151
|
Guggiana-Nilo DA, Engert F. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish. Front Behav Neurosci 2016; 10:160. [PMID: 27594828 PMCID: PMC4990545 DOI: 10.3389/fnbeh.2016.00160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/05/2016] [Indexed: 11/13/2022] Open
Abstract
For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.
Collapse
Affiliation(s)
- Drago A. Guggiana-Nilo
- Graduate Program in Biophysics, Harvard University, CambridgeMA, USA
- Department of Molecular and Cellular Biology, Harvard University, CambridgeMA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, CambridgeMA, USA
| |
Collapse
|
152
|
Sonoda T, Schmidt TM. Re-evaluating the Role of Intrinsically Photosensitive Retinal Ganglion Cells: New Roles in Image-Forming Functions. Integr Comp Biol 2016; 56:834-841. [DOI: 10.1093/icb/icw066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
153
|
Horstick EJ, Mueller T, Burgess HA. Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates. J Neurogenet 2016; 30:122-32. [PMID: 27293113 DOI: 10.1080/01677063.2016.1177048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the course of each day, animals prioritize different objectives. Immediate goals may reflect fluctuating internal homeostatic demands, prompting individuals to seek out energy supplies or warmth. At other times, the environment may present temporary challenges or opportunities. Homeostatic demands and environmental signals often elicit persistent changes in an animal's behavior to meet needs and challenges over extended periods of time. These changes reflect the underlying motivational state of the animal. The larval zebrafish has been established as an effective genetically tractable vertebrate system to study neural circuits for sensory-motor reflexes. Fewer studies have exploited zebrafish to study brain circuits that control motivated behavior. In part this is because appropriate conceptual frameworks, anatomical knowledge, and behavioral paradigms are not yet well established. This review sketches a general conceptual framework for studying motivated state control in animal models, how this applies to larval zebrafish, and the current knowledge on neuroanatomical substrates for state control in this model.
Collapse
Affiliation(s)
- Eric J Horstick
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Thomas Mueller
- b Division of Biology , Kansas State University , Manhattan , KS , USA
| | - Harold A Burgess
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| |
Collapse
|
154
|
Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles. Proc Natl Acad Sci U S A 2016; 113:6053-8. [PMID: 27166423 DOI: 10.1073/pnas.1515516113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonvisual photoreceptors are widely distributed in the retina and brain, but their roles in animal behavior remain poorly understood. Here we document a previously unidentified form of deep-brain photoreception in Xenopus laevis frog tadpoles. The isolated nervous system retains sensitivity to light even when devoid of input from classical eye and pineal photoreceptors. These preparations produce regular bouts of rhythmic swimming activity in ambient light but fall silent in the dark. This sensitivity is tuned to short-wavelength UV light; illumination at 400 nm initiates motor activity over a broad range of intensities, whereas longer wavelengths do not cause a response. The photosensitive tissue is located in a small region of caudal diencephalon-this region is necessary to retain responses to illumination, whereas its focal illumination is sufficient to drive them. We present evidence for photoreception via the light-sensitive proteins opsin (OPN)5 and/or cryptochrome 1, because populations of OPN5-positive and cryptochrome-positive cells reside within the caudal diencephalon. This discovery represents a hitherto undescribed vertebrate pathway that links luminance detection to motor output. The pathway provides a simple mechanism for light avoidance and/or may reinforce classical circadian systems.
Collapse
|
155
|
Hang CY, Kitahashi T, Parhar IS. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts. Front Neuroanat 2016; 10:48. [PMID: 27199680 PMCID: PMC4846651 DOI: 10.3389/fnana.2016.00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Abstract
Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish.
Collapse
Affiliation(s)
- Chong Yee Hang
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
156
|
A Naturally-Derived Compound Schisandrin B Enhanced Light Sensation in the pde6c Zebrafish Model of Retinal Degeneration. PLoS One 2016; 11:e0149663. [PMID: 26930483 PMCID: PMC4773124 DOI: 10.1371/journal.pone.0149663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022] Open
Abstract
Retinal degeneration is often progressive. This feature has provided a therapeutic window for intervention that may extend functional vision in patients. Even though this approach is feasible, few promising drug candidates are available. The scarcity of new drugs has motivated research to discover novel compounds through different sources. One such example is Schisandrin B (SchB), an active component isolated from the five-flavor fruit (Fructus Schisandrae) that is postulated in traditional Chinese medicines to exert prophylactic visual benefit. This SchB benefit was investigated in this study in pde6cw59, a zebrafish retinal-degeneration model. In this model, the pde6c gene (phosphodiesterase 6C, cGMP-specific, cone, alpha prime) carried a mutation which caused cone degeneration. This altered the local environment and caused the bystander rods to degenerate too. To test SchB on the pde6cw59 mutants, a treatment concentration was first determined that would not cause morphological defects, and would initiate known physiological response. Then, the mutants were treated with the optimized SchB concentration before the appearance of retinal degeneration at 3 days postfertilization (dpf). The light sensation of animals was evaluated at 6 dpf by the visual motor response (VMR), a visual startle that could be initiated by drastic light onset and offset. The results show that the VMR of pde6cw59 mutants towards light onset was enhanced by the SchB treatment, and that the initial phase of the enhancement was primarily mediated through the mutants’ eyes. Further immunostaining analysis indicates that the treatment specifically reduced the size of the abnormally large rods. These observations implicate an interesting hypothesis: that the morphologically-improved rods drive the observed VMR enhancement. Together, these investigations have identified a possible visual benefit of SchB on retinal degeneration, a benefit that can potentially be further developed to extend functional vision in patients.
Collapse
|
157
|
Sun L, Peräkylä J, Kovalainen A, Ogawa KH, Karhunen PJ, Hartikainen KM. Human Brain Reacts to Transcranial Extraocular Light. PLoS One 2016; 11:e0149525. [PMID: 26910350 PMCID: PMC4767140 DOI: 10.1371/journal.pone.0149525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain.
Collapse
Affiliation(s)
- Lihua Sun
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
| | - Anselmi Kovalainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
| | - Keith H. Ogawa
- John Magaddino Neuroscience Laboratory, Saint Mary’s College of California, Moraga, California, United States of America
| | - Pekka J. Karhunen
- Department of Forensic Medicine, School of Medicine, Tampere University, Tampere University Hospital and Fimlab Laboratories, Tampere, Finland
| | - Kaisa M. Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
- Department of Neuroscience and Rehabilitation, Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
158
|
Brüning A, Hölker F, Franke S, Kleiner W, Kloas W. Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:214-222. [PMID: 26584071 DOI: 10.1016/j.scitotenv.2015.11.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 05/10/2023]
Abstract
The distribution and intensity of artificial light at night, commonly referred to as light pollution, is consequently rising and progressively also ecological implications come to light. Low intensity light is known to suppress nocturnal melatonin production in several fish species. This study aims to examine the least suppressive light colour for melatonin excreted into the holding water and the influence of different light qualities and quantities in the night on gene expression of gonadotropins in fish. European perch (Perca fluviatilis) were exposed to light of different wavelengths during the night (blue, green, and red). Melatonin concentrations were measured from water samples every 3h during a 24h period. Gene expression of gonadotropins was measured in perch exposed to different light colours and was additionally examined for perch subjected to different intensities of white light (0 lx, 1 lx, 10 lx, 100 lx) during the night. All different light colours caused a significant drop of melatonin concentration; however, blue light was least suppressive. Gene expression of gonadotropins was not influenced by nocturnal light of different light colours, but in female perch gonadotropin expression was significantly reduced by white light already at the lowest level (1 lx). We conclude that artificial light with shorter wavelengths at night is less effective in disturbing biological rhythms of perch than longer wavelengths, coinciding with the light situation in freshwater habitats inhabited by perch. Different light colours in the night showed no significant effect on gonadotropin expression, but white light in the night can disturb reproductive traits already at very low light intensities. These findings indicate that light pollution has not only the potential to disturb the melatonin cycle but also the reproductive rhythm and may therefore have implications on whole species communities.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| |
Collapse
|
159
|
A Simple Method for Immunohistochemical Staining of Zebrafish Brain Sections for c-fos Protein Expression. Zebrafish 2015; 12:414-20. [DOI: 10.1089/zeb.2015.1147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
160
|
Gao Y, Zhang G, Jelfs B, Carmer R, Venkatraman P, Ghadami M, Brown SA, Pang CP, Leung YF, Chan RHM, Zhang M. Computational classification of different wild-type zebrafish strains based on their variation in light-induced locomotor response. Comput Biol Med 2015; 69:1-9. [PMID: 26688204 DOI: 10.1016/j.compbiomed.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022]
Abstract
Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset. This light-induced locomotor response (LLR) has been widely used for behavioural research and drug screening. However, the locomotor responses have long been shown to be different between different wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a subset of the data during the first 30after light change. This initial period of activity is substantially driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in three major conclusions: First, the LLR is different between the three WT strains, and at different developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in the light-onset response differs from that in the light-offset response. While the classification accuracies were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Beth Jelfs
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Robert Carmer
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Statistics, Purdue University, 250N. University Street, West Lafayette, IN 47907, USA
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Mohammad Ghadami
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Skye A Brown
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Lafayette, 625 Harrison Street, West Lafayette, IN 47907, USA.
| | - Rosa H M Chan
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
161
|
Randlett O, Wee CL, Naumann EA, Nnaemeka O, Schoppik D, Fitzgerald JE, Portugues R, Lacoste AM, Riegler C, Engert F, Schier AF. Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods 2015; 12:1039-46. [PMID: 26778924 PMCID: PMC4710481 DOI: 10.1038/nmeth.3581] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/03/2015] [Indexed: 02/08/2023]
Abstract
In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caroline L. Wee
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Eva A. Naumann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Onyeka Nnaemeka
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Schoppik
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alix M.B. Lacoste
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Clemens Riegler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- FAS Center for Systems Biology, Harvard University, MA 02138, USA
| |
Collapse
|
162
|
Barker AJ, Baier H. Sensorimotor Decision Making in the Zebrafish Tectum. Curr Biol 2015; 25:2804-2814. [DOI: 10.1016/j.cub.2015.09.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
|
163
|
Faria M, Garcia-Reyero N, Padrós F, Babin PJ, Sebastián D, Cachot J, Prats E, Arick Ii M, Rial E, Knoll-Gellida A, Mathieu G, Le Bihanic F, Escalon BL, Zorzano A, Soares AMVM, Raldúa D. Zebrafish Models for Human Acute Organophosphorus Poisoning. Sci Rep 2015; 5:15591. [PMID: 26489395 PMCID: PMC4614985 DOI: 10.1038/srep15591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.
Collapse
Affiliation(s)
- Melissa Faria
- Department of Biology and CESAM, University of Aveiro, Portugal.,IDÆA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA.,Institute for Genomics, Biocomputing &Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Francesc Padrós
- Pathological Diagnostic Service in Fish, Universitat Autònoma de Barcelona, 08190 Bellaterra, Spain
| | - Patrick J Babin
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Jérôme Cachot
- EPOC, UMR CNRS 5805, Université de Bordeaux, 33405 Talence, France
| | - Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Mark Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Eduardo Rial
- Department of Cellular and Molecular Medicine, CIB-CSIC, Ramiro de Maetzu 9, 28040, Madrid, Spain
| | - Anja Knoll-Gellida
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - Guilaine Mathieu
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | | | - B Lynn Escalon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | | | | |
Collapse
|
164
|
Davies WIL, Tamai TK, Zheng L, Fu JK, Rihel J, Foster RG, Whitmore D, Hankins MW. An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 2015; 25:1666-79. [PMID: 26450929 PMCID: PMC4617963 DOI: 10.1101/gr.189886.115] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/15/2015] [Indexed: 11/24/2022]
Abstract
Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates.
Collapse
Affiliation(s)
- Wayne I L Davies
- School of Animal Biology and University of Western Australia Oceans Institute, University of Western Australia, Perth, Western Australia 6009, Australia; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - T Katherine Tamai
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, WC1E 6DE, United Kingdom
| | - Lei Zheng
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Josephine K Fu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Russell G Foster
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, WC1E 6DE, United Kingdom
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
165
|
Liu Y, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang CP, Zhang M, Ma P, Leung YF. Statistical Analysis of Zebrafish Locomotor Response. PLoS One 2015; 10:e0139521. [PMID: 26437184 PMCID: PMC4593604 DOI: 10.1371/journal.pone.0139521] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022] Open
Abstract
Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Carmer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America; Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Skye Ashton Brown
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Chi-Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States of America
| |
Collapse
|
166
|
Jarema KA, Hunter DL, Shaffer RM, Behl M, Padilla S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol 2015; 52:194-209. [PMID: 26348672 DOI: 10.1016/j.ntt.2015.08.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/06/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022]
Abstract
As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae. Larvae (n≈24 per dose per compound) were exposed to test compounds (0.4-120 μM) at sub-teratogenic concentrations either developmentally or acutely, and locomotor activity was assessed at 6 days post fertilization. When given developmentally, all chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the most effects at the most concentrations. The results indicate that these replacement flame retardants may have developmental or pharmacological effects on the vertebrate nervous system.
Collapse
Affiliation(s)
- Kimberly A Jarema
- Toxicology Assessment Division NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Deborah L Hunter
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel M Shaffer
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Curriculum in Toxicology, University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
167
|
Godoy R, Noble S, Yoon K, Anisman H, Ekker M. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae. J Neurochem 2015; 135:249-60. [PMID: 26118896 DOI: 10.1111/jnc.13214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Rafael Godoy
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Sandra Noble
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Kevin Yoon
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, K1S-5B6, Canada
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| |
Collapse
|
168
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
169
|
Di Rosa V, Frigato E, López-Olmeda JF, Sánchez-Vázquez FJ, Bertolucci C. The Light Wavelength Affects the Ontogeny of Clock Gene Expression and Activity Rhythms in Zebrafish Larvae. PLoS One 2015; 10:e0132235. [PMID: 26147202 PMCID: PMC4492954 DOI: 10.1371/journal.pone.0132235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/12/2015] [Indexed: 11/19/2022] Open
Abstract
Light plays a key role in synchronizing rhythms and setting the phase of early development. However, to date, little is known about the impact of light wavelengths during the ontogeny of the molecular clock and the behavioural rhythmicity. The aim of this research was to determine the effect of light of different wavelengths (white, blue and red) on the onset of locomotor activity and clock gene (per1b, per2, clock1, bmal1 and dbp) expression rhythms. For this purpose, 4 groups of zebrafish embryo/larvae were raised from 0 to 7 days post-fertilization (dpf) under the following lighting conditions: three groups maintained under light:dark (LD) cycles with white (full visible spectrum, LDW), blue (LDB), or red light (LDR), and one group raised under constant darkness (DD). The results showed that lighting conditions influenced activity rhythms. Larvae were arrhythmic under DD, while under LD cycles they developed wavelength-dependent daily activity rhythms which appeared earlier under LDB (4 dpf) than under LDW or LDR (5 dpf). The results also revealed that development and lighting conditions influenced clock gene expression. While clock1 rhythmic expression appeared in all lighting conditions at 7 dpf, per1b, per2 and dbp showed daily variations already at 3 dpf. Curiously, bmal1 showed consistent rhythmic expression from embryonic stage (0 dpf). Summarizing, the data revealed that daily rhythms appeared earlier in the larvae reared under LDB than in those reared under LDW and LDR. These results emphasize the importance of lighting conditions and wavelengths during early development for the ontogeny of daily rhythms of gene expression and how these rhythms are reflected on the behavioural rhythmicity of zebrafish larvae.
Collapse
Affiliation(s)
- Viviana Di Rosa
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia Spain
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - José F. López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia Spain
| | - Francisco J. Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia Spain
- * E-mail:
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
170
|
Temizer I, Donovan JC, Baier H, Semmelhack JL. A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish. Curr Biol 2015; 25:1823-34. [PMID: 26119746 DOI: 10.1016/j.cub.2015.06.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/12/2015] [Accepted: 06/01/2015] [Indexed: 11/16/2022]
Abstract
Avoiding the strike of an approaching predator requires rapid visual detection of a looming object, followed by a directed escape maneuver. While looming-sensitive neurons have been discovered in various animal species, the relative importance of stimulus features that are extracted by the visual system is still unclear. Furthermore, the neural mechanisms that compute object approach are largely unknown. We found that a virtual looming stimulus, i.e., a dark expanding disk on a bright background, reliably evoked rapid escape movements. Related stimuli, such as dimming, receding, or bright looming objects, were substantially less effective, and angular size was a critical determinant of escape initiation. Two-photon calcium imaging in retinal ganglion cell (RGC) axons revealed three retinorecipient areas that responded robustly to looming stimuli. One of these areas, the optic tectum, is innervated by a subset of RGC axons that respond selectively to looming stimuli. Laser-induced lesions of the tectal neuropil impaired the behavior. Our findings demonstrate a visually mediated escape behavior in zebrafish larvae exposed to objects approaching on a collision course. This response is sensitive to spatiotemporal parameters of the looming stimulus. Our data indicate that a subset of RGC axons within the tectum responds selectively to features of looming stimuli and that this input is necessary for visually evoked escape.
Collapse
Affiliation(s)
- Incinur Temizer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joseph C Donovan
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Julia L Semmelhack
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
171
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015. [PMID: 25954163 DOI: 10.3389/fnana.2015.00047.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism's development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
172
|
|
173
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015; 9:47. [PMID: 25954163 PMCID: PMC4404869 DOI: 10.3389/fnana.2015.00047] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
174
|
Hang CY, Kitahashi T, Parhar IS. Brain area-specific diurnal and photic regulation of val-opsinA and val-opsinB genes in the zebrafish. J Neurochem 2015; 133:501-10. [PMID: 25727787 DOI: 10.1111/jnc.13084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Abstract
Zebrafish possess two isoforms of vertebrate ancient long (VAL)-opsin, val-opsinA (valopa) and val-opsinB (valopb), which probably mediate non-visual responses to light. To understand the diurnal and light-sensitive regulation of the valop genes in different cell groups, the current study used real-time quantitative PCR to examine the diurnal changes of valopa and b mRNA levels in different brain areas of adult male zebrafish. Furthermore, effects of the extended exposure to light or dark condition, luminous levels and the treatment with a melatonin receptor agonist or antagonist on valop transcription were examined. In the thalamus, valop mRNA levels showed significant diurnal changes; valopa peaked in the evening, while valopb peaked in the morning. The diurnal change of valopa mRNA levels occurred independent of light conditions, whereas that of valopb mRNA levels were regulated by light. A melatonin receptor agonist or antagonist did not affect the changes of valop mRNA levels. In contrast, the midbrain and hindbrain showed arrhythmic valop mRNA levels under light and dark cycles. The differential diurnal regulation of the valopa and b genes in the thalamus and the arrhythmic expression in the midbrain and hindbrain suggest involvement of deep brain VAL-opsin in time- and light-dependent physiology. We show diurnal expression changes of vertebrate ancient long (VAL) opsin genes (valopa and valopb), depending on brain area, time of day and light condition, in the adult male zebrafish. Differential regulation of the valop genes in the thalamus and arrhythmic expression in the midbrain and hindbrain suggest their involvement in time- and light-dependent physiology to adjust to environmental changes.
Collapse
Affiliation(s)
- Chong Yee Hang
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | | |
Collapse
|
175
|
Friedmann D, Hoagland A, Berlin S, Isacoff EY. A spinal opsin controls early neural activity and drives a behavioral light response. Curr Biol 2014; 25:69-74. [PMID: 25484291 DOI: 10.1016/j.cub.2014.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/04/2023]
Abstract
Nonvisual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors. However, the expression of opsins in multiple other brain structures suggests a more expansive repertoire for light regulation of physiology, behavior, and development. Translucent zebrafish embryos express extraretinal opsins early on, at a time when spontaneous activity in the developing CNS plays a role in neuronal maturation and circuit formation. Though the presence of extraretinal opsins is well documented, the function of direct photoreception by the CNS remains largely unknown. Here, we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photosensitivity of this circuit is conferred by vertebrate ancient long opsin A (VALopA), which we show to be a Gα(i)-coupled receptor that is expressed in the neurons of the spinal network. Sustained photoactivation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for nonvisual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs.
Collapse
Affiliation(s)
- Drew Friedmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
176
|
Mahalwar P, Walderich B, Singh AP, Nusslein-Volhard C. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Science 2014; 345:1362-4. [DOI: 10.1126/science.1254837] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
177
|
Hang CY, Kitahashi T, Parhar IS. Localization and characterization of val-opsin isoform-expressing cells in the brain of adult zebrafish. J Comp Neurol 2014; 522:3847-60. [PMID: 25043553 DOI: 10.1002/cne.23645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/20/2022]
Abstract
In addition to vision, light information is used to regulate a range of animal physiology. Such nonimage-forming functions of light are mediated by nonvisual photoreceptors expressed in distinct neurons in the retina and the brain in most vertebrates. A nonvisual photoreceptor vertebrate ancient long opsin (VAL-opsin) possesses two functional isoforms in the zebrafish, encoded by valopa and valopb, which has received little attention. To delineate the neurochemical identities of valop cells and to test for colocalization of the valop isoforms, we used in situ hybridization to characterize the expression of the valop genes along with that of neurotransmitters and a neuropeptide known to be present at the sites of valop expression. Double labeling showed that the thalamic valop population coexpresses valopa and valopb. All the thalamic valop cells overlapped with a GABAergic cell mass that continues from the anterior nucleus to the intercalated thalamic nucleus. A novel valopa cell population found in the superior raphe was serotonergic in nature. A valopb cell population in the Edinger-Westphal nucleus was identified as containing thyrotropin-releasing hormone. Valopb cells localized in the hindbrain intermediate reticular formation were noncholinergic in nature (nonmotorneurons). Thus, the presence of valop cell populations in different brain regions with coexpression of neurotransmitters and neuropeptides and the colocalization of valop isoforms in the thalamic cell population indicate regulatory and functional complexity of VAL-opsin in the brain of the zebrafish.
Collapse
Affiliation(s)
- Chong Yee Hang
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 46150, Malaysia
| | | | | |
Collapse
|
178
|
Eilertsen M, Drivenes O, Edvardsen RB, Bradley CA, Ebbesson LOE, Helvik JV. Exorhodopsin and melanopsin systems in the pineal complex and brain at early developmental stages of Atlantic halibut (Hippoglossus hippoglossus). J Comp Neurol 2014; 522:4003-22. [PMID: 25044160 DOI: 10.1002/cne.23652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 01/05/2023]
Abstract
The complexity of the nonvisual photoreception systems in teleosts has just started to be appreciated, with colocalization of multiple photoreceptor types with unresolved functions. Here we describe an intricate expression pattern of melanopsins in early life stages of the marine flat fish Atlantic halibut (Hippoglossus hippoglossus), a period when the unpigmented brain is directly exposed to environmental photons. We show a refined and extensive expression of melanopsins in the halibut brain already at the time of hatching, long before the eyes are functional. We detect melanopsin in the habenula, suprachiasmatic nucleus, dorsal thalamus, and lateral tubular nucleus of first feeding larvae, suggesting conserved functions of the melanopsins in marine teleosts. The complex expression of melanopsins already at larval stages indicates the importance of nonvisual photoreception early in development. Most strikingly, we detect expression of both exorhodopsin and melanopsin in the pineal complex of halibut larvae. Double-fluorescence labeling showed that two clusters of melanopsin-positive cells are located lateral to the central rosette of exorhodopsin-positive cells. The localization of different photopigments in the pineal complex suggests that two parallel photoreceptor systems may be active. Furthermore, the dispersed melanopsin-positive cells in the spinal cord of halibut larvae at the time of hatching may be primary sensory cells or interneurons representing the first example of dispersed high-order photoreceptor cells. The appearance of nonvisual opsins early in the development of halibut provides an alternative model for studying the evolution and functional significance of nonvisual opsins.
Collapse
|
179
|
Wang WC, McLean DL. Selective responses to tonic descending commands by temporal summation in a spinal motor pool. Neuron 2014; 83:708-21. [PMID: 25066087 DOI: 10.1016/j.neuron.2014.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Motor responses of varying intensities rely on descending commands to heterogeneous pools of motoneurons. In vertebrates, numerous sources of descending excitatory input provide systematically more drive to progressively less excitable spinal motoneurons. While this presumably facilitates simultaneous activation of motor pools, it is unclear how selective patterns of recruitment could emerge from inputs weighted this way. Here, using in vivo electrophysiological and imaging approaches in larval zebrafish, we find that, despite weighted excitation, more excitable motoneurons are preferentially activated by a midbrain reticulospinal nucleus by virtue of longer membrane time constants that facilitate temporal summation of tonic drive. We confirm the utility of this phenomenon by assessing the activity of the midbrain and motoneuron populations during a light-driven behavior. Our findings demonstrate that weighted descending commands can generate selective motor responses by exploiting systematic differences in the biophysical properties of target motoneurons and their relative sensitivity to tonic input.
Collapse
Affiliation(s)
- Wei-Chun Wang
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
180
|
Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol 2014; 5:153. [PMID: 25104936 PMCID: PMC4109429 DOI: 10.3389/fphar.2014.00153] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/11/2014] [Indexed: 01/11/2023] Open
Abstract
Most neuroactive drugs were discovered through unexpected behavioral observations. Systematic behavioral screening is inefficient in most model organisms. But, automated technologies are enabling a new phase of discovery-based research in central nervous system (CNS) pharmacology. Researchers are using large-scale behavior-based chemical screens in zebrafish to discover compounds with new structures, targets, and functions. These compounds are powerful tools for understanding CNS signaling pathways. Substantial differences between human and zebrafish biology will make it difficult to translate these discoveries to clinical medicine. However, given the molecular genetic similarities between humans and zebrafish, it is likely that some of these compounds will have translational utility. We predict that the greatest new successes in CNS drug discovery will leverage many model systems, including in vitro assays, cells, rodents, and zebrafish.
Collapse
Affiliation(s)
- Giancarlo Bruni
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Parth Lakhani
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - David Kokel
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
181
|
Gao Y, Chan RHM, Chow TWS, Zhang L, Bonilla S, Pang CP, Zhang M, Leung YF. A High-Throughput Zebrafish Screening Method for Visual Mutants by Light-Induced Locomotor Response. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:693-701. [PMID: 26356340 DOI: 10.1109/tcbb.2014.2306829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Normal and visually-impaired zebrafish larvae have differentiable light-induced locomotor response (LLR), which is composed of visual and non-visual components. It is recently demonstrated that differences in the acute phase of the LLR, also known as the visual motor response (VMR), can be utilized to evaluate new eye drugs. However, most of the previous studies focused on the average LLR activity of a particular genotype, which left information that could address differences in individual zebrafish development unattended. In this study, machine learning techniques were employed to distinguish not only zebrafish larvae of different genotypes, but also different batches, based on their response to light stimuli. This approach allows us to perform efficient high-throughput zebrafish screening with relatively simple preparations. Following the general machine learning framework, some discriminative features were first extracted from the behavioral data. Both unsupervised and supervised learning algorithms were implemented for the classification of zebrafish of different genotypes and batches. The accuracy of the classification in genotype was over 80 percent and could achieve up to 95 percent in some cases. The results obtained shed light on the potential of using machine learning techniques for analyzing behavioral data of zebrafish, which may enhance the reliability of high-throughput drug screening.
Collapse
|
182
|
Portugues R, Feierstein CE, Engert F, Orger MB. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 2014; 81:1328-1343. [PMID: 24656252 DOI: 10.1016/j.neuron.2014.01.019] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2013] [Indexed: 02/04/2023]
Abstract
Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain.
Collapse
Affiliation(s)
- Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Claudia E Feierstein
- Champalimaud Neuroscience Programme, Avenida Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Michael B Orger
- Champalimaud Neuroscience Programme, Avenida Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal.
| |
Collapse
|
183
|
Chen X, Engert F. Navigational strategies underlying phototaxis in larval zebrafish. Front Syst Neurosci 2014; 8:39. [PMID: 24723859 PMCID: PMC3971168 DOI: 10.3389/fnsys.2014.00039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/06/2014] [Indexed: 11/24/2022] Open
Abstract
Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel “Virtual Circle” assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.
Collapse
Affiliation(s)
- Xiuye Chen
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA, USA
| |
Collapse
|
184
|
Moore HA, Whitmore D. Circadian rhythmicity and light sensitivity of the zebrafish brain. PLoS One 2014; 9:e86176. [PMID: 24465943 PMCID: PMC3899219 DOI: 10.1371/journal.pone.0086176] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/05/2013] [Indexed: 12/02/2022] Open
Abstract
Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated.
Collapse
Affiliation(s)
- Helen A. Moore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
185
|
Nilius B, Flockerzi V. What do we really know and what do we need to know: some controversies, perspectives, and surprises. Handb Exp Pharmacol 2014; 223:1239-80. [PMID: 24961986 DOI: 10.1007/978-3-319-05161-1_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRP channels comprise one of the most rapid growing research topics in ion channel research, in fields related to ion channels including channelopathies and translational medicine. We provide here a critical survey on our current knowledge of TRP channels and highlight some of the still open or controversial questions. This comprises questions related to evolution of TRP channels; biophysics, i.e., permeation; pore properties and gating; modulation; the still-elusive 3D structure; and channel subunits but also their role as general sensory channels and in human diseases. We will conclude that our knowledge on TRP channels is still at the very beginning of an exciting research journey.
Collapse
Affiliation(s)
- Bernd Nilius
- Department Cell Mol Medicine, Laboratory Ion Channel Research, KU Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49-Bus 802, 3000, Leuven, Belgium,
| | | |
Collapse
|
186
|
Decker AR, McNeill MS, Lambert AM, Overton JD, Chen YC, Lorca RA, Johnson NA, Brockerhoff SE, Mohapatra DP, MacArthur H, Panula P, Masino MA, Runnels LW, Cornell RA. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern. Dev Biol 2013; 386:428-39. [PMID: 24291744 DOI: 10.1016/j.ydbio.2013.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation.
Collapse
Affiliation(s)
- Amanda R Decker
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew S McNeill
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States
| | - Aaron M Lambert
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeffrey D Overton
- UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Yu-Chia Chen
- Neuroscience Center and Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Ramón A Lorca
- Department of Pharmacology, University of Iowa, Iowa City, IA 52245, United States
| | - Nicolas A Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Durga P Mohapatra
- Department of Pharmacology, University of Iowa, Iowa City, IA 52245, United States
| | - Heather MacArthur
- Department of Pharmacological and Physiological Science, St. Louis University, St. Louis, MO 63104, United States
| | - Pertti Panula
- Neuroscience Center and Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Mark A Masino
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Loren W Runnels
- UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
187
|
Tosches MA, Arendt D. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 2013; 23:1080-9. [PMID: 24080363 DOI: 10.1016/j.conb.2013.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
188
|
Veedin-Rajan VB, Fischer RM, Raible F, Tessmar-Raible K. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii. PLoS One 2013; 8:e75811. [PMID: 24086637 PMCID: PMC3782428 DOI: 10.1371/journal.pone.0075811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr) under the control of the worm’s r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz). TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp) coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain’s overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm’s brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.
Collapse
Affiliation(s)
- Vinoth Babu Veedin-Rajan
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
| | - Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
- * E-mail:
| |
Collapse
|
189
|
Fernandes AM, Beddows E, Filippi A, Driever W. Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 2013; 8:e75002. [PMID: 24073233 PMCID: PMC3779234 DOI: 10.1371/journal.pone.0075002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022] Open
Abstract
The homeodomain transcription factor Orthopedia (Otp) is an important regulator for specification of defined subsets of neuroendocrine cells and dopaminergic neurons in vertebrates. In zebrafish, two paralogous otp genes, otpa and otpb, are present in the genome. Neither complete loss of Otp activity nor differential contributions of Otpa and Otpb to specification of defined neuronal populations have been analyzed in detail. We characterized zebrafish embryos and early larvae mutant for null alleles of otpa, otpb, or both genes to determine their individual contributions to the specification of th expressing dopaminergic neuronal populations as well as of crh, oxt, avp, trh or sst1.1 expressing neuroendocrine cells. otpa mutant larvae show an almost complete reduction of ventral diencephalic dopaminergic neurons, as reported previously. A small reduction in the number of trh cells in the preoptic region is detectable in otpa mutants, but no significant loss of crh, oxt and avp preoptic neuroendocrine cells. otpb single mutant larvae do not display a reduction in dopaminergic neurons or neuroendocrine cells in the otp expressing regions. In contrast, in otpa and otpb double mutant larvae specific groups of dopaminergic neurons as well as of crh, oxt, avp, trh and sst1.1-expressing neuroendocrine cells are completely lost. These observations suggest that the requirement for otpa and otpb function during development of the larval diencephalon is partially redundant. During evolutionary diversification of the paralogous otp genes, otpa maintained the prominent role in ventral diencephalic dopaminergic and neuroendocrine cell specification and is capable of partially compensating otpb loss of function. In addition, we identified a role of Otp in the development of a domain of somatostatin1-expressing cells in the rostral hindbrain, a region with strong otp expression but so far uncharacterized Otp function. Otp may thus be crucial for defined neuronal cell types also in the hindbrain.
Collapse
Affiliation(s)
- António M. Fernandes
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Erin Beddows
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alida Filippi
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
190
|
Martineau PR, Mourrain P. Tracking zebrafish larvae in group--status and perspectives. Methods 2013; 62:292-303. [PMID: 23707495 PMCID: PMC3775500 DOI: 10.1016/j.ymeth.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 11/24/2022] Open
Abstract
Video processing is increasingly becoming a standard procedure in zebrafish behavior investigations as it enables higher research throughput and new or better measures. This trend, fostered by the ever increasing performance-to-price ratio of the required recording and processing equipment, should be expected to continue in the foreseeable future, with video-processing based methods permeating more and more experiments and, as a result, expanding the very role of behavioral studies in zebrafish research. To assess whether the routine video tracking of zebrafish larvae directly in the Petri dish is a capability that can be expected in the near future, the key processing concepts are discussed and illustrated on published zebrafish studies when available or other animals when not.
Collapse
Affiliation(s)
- Pierre R. Martineau
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Beckman Center, Stanford University, Palo Alto, CA 94305, USA
- Martineau & Associates, Menlo Park, CA 94025, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Beckman Center, Stanford University, Palo Alto, CA 94305, USA
- Inserm 1024, Ecole Normale Supérieure, 75005, France
| |
Collapse
|
191
|
Péan S, Daouk T, Vignet C, Lyphout L, Leguay D, Loizeau V, Bégout ML, Cousin X. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring. Neurotoxicol Teratol 2013; 39:45-56. [PMID: 23851001 DOI: 10.1016/j.ntt.2013.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The use of polychlorinated biphenyls (PCBs) has been banned for several decades. PCBs have a long biological half-life and high liposolubility which leads to their bioaccumulation and biomagnification through food chains over a wide range of trophic levels. Exposure can lead to changes in animal physiology and behavior and has been demonstrated in both experimental and field analyses. There are also potential risks to high trophic level predators, including humans. A maternal transfer has been demonstrated in fish as PCBs bind to lipids in eggs. In this study, behavioral traits (exploration and free swimming, with or without challenges) of contaminated zebrafish (Danio rerio) adults and their offspring (both as five-day-old larvae and as two-month-old fish reared under standard conditions) were measured using video-tracking. Long-term dietary exposure to a mixture of non-coplanar PCBs was used to mimic known environmental contamination levels and congener composition. Eight-week-old fish were exposed for eight months at 26-28 °C. Those exposed to an intermediate dose (equivalent to that found in the Loire Estuary, ∑(CB)=515 ng g⁻¹ dry weight in food) displayed behavioral disruption in exploration capacities. Fish exposed to the highest dose (equivalent to that found in the Seine Estuary, ∑(CB)=2302 ng g⁻¹ dry weight in food) displayed an increased swimming activity at the end of the night. In offspring, larval activity was increased and two-month-old fish occupied the bottom section of the tank less often. These findings call for more long-term experiments using the zebrafish model; the mechanisms underlying behavioral disruptions need to be understood due to their implications for both human health and their ecological relevance in terms of individual fitness and survival.
Collapse
Affiliation(s)
- Samuel Péan
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, BP 7, 17137 L'Houmeau, France
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Gerkema MP, Davies WIL, Foster RG, Menaker M, Hut RA. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc Biol Sci 2013; 280:20130508. [PMID: 23825205 DOI: 10.1098/rspb.2013.0508] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In 1942, Walls described the concept of a 'nocturnal bottleneck' in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail.
Collapse
Affiliation(s)
- Menno P Gerkema
- Centre for Behaviour and Neuroscience, Department of Chronobiology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
193
|
Toyama R, Kim MH, Rebbert ML, Gonzales J, Burgess H, Dawid IB. Habenular commissure formation in zebrafish is regulated by the pineal gland-specific gene unc119c. Dev Dyn 2013; 242:1033-42. [PMID: 23749482 DOI: 10.1002/dvdy.23994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and, therefore, is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. RESULTS Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. CONCLUSIONS We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo.
Collapse
Affiliation(s)
- Reiko Toyama
- Program in Genomics of Development, NICHD, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
194
|
Fischer RM, Fontinha BM, Kirchmaier S, Steger J, Bloch S, Inoue D, Panda S, Rumpel S, Tessmar-Raible K. Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain. PLoS Biol 2013; 11:e1001585. [PMID: 23776409 PMCID: PMC3679003 DOI: 10.1371/journal.pbio.1001585] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/02/2013] [Indexed: 12/19/2022] Open
Abstract
Evolutionarily conserved, nonvisual opsins appear to endow specific interneurons and motorneurons of the vertebrate brain with light sensitivity, suggesting that environmental light may be able to modulate information processing. The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory intermotorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports “sensory-inter-motorneurons” as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly providing the endogenous equivalent to an optogenetic machinery. The brains of vertebrates consist mainly of interneurons—neurons processing information coming from other neurons. Light information is believed to enter the brain through dedicated photoreceptor cells that are distinct from these processing cells, and motorneurons then relay the information to the musculature. Here we analyze two slowly evolving groups of vertebrate photopigment proteins, TMT-opsins and VAL-opsins, and find that both opsins are expressed in interneurons and motorneurons in medaka fish and zebrafish. Although these species diverged from a common ancestor over 300 million years ago and live in different habitats, the opsin localization is highly similar, suggesting a fundamental shared role for these proteins. Cultured cells expressing TMT-opsins respond to light, and electrophysiological recordings on adult brain slices identify a distinct set of light-sensitive interneurons. Based on our work, we argue that endogenous TMT- and VAL-opsin expression confers light-sensitivity on interneurons and motorneurons, and we propose two hypotheses. First, that modern vertebrate sensory neurons, interneurons, and motorneurons may derive from a common cell type that combined sensory, information processing and motor output functions. Second, that environmental light may modulate information transmission and processing in a distinct set of vertebrate interneurons and motorneurons.
Collapse
Affiliation(s)
- Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Bruno M. Fontinha
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (I.M.P.), Vienna, Austria
| | - Stephan Kirchmaier
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Julia Steger
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Susanne Bloch
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (I.M.P.), Vienna, Austria
| | - Daigo Inoue
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute, La Jolla, California, United States of America
| | - Simon Rumpel
- Research Institute of Molecular Pathology (I.M.P.), Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
195
|
Renninger SL, Orger MB. Two-photon imaging of neural population activity in zebrafish. Methods 2013; 62:255-67. [PMID: 23727462 DOI: 10.1016/j.ymeth.2013.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023] Open
Abstract
Rapidly developing imaging technologies including two-photon microscopy and genetically encoded calcium indicators have opened up new possibilities for recording neural population activity in awake, behaving animals. In the small, transparent zebrafish, it is even becoming possible to image the entire brain of a behaving animal with single-cell resolution, creating brain-wide functional maps. In this chapter, we comprehensively review past functional imaging studies in zebrafish, and the insights that they provide into the functional organization of neural circuits. We further offer a basic primer on state-of-the-art methods for in vivo calcium imaging in the zebrafish, including building a low-cost two-photon microscope and highlight possible challenges and technical considerations.
Collapse
Affiliation(s)
- Sabine L Renninger
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisbon, Portugal
| | | |
Collapse
|
196
|
Fernandes AM, Fero K, Driever W, Burgess HA. Enlightening the brain: linking deep brain photoreception with behavior and physiology. Bioessays 2013; 35:775-9. [PMID: 23712321 DOI: 10.1002/bies.201300034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vertebrates respond to light with more than just their eyes. In this article, we speculate on the intriguing possibility that a link remains between non-visual opsins and neurohormonal systems that control neuronal circuit formation and activity in mammals. Historically, the retina and pineal gland were considered the only significant light-sensing tissues in vertebrates. However over the last century, evidence has accumulated arguing that extra-ocular tissues in vertebrates influence behavior through non-image-forming photoreception. One such class of extra-ocular light detectors are the long mysterious deep brain photoreceptors. Here, we review recent findings on the cellular identity and the function of deep brain photoreceptors controlling behavior and physiology in zebrafish, and discuss their implications.
Collapse
Affiliation(s)
- António M Fernandes
- Developmental Biology Unit, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | | | | | | |
Collapse
|
197
|
Arrenberg AB, Driever W. Integrating anatomy and function for zebrafish circuit analysis. Front Neural Circuits 2013; 7:74. [PMID: 23630469 PMCID: PMC3632786 DOI: 10.3389/fncir.2013.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 01/31/2023] Open
Abstract
Due to its transparency, virtually every brain structure of the larval zebrafish is accessible to light-based interrogation of circuit function. Advanced stimulation techniques allow the activation of optogenetic actuators at different resolution levels, and genetically encoded calcium indicators report the activity of a large proportion of neurons in the CNS. Large datasets result and need to be analyzed to identify cells that have specific properties—e.g., activity correlation to sensory stimulation or behavior. Advances in three-dimensional (3D) functional mapping in zebrafish are promising; however, the mere coordinates of implicated neurons are not sufficient. To comprehensively understand circuit function, these functional maps need to be placed into the proper context of morphological features and projection patterns, neurotransmitter phenotypes, and key anatomical landmarks. We discuss the prospect of merging functional and anatomical data in an integrated atlas from the perspective of our work on long-range dopaminergic neuromodulation and the oculomotor system. We propose that such a resource would help researchers to surpass current hurdles in circuit analysis to achieve an integrated understanding of anatomy and function.
Collapse
Affiliation(s)
- Aristides B Arrenberg
- Developmental Biology, Institute of Biology I, Faculty of Biology, BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | | |
Collapse
|
198
|
Abstract
Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.
Collapse
|
199
|
Elbaz I, Foulkes NS, Gothilf Y, Appelbaum L. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 2013; 7:9. [PMID: 23378829 PMCID: PMC3561628 DOI: 10.3389/fncir.2013.00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/15/2013] [Indexed: 01/31/2023] Open
Abstract
The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.
Collapse
Affiliation(s)
- Idan Elbaz
- The Mina and Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | | | | | | |
Collapse
|
200
|
Blechman J, Levkowitz G. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity. Front Endocrinol (Lausanne) 2013; 4:55. [PMID: 23734144 PMCID: PMC3659299 DOI: 10.3389/fendo.2013.00055] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/24/2013] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.
Collapse
Affiliation(s)
- Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
- *Correspondence: Gil Levkowitz, Department of Molecular Cell Biology, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel. e-mail:
| |
Collapse
|