL & ENVIRONMENT 2008; 31:679-94. [PMID: 18315536 DOI: 10.1111/j.1365-3040.2008.01802.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Some invertebrates have enlisted autotrophic unicellular algae to provide a competitive metabolic advantage in nutritionally demanding habitats. These symbioses exist primarily but not exclusively in shallow tropical oceanic waters where clear water and low nutrient levels provide maximal advantage to the association. Mostly, the endosymbiotic algae are localized in host cells surrounded by a host-derived membrane (symbiosome). This anatomy has required adaptation of the host biochemistry to allow transport of the normally excreted inorganic nutrients (CO2, NH3 and PO43-) to the alga. In return, the symbiont supplies photosynthetic products to the host to meet its energy demands. Most attention has focused on the metabolism of CO2 and nitrogen sources. Carbon-concentrating mechanisms are a feature of all algae, but the products exported to the host following photosynthetic CO2 fixation vary. Identification of the stimulus for release of algal photosynthate in hospite remains elusive. Nitrogen assimilation within the symbiosis is an essential element in the host's control over the alga. Recent studies have concentrated on cnidarians because of the impact of global climate change resulting in coral bleaching. The loss of the algal symbiont and its metabolic contribution to the host has the potential to result in the transition from a coral-dominated to an algal-dominated ecosystem.
Collapse
Affiliation(s)
- David Yellowlees
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy & Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | |
Collapse
|
158
|
Schwarz RS, Bosch TCG, Cadavid LF. Evolution of polydom-like molecules: identification and characterization of cnidarian polydom (Cnpolydom) in the basal metazoan Hydractinia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1192-1210. [PMID: 18466971 DOI: 10.1016/j.dci.2008.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 05/26/2023]
Abstract
End sequencing of random BAC clones from a Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa) genomic library revealed a gene across a approximately 37.5kb region of the H. symbiolongicarpus genome sharing highest sequence identity and domain architecture to mammalian polydom that we in turn named cnidarian polydom (CnPolydom). Sharing all eight domain types characteristic of polydom and organized in a similar 5'-3' manner, CnPolydom was predicted to contain three additional domain types: PAN, FA58C, and CUB that are characteristic of CnPolydom. Expression analysis of CnPolydom from H. symbiolongicarpus (Hysy-CnPolydom) showed upregulation in response to bacterial and primarily fungal challenges, with transcripts produced specifically by a subset of interstitial stem cells (i-cells) and/or neural cells throughout the ectodermal tissue layer of feeding polyps (gastrozooids). This is the first description of a polydom-like molecule outside of Mammalia and provides evolutionary perspective on the ancestral structure and role of this pentraxin family clade.
Collapse
Affiliation(s)
- Ryan S Schwarz
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
159
|
Middlebrook R, Hoegh-Guldberg O, Leggat W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 2008; 211:1050-6. [DOI: 10.1242/jeb.013284] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe mutualistic relationship between corals and their unicellular dinoflagellate symbionts (Symbiodinium sp.) is a fundamental component within the ecology of coral reefs. Thermal stress causes the breakdown of the relationship between corals and their symbionts (bleaching). As with other organisms, this symbiosis may acclimate to changes in the environment, thereby potentially modifying the environmental threshold at which they bleach. While a few studies have examined the acclimation capacity of reef-building corals, our understanding of the underlying mechanism is still in its infancy. The present study focused on the role of recent thermal history in influencing the response of both corals and symbionts to thermal stress, using the reef-building coral Acropora aspera. The symbionts of corals that were exposed to 31°C for 48 h (pre-stress treatment) 1 or 2 weeks prior to a 6-day simulated bleaching event (when corals were exposed to 34°C) were found to have more effective photoprotective mechanisms. These mechanisms included changes in non-photochemical quenching and xanthophyll cycling. These differences in photoprotection were correlated with decreased loss of symbionts, with those corals that were not prestressed performing significantly worse, losing over 40% of their symbionts and having a greater reduction in photosynthetic efficiency. These results are important in that they show that thermal history, in addition to light history, can influence the response of reef-building corals to thermal stress and therefore have implications for the modeling of bleaching events. However, whether acclimation is capable of modifying the thermal threshold of corals sufficiently to cope as sea temperatures increase in response to global warming has not been fully explored. Clearly increases in sea temperatures that extend beyond 1–2°C will exhaust the extent to which acclimation can modify the thermal threshold of corals.
Collapse
Affiliation(s)
- Rachael Middlebrook
- Centre for Marine Studies and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, QLD 4072, Australia
| | - Ove Hoegh-Guldberg
- Centre for Marine Studies and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, QLD 4072, Australia
| | - William Leggat
- Centre for Marine Studies and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
160
|
Chiou CY, Chen IP, Chen C, Wu HJL, Wei NV, Wallace CC, Chen CA. Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene. J Mol Evol 2008; 66:317-24. [PMID: 18322634 DOI: 10.1007/s00239-008-9084-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/06/2007] [Accepted: 01/25/2008] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM), belonging to the tropinin C (TnC) superfamily, is one of the calcium-binding proteins that are highly conserved in their protein and gene structure. Based on the structure comparison among published vertebrate and invertebrate CaM, it is proposed that the ancestral form of eumetazoan CaM genes should have five exons and four introns (four-intron hypothesis). In this study, we determined the gene structure of CaM in the coral Acropora muricata, an anthozoan cnidarian representing the basal position in animal evolution. A CaM clone was isolated from a cDNA library constructed from the spawned eggs of A. muricata. This clone was composed of 908 nucleotides, including 162 base pairs (bp) of 5'-untranslated region (UTR), 296 bp of 3'-UTR, and an open reading frame 450 bp in length. The deduced amino acid indicated that the Acropora CaM protein is identical to that of the actiniarian, Metridinium senile, and has four putative calcium-binding domains highly similar to those of other vertebrate or invertebrate CaMs. Southern blot analysis revealed that Acropora CaM is a putative single-copy gene in the nuclear genome. Genomic sequencing showed that Acropora CaM was composed of five exons and four introns, with intron II not corresponding to any region in the actiniarian CaM gene, which possesses only four exons and three introns. Our results highlight that the coral CaM gene isolated from A. muricata has four introns at the predicted positions of the early metazoan CaM gene organization, providing the first evidence from the basal eumetazoan phylum to support the four-intron hypothesis.
Collapse
Affiliation(s)
- Chih-Yung Chiou
- Research Center for Biodiversity, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
161
|
Schwarz JA, Brokstein PB, Voolstra C, Terry AY, Manohar CF, Miller DJ, Szmant AM, Coffroth MA, Medina M. Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics 2008; 9:97. [PMID: 18298846 PMCID: PMC2291459 DOI: 10.1186/1471-2164-9-97] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 02/25/2008] [Indexed: 11/10/2022] Open
Abstract
Background Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Results We generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. Conclusion Partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.
Collapse
Affiliation(s)
- Jodi A Schwarz
- Biology Department, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol Biol 2008; 8:16. [PMID: 18215274 PMCID: PMC2259306 DOI: 10.1186/1471-2148-8-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 01/23/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. RESULTS The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13 peptidases to fulfil a broad range of physiological roles. CONCLUSION The M13 family of peptidases have diversified extensively in all species examined, indicating wide ranging roles in numerous physiological processes. It is predicted that differences in the S2' subsite are fundamental to determining the substrate specificities that facilitate this functional diversity.
Collapse
Affiliation(s)
- Nicholas D Bland
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- INSERM U609, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Facility, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - John W Pinney
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Josie E Thomas
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Anthony J Turner
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
163
|
Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 2008; 9:R10. [PMID: 18201385 PMCID: PMC2395250 DOI: 10.1186/gb-2008-9-1-r10] [Citation(s) in RCA: 374] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/13/2007] [Accepted: 01/17/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. RESULTS We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. CONCLUSION Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches.
Collapse
Affiliation(s)
- Yoshinori Tomoyasu
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- K-State Arthropod Genomics Center, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sherry C Miller
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- K-State Arthropod Genomics Center, Kansas State University, Manhattan, Kansas 66506, USA
| | - Shuichiro Tomita
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Michael Schoppmeier
- Universitat Erlangen, Institut fur Biologie, Abteilung fur Entwicklungsbiologie, Staudtstr., D-91058 Erlangen, Germany
| | - Daniela Grossmann
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung Entwicklungsbiologie, Justus-von-Liebig-Weg, 37077 Göttingen, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung Entwicklungsbiologie, Justus-von-Liebig-Weg, 37077 Göttingen, Germany
| |
Collapse
|
164
|
Miller DJ, Ball EE. Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends Genet 2008; 24:1-4. [DOI: 10.1016/j.tig.2007.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
|
165
|
|
166
|
Bielen H, Oberleitner S, Marcellini S, Gee L, Lemaire P, Bode HR, Rupp R, Technau U. Divergent functions of two ancientHydra Brachyuryparalogues suggest specific roles for their C-terminal domains in tissue fate induction. Development 2007; 134:4187-97. [DOI: 10.1242/dev.010173] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologues of the T-box gene Brachyury play important roles in mesoderm differentiation and other aspects of early development in all bilaterians. In the diploblast Hydra, the Brachyuryhomologue HyBra1 acts early in the formation of the hypostome, the location of the organiser in adult Hydra. We now report the isolation and characterisation of a second Brachyury gene, HyBra2. Sequence analysis suggests that HyBra1 and HyBra2 are paralogues, resulting from an ancient lineage-specific gene duplication. We show that both paralogues acquired novel functions, both at the level of their cis-regulation as well as through significant divergence of the coding sequence. Both genes are expressed in the hypostome, but HyBra1 is predominantly endodermal, whereas HyBra2 transcripts are found primarily in the ectoderm. During bud formation, both genes are activated before any sign of evagination, suggesting an early role in head formation. During regeneration, HyBra1 is an immediate-early response gene and is insensitive to protein synthesis inhibition, whereas the onset of expression of HyBra2 is delayed and requires protein synthesis. The functional consequence of HyBra1/2 protein divergence on cell fate decisions was tested in Xenopus. HyBra1 induces mesoderm, like vertebrate Brachyury proteins. By contrast, HyBra2 shows a strong cement-gland and neural-inducing activity. Domain-swapping experiments show that the C-terminal domain of HyBra2 is responsible for this specific phenotype. Our data support the concept of sub- and neofunctionalisation upon gene duplication and show that divergence of cis-regulation and coding sequence in paralogues can lead to dramatic changes in structure and function.
Collapse
Affiliation(s)
- Holger Bielen
- Sars International Centre for Marine Molecular Biology, University of Bergen,Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Sabine Oberleitner
- Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrase 44, D-80336 München, Germany
| | - Sylvain Marcellini
- IBDM/LGPD Case 907, Campus de Luminy, 13288 Marseille, France
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C,Concepción, Chile
| | - Lydia Gee
- Developmental Biology Center and Developmental and Cell Biology Department,University of California at Irvine, Irvine, CA 92697, USA
| | - Patrick Lemaire
- IBDM/LGPD Case 907, Campus de Luminy, 13288 Marseille, France
| | - Hans R. Bode
- Developmental Biology Center and Developmental and Cell Biology Department,University of California at Irvine, Irvine, CA 92697, USA
| | - Ralph Rupp
- Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrase 44, D-80336 München, Germany
| | - Ulrich Technau
- Sars International Centre for Marine Molecular Biology, University of Bergen,Thormøhlensgt. 55, 5008 Bergen, Norway
| |
Collapse
|
167
|
Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TCG. The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss. Genome Biol 2007; 8:R59. [PMID: 17437634 PMCID: PMC1896004 DOI: 10.1186/gb-2007-8-4-r59] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/22/2006] [Accepted: 04/16/2007] [Indexed: 12/04/2022] Open
Abstract
Analysis of genomic resources available for cnidarians revealed that several key components of the vertebrate innate immune repertoire are present in representatives of the basal cnidarian class Anthozoa, but are missing in Hydra, a member of the class Hydrozoa, indicating ancient origins for many components of the innate immune system. Background Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest - it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. Results To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-κB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Conclusion Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system.
Collapse
Affiliation(s)
- David J Miller
- ARC Centre of Excellence in Coral Reef Studies and Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia
| | - Georg Hemmrich
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| | - Eldon E Ball
- ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - David C Hayward
- ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Konstantin Khalturin
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| | - Noriko Funayama
- Department of Biophysics, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Thomas CG Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| |
Collapse
|
168
|
Iguchi A, Márquez LM, Knack B, Shinzato C, van Oppen MJH, Willis BL, Hardie K, Catmull J, Miller DJ. Apparent involvement of a beta1 type integrin in coral fertilization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:760-5. [PMID: 17694414 DOI: 10.1007/s10126-007-9026-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 05/20/2007] [Indexed: 05/16/2023]
Abstract
Integrins are involved in a wide variety of cell adhesion processes, and have roles in gamete binding and fusion in mammals. Integrins have been also discovered in the scleractinian coral Acropora millepora (Cnidaria: Anthozoa). As a first step toward understanding the molecular basis of fertilization in corals, we examined the effect of polyclonal antisera raised against recombinant coral integrins on gamete interactions in A. millepora. Antiserum raised against integrin betacn1 dramatically decreased the binding of Acropora sperm to eggs and significantly decreased fertilization rates relative to preimmune serum and seawater controls. However, the antiserum against AmIntegrin alpha1 did not affect significantly either sperm-egg binding or fertilization. One possible explanation for this is that AmIntegrin alpha1 may preferentially mediate interactions with RGD-containing ligands, whereas mammalian alpha6 integrin (which is most directly implicated in gamete interactions) preferentially interacts with laminin-related ligands. Our results suggest that beta1 type integrins are involved in the fertilization process in Acropora and that some functions of these molecules may have been conserved between corals and mammals.
Collapse
Affiliation(s)
- Akira Iguchi
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Australia, Townsville, Queensland 4811, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Momose T, Houliston E. Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 2007; 5:e70. [PMID: 17355179 PMCID: PMC1820609 DOI: 10.1371/journal.pbio.0050070] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/08/2007] [Indexed: 01/22/2023] Open
Abstract
In phylogenetically diverse animals, including the basally diverging cnidarians, “determinants” localised within the egg are responsible for directing development of the embryonic body plan. Many such determinants are known to regulate the Wnt signalling pathway, leading to regionalised stabilisation of the transcriptional coregulator β-catenin; however, the only strong molecular candidate for a Wnt-activating determinant identified to date is the ligand Wnt11 in Xenopus. We have identified embryonic “oral–aboral” axis determinants in the cnidarian Clytia hemisphaerica in the form of RNAs encoding two Frizzled family Wnt receptors, localised at opposite poles of the egg. Morpholino-mediated inhibition of translation showed that CheFz1, localised at the animal pole, activates the canonical Wnt pathway, promotes oral fates including gastrulation, and may also mediate global polarity in the ectoderm. CheFz3, whose RNA is localised at the egg vegetal cortex, was found to oppose CheFz1 function and to define an aboral territory. Active downregulation mechanisms maintained the reciprocal localisation domains of the two RNAs during early development. Importantly, ectopic expression of either CheFz1 or CheFz3 was able to redirect axis development. These findings identify Frizzled RNAs as axis determinants in Clytia, and have implications for the evolution of embryonic patterning mechanisms, notably that diverse Wnt pathway regulators have been adopted to initiate asymmetric Wnt pathway activation. How do different animal body parts form in the correct arrangement during development? Often, the explanation is provided by “determinant” molecules, prepositioned in the egg cell before it is fertilised. These determinant molecules initiate spatially localized programmes of gene expression, causing the various body parts to form in the appropriate place. Many determinants work by activating the Wnt signalling pathway; however, few concrete examples of determinant molecules have yet been discovered. We have found a new example of such a molecule by studying embryos of a jellyfish called Clytia. This molecule, found on one side of the egg, belongs to the “Frizzled” group of membrane proteins that activate Wnt signalling. Unexpectedly, we also found a second type of Frizzled molecule on the other side of the egg, which has a counterbalancing role in the embryo. Comparison of our findings in Clytia with those in other animals suggests that the molecular mechanisms responsible for body patterning via asymmetric Wnt pathway activation have not been tightly constrained during evolution. The axis of a cnidarian is specified by the location of two maternal Frizzled mRNAs, revising the view that cnidarian axes are specified by the first cleavage initiation site.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique Unité 7009 “Biologie du Développement,” Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Evelyn Houliston
- Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique Unité 7009 “Biologie du Développement,” Observatoire Océanologique, Villefranche-sur-Mer, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
170
|
Lee PN, Kumburegama S, Marlow HQ, Martindale MQ, Wikramanayake AH. Asymmetric developmental potential along the animal–vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 2007; 310:169-86. [PMID: 17716645 DOI: 10.1016/j.ydbio.2007.05.040] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/21/2007] [Accepted: 05/29/2007] [Indexed: 11/16/2022]
Abstract
The relationship between egg polarity and the adult body plan is well understood in many bilaterians. However, the evolutionary origins of embryonic polarity are not known. Insight into the evolution of polarity will come from understanding the ontogeny of polarity in non-bilaterian forms, such as cnidarians. We examined how the axial properties of the starlet sea anemone, Nematostella vectensis (Anthozoa, Cnidaria), are established during embryogenesis. Egg-cutting experiments and sperm localization show that Nematostella eggs are only fertilized at the animal pole. Vital marking experiments demonstrate that the egg animal pole corresponds to the sites of first cleavage and gastrulation, and the oral pole of the adult. Embryo separation experiments demonstrate an asymmetric segregation of developmental potential along the animal-vegetal axis prior to the 8-cell stage. We demonstrate that Dishevelled (Dsh) plays an important role in mediating this asymmetric segregation of developmental fate. Although NvDsh mRNA is ubiquitously expressed during embryogenesis, the protein is associated with the female pronucleus at the animal pole in the unfertilized egg, becomes associated with the unipolar first cleavage furrow, and remains enriched in animal pole blastomeres. Our results suggest that at least one mechanism for Dsh enrichment at the animal pole is through its degradation at the vegetal pole. Functional studies reveal that NvDsh is required for specifying embryonic polarity and endoderm by stabilizing beta-catenin in the canonical Wnt signaling pathway. The localization of Dsh to the animal pole in Nematostella and two other anthozoan cnidarians (scleractinian corals) provides a possible explanation for how the site of gastrulation has changed in bilaterian evolution while other axial components of development have remained the same and demonstrates that modifications of the Wnt signaling pathway have been used to pattern a wide variety of metazoan embryos.
Collapse
Affiliation(s)
- Patricia N Lee
- Kewalo Marine Lab, Pacific Biosciences Research Center/University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
171
|
Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G. A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 2007; 8:R85. [PMID: 17506889 PMCID: PMC1929154 DOI: 10.1186/gb-2007-8-5-r85] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/12/2007] [Accepted: 05/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genome of the sea urchin Strongylocentrotus purpuratus has recently been sequenced because it is a major model system for the study of gene regulatory networks. Embryonic expression patterns for most genes are unknown, however. RESULTS Using large-scale screens on arrays carrying 50% to 70% of all genes, we identified novel territory-specific markers. Our strategy was based on computational selection of genes that are differentially expressed in lithium-treated embryos, which form excess endomesoderm, and in zinc-treated embryos, in which endomesoderm specification is blocked. Whole-mount in situ hybridization (WISH) analysis of 700 genes indicates that the apical organ region is eliminated in lithium-treated embryos. Conversely, apical and specifically neural markers are expressed more broadly in zinc-treated embryos, whereas endomesoderm signaling is severely reduced. Strikingly, the number of serotonergic neurons is amplified by at least tenfold in zinc-treated embryos. WISH analysis further indicates that there is crosstalk between the Wnt (wingless int), Notch, and fibroblast growth factor signaling pathways in secondary mesoderm cell specification and differentiation, similar to signaling cascades that function during development of presomitic mesoderm in mouse embryogenesis. We provide differential expression data for more than 4,000 genes and WISH patterns of more than 250 genes, and more than 2,400 annotated WISH images. CONCLUSION Our work provides tissue-specific expression patterns for a large fraction of the sea urchin genes that have not yet been included in existing regulatory networks and await functional integration. Furthermore, we noted neuron-inducing activity of zinc on embryonic development; this is the first observation of such activity in any organism.
Collapse
Affiliation(s)
- Albert J Poustka
- Max-Planck Institut für Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany
| | - Alexander Kühn
- Max-Planck Institut für Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany
| | - Detlef Groth
- Max-Planck Institut für Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany
| | - Vesna Weise
- Max-Planck Institut für Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany
| | - Shunsuke Yaguchi
- University of Victoria, Departments of Biology and Biochemistry/Microbiology, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C5
- US National Institutes of Health, National Institute of Dental and Craniofacial Research, 30 Convent Drive, MSC 4326, Bethesda. Maryland 20815, USA
| | - Robert D Burke
- University of Victoria, Departments of Biology and Biochemistry/Microbiology, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C5
| | - Ralf Herwig
- Max-Planck Institut für Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany
| | - Hans Lehrach
- Max-Planck Institut für Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany
| | - Georgia Panopoulou
- Max-Planck Institut für Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany
| |
Collapse
|
172
|
Hemmrich G, Miller DJ, Bosch TCG. The evolution of immunity: a low-life perspective. Trends Immunol 2007; 28:449-54. [PMID: 17855167 DOI: 10.1016/j.it.2007.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/19/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Several of the key genes and pathways of vertebrate immunity appear to have much earlier origins than has been assumed previously and are present in some of the simplest of true animals. Surveys of recently released whole-genome sequences and large EST (expressed sequence tag) datasets imply that both the canonical Toll/Toll-like receptor (TLR) pathway and a prototypic complement-effector pathway, involving C3 and several membrane attack complex-perforin proteins, are present in corals and sea anemones, members of the basal phylum Cnidaria. However, both pathways are likely to have degenerated substantially in Hydra, leaving open the molecular mechanism by which antimicrobial activities are induced in this cnidarian. Surprisingly, the cnidarian genomes also encode a protein related to deuterostome RAG1 (recombination activation gene 1). The finding that RAG1 is likely to have originated from a Transib transposase implies that it might be possible to use in silico approaches to identify its target loci in 'lower' animals.
Collapse
Affiliation(s)
- Georg Hemmrich
- Zoological Insitute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | |
Collapse
|
173
|
Rodriguez-Lanetty M, Phillips WS, Dove S, Hoegh-Guldberg O, Weis VM. Analytical approach for selecting normalizing genes from a cDNA microarray platform to be used in q-RT-PCR assays: a cnidarian case study. ACTA ACUST UNITED AC 2007; 70:985-91. [PMID: 17913235 DOI: 10.1016/j.jbbm.2007.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/04/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
Research in gene function using Quantitative Reverse Transcription PCR (q-RT-PCR) and microarray approaches are emerging and just about to explode in the field of coral and cnidarian biology. These approaches are showing the great potential to significantly advance our understanding of how corals respond to abiotic and biotic stresses, and how host cnidarians/dinoflagellates symbioses are maintained and regulated. With these genomic advances, however, new analytical challenges are also emerging, such as the normalization of gene expression data derived from q-RT-PCR. In this study, an effective analytical method is introduced to identify candidate housekeeping genes (HKG) from a sea anemone (Anthopleura elegantissima) cDNA microarray platform that can be used as internal control genes to normalize q-RT-PCR gene expression data. It is shown that the identified HKGs were stable among the experimental conditions tested in this study. The three most stables genes identified, in term of gene expression, were beta-actin, ribosomal protein L12, and a Poly(a) binding protein. The applications of these HKGs in other cnidarian systems are further discussed.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Lanetty
- ARC Centre of Excellence for Coral Reef Studies /Centre for Marine Studies, University of Queensland, St. Lucia QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
174
|
Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007; 317:86-94. [PMID: 17615350 DOI: 10.1126/science.1139158] [Citation(s) in RCA: 1147] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.
Collapse
Affiliation(s)
- Nicholas H Putnam
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Hemmrich G, Anokhin B, Zacharias H, Bosch TCG. Molecular phylogenetics in Hydra, a classical model in evolutionary developmental biology. Mol Phylogenet Evol 2007; 44:281-90. [PMID: 17174108 DOI: 10.1016/j.ympev.2006.10.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/13/2006] [Accepted: 10/23/2006] [Indexed: 12/25/2022]
Abstract
Among the earliest diverging animal phyla are the Cnidaria. Freshwater polyps of the genus Hydra (Cnidaria, Hydrozoa) have long been of general interest because different species of Hydra reveal fundamental principles that underlie development, differentiation, regeneration and also symbiosis. The phylogenetic relationships among the Hydra species most commonly used in current research are not resolved yet. Here we estimate the phylogenetic relations among eight scientifically important members of the genus Hydra with molecular data from two nuclear (18S rDNA, 28S rDNA) and two mitochondrial (16S rRNA, cytochrome oxidase subunit I (COI)) genes. The phylogenetic trees obtained by maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods were generally compatible with present morphological classification patterns. However, the present analysis also bears on several long-standing questions about Hydra systematics and reveals some characteristics of the phylogenetic relationships of this genus that were unknown so far. It indicates that Hydra viridissima, the only species in Hydra, which contains symbiotic algae, might be considered as the sister group to all other species within this genus. Analyses of both nuclear and mitochondrial sequences support the view that Hydra oligactis and Hydra circumcincta are sisters to all other Hydra species. Unexpectedly, we also find that in contrast to its initial description, the strain used for making transgenic Hydra, Hydra vulgaris (strain AEP) is more closely related to Hydra carnea than to other species of Hydra.
Collapse
Affiliation(s)
- Georg Hemmrich
- Zoological Institute, Christian Albrechts University, 24105 Kiel, Germany
| | | | | | | |
Collapse
|
176
|
Khalturin K, Anton-Erxleben F, Milde S, Plötz C, Wittlieb J, Hemmrich G, Bosch TCG. Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev Biol 2007; 309:32-44. [PMID: 17659272 DOI: 10.1016/j.ydbio.2007.06.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/31/2022]
Abstract
Little is known about stem cells in organisms at the beginning of evolution. To characterize the regulatory events that control stem cells in the basal metazoan Hydra, we have generated transgenics which express eGFP selectively in the interstitial stem cell lineage. Using them we visualized stem cell and precursor migration in real-time in the context of the native environment. We demonstrate that interstitial cells respond to signals from the cellular environment, and that Wnt and Notch pathways are key players in this process. Furthermore, by analyzing polyps which overexpress the Polycomb protein HyEED in their interstitial cells, we provide in vivo evidence for a role of chromatin modification in terminal differentiation. These findings for the first time uncover insights into signalling pathways involved in stem cell differentiation in the Bilaterian ancestor; they demonstrate that mechanisms controlling stem cell behaviour are based on components which are conserved throughout the animal kingdom.
Collapse
Affiliation(s)
- Konstantin Khalturin
- Zoological Institute, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
177
|
Martinez-Morales JR, Henrich T, Ramialison M, Wittbrodt J, Martinez-Morales JR. New genes in the evolution of the neural crest differentiation program. Genome Biol 2007; 8:R36. [PMID: 17352807 PMCID: PMC1868935 DOI: 10.1186/gb-2007-8-3-r36] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/04/2007] [Accepted: 03/12/2007] [Indexed: 11/30/2022] Open
Abstract
The phylogenetic classification of genes that are ontologically associated with neural crest development reveals that neural crest evolution is associated with the emergence of new signalling peptides. Background Development of the vertebrate head depends on the multipotency and migratory behavior of neural crest derivatives. This cell population is considered a vertebrate innovation and, accordingly, chordate ancestors lacked neural crest counterparts. The identification of neural crest specification genes expressed in the neural plate of basal chordates, in addition to the discovery of pigmented migratory cells in ascidians, has challenged this hypothesis. These new findings revive the debate on what is new and what is ancient in the genetic program that controls neural crest formation. Results To determine the origin of neural crest genes, we analyzed Phenotype Ontology annotations to select genes that control the development of this tissue. Using a sequential blast pipeline, we phylogenetically classified these genes, as well as those associated with other tissues, in order to define tissue-specific profiles of gene emergence. Of neural crest genes, 9% are vertebrate innovations. Our comparative analyses show that, among different tissues, the neural crest exhibits a particularly high rate of gene emergence during vertebrate evolution. A remarkable proportion of the new neural crest genes encode soluble ligands that control neural crest precursor specification into each cell lineage, including pigmented, neural, glial, and skeletal derivatives. Conclusion We propose that the evolution of the neural crest is linked not only to the recruitment of ancestral regulatory genes but also to the emergence of signaling peptides that control the increasingly complex lineage diversification of this plastic cell population.
Collapse
Affiliation(s)
| | - Thorsten Henrich
- Developmental Biology Unit, EMBL, Meyerhofstraße, 69117 Heidelberg, Germany
| | - Mirana Ramialison
- Developmental Biology Unit, EMBL, Meyerhofstraße, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
178
|
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 2007; 7:R64. [PMID: 16867185 PMCID: PMC1779571 DOI: 10.1186/gb-2006-7-7-r64] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 07/24/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. RESULTS Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. CONCLUSION The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POU1, and VAX).
Collapse
Affiliation(s)
- Joseph F Ryan
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - Patrick M Burton
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Maureen E Mazza
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Grace K Kwong
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - James C Mullikin
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - John R Finnerty
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| |
Collapse
|
179
|
Yamada A, Pang K, Martindale MQ, Tochinai S. Surprisingly complex T-box gene complement in diploblastic metazoans. Evol Dev 2007; 9:220-30. [PMID: 17501746 DOI: 10.1111/j.1525-142x.2007.00154.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ctenophores and cnidarians are two metazoan groups that evolved at least 600 Ma, predating the Cambrian explosion. Although both groups are commonly categorized as diploblastic animals without derivatives of the mesodermal germ layer, ctenophores possess definitive contractile "muscle" cells. T-box family transcription factors are an evolutionarily ancient gene family, arising in the common ancestor of metazoans, and have been divided into eight groups in five distinct subfamilies, many of which are involved in the specification of mesodermal as well as ectodermally and endodermally derived structures. Here, we report the cloning and expression of five T-box genes from a ctenophore, Mnemiopsis leidyi. Phylogenetic analyses demonstrated that ctenophores possess members of at least three of the five T-box subfamilies, and expression studies suggested distinct roles of each T-box genes during gastrulation and early organogenesis. Moreover, genome searches of the sea anemone, Nematostella vectensis (anthozoan cnidarian), showed at least 13 T-box genes in Nematostella, which are divided into at least six distinct groups in the same three subfamilies found in ctenophores. Our results from two diploblastic animals indicate that the common ancestor of eumetazoans had a complex set of T-box genes and that two distinct subfamilies might have appeared during triploblastic evolution.
Collapse
Affiliation(s)
- Atsuko Yamada
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Sapporo 060-0810, Japan.
| | | | | | | |
Collapse
|
180
|
Anctil M, Hayward DC, Miller DJ, Ball EE. Sequence and expression of four coral G protein-coupled receptors distinct from all classifiable members of the rhodopsin family. Gene 2007; 392:14-21. [PMID: 17196770 DOI: 10.1016/j.gene.2006.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 11/28/2022]
Abstract
A measure of the functional importance of G protein-coupled receptors (GPCRs) as signalling molecules is that over seven hundred have been cloned and identified in the human genome alone. Yet few have been characterized in the lower metazoan phyla, especially in the phylum Cnidaria which is well positioned phylogenetically for tracing the early evolution of GPCRs owing to their possession of the first-evolved nervous systems. We report here the cloning and characterization of four novel rhodopsin-like GPCR cDNAs from the staghorn coral Acropora millepora that share significant similarity with each other but not with the majority of other members of the rhodopsin alpha subfamily. The deduced proteins lack many of the conserved residues and motifs that form the signature of the different groups of alpha rhodopsin receptors. Maximum likelihood phylogenetic analysis likewise implies that the coral receptors do not have a simple or close relationship with any of the major groups within the alpha rhodopsin subfamily. In situ hybridization revealed transcripts in endodermal cells of planula larvae of all ages and in post-settlement polyps. These GPCRs appear to belong to a alpha rhodopsin-like group unique to corals. Comparisons with other cnidarian GPCRs suggest also that GPCRs diverged early in metazoan evolution.
Collapse
Affiliation(s)
- Michel Anctil
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| | | | | | | |
Collapse
|
181
|
Derelle R, Manuel M. Ancient connection between NKL genes and the mesoderm? Insights from Tlx expression in a ctenophore. Dev Genes Evol 2007; 217:253-61. [PMID: 17285344 DOI: 10.1007/s00427-007-0131-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 01/09/2007] [Indexed: 01/15/2023]
Abstract
In recent years, evo-devo studies on non-bilaterian metazoans have improved our understanding of the early evolution of animal body plans. In particular, works on cnidarians suggested that contrary to classical views, the mesoderm originated far before the emergence of the Bilateria. In this context, a synthesis of genomic and functional data concerning the Antennapedia (Antp) superclass of homeobox genes suggested that early in animal evolution, each of the three germ layers was under the control of one cluster of Antp genes. In particular, the patterning and differentiation of the mesoderm was under the control of the NKL cluster. The ctenophores stand as a key taxon with respect to such issues because unlike other non-bilaterian phyla, their intermediate germ layer satisfies the strict embryological definition of a mesoderm. For that reason, we investigated the only known member of the NKL group in Ctenophora, a gene previously isolated from Pleurobrachia and attributed to the Tlx family. In our analysis of the NKL group, this ctenophore gene branches as the sister-group of bilaterian Tlx genes, but without statistical support. The expression pattern of this gene was revealed by in situ hybridisation in the adult ctenophore. The expression territories of PpiTlx are predominantly ectodermal, in two distinct types of ciliated epidermal cells and in one category of gland cells. We also identified a probable endodermal site of expression. Because we failed to detect any mesodermal expression, the results do not provide support to the hypothesis of an ancient functional association between the NKL group and the mesoderm.
Collapse
Affiliation(s)
- Romain Derelle
- UMR 7138 CNRS UPMC MNHN IRD, Université Pierre et Marie Curie-Paris 6, Case 05, 7 quai St Bernard, 75005 Paris, France
| | | |
Collapse
|
182
|
Proteomic and transcriptional analyses of coral larvae newly engaged in symbiosis with dinoflagellates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:63-73. [DOI: 10.1016/j.cbd.2006.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 11/27/2006] [Accepted: 11/27/2006] [Indexed: 11/24/2022]
|
183
|
Muttray AF, Cox RL, Reinisch CL, Baldwin SA. Identification of DeltaN isoform and polyadenylation site choice variants in molluscan p63/p73-like homologues. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:217-30. [PMID: 17242983 DOI: 10.1007/s10126-006-6045-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 10/05/2006] [Indexed: 05/13/2023]
Abstract
The p53 family of transcription factors has been implicated in many vertebrate cancers. Altered p53 and p73 protein expression observed in leukemic cells of molluscs suggests that these transcription factors might be involved in invertebrate cancers as well. Here, we fully characterize the mRNA of four novel p53-like variants in the bivalve molluscs Mytilus trossulus (bay mussel) and Mytilus edulis (blue mussel). These species, widely used for environmental assessment, develop a hemic neoplasia (leukemia) that is frequently fatal. The correlation between expression of p53 and its close relative p73 and onset of molluscan leukemia was documented previously. We report the sequences of two distinct and novel p63/p73-like mRNAs, amplified by polymerase chain reaction (PCR) from both species. One of the p63/p73-like isoforms contains a 360 nt truncation in the 5' coding region. Based on this truncation and concomitant lack of a transactivation (TA) domain, we designate this variant as a DeltaNp63/p73-like isoform: the first to be reported in an invertebrate species. In mammalian species, DeltaNp73 potently inhibits the tumor-suppressive function of p73 and p53, and its overexpression serves as a robust marker for mammalian cancer. In addition, we report on the occurrence of alternate polyadenylation sites in the molluscan p63/p73: one proximal and one distal site, which differ by 1260 nt. We hypothesize that differential expression of various molluscan p63/p73-like isoforms, controlled in part by polyadenylation site choice variation, may help to interpret the apparently opposing roles of this gene in the development of cancer. Overall, this research further illustrates the utility of the molluscan model for studies involving the molecular mechanisms of oncogenesis in naturally occurring populations. The data presented here require a revisiting of hypotheses regarding evolution of the p53 gene family. Current hypotheses indicate that (1) the protostome gene family does not contain an intronic promoter for DeltaN expression and (2) p53 gene duplication did not occur in protostomes. Our characterization of DeltaN p63/73 in mussel suggests that molluscan p53 gene family members have acquired an intronic promoter or splicing mechanism, either by invention that predates the evolutionary split of deuterostomes from protostomes, or by parallel evolution. Our data also show that Mytilus p53, p63/p73, and DeltaNp63/p73 are identical in their core regions with variation limited to their C- and N-terminals, supporting the notion that alternative splicing, intronic promoter usage, and polyadenylation site choice may lead to expression of distinct isoforms originating from one common gene.
Collapse
Affiliation(s)
- Annette F Muttray
- Laboratory of Aquatic Biomedicine, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
| | | | | | | |
Collapse
|
184
|
Cetkovic H, Mikoc A, Müller WEG, Gamulin V. Ras-like small GTPases form a large family of proteins in the marine sponge Suberites domuncula. J Mol Evol 2007; 64:332-41. [PMID: 17334709 DOI: 10.1007/s00239-006-0081-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 10/16/2006] [Indexed: 02/03/2023]
Abstract
Sponges (Porifera) are the simplest and the most ancient metazoan animals, which branched off first from the common ancestor of all multicellular animals. We have inspected approximately 13,000 partial cDNA sequences (ESTs) from the marine sponge Suberites domuncula and have identified full or partial cDNA sequences coding for approximately 50 different Ras-like small GTPases. Forty-four sponge proteins from the Ras family are described here: 6 proteins from the Ras subfamily, 5 from Rho, 6 from Arf, 1 Ran, and 26 Rabs or Rab-like proteins. No isoforms of these proteins were detected; the closest related proteins are two Rho proteins with 74% identity. Small GTPases from sponge display a higher degree of sequence conservation with orthologues from vertebrates (53%-93% identity) than with those from either Caenorhabditis elegans or Drosophila melanogaster. The real number of small GTPases in this sponge is certainly much higher than 50, because the actual S. domuncula database of approximately 13,000 ESTs contains at most 3000 nonredundant cDNA sequences. The number of genes for Ras-like small GTPases in yeast, C. elegans, D. melanogaster, and humans is 30, 56, 90, and 174, respectively. Both model invertebrates have only 29 Rabs or Rab-like proteins, compared with 26 already found in sponge, and are missing at least 1 Rab (Rab24) present in S. domuncula and mammals. Our results indicate that duplications and diversifications of genes encoding Ras-like small GTPases, especially the Rab subfamily of small GTPases, happened very early in the evolution of Metazoa.
Collapse
Affiliation(s)
- Helena Cetkovic
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka cesta 54, Box 170, 10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
185
|
Suárez-Castillo EC, García-Arrarás JE. Molecular evolution of the ependymin protein family: a necessary update. BMC Evol Biol 2007; 7:23. [PMID: 17302986 PMCID: PMC1805737 DOI: 10.1186/1471-2148-7-23] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 02/15/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Ependymin (Epd), the predominant protein in the cerebrospinal fluid of teleost fishes, was originally associated with neuroplasticity and regeneration. Ependymin-related proteins (Epdrs) have been identified in other vertebrates, including amphibians and mammals. Recently, we reported the identification and characterization of an Epdr in echinoderms, showing that there are ependymin family members in non-vertebrate deuterostomes. We have now explored multiple databases to find Epdrs in different metazoan species. Using these sequences we have performed genome mapping, molecular phylogenetic analyses using Maximum Likelihood and Bayesian methods, and statistical tests of tree topologies, to ascertain the phylogenetic relationship among ependymin proteins. RESULTS Our results demonstrate that ependymin genes are also present in protostomes. In addition, as a result of the putative fish-specific genome duplication event and posterior divergence, the ependymin family can be divided into four groups according to their amino acid composition and branching pattern in the gene tree: 1) a brain-specific group of ependymin sequences that is unique to teleost fishes and encompasses the originally described ependymin; 2) a group expressed in non-brain tissue in fishes; 3) a group expressed in several tissues that appears to be deuterostome-specific, and 4) a group found in invertebrate deuterostomes and protostomes, with a broad pattern of expression and that probably represents the evolutionary origin of the ependymins. Using codon-substitution models to statistically assess the selective pressures acting over the ependymin protein family, we found evidence of episodic positive Darwinian selection and relaxed selective constraints in each one of the postduplication branches of the gene tree. However, purifying selection (with among-site variability) appears to be the main influence on the evolution of each subgroup within the family. Functional divergence among the ependymin paralog groups is well supported and several amino acid positions are predicted to be critical for this divergence. CONCLUSION Ependymin proteins are present in vertebrates, invertebrate deuterostomes, and protostomes. Overall, our analyses suggest that the ependymin protein family is a suitable target to experimentally test subfunctionalization in gene copies that originated after gene or genome duplication events.
Collapse
Affiliation(s)
- Edna C Suárez-Castillo
- Department of Biology, University of Puerto Rico, Río Piedras Campus, 00931, Puerto Rico
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras Campus, 00931, Puerto Rico
| |
Collapse
|
186
|
Kamm K, Schierwater B. Ancient complexity of the non-Hox ANTP gene complement in the anthozoan Nematostella vectensis: implications for the evolution of the ANTP superclass. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 306:589-96. [PMID: 16838293 DOI: 10.1002/jez.b.21123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The origin and evolution of ANTP superclass genes has raised controversial discussions. While recent evidence suggests that a true Hox cluster emerged after the cnidarian bilaterian split, the origin of the ANTP superclass as a whole remains unclear. Based on analyses of bilaterian genomes, it seems very likely that clustering has once been a characteristic of all ANTP homeobox genes and that their ancestors have emerged through several series of cis-duplications from the same genomic region. Since the diploblastic Cnidaria possess orthologs of some non-Hox ANTP genes, at least some steps of the expansion of this hypothetical homeobox gene array must have occurred in the last common ancestor of both lineages--but it is unknown to what extent. By screening the unassembled Nematostella genome, we have identified unambiguous orthologs to almost all non-Hox ANTP genes which are present in Bilateria--with the exception of En, Tlx and (possibly) Vax. Furthermore, Nematostella possesses ANTP genes that are missing in some bilaterian lineages, like the rough gene or NK7. In addition, several ANTP homeobox gene families have been independently duplicated in Nematostella. We conclude that the last cnidarian/bilaterian ancestor already harboured the almost full complement of non-Hox ANTP genes before the Hox system evolved.
Collapse
Affiliation(s)
- Kai Kamm
- ITZ, Ecology and Evolution, TiHo Hannover, Hannover, Germany
| | | |
Collapse
|
187
|
Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2007; 2:e153. [PMID: 17252055 PMCID: PMC1779807 DOI: 10.1371/journal.pone.0000153] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/30/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no "true" Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in "dorsoventral" patterning. CONCLUSIONS/SIGNIFICANCE A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today.
Collapse
Affiliation(s)
- Joseph F. Ryan
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maureen E. Mazza
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - David Q. Matus
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - John R. Finnerty
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
188
|
Merle PL, Sabourault C, Richier S, Allemand D, Furla P. Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radic Biol Med 2007; 42:236-46. [PMID: 17189829 DOI: 10.1016/j.freeradbiomed.2006.10.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 09/25/2006] [Accepted: 10/10/2006] [Indexed: 11/16/2022]
Abstract
Symbiotic cnidarians are marine invertebrates harboring photosynthesizing microalgae (named zooxanthellae), which produce great amounts of oxygen and free radicals upon illumination. Studying antioxidative balance is then crucial to understanding how symbiotic cnidarians cope with ROS production. In particular, it is suspected that oxidative stress triggers cnidarian bleaching, i.e., the expulsion of zooxanthellae from the animal host, responsible for symbiotic cnidarian mass mortality worldwide. This study therefore investigates catalase antioxidant enzymes and their role in bleaching of the temperate symbiotic sea anemone Anemonia viridis. Using specific separation of animal tissues (ectoderm and endoderm) from the symbionts (zooxanthellae), spectrophotometric assays and native PAGE revealed both tissue-specific and activity pattern distribution of two catalase electrophoretypes, E1 and E2. E1, expressed in all three tissues, presents high sensitivity to the catalase inhibitor aminotriazole (ATZ) and elevated temperatures. The ectodermal E1 form is responsible for 67% of total catalase activity. The E2 form, expressed only within zooxanthellae and their host endodermal cells, displays low sensitivity to ATZ and relative thermostability. We further cloned an ectodermal catalase, which shares 68% identity with mammalian monofunctional catalases. Last, 6 days of exposure of whole sea anemones to ATZ (0.5 mM) led to effective catalase inhibition and initiated symbiont expulsion. This demonstrates the crucial role of this enzyme in cnidarian bleaching, a phenomenon responsible for worldwide climate-change-induced mass mortalities, with catastrophic consequences for marine biodiversity.
Collapse
Affiliation(s)
- Pierre-Laurent Merle
- UMR-1112 UNSA-INRA ROSE, Nice-Sophia Antipolis University, Parc Valrose, BP 71, F-06108 Nice Cedex 02, France.
| | | | | | | | | |
Collapse
|
189
|
Sullivan JC, Kalaitzidis D, Gilmore TD, Finnerty JR. Rel homology domain-containing transcription factors in the cnidarian Nematostella vectensis. Dev Genes Evol 2007; 217:63-72. [PMID: 17120026 DOI: 10.1007/s00427-006-0111-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
The Rel/NF-kappaB and NFAT families of transcription factors are related through an N-terminal DNA-binding domain called the Rel Homology domain (RHD). Neither the RHD nor the NF-kappaB pathway has been identified in a basal (i.e., nonbilaterian) animal phylum. Using genomic and cDNA databases, we have identified two RHD domain-containing proteins from the cnidarian Nematostella vectensis: an NF-kappaB-like protein (Nv-NF-kappaB) and an NFAT-like protein (Nv-NFAT). The gene structure and RHD predicted amino acid sequence of Nv-nfkb are similar to those of the vertebrate NF-kappaB p50/p52 proteins, whereas the sequence of Nv-NFAT allows only ambiguous assignment to the NFAT family. Nv-NF-kappaB lacks the C-terminal IkappaB-like sequences present in all other NF-kappaB proteins. There are, however, two IkappaB-like genes in Nematostella encoded by loci distinct from Nv-nfkb. The separate nfkb and ikb genes of Nematostella may reflect the ancestral metazoan condition, suggesting that a gene fusion event created the nfkb genes in Drosophila and vertebrates. Nematostella also has genes that encode upstream and downstream components of the vertebrate NF-kappaB signaling pathway. Upstream components include Toll- and tumor necrosis-like receptors and ligands, adaptor proteins (Trafs, Myd88), caspases, and a TBK-like kinase. Downstream components include the NF-kappaB coactivator protein Bcl-3 and several NF-kappaB target genes. These results demonstrate that RHD-containing transcription factors and associated pathways are evolutionarily more ancient than previously known. Moreover, they suggest models for the evolutionary diversification of the insect and vertebrate Rel/NF-kappaB/IkappaB and NFAT gene families and suggest that cnidarians possess an NF-kappaB-regulated developmental or stress response pathway.
Collapse
Affiliation(s)
- James C Sullivan
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
190
|
Prochnik SE, Rokhsar DS, Aboobaker AA. Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 2007; 217:73-7. [PMID: 17103184 DOI: 10.1007/s00427-006-0116-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/02/2006] [Indexed: 12/18/2022]
Abstract
Understanding how animal complexity has arisen and identifying the key genetic components of this process is a central goal of evolutionary developmental biology. The discovery of microRNAs (miRNAs) as key regulators of development has identified a new set of candidates for this role. microRNAs are small noncoding RNAs that regulate tissue-specific or temporal gene expression through base pairing with target mRNAs. The full extent of the evolutionary distribution of miRNAs is being revealed as more genomes are scrutinized. To explore the evolutionary origins of metazoan miRNAs, we searched the genomes of diverse animals occupying key phylogenetic positions for homologs of experimentally verified human, fly, and worm miRNAs. We identify 30 miRNAs conserved across bilaterians, almost double the previous estimate. We hypothesize that this larger than previously realized core set of miRNAs was already present in the ancestor of all Bilateria and likely had key roles in allowing the evolution of diverse specialist cell types, tissues, and complex morphology. In agreement with this hypothesis, we found only three, conserved miRNA families in the genome of the sea anemone Nematostella vectensis and no convincing family members in the genome of the demosponge Reniera sp. The dramatic expansion of the miRNA repertoire in bilaterians relative to sponges and cnidarians suggests that increased miRNA-mediated gene regulation accompanied the emergence of triploblastic organ-containing body plans.
Collapse
Affiliation(s)
- Simon E Prochnik
- DOE Joint Genome Institute, 2800 Mitchell Avenue, Walnut Creek, CA 94598, USA
| | | | | |
Collapse
|
191
|
Bosch TCG. Symmetry breaking in stem cells of the basal metazoan Hydra. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:61-78. [PMID: 17585496 DOI: 10.1007/978-3-540-69161-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the earliest diverging animal phyla are the Cnidaria. Cnidaria were not only first in evolution having a tissue layer construction and a nervous system but also have cells of remarkable plasticity in their differentiation capacity. How a cell chooses to proliferate or to differentiate is an important issue in stem cell biology and as critical to human stem cells as it is to any other stem cell. Here I revise the key properties of stem cells in the freshwater polyp Hydra with special emphasis on the nature of signals that control the growth and differentiation of these cells.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
192
|
Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A, Knudsen B, Sahni A, Yu F, Liu L, Jezzini S, Lovell P, Iannucculli W, Chen M, Nguyen T, Sheng H, Shaw R, Kalachikov S, Panchin YV, Farmerie W, Russo JJ, Ju J, Kandel ER. Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell 2006; 127:1453-67. [PMID: 17190607 PMCID: PMC4024467 DOI: 10.1016/j.cell.2006.09.052] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/12/2006] [Accepted: 09/25/2006] [Indexed: 02/05/2023]
Abstract
Molecular analyses of Aplysia, a well-established model organism for cellular and systems neural science, have been seriously handicapped by a lack of adequate genomic information. By sequencing cDNA libraries from the central nervous system (CNS), we have identified over 175,000 expressed sequence tags (ESTs), of which 19,814 are unique neuronal gene products and represent 50%-70% of the total Aplysia neuronal transcriptome. We have characterized the transcriptome at three levels: (1) the central nervous system, (2) the elementary components of a simple behavior: the gill-withdrawal reflex-by analyzing sensory, motor, and serotonergic modulatory neurons, and (3) processes of individual neurons. In addition to increasing the amount of available gene sequences of Aplysia by two orders of magnitude, this collection represents the largest database available for any member of the Lophotrochozoa and therefore provides additional insights into evolutionary strategies used by this highly successful diversified lineage, one of the three proposed superclades of bilateral animals.
Collapse
Affiliation(s)
- Leonid L. Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Department of Neuroscience and McKnight Brain Institute, 100 S. Newell Drive, Building 59, University of Florida, Gainesville, FL 32611, USA
| | - John R. Edwards
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Sathyanarayanan V. Puthanveettil
- Center for Neurobiology & Behavior and New York State Psychiatric Institute, Columbia University, 1051 Riverside Drive, Columbia University, New York, NY 10032, USA
| | - Andrea B. Kohn
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| | - Thomas Ha
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Department of Neuroscience and McKnight Brain Institute, 100 S. Newell Drive, Building 59, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Heyland
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| | - Bjarne Knudsen
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| | - Anuj Sahni
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| | - Fahong Yu
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Li Liu
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sami Jezzini
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Department of Neuroscience and McKnight Brain Institute, 100 S. Newell Drive, Building 59, University of Florida, Gainesville, FL 32611, USA
| | - Peter Lovell
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| | - William Iannucculli
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Minchen Chen
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Tuan Nguyen
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Huitao Sheng
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Regina Shaw
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sergey Kalachikov
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Yuri V. Panchin
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| | - William Farmerie
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - James J. Russo
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Jingyue Ju
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
- Department of Chemical Engineering, Columbia University, 500 West 120 Street, New York, NY 10027, USA
| | - Eric R. Kandel
- Center for Neurobiology & Behavior and New York State Psychiatric Institute, Columbia University, 1051 Riverside Drive, Columbia University, New York, NY 10032, USA
- Howard Hughes Medical Institute, 1051 Riverside Drive, Columbia University, New York, NY 10032, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
193
|
Caveney S, Cladman W, Verellen L, Donly C. Ancestry of neuronal monoamine transporters in the Metazoa. J Exp Biol 2006; 209:4858-68. [PMID: 17142674 DOI: 10.1242/jeb.02607] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSelective Na+-dependent re-uptake of biogenic monoamines at mammalian nerve synapses is accomplished by three types of solute-linked carrier family 6 (SLC6) membrane transporter with high affinity for serotonin(SERTs), dopamine (DATs) and norepinephrine (NETs). An additional SLC6 monoamine transporter (OAT), is responsible for the selective uptake of the phenolamines octopamine and tyramine by insect neurons. We have characterized a similar high-affinity phenoloamine transporter expressed in the CNS of the earthworm Lumbricus terrestris. Phylogenetic analysis of its protein sequence clusters it with both arthropod phenolamine and chordate catecholamine transporters. To clarify the relationships among metazoan monoamine transporters we identified representatives in the major branches of metazoan evolution by polymerase chain reaction (PCR)-amplifying conserved cDNA fragments from isolated nervous tissue and by analyzing available genomic data. Analysis of conserved motifs in the sequence data suggest that the presumed common ancestor of modern-day Bilateria expressed at least three functionally distinct monoamine transporters in its nervous system: a SERT currently found throughout bilaterian phyla, a DAT now restricted in distribution to protostome invertebrates and echinoderms and a third monoamine transporter (MAT), widely represented in contemporary Bilateria, that is selective for catecholamines and/or phenolamines. Chordate DATs, NETs,epinephrine transporters (ETs) and arthropod and annelid OATs all belong to the MAT clade. Contemporary invertebrate and chordate DATs belong to different SLC6 clades. Furthermore, the genes for dopamine and norepinephrine transporters of vertebrates are paralogous, apparently having arisen through duplication of an invertebrate MAT gene after the loss of an invertebrate-type DAT gene in a basal protochordate.
Collapse
Affiliation(s)
- Stanley Caveney
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7.
| | | | | | | |
Collapse
|
194
|
Bosch TCG. Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 2006; 303:421-33. [PMID: 17234176 DOI: 10.1016/j.ydbio.2006.12.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 11/27/2022]
Abstract
The basis for Hydra's enormous regeneration capacity is the "stem cellness" of its epithelium which continuously undergoes self-renewing mitotic divisions and also has the option to follow differentiation pathways. Now, emerging molecular tools have shed light on the molecular processes controlling these pathways. In this review I discuss how the modular tissue architecture may allow continuous replacement of cells in Hydra. I also describe the discovery and regulation of factors controlling the transition from self-renewing epithelial stem cells to differentiated cells.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
195
|
Abstract
Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
196
|
Philippe H, Telford MJ. Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 2006; 21:614-20. [PMID: 16919363 DOI: 10.1016/j.tree.2006.08.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 07/06/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022]
Abstract
Although comparisons of gene sequences have revolutionised our understanding of the animal phylogenetic tree, it has become clear that, to avoid errors in tree reconstruction, a large number of genes from many species must be considered: too few genes and stochastic errors predominate, too few taxa and systematic errors appear. We argue here that, to gather many sequences from many taxa, the best use of resources is to sequence a small number of expressed sequence tags (1000-5000 per species) from as many taxa as possible. This approach counters both sources of error, gives the best hope of a well-resolved phylogeny of the animals and will act as a central resource for a carefully targeted genome sequencing programme.
Collapse
Affiliation(s)
- Hervé Philippe
- Canadian Institute for Advanced Research, Centre Robert-Cedergren, Département de Biochimie, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.
| | | |
Collapse
|
197
|
Chevalier S, Martin A, Leclère L, Amiel A, Houliston E. Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica. Dev Genes Evol 2006; 216:709-20. [PMID: 17021866 DOI: 10.1007/s00427-006-0103-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/05/2006] [Indexed: 01/30/2023]
Abstract
We have characterised the expression of four genes coding for Forkhead box-containing ('Fox') transcription factors identified from the hydrozoan (Leptomedusa) Clytia hemisphaerica. Phylogenetic analyses including all available non-bilaterian Fox sequences placed these genes in subfamilies B, Q2 (two genes) and O, and indicated that at least 17 Fox subfamilies were present in the common cnidarian/bilaterian ancestor, with multiple subsequent losses in cnidarian lineages. Chordate FoxB and FoxQ2A subfamily genes show polarised expression in early embryos. Correspondingly, Clytia CheFoxB expression was localised around the gastrulation site (future oral pole) at blastula and gastrula stages, with CheFoxQ2a expressed in a complementary aboral domain, maintained through larval development. Distinct later expression domains were observed for CheFoxB in the larval endoderm region, and in the statocyst, gonad and tentacle bulb of the medusa. A second Clytia FoxQ2 gene, CheFoxQ2b, not expressed in the embryo, larva or polyp, was detected uniquely in the gonads of the medusa. In contrast, CheFoxO, whose sequence indicates regulation by the PI3-Kinase/PKB signalling pathway consistent with known roles in bilaterian developmental regulation, was detected throughout the Clytia life cycle. CheFoxO expression was enhanced in regions associated with growth control including larval poles, gonad and the margin of the medusa bell. These results support the idea that an early embryonic patterning system involving FoxB and FoxQ2 family genes has been evolutionary conserved and indicate that Fox family genes have also acquired distinct roles during other phases of the hydrozoan life cycle.
Collapse
Affiliation(s)
- Sandra Chevalier
- "Biologie du Développement", Observatoire Océanologique, UMR7009 CNRS/Université Pierre et Marie Curie (Paris VI), 06230, Villefranche-sur-mer, France
| | | | | | | | | |
Collapse
|
198
|
Marlétaz F, Martin E, Perez Y, Papillon D, Caubit X, Lowe CJ, Freeman B, Fasano L, Dossat C, Wincker P, Weissenbach J, Le Parco Y. Chaetognath phylogenomics: a protostome with deuterostome-like development. Curr Biol 2006; 16:R577-8. [PMID: 16890510 DOI: 10.1016/j.cub.2006.07.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
199
|
Materna SC, Berney K, Cameron RA. The S. purpuratus genome: a comparative perspective. Dev Biol 2006; 300:485-95. [PMID: 17056028 DOI: 10.1016/j.ydbio.2006.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/15/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
The predicted gene models derived from the sea urchin genome were compared to the gene catalogs derived from other completed genomes. The models were categorized by their best match to conserved protein domains. Identification of potential orthologs and assignment of sea urchin gene models to groups of homologous genes was accomplished by BLAST alignment and through the use of a clustering algorithm. For the first time, an overview of the sea urchin genetic toolkit emerges and by extension a more precise view of the features shared among the gene catalogs that characterize the super-clades of animals: metazoans, bilaterians, chordate and non-chordate deuterostomes, ecdysozoan and lophotrochozoan protostomes. About one third of the 40 most prevalent domains in the sea urchin gene models are not as abundant in the other genomes and thus constitute expansions that are specific at least to sea urchins if not to all echinoderms. A number of homologous groups of genes previously restricted to vertebrates have sea urchin representatives thus expanding the deuterostome complement. Obversely, the absence of representatives in the sea urchin confirms a number of chordate specific inventions. The specific complement of genes in the sea urchin genome results largely from minor expansions and contractions of existing families already found in the common metazoan "toolkit" of genes. However, several striking expansions shed light on how the sea urchin lives and develops.
Collapse
Affiliation(s)
- Stefan C Materna
- Division of Biology, m/c 139-74, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | | | | |
Collapse
|
200
|
Richier S, Sabourault C, Courtiade J, Zucchini N, Allemand D, Furla P. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 2006; 273:4186-98. [PMID: 16907933 DOI: 10.1111/j.1742-4658.2006.05414.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching.
Collapse
Affiliation(s)
- Sophie Richier
- UMR 1112 UNSA-INRA ROSE, Nice-Sophia Antipolis University, Nice, France
| | | | | | | | | | | |
Collapse
|