151
|
Abstract
Sleep is an important physiological state, but its function and regulation remain elusive. In Drosophila melanogaster, a useful model organism for studying sleep, forward genetic screens have identified important sleep-modulating genes and pathways; however, the results of such screens may be limited by developmental abnormalities or lethality associated with mutation of certain genes. To circumvent these limitations, we used a small-molecule screen to identify sleep-modulating genes and pathways. We administered 1280 pharmacologically active small molecules to adult flies and monitored their sleep. We found that administration of reserpine, a small-molecule inhibitor of the vesicular monoamine transporter (VMAT) that repackages monoamines into presynaptic vesicles, resulted in an increase in sleep. Supporting the idea that VMAT is the sleep-relevant target of reserpine, we found that VMAT-null mutants have an increased sleep phenotype, as well as an increased arousal threshold and resistance to the effects of reserpine. However, although the VMAT mutants are consistently resistant to reserpine, other aspects of their sleep phenotype are dependent on genetic background. These findings indicate that small-molecule screens can be used effectively to identify sleep-modulating genes whose phenotypes may be suppressed in traditional genetic screens. Mutations affecting single monoamine pathways did not affect reserpine sensitivity, suggesting that effects of VMAT/reserpine on sleep are mediated by multiple monoamines. Overall, we identify VMAT as an important regulator of sleep in Drosophila and demonstrate that small-molecule screens provide an effective approach to identify genes and pathways that impact adult Drosophila behavior.
Collapse
|
152
|
The membrane raft protein Flotillin-1 is essential in dopamine neurons for amphetamine-induced behavior in Drosophila. Mol Psychiatry 2013; 18:824-33. [PMID: 22710269 PMCID: PMC3582826 DOI: 10.1038/mp.2012.82] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dopamine transporter (DAT) is the primary molecular target responsible for the rewarding properties of the psychostimulants amphetamine (AMPH) and cocaine. AMPH increases extracellular dopamine (DA) by promoting its nonexocytotic release via DAT-mediated efflux. Previous studies in heterologous cells have shown that phosphorylation of the amino terminus of DAT is required for AMPH-induced DA efflux but not for DA uptake. However, the identity of many of the modulatory proteins and the molecular mechanisms that coordinate efflux and the ensuing behavioral effects remain poorly defined. Here, we establish a robust assay for AMPH-induced hyperlocomotion in Drosophila melanogaster larvae. Using a variety of genetic and pharmacological approaches, we demonstrate that this behavioral response is dependent on DA and on DAT and its phosphorylation. We also show that methylphenidate (MPH), which competitively inhibits DA uptake but does not induce DAT-mediated DA efflux, also leads to DAT-dependent hyperlocomotion, but this response is independent of DAT phosphorylation. Moreover, we demonstrate that the membrane raft protein Flotillin-1 is required for AMPH-induced, but not MPH-induced, hyperlocomotion. These results are the first evidence of a role for a raft protein in an AMPH-mediated behavior. Thus, using our assay we are able to translate molecular and cellular findings to a behavioral level and to differentiate in vivo the distinct mechanisms of two psychostimulants.
Collapse
|
153
|
Freeman AAH, Syed S, Sanyal S. Modeling the genetic basis for human sleep disorders in Drosophila. Commun Integr Biol 2013; 6:e22733. [PMID: 23802043 PMCID: PMC3689575 DOI: 10.4161/cib.22733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 01/04/2023] Open
Abstract
Sleep research in Drosophila is not only here to stay, but is making impressive strides towards helping us understand the biological basis for and the purpose of sleep—perhaps one of the most complex and enigmatic of behaviors. Thanks to over a decade of sleep-related studies in flies, more molecular methods are being applied than ever before towards understanding the genetic basis of sleep disorders. The advent of high-throughput technologies that can rapidly interrogate whole genomes, epigenomes and proteomes, has also revolutionized our ability to detect genetic variants that might be causal for a number of sleep disorders. In the coming years, mutational studies in model organisms such as Drosophila will need to be functionally connected to information being generated from these whole-genome approaches in humans. This will necessitate the development of appropriate methods for interpolating data and increased analytical power to synthesize useful network(s) of sleep regulatory pathways—including appropriate discriminatory and predictive capabilities. Ultimately, such networks will also need to be interpreted in the context of fundamental neurobiological substrates for sleep in any given species. In this review, we highlight some emerging approaches, such as network analysis and mathematical modeling of sleep distributions, which can be applied to contemporary sleep research as a first step to achieving these aims. These methodologies should favorably impact not only a mechanistic understanding of sleep, but also future pharmacological intervention strategies to manage and treat sleep disorders in humans.
Collapse
Affiliation(s)
- Amanda A H Freeman
- Departments of Cell Biology and Neurology; Emory University School of Medicine; Atlanta, GA USA
| | | | | |
Collapse
|
154
|
Griffith LC. Neuromodulatory control of sleep in Drosophila melanogaster: integration of competing and complementary behaviors. Curr Opin Neurobiol 2013; 23:819-23. [PMID: 23743247 DOI: 10.1016/j.conb.2013.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
The transition between wake and sleep states is characterized by rapid and generalized changes in both sensory and motor processing. Sleep is antagonistic to the expression of important behaviors, like feeding, reproduction and learning whose relative importance to an individual will depend on its circumstances at that moment. An understanding of how the decision to sleep is affected by these other drives and how this process is coordinated across the entire brain remains elusive. Neuromodulation is an important regulatory feature of many behavioral circuits and the reconfiguring of these circuits by modulators can have both long-term and short-term consequences. Drosophila melanogaster has become an important model system for understanding the molecular and genetic bases of behaviors and in recent years neuromodulatory systems have been shown to play a major role in regulation of sleep and other behaviors in this organism. The fly, with its increasingly well-defined behavioral circuitry and powerful genetic tools, is a system poised to provide new insight into the complex issue of how neuromodulation can coordinate situation-specific behavioral needs with the brain's arousal state.
Collapse
Affiliation(s)
- Leslie C Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, MS008, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
155
|
Potdar S, Sheeba V. Lessons From Sleeping Flies: Insights fromDrosophila melanogasteron the Neuronal Circuitry and Importance of Sleep. J Neurogenet 2013; 27:23-42. [DOI: 10.3109/01677063.2013.791692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
156
|
Harbison ST, McCoy LJ, Mackay TFC. Genome-wide association study of sleep in Drosophila melanogaster. BMC Genomics 2013; 14:281. [PMID: 23617951 PMCID: PMC3644253 DOI: 10.1186/1471-2164-14-281] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/22/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sleep is a highly conserved behavior, yet its duration and pattern vary extensively among species and between individuals within species. The genetic basis of natural variation in sleep remains unknown. RESULTS We used the Drosophila Genetic Reference Panel (DGRP) to perform a genome-wide association (GWA) study of sleep in D. melanogaster. We identified candidate single nucleotide polymorphisms (SNPs) associated with differences in the mean as well as the environmental sensitivity of sleep traits; these SNPs typically had sex-specific or sex-biased effects, and were generally located in non-coding regions. The majority of SNPs (80.3%) affecting sleep were at low frequency and had moderately large effects. Additive models incorporating multiple SNPs explained as much as 55% of the genetic variance for sleep in males and females. Many of these loci are known to interact physically and/or genetically, enabling us to place them in candidate genetic networks. We confirmed the role of seven novel loci on sleep using insertional mutagenesis and RNA interference. CONCLUSIONS We identified many SNPs in novel loci that are potentially associated with natural variation in sleep, as well as SNPs within genes previously known to affect Drosophila sleep. Several of the candidate genes have human homologues that were identified in studies of human sleep, suggesting that genes affecting variation in sleep are conserved across species. Our discovery of genetic variants that influence environmental sensitivity to sleep may have a wider application to all GWA studies, because individuals with highly plastic genotypes will not have consistent phenotypes.
Collapse
Affiliation(s)
- Susan T Harbison
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Present address: Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr. MSC 1654, Building 10, Room 7D13, Bethesda, MD, 20892, USA
| | - Lenovia J McCoy
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Trudy FC Mackay
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| |
Collapse
|
157
|
Thimgan MS, Gottschalk L, Toedebusch C, McLeland J, Rechtschaffen A, Gilliland-Roberts M, Duntley SP, Shaw PJ. Cross-translational studies in human and Drosophila identify markers of sleep loss. PLoS One 2013; 8:e61016. [PMID: 23637783 PMCID: PMC3634862 DOI: 10.1371/journal.pone.0061016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/05/2013] [Indexed: 01/20/2023] Open
Abstract
Inadequate sleep has become endemic, which imposes a substantial burden for public health and safety. At present, there are no objective tests to determine if an individual has gone without sleep for an extended period of time. Here we describe a novel approach that takes advantage of the evolutionary conservation of sleep to identify markers of sleep loss. To begin, we demonstrate that IL-6 is increased in rats following chronic total sleep deprivation and in humans following 30 h of waking. Discovery experiments were then conducted on saliva taken from sleep-deprived human subjects to identify candidate markers. Given the relationship between sleep and immunity, we used Human Inflammation Low Density Arrays to screen saliva for novel markers of sleep deprivation. Integrin αM (ITGAM) and Anaxin A3 (AnxA3) were significantly elevated following 30 h of sleep loss. To confirm these results, we used QPCR to evaluate ITGAM and AnxA3 in independent samples collected after 24 h of waking; both transcripts were increased. The behavior of these markers was then evaluated further using the power of Drosophila genetics as a cost-effective means to determine whether the marker is associated with vulnerability to sleep loss or other confounding factors (e.g., stress). Transcript profiling in flies indicated that the Drosophila homologues of ITGAM were not predictive of sleep loss. Thus, we examined transcript levels of additional members of the integrin family in flies. Only transcript levels of scab, the Drosophila homologue of Integrin α5 (ITGA5), were associated with vulnerability to extended waking. Since ITGA5 was not included on the Low Density Array, we returned to human samples and found that ITGA5 transcript levels were increased following sleep deprivation. These cross-translational data indicate that fly and human discovery experiments are mutually reinforcing and can be used interchangeably to identify candidate biomarkers of sleep loss.
Collapse
Affiliation(s)
- Matthew S. Thimgan
- Department of Anatomy and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura Gottschalk
- Department of Anatomy and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cristina Toedebusch
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer McLeland
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Allan Rechtschaffen
- Department of Psychiatry, University of Chicago, Chicago, Illinois, United States of America
| | | | - Stephen P. Duntley
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Shaw
- Department of Anatomy and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
158
|
Robertson M, Keene AC. Molecular mechanisms of age-related sleep loss in the fruit fly - a mini-review. Gerontology 2013; 59:334-9. [PMID: 23594925 DOI: 10.1159/000348576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
Across phyla, aging is associated with reduced sleep duration and efficiency. Both aging and sleep involve complex genetic architecture and diverse cell types and are heavily influenced by diet and environment. Therefore, understanding the molecular mechanisms of age-dependent changes in sleep will require integrative approaches that go beyond examining these two processes independently. The fruit fly, Drosophila melanogaster, provides a genetically amenable system for dissecting the molecular basis of these processes. In this review, we examine the role of metabolism and circadian rhythms in age-dependent sleep loss.
Collapse
Affiliation(s)
- Meagan Robertson
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
159
|
Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila. J Neurosci 2013; 33:2166-76a. [PMID: 23365252 DOI: 10.1523/jneurosci.3933-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.
Collapse
|
160
|
Mineault PJ, Zanos TP, Pack CC. Local field potentials reflect multiple spatial scales in V4. Front Comput Neurosci 2013; 7:21. [PMID: 23533106 PMCID: PMC3607798 DOI: 10.3389/fncom.2013.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/18/2013] [Indexed: 11/20/2022] Open
Abstract
Local field potentials (LFP) reflect the properties of neuronal circuits or columns recorded in a volume around a microelectrode (Buzsáki et al., 2012). The extent of this integration volume has been a subject of some debate, with estimates ranging from a few hundred microns (Katzner et al., 2009; Xing et al., 2009) to several millimeters (Kreiman et al., 2006). We estimated receptive fields (RFs) of multi-unit activity (MUA) and LFPs at an intermediate level of visual processing, in area V4 of two macaques. The spatial structure of LFP receptive fields varied greatly as a function of time lag following stimulus onset, with the retinotopy of LFPs matching that of MUAs at a restricted set of time lags. A model-based analysis of the LFPs allowed us to recover two distinct stimulus-triggered components: an MUA-like retinotopic component that originated in a small volume around the microelectrodes (~350 μm), and a second component that was shared across the entire V4 region; this second component had tuning properties unrelated to those of the MUAs. Our results suggest that the LFP reflects neural activity across multiple spatial scales, which both complicates its interpretation and offers new opportunities for investigating the large-scale structure of network processing.
Collapse
Affiliation(s)
- Patrick J Mineault
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | | | | |
Collapse
|
161
|
Abstract
Monoamines, including dopamine (DA), have been linked to aggression in various species. However, the precise role or roles served by the amine in aggression have been difficult to define because dopaminergic systems influence many behaviors, and all can be altered by changing the function of dopaminergic neurons. In the fruit fly, with the powerful genetic tools available, small subsets of brain cells can be reliably manipulated, offering enormous advantages for exploration of how and where amine neurons fit into the circuits involved with aggression. By combining the GAL4/upstream activating sequence (UAS) binary system with the Flippase (FLP) recombination technique, we were able to restrict the numbers of targeted DA neurons down to a single-cell level. To explore the function of these individual dopaminergic neurons, we inactivated them with the tetanus toxin light chain, a genetically encoded inhibitor of neurotransmitter release, or activated them with dTrpA1, a temperature-sensitive cation channel. We found two sets of dopaminergic neurons that modulate aggression, one from the T1 cluster and another from the PPM3 cluster. Both activation and inactivation of these neurons resulted in an increase in aggression. We demonstrate that the presynaptic terminals of the identified T1 and PPM3 dopaminergic neurons project to different parts of the central complex, overlapping with the receptor fields of DD2R and DopR DA receptor subtypes, respectively. These data suggest that the two types of dopaminergic neurons may influence aggression through interactions in the central complex region of the brain involving two different DA receptor subtypes.
Collapse
|
162
|
van Alphen B, van Swinderen B. Drosophila strategies to study psychiatric disorders. Brain Res Bull 2013; 92:1-11. [DOI: 10.1016/j.brainresbull.2011.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/03/2023]
|
163
|
Giurfa M. Cognition with few neurons: higher-order learning in insects. Trends Neurosci 2013; 36:285-94. [PMID: 23375772 DOI: 10.1016/j.tins.2012.12.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 11/25/2022]
Abstract
Insects possess miniature brains but exhibit a sophisticated behavioral repertoire. Recent studies have reported the existence of unsuspected cognitive capabilities in various insect species that go beyond the traditionally studied framework of simple associative learning. Here, I focus on capabilities such as attentional modulation and concept learning and discuss their mechanistic bases. I analyze whether these behaviors, which appear particularly complex, can be explained on the basis of elemental associative learning and specific neural circuitries or, by contrast, require an explanatory level that goes beyond simple associative links. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering the basic neural architectures underlying cognitive processing.
Collapse
Affiliation(s)
- Martin Giurfa
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse cedex 9, France.
| |
Collapse
|
164
|
Digiusto E, Rawstorne P. Is it really crystal clear that using methamphetamine (or other recreational drugs) causes people to engage in unsafe sex? Sex Health 2013; 10:133-7. [DOI: 10.1071/sh12053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/11/2012] [Indexed: 11/23/2022]
Abstract
Many studies have found associations between unsafe sexual behaviour and use of crystal methamphetamine (and many other recreational drugs). Researchers and authors of relevant articles in popular media have often interpreted these associations as meaning that using ‘crystal’ directly causes people to engage in unsafe sex, and that interventions should aim to reduce crystal use in order to reduce the prevalence of sexually transmissible infections such as HIV. There is consistent evidence that crystal users are a high-risk group in terms of sexual behaviour. However, most relevant studies have provided only circumstantial evidence regarding a causal relationship. Promoting the idea that a particular recreational drug is a major direct cause of unsafe sex may have the unintended adverse effect of creating an excuse for engaging in unsafe sex, thereby increasing its use, and may incur opportunity costs by preventing limited available health promotion resources from being directed more usefully. This paper examines the limitations, in terms of demonstrating causality, of various types of study that have been published on this topic in relation to crystal use in particular. Researchers who investigate relationships between recreational drug use and behaviour, including sexual behaviour, should be careful about the wording of their conclusions and recommendations, and should consider the possibly counterproductive ways in which their findings might be represented in the media.
Collapse
|
165
|
Calcagno B, Eyles D, van Alphen B, van Swinderen B. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia. Transl Psychiatry 2013; 3:e206. [PMID: 23299394 PMCID: PMC3567203 DOI: 10.1038/tp.2012.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.
Collapse
Affiliation(s)
- B Calcagno
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - D Eyles
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Centre for Mental Health Research, The University of Queensland, Wacol, QLD, Australia
| | - B van Alphen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - B van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Brain Institute, The University of Queensland, Upland Road, St. Lucia, QLD, Australia. E-mail:
| |
Collapse
|
166
|
General Stress Responses in the Honey Bee. INSECTS 2012; 3:1271-98. [PMID: 26466739 PMCID: PMC4553576 DOI: 10.3390/insects3041271] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 11/25/2022]
Abstract
The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA) axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine), neuropeptides (allatostatin, corazonin) and metabolic hormones (adipokinetic hormone, diuretic hormone). Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop). We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.
Collapse
|
167
|
Liu Q, Liu S, Kodama L, Driscoll MR, Wu MN. Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol 2012; 22:2114-23. [PMID: 23022067 PMCID: PMC3505250 DOI: 10.1016/j.cub.2012.09.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/21/2012] [Accepted: 09/05/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND The neuronal circuitry underlying sleep is poorly understood. Although dopamine (DA) is thought to play a key role in sleep/wake regulation, the identities of the individual DA neurons and their downstream targets required for this process are unknown. RESULTS Here, we identify a DA neuron in each PPL1 cluster that promotes wakefulness in Drosophila. Imaging data suggest that the activity of these neurons is increased during wakefulness, consistent with a role in promoting arousal. Strikingly, these neurons project to the dorsal fan-shaped body, which has previously been shown to promote sleep. The reduced sleep caused by activation of DA neurons can be blocked by loss of DopR, and restoration of DopR expression in the fan-shaped body can rescue the wake-promoting effects of DA in a DopR mutant background. CONCLUSIONS These experiments define a novel arousal circuit at the single-cell level. Because the dorsal fan-shaped body promotes sleep, these data provide a key link between wake and sleep circuits. Furthermore, these findings suggest that inhibition of sleep centers via monoaminergic signaling is an evolutionarily conserved mechanism to promote arousal.
Collapse
Affiliation(s)
- Qili Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
168
|
Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics 2012; 193:159-76. [PMID: 23086220 DOI: 10.1534/genetics.112.142042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms.
Collapse
|
169
|
Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S, Kume K. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci 2012; 15:1516-23. [PMID: 23064381 DOI: 10.1038/nn.3238] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 12/11/2022]
Abstract
Sleep is required to maintain physiological functions, including memory, and is regulated by monoamines across species. Enhancement of dopamine signals by a mutation in the dopamine transporter (DAT) decreases sleep, but the underlying dopamine circuit responsible for this remains unknown. We found that the D1 dopamine receptor (DA1) in the dorsal fan-shaped body (dFSB) mediates the arousal effect of dopamine in Drosophila. The short sleep phenotype of the DAT mutant was completely rescued by an additional mutation in the DA1 (also known as DopR) gene, but expression of wild-type DA1 in the dFSB restored the short sleep phenotype. We found anatomical and physiological connections between dopamine neurons and the dFSB neuron. Finally, we used mosaic analysis with a repressive marker and found that a single dopamine neuron projecting to the FSB activated arousal. These results suggest that a local dopamine pathway regulates sleep.
Collapse
Affiliation(s)
- Taro Ueno
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
170
|
Pfeiffenberger C, Allada R. Cul3 and the BTB adaptor insomniac are key regulators of sleep homeostasis and a dopamine arousal pathway in Drosophila. PLoS Genet 2012; 8:e1003003. [PMID: 23055946 PMCID: PMC3464197 DOI: 10.1371/journal.pgen.1003003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022] Open
Abstract
Sleep is homeostatically regulated, such that sleep drive reflects the duration of prior wakefulness. However, despite the discovery of genes important for sleep, a coherent molecular model for sleep homeostasis has yet to emerge. To better understand the function and regulation of sleep, we employed a reverse-genetics approach in Drosophila. An insertion in the BTB domain protein CG32810/insomniac (inc) exhibited one of the strongest baseline sleep phenotypes thus far observed, a ∼10 h sleep reduction. Importantly, this is coupled to a reduced homeostatic response to sleep deprivation, consistent with a disrupted sleep homeostat. Knockdown of the INC-interacting protein, the E3 ubiquitin ligase Cul3, results in reduced sleep duration, consolidation, and homeostasis, suggesting an important role for protein turnover in mediating INC effects. Interestingly, inc and Cul3 expression in post-mitotic neurons during development contributes to their adult sleep functions. Similar to flies with increased dopaminergic signaling, loss of inc and Cul3 result in hyper-arousability to a mechanical stimulus in adult flies. Furthermore, the inc sleep duration phenotype can be rescued by pharmacological inhibition of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. Taken together, these results establish inc and Cul3 as important new players in setting the sleep homeostat and a dopaminergic arousal pathway in Drosophila. Sleep is an essential behavior that encompasses roughly a third of our lives; however, the underlying function remains a mystery. The fruit fly has emerged as an important model system for understanding sleep behavior, exhibiting several behavioral and genetic similarities with mammalian sleep, including consolidated immobility, an elevation of arousal threshold to a range of stimuli, homeostatic drive, and manipulation by proven stimulants and sedatives. We tested disruptions of candidate sleep genes and identified a gene called insomniac that exhibits one of the strongest and most robust sleep phenotypes to date, including a suppressed homeostatic response to sleep deprivation. We find similar phenotypes for a gene previously shown to interact with inc and a known regulator of protein degradation, Cul3, linking sleep homeostasis to protein turnover. Importantly, we find that insomniac functions in a known arousal system in the brain, as defined by the neurotransmitter dopamine. This work provides an important insight into the genetic basis of sleep homeostasis with the discovery of a new molecular component of a dopaminergic arousal pathway. Given the conservation of fly and mammalian systems, these studies may lead to new insights into the molecules that mediate sleep homeostasis and arousal in humans.
Collapse
Affiliation(s)
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
171
|
Rothman SM, Mattson MP. Sleep disturbances in Alzheimer's and Parkinson's diseases. Neuromolecular Med 2012; 14:194-204. [PMID: 22552887 PMCID: PMC4544709 DOI: 10.1007/s12017-012-8181-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/10/2012] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders and exact a burden on our society greater than cardiovascular disease and cancer combined. While cognitive and motor symptoms are used to define AD and PD, respectively, patients with both disorders exhibit sleep disturbances including insomnia, hypersomnia and excessive daytime napping. The molecular basis of perturbed sleep in AD and PD may involve damage to hypothalamic and brainstem nuclei that control sleep-wake cycles. Perturbations in neurotransmitter and hormone signaling (e.g., serotonin, norepinephrine and melatonin) and the neurotrophic factor BDNF likely contribute to the disease process. Abnormal accumulations of neurotoxic forms of amyloid β-peptide, tau and α-synuclein occur in brain regions involved in the regulation of sleep in AD and PD patients, and are sufficient to cause sleep disturbances in animal models of these neurodegenerative disorders. Disturbed regulation of sleep often occurs early in the course of AD and PD, and may contribute to the cognitive and motor symptoms. Treatments that target signaling pathways that control sleep have been shown to retard the disease process in animal models of AD and PD, suggesting a potential for such interventions in humans at risk for or in the early stages of these disorders.
Collapse
Affiliation(s)
- Sarah M Rothman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | |
Collapse
|
172
|
Berry JA, Cervantes-Sandoval I, Nicholas EP, Davis RL. Dopamine is required for learning and forgetting in Drosophila. Neuron 2012; 74:530-42. [PMID: 22578504 DOI: 10.1016/j.neuron.2012.04.007] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2012] [Indexed: 01/11/2023]
Abstract
Psychological studies in humans and behavioral studies of model organisms suggest that forgetting is a common and biologically regulated process, but the molecular, cellular, and circuit mechanisms underlying forgetting are poorly understood. Here we show that the bidirectional modulation of a small subset of dopamine neurons (DANs) after olfactory learning regulates the rate of forgetting of both punishing (aversive) and rewarding (appetitive) memories. Two of these DANs, MP1 and MV1, exhibit synchronized ongoing activity in the mushroom body neuropil in alive and awake flies before and after learning, as revealed by functional cellular imaging. Furthermore, while the mushroom-body-expressed dDA1 dopamine receptor is essential for the acquisition of memory, we show that the dopamine receptor DAMB, also highly expressed in mushroom body neurons, is required for forgetting. We propose a dual role for dopamine: memory acquisition through dDA1 signaling and forgetting through DAMB signaling in the mushroom body neurons.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33410, USA
| | | | | | | |
Collapse
|
173
|
Chen B, Liu H, Ren J, Guo A. Mutation of Drosophila dopamine receptor DopR leads to male–male courtship behavior. Biochem Biophys Res Commun 2012; 423:557-63. [DOI: 10.1016/j.bbrc.2012.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 06/01/2012] [Indexed: 11/29/2022]
|
174
|
Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila. PLoS One 2012; 7:e36477. [PMID: 22574167 PMCID: PMC3344876 DOI: 10.1371/journal.pone.0036477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 04/06/2012] [Indexed: 11/23/2022] Open
Abstract
HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep∶activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest∶activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.
Collapse
|
175
|
Abstract
In the past decade, Drosophila has emerged as an ideal model organism for studying the genetic components of sleep as well as its regulation and functions. In fruit flies, sleep can be conveniently estimated by measuring the locomotor activity of the flies using techniques and instruments adapted from the field of circadian behavior. However, proper analysis of sleep requires degrees of spatial and temporal resolution higher than is needed by circadian scientists, as well as different algorithms and software for data analysis. Here I describe how to perform sleep experiments in flies using techniques and software (pySolo and pySolo-Video) previously developed in my laboratory. I focus on computer-assisted video tracking to monitor fly activity. I explain how to plan a sleep analysis experiment that covers the basic aspects of sleep, how to prepare the necessary equipment and how to analyze the data. By using this protocol, a typical sleep analysis experiment can be completed in 5-7 d.
Collapse
|
176
|
Immonen E, Ritchie MG. The genomic response to courtship song stimulation in female Drosophila melanogaster. Proc Biol Sci 2012; 279:1359-65. [PMID: 21976688 PMCID: PMC3282362 DOI: 10.1098/rspb.2011.1644] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/12/2011] [Indexed: 11/12/2022] Open
Abstract
Courtship behaviour involves a complex exchange of signals and responses. These are usually studied at the phenotypic level, and genetic or transcriptional responses to courtship are still poorly understood. Here, we examine the gene-expression changes in Drosophila melanogaster females in response to one of the key male courtship signals in mate recognition, song produced by male wing vibration. Using long oligonucleotide microarrays, we identified several genes that responded differentially to the presence or absence of acoustic courtship stimulus. These changes were modest in both the number of genes involved and fold-changes, but notably dominated by antennal signalling genes involved in olfaction as well as neuropeptides and immune response genes. Second, we compared the expression patterns of females stimulated with synthetic song typical of either conspecific or heterospecific (Drosophila simulans) males. In this case, antennal olfactory signalling and innate immunity genes were also enriched among the differentially expressed genes. We confirmed and investigated the time course of expression differences of two identified immunity genes using real-time quantitative PCR. Our results provide novel insight into specific molecular changes in females in response to courtship song stimulation. These may be involved in both signal perception and interpretation and some may anticipate molecular interactions that occur between the sexes after mating.
Collapse
Affiliation(s)
| | - Michael G. Ritchie
- Centre for Evolution, Genes and Genomics, School of Biology, Dyers Brae House, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
177
|
Abstract
There is general agreement within the sleep community and among public health officials of the need for an accessible biomarker of sleepiness. As the foregoing discussions emphasize, however, it may be more difficult to reach consensus on how to define such a biomarker than to identify candidate molecules that can be then evaluated to determine if they might be useful to solve a variety of real-world problems related to insufficient sleep. With that in mind, a goal of our laboratories has been to develop a rational strategy to expedite the identification of candidate biomarkers. 1 We began with the assumption that since both the genetic and environmental context of a gene can influence its behavior, an effective test of sleep loss will likely be composed of a panel of multiple biomarkers. That is, we believe that it is premature to exclude a candidate analyte simply because it might also be modulated in response to other conditions (e.g., illness, metabolism, sympathetic tone, etc.). Our next assumption was that an easily accessible biomarker would be more useful in real-world settings. Thus, we have focused on saliva, as opposed to urine or blood, as a rich source of biological analytes that can be mined to optimize the chances of bringing a biomarker out into the field. Finally, we recognize that conducting validation studies in humans can be expensive and time consuming. Thus, we have exploited genetic and pharmacological tools in the model organism Drosophila melanogaster to more fully characterize the behavior of the most exciting candidate biomarkers.
Collapse
Affiliation(s)
- Matthew S Thimgan
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
178
|
Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet 2012; 131:959-75. [PMID: 22350798 PMCID: PMC3351628 DOI: 10.1007/s00439-012-1146-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
Abstract
Animal studies have been instrumental in providing knowledge about the molecular and neural mechanisms underlying drug addiction. Recently, the fruit fly Drosophilamelanogaster has become a valuable system to model not only the acute stimulating and sedating effects of drugs but also their more complex rewarding properties. In this review, we describe the advantages of using the fly to study drug-related behavior, provide a brief overview of the behavioral assays used, and review the molecular mechanisms and neural circuits underlying drug-induced behavior in flies. Many of these mechanisms have been validated in mammals, suggesting that the fly is a useful model to understand the mechanisms underlying addiction.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California-San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
179
|
Ueno T, Masuda N, Kume S, Kume K. Dopamine modulates the rest period length without perturbation of its power law distribution in Drosophila melanogaster. PLoS One 2012; 7:e32007. [PMID: 22359653 PMCID: PMC3281125 DOI: 10.1371/journal.pone.0032007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
We analyzed the effects of dopamine signaling on the temporal organization of rest and activity in Drosophila melanogaster. Locomotor behaviors were recorded using a video-monitoring system, and the amounts of movements were quantified by using an image processing program. We, first, confirmed that rest bout durations followed long-tailed (i.e., power-law) distributions, whereas activity bout durations did not with a strict method described by Clauset et al. We also studied the effects of circadian rhythm and ambient temperature on rest bouts and activity bouts. The fraction of activity significantly increased during subjective day and at high temperature, but the power-law exponent of the rest bout distribution was not affected. The reduction in rest was realized by reduction in long rest bouts. The distribution of activity bouts did not change drastically under the above mentioned conditions. We then assessed the effects of dopamine. The distribution of rest bouts became less long-tailed and the time spent in activity significantly increased after the augmentation of dopamine signaling. Administration of a dopamine biosynthesis inhibitor yielded the opposite effects. However, the distribution of activity bouts did not contribute to the changes. These results suggest that the modulation of locomotor behavior by dopamine is predominantly controlled by changing the duration of rest bouts, rather than the duration of activity bouts.
Collapse
Affiliation(s)
- Taro Ueno
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Masuda
- Graduate School of Information Science and Technology, the University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Global COE program, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kume
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
180
|
Stavropoulos N, Young MW. insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron 2012; 72:964-76. [PMID: 22196332 DOI: 10.1016/j.neuron.2011.12.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 12/15/2022]
Abstract
In a forward genetic screen in Drosophila, we have isolated insomniac, a mutant that severely reduces the duration and consolidation of sleep. Anatomically restricted genetic manipulations indicate that insomniac functions within neurons to regulate sleep. insomniac expression does not oscillate in a circadian manner, and conversely, the circadian clock is intact in insomniac mutants, suggesting that insomniac regulates sleep by pathways distinct from the circadian clock. The protein encoded by insomniac is a member of the BTB/POZ superfamily, which includes many proteins that function as adaptors for the Cullin-3 (Cul3) ubiquitin ligase complex. We show that Insomniac can physically associate with Cul3, and that reduction of Cul3 activity in neurons recapitulates the insomniac phenotype. The extensive evolutionary conservation of insomniac and Cul3 suggests that protein degradation pathways may have a general role in governing the sleep and wakefulness of animals.
Collapse
Affiliation(s)
- Nicholas Stavropoulos
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
181
|
Ueno T, Tomita J, Kume S, Kume K. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster. PLoS One 2012; 7:e31513. [PMID: 22347491 PMCID: PMC3274542 DOI: 10.1371/journal.pone.0031513] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 01/11/2012] [Indexed: 01/06/2023] Open
Abstract
Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shits induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine), which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.
Collapse
Affiliation(s)
- Taro Ueno
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Jun Tomita
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Global COE program, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kume
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
182
|
Griffith LC. Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect. Curr Opin Neurobiol 2012; 22:609-14. [PMID: 22285110 DOI: 10.1016/j.conb.2012.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/27/2011] [Accepted: 01/10/2012] [Indexed: 01/09/2023]
Abstract
Drosophila melanogaster has historically been the premier model system for understanding the molecular and genetic bases of complex behaviors. In the last decade technical advances, in the form of new genetic tools and electrophysiological and optical methods, have allowed investigators to begin to dissect the neuronal circuits that generate behavior in the adult. The blossoming of circuit analysis in this organism has also reinforced our appreciation of the inadequacy of wiring diagrams for specifying complex behavior. Neuromodulation and neuronal plasticity act to reconfigure circuits on both short and long time scales. These processes act on the connectome, providing context by integrating external and internal cues that are relevant for behavioral choices. New approaches in the fly are providing insight into these basic principles of circuit function.
Collapse
Affiliation(s)
- Leslie C Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University MS008, Waltham, MA 02454-9110, USA.
| |
Collapse
|
183
|
Eban-Rothschild A, Bloch G. Social influences on circadian rhythms and sleep in insects. ADVANCES IN GENETICS 2012; 77:1-32. [PMID: 22902124 DOI: 10.1016/b978-0-12-387687-4.00001-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse social lifestyle and the small and accessible nervous system of insects make them valuable for research on the adaptive value and the organization principles of circadian rhythms and sleep. We focus on two complementary model insects, the fruit fly Drosophila melanogaster, which is amenable to extensive transgenic manipulations, and the honey bee Apis mellifera, which has rich and well-studied social behaviors. Social entrainment of activity rhythms (social synchronization) has been studied in many animals. Social time givers appear to be specifically important in dark cavity-dwelling social animals, but here there are no other clear relationships between the degree of sociality and the effectiveness of social entrainment. The olfactory system is important for social entrainment in insects. Little is known, however, about the molecular and neuronal pathways linking olfactory neurons to the central clock. In the honey bee, the expression, phase, and development of circadian rhythms are socially regulated, apparently by different signals. Peripheral clocks regulating pheromone synthesis and the olfactory system have been implicated in social influences on circadian rhythms in the fruit fly. An enriched social environment increases the total amount of sleep in both fruit flies and honey bees. In fruit flies, these changes have been linked to molecular and neuronal processes involved in learning, memory, and synaptic plasticity. The studies on insects suggest that social influences on the clock are richer than previously appreciated and have led to important breakthroughs in our understanding of the mechanisms underlying social influences on sleep and circadian rhythms.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
184
|
Pan-neuronal knockdown of calcineurin reduces sleep in the fruit fly, Drosophila melanogaster. J Neurosci 2011; 31:13137-46. [PMID: 21917797 DOI: 10.1523/jneurosci.5860-10.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sleep is a unique physiological state, which is behaviorally defined, and is broadly conserved across species from mammals to invertebrates such as insects. Because of the experimental accessibility provided by various novel animal models including the fruit fly, Drosophila melanogaster, there have been significant advances in the understanding of sleep. Although the physiological functions of sleep have not been fully elucidated, accumulating evidence indicates that sleep is necessary to maintain the plasticity of neuronal circuits and, hence, is essential in learning and memory. Calcineurin (Cn) is a heterodimeric phosphatase composed of CnA and CnB subunits and known to function in memory consolidation in the mammalian brain, but its neurological functions in the fruit fly are largely unknown. Here, we show that Cn is an important regulator of sleep in Drosophila. A pan-neuronal RNA interference-mediated knockdown of Cn expression resulted in sleep loss, whereas misexpression of the constitutively active form of a CnA protein led to increased sleep. Furthermore, CnA knockdown also impaired the retention of aversive olfactory memory. These results indicate a role for Cn and calcium-dependent signal transduction in sleep and memory regulation and may bring insight into the relationship between them.
Collapse
|
185
|
Meyers N, Fromm S, Luckenbaugh DA, Drevets WC, Hasler G. Neural correlates of sleepiness induced by catecholamine depletion. Psychiatry Res 2011; 194:73-8. [PMID: 21872452 PMCID: PMC3185157 DOI: 10.1016/j.pscychresns.2011.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022]
Abstract
Although extensive indirect evidence exists to suggest that the central dopaminergic system plays a significant role in the modulation of arousal, the functional effect of the dopaminergic influence on the regulation of the sleep-wake cycle remains unclear. Thirteen healthy volunteers and 15 unmedicated subjects with a history of major depressive disorder underwent catecholamine depletion (CD) using oral alpha-methyl-para-tyrosine in a randomized, placebo-controlled, double-blind, crossover study. The main outcome measures in both sessions were sleepiness (Stanford-Sleepiness-Scale), cerebral glucose metabolism (positron emission tomography), and serum prolactin concentration. CD consistently induced clinically relevant sleepiness in both groups. The CD-induced prolactin increase significantly correlated with CD-induced sleepiness but not with CD-induced mood and anxiety symptoms. CD-induced sleepiness correlated with CD-induced increases in metabolism in the medial and orbital frontal cortex, bilateral superior temporal cortex, left insula, cingulate motor area and in the vicinity of the periaqueductal gray. This study suggests that the association between dopamine depletion and sleepiness is independent of the brain reward system and the risk for depression. The visceromotor system, the cingulate motor area, the periaqueductal gray and the caudal hypothalamus may mediate the impact of the dopaminergic system on regulation of wakefulness and sleep.
Collapse
Affiliation(s)
- Noah Meyers
- National Institute of Mental Health, Mood and Anxiety Disorders Program, Section on Neuroimaging in Mood and Anxiety Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Fromm
- National Institute of Mental Health, Mood and Anxiety Disorders Program, Section on Neuroimaging in Mood and Anxiety Disorders, National Institutes of Health, Bethesda, MD 20892
| | - David A. Luckenbaugh
- National Institute of Mental Health, Mood and Anxiety Disorders Program, Section on Neuroimaging in Mood and Anxiety Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Wayne C. Drevets
- Department of Psychiatry, Oklahoma University School of Medicine; Laureate Institute for Brain Research; Tulsa, OK, 74136
| | - Gregor Hasler
- Psychiatric University Hospital, University of Berne, Berne, Switzerland,Corresponding author. University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland. Tel.: +41 31 930-9543; fax: +41 31 930 99 21. (G. Hasler)
| |
Collapse
|
186
|
Abstract
Sleep remains one of the least understood phenomena in biology--even its role in synaptic plasticity remains debatable. Since sleep was recognized to be regulated genetically, intense research has launched on two fronts: the development of model organisms for deciphering the molecular mechanisms of sleep and attempts to identify genetic underpinnings of human sleep disorders. In this Review, we describe how unbiased, high-throughput screens in model organisms are uncovering sleep regulatory mechanisms and how pathways, such as the circadian clock network and specific neurotransmitter signals, have conserved effects on sleep from Drosophila to humans. At the same time, genome-wide association studies (GWAS) have uncovered ∼14 loci increasing susceptibility to sleep disorders, such as narcolepsy and restless leg syndrome. To conclude, we discuss how these different strategies will be critical to unambiguously defining the function of sleep.
Collapse
Affiliation(s)
- Amita Sehgal
- Howard Hughes Medical institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
187
|
Abstract
Studies of Drosophila and mammals have documented circadian changes in the morphology and biochemistry of glial cells. In addition, it is known that astrocytes of flies and mammals contain evolutionarily conserved circadian molecular oscillators that are similar to neuronal oscillators. In several sections of this review, I summarize the morphological and biochemical rhythms of glia that may contribute to circadian control. I also discuss the evidence suggesting that glia-neuron interactions may be critical for circadian timing in both flies and mammals. Throughout the review, I attempt to compare and contrast findings from these invertebrate and vertebrate models so as to provide a synthesis of current knowledge and indicate potential research avenues that may be useful for better understanding the roles of glial cells in the circadian system.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
188
|
Shang Y, Haynes P, Pírez N, Harrington KI, Guo F, Pollack J, Hong P, Griffith LC, Rosbash M. Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci 2011; 14:889-95. [PMID: 21685918 PMCID: PMC3424274 DOI: 10.1038/nn.2860] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/17/2011] [Indexed: 12/25/2022]
Abstract
How animals maintain proper amounts of sleep yet remain flexible to changes in environmental conditions remains unknown. We found that environmental light suppressed the wake-promoting effects of dopamine in fly brains. The ten large lateral-ventral neurons (l-LNvs), a subset of clock neurons, are wake-promoting and respond to dopamine, octopamine and light. Behavioral and imaging analyses suggested that dopamine is a stronger arousal signal than octopamine. Notably, light exposure not only suppressed l-LNv responses, but also synchronized responses of neighboring l-LNvs. This regulation occurred by distinct mechanisms: light-mediated suppression of octopamine responses was regulated by the circadian clock, whereas light regulation of dopamine responses occurred by upregulation of inhibitory dopamine receptors. Plasticity therefore alters the relative importance of diverse cues on the basis of the environmental mix of stimuli. The regulatory mechanisms described here may contribute to the control of sleep stability while still allowing behavioral flexibility.
Collapse
Affiliation(s)
- Yuhua Shang
- Howard Hughes Medical Institute, National Center for Behavioral Genomics
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Paula Haynes
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Nicolás Pírez
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Kyle I. Harrington
- Department of Computer Science, Brandeis University, Waltham, MA 02454, USA
| | - Fang Guo
- Howard Hughes Medical Institute, National Center for Behavioral Genomics
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Jordan Pollack
- Department of Computer Science, Brandeis University, Waltham, MA 02454, USA
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, MA 02454, USA
| | | | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
189
|
Ma Z, Guo W, Guo X, Wang X, Kang L. Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc Natl Acad Sci U S A 2011; 108:3882-7. [PMID: 21325054 PMCID: PMC3053982 DOI: 10.1073/pnas.1015098108] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The migratory locust, Locusta migratoria, shows a striking phenotypic plasticity. It transitions between solitary and gregarious phases in response to population density changes. However, the molecular mechanism underlying the phase-dependent behavior changes remains elusive. Here we report a genome-wide gene expression profiling of gregarious and solitary nymphs at each stadium of the migratory locust, and we identified the most differentially expressed genes in the fourth stadium of the two phases. Bioinformatics analysis indicated that the catecholamine metabolic pathway was the most significant pathway up-regulated in the gregarious phase. We found pale, henna, and vat1, involved in dopamine biosynthesis and synaptic release, were critical target genes related to behavioral phase changes in the locusts. The roles of these genes in mediating behavioral changes in the gregarious individuals were confirmed by RNAi and pharmacological intervention. A single injection of dopamine or its agonist initiated gregarious behavior. Moreover, continuous and multiple injections of a dopamine agonist coupled with crowding resulted in more pronounced gregarious behavior. Our study thus provides insights into the relationships between genes and behavior in phase transition of this important pest species.
Collapse
Affiliation(s)
- Zongyuan Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
190
|
Abstract
STUDY OBJECTIVES Sleep is a fundamental physiological process and its biological mechanisms are poorly understood. In Drosophila melanogaster, heterotrimeric Go protein is abundantly expressed in the brain. However, its post-developmental function has not been extensively explored. DESIGN Locomotor activity was measured using the Drosophila Activity Monitoring System under a 12:12 LD cycle. Sleep was defined as periods of 5 min with no recorded activity. RESULTS Pan-neuronal elevation of Go signaling induced quiescence accompanied by an increased arousal threshold in flies. By screening region-specific GAL4 lines, we mapped the sleep-regulatory function of Go signaling to mushroom bodies (MBs), a central brain region which modulates memory, decision making, and sleep in Drosophila. Up-regulation of Go activity in these neurons consolidated sleep while inhibition of endogenous Go via expression of Go RNAi or pertussis toxin reduced and fragmented sleep, indicating that the Drosophila sleep requirement is affected by levels of Go activity in the MBs. Genetic interaction results showed that Go signaling serves as a neuronal transmission inhibitor in a cAMP-independent pathway. CONCLUSION Go signaling is a novel signaling pathway in MBs that regulates sleep in Drosophila.
Collapse
Affiliation(s)
- Fang Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
191
|
Seugnet L, Suzuki Y, Donlea JM, Gottschalk L, Shaw PJ. Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep 2011; 34:137-46. [PMID: 21286249 DOI: 10.1093/sleep/34.2.137] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Multiple lines of evidence indicate that sleep is important for the developing brain, although little is known about which cellular and molecular pathways are affected. Thus, the aim of this study was to determine whether the early adult life of Drosophila, which is associated with high amounts of sleep and critical periods of brain plasticity, could be used as a model to identify developmental processes that require sleep. SUBJECTS Wild type Canton-S Drosophila melanogaster. DESIGN; INTERVENTION Flies were sleep deprived on their first full day of adult life and allowed to recover undisturbed for at least 3 days. The animals were then tested for short-term memory and response-inhibition using aversive phototaxis suppression (APS). Components of dopamine signaling were further evaluated using mRNA profiling, immunohistochemistry, and pharmacological treatments. MEASUREMENTS AND RESULTS Flies exposed to acute sleep deprivation on their first day of life showed impairments in short-term memory and response inhibition that persisted for at least 6 days. These impairments in adult performance were reversed by dopamine agonists, suggesting that the deficits were a consequence of reduced dopamine signaling. However, sleep deprivation did not impact dopaminergic neurons as measured by their number or by the levels of dopamine, pale (tyrosine hydroxylase), dopadecarboxylase, and the Dopamine transporter. However, dopamine pathways were impacted as measured by increased transcript levels of the dopamine receptors D2R and dDA1. Importantly, blocking signaling through the dDA1 receptor in animals that were sleep deprived during their critical developmental window prevented subsequent adult learning impairments. CONCLUSIONS These data indicate that sleep plays an important and phylogenetically conserved role in the developing brain.
Collapse
Affiliation(s)
- Laurent Seugnet
- Washington University School of Medicine, Anatomy and Neurobiology, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
192
|
Van Swinderen B, Andretic R. Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc Biol Sci 2011; 278:906-13. [PMID: 21208962 DOI: 10.1098/rspb.2010.2564] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories-each arguing for modulation of some aspect of the fly's waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention.
Collapse
Affiliation(s)
- Bruno Van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
193
|
|
194
|
Kennedy DO, Wightman EL. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2011; 2:32-50. [PMID: 22211188 PMCID: PMC3042794 DOI: 10.3945/an.110.000117] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites, chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field of natural, phytochemical drug discovery.
Collapse
Affiliation(s)
- David O Kennedy
- Brain, Performance and Nutrition Research Centre, School of Life Sciences, Northumbria University, Newcastle, UK.
| | | |
Collapse
|
195
|
Abstract
As bluntly summarized by a psychologist over a century ago, everyone knows what attention is [James (1890). The Principles of Psychology]. Attention describes our capacity to focus perception on one or a group of related stimuli while filtering out irrelevant stimuli. The ease we have in recognizing this astounding capacity in ourselves is matched by a surprising difficulty in identifying it in others, and this is especially the case for measuring attention in other animals. Identifying and measuring attention-like processes in simple animals such as flies requires, to some extent, even more rigor than asking the same question for our closer animal relatives, such as apes and monkeys. This is because flies have completely different brains than humans do, so to study attention in these creatures one must rely purely on operational or behavioral measures rather than comparative neuroanatomy. There is a long history of using sophisticated behavioral paradigms to study visual responses in Drosophila melanogaster, and these studies have often provided early evidence of attention-like processes in flies. More recently, these fly paradigms have been applied to measuring visual attention directly, and the combination of electrophysiology with these preparations has provided insight into how a fly might pay attention. Together with more efficient methods for measuring some aspects of attention, such as stimulus suppression, these approaches should begin to uncover how visual attention might work in a small brain.
Collapse
Affiliation(s)
- Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
196
|
Tang S, Juusola M. Intrinsic activity in the fly brain gates visual information during behavioral choices. PLoS One 2010; 5:e14455. [PMID: 21209935 PMCID: PMC3012687 DOI: 10.1371/journal.pone.0014455] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals.
Collapse
Affiliation(s)
- Shiming Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mikko Juusola
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
197
|
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci U S A 2010; 108:834-9. [PMID: 21187381 DOI: 10.1073/pnas.1010930108] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.
Collapse
|
198
|
Mizunami M, Matsumoto Y. Roles of aminergic neurons in formation and recall of associative memory in crickets. Front Behav Neurosci 2010; 4:172. [PMID: 21119781 PMCID: PMC2991128 DOI: 10.3389/fnbeh.2010.00172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/19/2010] [Indexed: 02/02/2023] Open
Abstract
We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned stimulus (US) and aversive US, respectively. Our work suggested that this is applicable to olfactory, visual pattern, and color learning in crickets, indicating that this feature is ubiquitous in learning of various sensory stimuli. We also showed that aversive memory decayed much faster than did appetitive memory, and we proposed that this feature is common in insects and humans. Our study also suggested that activation of OA- or DA-ergic neurons is needed for appetitive or aversive memory recall, respectively. To account for this finding, we proposed a model in which it is assumed that two types of synaptic connections are strengthened by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus (CS) to neurons inducing conditioned response and the other being connections from neurons representing CS to OA- or DA-ergic neurons representing appetitive or aversive US, respectively. The former is called stimulus–response (S–R) connection and the latter is called stimulus–stimulus (S–S) connection by theorists studying classical conditioning in vertebrates. Results of our studies using a second-order conditioning procedure supported our model. We propose that insect classical conditioning involves the formation of S–S connection and its activation for memory recall, which are often called cognitive processes.
Collapse
Affiliation(s)
- Makoto Mizunami
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
| | | |
Collapse
|
199
|
Barron AB, Søvik E, Cornish JL. The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci 2010; 4:163. [PMID: 21048897 PMCID: PMC2967375 DOI: 10.3389/fnbeh.2010.00163] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/26/2010] [Indexed: 11/30/2022] Open
Abstract
Motile animals actively seek out and gather resources they find rewarding, and this is an extremely powerful organizer and motivator of animal behavior. Mammalian studies have revealed interconnected neurobiological systems for reward learning, reward assessment, reinforcement and reward-seeking; all involving the biogenic amine dopamine. The neurobiology of reward-seeking behavioral systems is less well understood in invertebrates, but in many diverse invertebrate groups, reward learning and responses to food rewards also involve dopamine. The obvious exceptions are the arthropods in which the chemically related biogenic amine octopamine has a greater effect on reward learning and reinforcement than dopamine. Here we review the functions of these biogenic amines in behavioral responses to rewards in different animal groups, and discuss these findings in an evolutionary context.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Biology, Macquarie University Sydney, NSW, Australia
| | | | | |
Collapse
|
200
|
Abstract
Background A complex relationship exists between diet and sleep but despite its impact on human health, this relationship remains uncharacterized and poorly understood. Drosophila melanogaster is an important model for the study of metabolism and behaviour, however the effect of diet upon Drosophila sleep remains largely unaddressed. Methodology/Principal Findings Using automated behavioural monitoring, a capillary feeding assay and pharmacological treatments, we examined the effect of dietary yeast and sucrose upon Drosophila sleep-wake behaviour for three consecutive days. We found that dietary yeast deconsolidated the sleep-wake behaviour of flies by promoting arousal from sleep in males and shortening periods of locomotor activity in females. We also demonstrate that arousal from nocturnal sleep exhibits a significant ultradian rhythmicity with a periodicity of 85 minutes. Increasing the dietary sucrose concentration from 5% to 35% had no effect on total sucrose ingestion per day nor any affect on arousal, however it did lengthen the time that males and females remained active. Higher dietary sucrose led to reduced total sleep by male but not female flies. Locomotor activity was reduced by feeding flies Metformin, a drug that inhibits oxidative phosphorylation, however Metformin did not affect any aspects of sleep. Conclusions We conclude that arousal from sleep is under ultradian control and regulated in a sex-dependent manner by dietary yeast and that dietary sucrose regulates the length of time that flies sustain periods of wakefulness. These findings highlight Drosophila as an important model with which to understand how diet impacts upon sleep and wakefulness in mammals and humans.
Collapse
|