151
|
Ling SC, Wu K, Zhang DG, Luo Z. Endoplasmic Reticulum Stress-Mediated Autophagy and Apoptosis Alleviate Dietary Fat-Induced Triglyceride Accumulation in the Intestine and in Isolated Intestinal Epithelial Cells of Yellow Catfish. J Nutr 2019; 149:1732-1741. [PMID: 31204781 DOI: 10.1093/jn/nxz135] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The intestine is the main organ for absorbing dietary fat. High dietary lipid intake leads to fat deposition in the intestine and adversely influences fat absorption and health, but the underlying mechanism is unknown. OBJECTIVES We used yellow catfish and their isolated intestinal epithelial cells to test the hypothesis that endoplasmic reticulum (ER) stress, autophagy, and apoptosis mediate fat-induced changes in lipid metabolism. METHODS Male and female yellow catfish (weight: 3.79 ± 0.16 g; age: 3 mo) were fed diets containing lipid at 6.98% (low-fat diet; LFD), 11.3% (middle-fat diet; MFD), or 15.4% (high-fat diet; HFD) (by weight) for 8 wk. Each dietary group had 3 replicates, 30 fish per replicate. Their intestinal epithelial cells were isolated and incubated for 24 h in control solution or various concentrations of fatty acids (FAs) with or without 2-h pretreatment with an inhibitor [3-methyladenine (3-MA), 4-phenyl butyric acid (4-PBA), or Ac-DVED-CHO (AC)]. Triglyceride (TG) contents, genes, and enzymes involved in lipid metabolism, ER stress, autophagy, and apoptosis were determined in intestinal tissue and cells; immunoblotting, BODIPY 493/503 staining, ultrastructural observation, and the detection of autophagic and apoptotic vesicles were performed on intestinal cells. RESULTS Compared with the LFD and MFD, the HFD increased intestinal TG content by 120-226%, activities of lipogenic enzymes by 19.0-245%, expression of genes related to lipogenesis (0.77-8.4-fold), lipolysis (0.36-6.0-fold), FA transport proteins (0.79-1.7-fold), ER stress (0.55-7.5-fold), autophagy (0.56-4.2-fold), and apoptosis (0.80-5.2-fold). Using isolated intestinal epithelial cells and inhibitors (4-PBA, 3-MA, and AC), we found that ER stress mediated FA-induced activation of autophagy (11.0-50.1%) and apoptosis (10.4-32.0%), and lipophagy and apoptosis mediated FA-induced lipolysis (3.40-41.6%). CONCLUSIONS An HFD upregulated lipogenesis, lipolysis, and FA transport, induced ER stress, and activated autophagy and apoptosis. ER stress, autophagy, and apoptosis play important regulatory roles in fat-induced changes in lipid metabolism in the intestine and intestinal epithelial cells of yellow catfish.
Collapse
Affiliation(s)
- Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
152
|
Abstract
Nutrient overload occurs worldwide as a consequence of the modern diet pattern and the physical inactivity that sometimes accompanies it. Cells initiate multiple protective mechanisms to adapt to elevated intracellular metabolites and restore metabolic homeostasis, but irreversible injury to the cells can occur in the event of prolonged nutrient overload. Many studies have advanced the understanding of the different detrimental effects of nutrient overload; however, few reports have made connections and given the full picture of the impact of nutrient overload on cellular metabolism. In this review, detailed changes in metabolic and energy homeostasis caused by chronic nutrient overload, as well as their associations with the development of metabolic disorders, are discussed. Overnutrition-induced changes in key organelles and sensors rewire cellular bioenergetic pathways and facilitate the shift of the metabolic state toward biosynthesis, thereby leading to the onset of various metabolic disorders, which are essentially the downstream manifestations of a misbalanced metabolic equilibrium. Based on these mechanisms, potential therapeutic targets for metabolic disorders and new research directions are proposed.
Collapse
Affiliation(s)
- Haowen Qiu
- Department of Nutrition and Health Sciences and Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Vicki Schlegel
- Department of Nutrition and Health Sciences and Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
153
|
Frapolli R, Bello E, Ponzo M, Craparotta I, Mannarino L, Ballabio S, Marchini S, Carrassa L, Ubezio P, Porcu L, Brich S, Sanfilippo R, Casali PG, Gronchi A, Pilotti S, D'Incalci M. Combination of PPARγ Agonist Pioglitazone and Trabectedin Induce Adipocyte Differentiation to Overcome Trabectedin Resistance in Myxoid Liposarcomas. Clin Cancer Res 2019; 25:7565-7575. [PMID: 31481505 DOI: 10.1158/1078-0432.ccr-19-0976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/01/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was aimed at investigating whether the PPARγ agonist pioglitazone-given in combination with trabectedin-is able to reactivate adipocytic differentiation in myxoid liposarcoma (MLS) patient-derived xenografts, overcoming resistance to trabectedin. EXPERIMENTAL DESIGN The antitumor and biological effects of trabectedin, pioglitazone, and the combination of the two drugs were investigated in nude mice bearing well-characterized MLS xenografts representative of innate or acquired resistance against trabectedin. Pioglitazone and trabectedin were given by daily oral and weekly i.v. administrations, respectively. Molecular studies were performed by using microarrays approach, real-time PCR, and Western blotting. RESULTS We found that the resistance of MLS against trabectedin is associated with the lack of activation of adipogenesis. The PPARγ agonist pioglitazone reactivated adipogenesis, assessed by histologic and gene pathway analyses. Pioglitazone was well tolerated and did not increase the toxicity of trabectedin. The ability of pioglitazone to reactivate adipocytic differentiation was observed by morphologic examination, and it is consistent with the increased expression of genes such as ADIPOQ implicated in the adipogenesis process. The determination of adiponectin by Western blotting constitutes a good and reliable biomarker related to MLS adipocytic differentiation. CONCLUSIONS The finding that the combination of pioglitazone and trabectedin induces terminal adipocytic differentiation of some MLSs with the complete pathologic response and cure of tumor-bearing mice provides a strong rationale to test the combination of trabectedin and pioglitazone in patients with MLS.
Collapse
Affiliation(s)
- Roberta Frapolli
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ezia Bello
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Ponzo
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Mannarino
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sara Ballabio
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sergio Marchini
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Carrassa
- Unit of DNA repair, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Ubezio
- Unit of Biophysics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Porcu
- Unit of Methodological Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Brich
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Sanfilippo
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
154
|
Ge CX, Xu MX, Qin YT, Gu TT, Lou DS, Li Q, Hu LF, Wang BC, Tan J. Endoplasmic reticulum stress-induced iRhom2 up-regulation promotes macrophage-regulated cardiac inflammation and lipid deposition in high fat diet (HFD)-challenged mice: Intervention of fisetin and metformin. Free Radic Biol Med 2019; 141:67-83. [PMID: 31153974 DOI: 10.1016/j.freeradbiomed.2019.05.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Endoplasmic reticulum stress (ERS) has been implicated in obesity-associated cardiac remodeling and dysfunction. Inactive rhomboid protein 2 (iRhom2), also known as Rhbdf2, is an inactive member of the rhomboid intramembrane proteinase family, playing an essential role in regulating inflammation. Nevertheless, the role of ERS-meditated iRhom2 pathway in metabolic stress-induced cardiomyopathy remains unknown. In the study, we showed that 4-PBA, as an essential ERS inhibitor, significantly alleviated high fat diet (HFD)-induced metabolic disorder and cardiac dysfunction in mice. Additionally, lipid deposition in heart tissues was prevented by 4-PBA in HFD-challenged mice. Moreover, 4-PBA blunted the expression of iRhom2, TACE, TNFR2 and phosphorylated NF-κB to prevent HFD-induced expression of inflammatory factors. Further, 4-PBA restrained HFD-triggered oxidative stress by promoting Nrf-2 signaling. Importantly, 4-PBA markedly suppressed cardiac ERS in HFD mice. The anti-inflammation, anti-ERS and anti-oxidant effects of 4-PBA were verified in palmitate (PAL)-incubated macrophages and cardiomyocytes. In addition, promoting ERS could obviously enhance iRhom2 signaling in vitro. Intriguingly, our data demonstrated that PAL-induced iRhom2 up-regulation apparently promoted macrophage to generate inflammatory factors that could promote cardiomyocyte inflammation and lipid accumulation. Finally, interventions by adding fisetin or metformin significantly abrogated metabolic stress-induced cardiomyopathy through the mechanisms mentioned above. In conclusion, this study provided a novel mechanism for metabolic stress-induced cardiomyopathy pathogenesis. Therapeutic strategy to restrain ROS/ERS/iRhom2 signaling pathway could be developed to prevent myocardial inflammation and lipid deposition, consequently alleviating obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chen-Xu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Yu-Ting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, PR China
| | - Ting-Ting Gu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, PR China
| | - De-Shuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| |
Collapse
|
155
|
Mu K, Sun Y, Zhao Y, Zhao T, Li Q, Zhang M, Li H, Zhang R, Hu C, Wang C, Jia W. Hepatic nitric oxide synthase 1 adaptor protein regulates glucose homeostasis and hepatic insulin sensitivity in obese mice depending on its PDZ binding domain. EBioMedicine 2019; 47:352-364. [PMID: 31473185 PMCID: PMC6796549 DOI: 10.1016/j.ebiom.2019.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND NOS1AP is an adaptor protein and its SNP rs12742393 was associated with type 2 diabetes (T2D). However, it remains uncertain whether NOS1AP plays a role in regulation of insulin sensitivity. Hepatic insulin resistance contributed to the development of T2D. Here, our investigation was focused on whether NOS1AP is involved in the regulation of hepatic insulin sensitivity and its underlying mechanisms. METHODS Liver specific NOS1AP condition knockout (CKO) and NOS1AP overexpression mice were generated and given a high fat diet. SNPs of NOS1AP gene were genotyped in 86 human subjects. FINDINGS NOS1AP protein is expressed in human and mouse liver. CKO mice exhibited impaired pyruvate, glucose and insulin tolerance, and increased lipid deposits in the liver. Conversely, NOS1AP overexpression in livers of obese mice improved pyruvate and/or glucose, and insulin tolerance, and attenuated liver lipid accumulation. Moreover, hepatocytes from CKO mice exhibited an elevated glucose production and mRNA expressions of Pc and Pck1. Overexpression of NOS1AP potentiated insulin-stimulated activation of IR/Akt in livers from obese mice. The insulin sensitizing effect of NOS1AP could be mimicked by overexpression of C-terminal domain of NOS1AP in ob/ob mice. Furthermore, NOS1AP overexpression in liver significantly inhibited p38 MAPK phosphorylation, and maintained ER homeostasis through p-eIF2a-ATF4-CHOP pathway. Subjects with rsl2742393 of NOS1AP have higher risk to develop hepatic steatosis. INTERPRETATION Our data demonstrate a novel role of NOS1AP in regulating hepatic insulin sensitivity and p38 MAPK inactivation in obese mice, which makes NOS1AP a potential therapeutic target for the prevention and treatment of T2D. FUND: This work was supported by the National Natural Science Foundation of China (81670707, 31340072) (to C. Wang), and National Basic Research Program of China (Nation 973 Program) (2011CB504001) (to W. Jia).
Collapse
Affiliation(s)
- Kaida Mu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Yun Sun
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Yu Zhao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Tianxue Zhao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Qian Li
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Huating Li
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Rong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Chen Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China.
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| |
Collapse
|
156
|
Takakura K, Oikawa T, Nakano M, Saeki C, Torisu Y, Kajihara M, Saruta M. Recent Insights Into the Multiple Pathways Driving Non-alcoholic Steatohepatitis-Derived Hepatocellular Carcinoma. Front Oncol 2019; 9:762. [PMID: 31456946 PMCID: PMC6700399 DOI: 10.3389/fonc.2019.00762] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic syndrome with fatty liver is spreading on a worldwide scale. Correspondingly, the number of patients with the hepatic phenotype of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in its advanced states, non-alcoholic steatohepatitis (NASH), and the subsequent hepatocellular carcinoma (HCC) derived from NASH (NASH-HCC) is increasing remarkably. A large-scale epidemiological study revealed that obesity can be a risk factor of such cancers as HCC. Moreover, despite the ongoing trends of declining cancer incidence and mortality for most cancer types, HCC has experienced a markedly increased rate of both. Considering the differences in liver-related mortality among NAFLD patients, NASH, and NASH-HCC should be included in the objectives of initiatives to manage NAFLD patients and their progression to the advanced stages. Unfortunately, research has yet to make a crucial drug discovery for the effective treatment of NASH and NASH-HCC, although it is urgently needed. The latest widespread concept of the “multiple parallel hits hypothesis,” whereby multiple factors contribute concurrently to disease pathogenesis has led to advances in the elucidation of hepatic and systemic molecular mechanisms driving NASH and the subsequent NASH-HCC progression; the results are not only extensive but promising for therapeutics. Here, we have summarized the myriad landmark discoveries of recent research into the pathogenic processes underlying NASH-HCC development and with the greatest possibility for a new generation of pharmaceutical products for interference and treatment.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Nakano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
157
|
Zhang Y, Lucius MD, Altomare D, Havighorst A, Farmaki E, Chatzistamou I, Shtutman M, Kiaris H. Coordination Analysis of Gene Expression Points to the Relative Impact of Different Regulators During Endoplasmic Reticulum Stress. DNA Cell Biol 2019; 38:969-981. [PMID: 31355672 DOI: 10.1089/dna.2019.4910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Analysis of gene expression can be challenging, especially if it involves genetically diverse populations that exhibit high variation in their individual expression profile. Despite this variation, it is conceivable that in the same individuals a high degree of coordination is maintained between transcripts that belong to the same signaling modules and are associated with related biological functions. To explore this further, we calculated the correlation in the expression levels between each of ATF4, CHOP (DDIT3), GRP94, DNAJB9 (ERdj4), DNAJ3C (P58IPK), and HSPA5 (BiP/GRP78) with the whole transcriptome in primary fibroblasts from deer mice following induction of endoplasmic reticulum (ER) stress. Since these genes are associated with different transducers of the unfolded protein response (UPR), we postulated that their profile, in terms of correlation of transcripts, reflects distinct UPR branches engaged, and therefore different biological processes. Standard gene ontology analysis was able to predict major functions associated with the corresponding transcript, and of the UPR arm related to that, namely regulation of the apoptotic response by ATF4 (PERK arm) and the ER stress-associated degradation for GRP94 (IRE1). BiP, being a global regulator of the UPR, was associated with activation of ER stress in a rather global manner. Pairwise comparison in the correlation coefficients for these genes' associated transcriptome showed the relevance of selected genes in terms of expression profiles. Conventional assessment of differential gene expression was incapable of providing meaningful information and pointed only to a generic association with stress. Collectively, this approach suggests that by evaluating the degree of coordination in gene expression, in genetically diverse biological specimens, may be useful in assigning genes in transcriptome networks, and more importantly in linking signaling nodules to specific biological functions and processes.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Matthew D Lucius
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Amanda Havighorst
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Elena Farmaki
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina.,Peromyscus Genetic Stock Center, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
158
|
Jung J, Kim GW, Lee B, Joo JWJ, Jang W. Integrative genomic and transcriptomic analysis of genetic markers in Dupuytren's disease. BMC Med Genomics 2019; 12:98. [PMID: 31296227 PMCID: PMC6624179 DOI: 10.1186/s12920-019-0518-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Dupuytren’s disease (DD) is a fibroproliferative disorder characterized by thickening and contracting palmar fascia. The exact pathogenesis of DD remains unknown. Results In this study, we identified co-expressed gene set (DD signature) consisting of 753 genes via weighted gene co-expression network analysis. To confirm the robustness of DD signature, module enrichment analysis and meta-analysis were performed. Moreover, this signature effectively classified DD disease samples. The DD signature were significantly enriched in unfolded protein response (UPR) related to endoplasmic reticulum (ER) stress. Next, we conducted multiple-phenotype regression analysis to identify trans-regulatory hotspots regulating expression levels of DD signature using Genotype-Tissue Expression data. Finally, 10 trans-regulatory hotspots and 16 eGenes genes that are significantly associated with at least one cis-eQTL were identified. Conclusions Among these eGenes, major histocompatibility complex class II genes and ZFP57 zinc finger protein were closely related to ER stress and UPR, suggesting that these genetic markers might be potential therapeutic targets for DD. Electronic supplementary material The online version of this article (10.1186/s12920-019-0518-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junghyun Jung
- Department of Life science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Go Woon Kim
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, South Korea
| | - Byungjo Lee
- Department of Life science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jong Wha J Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
| | - Wonhee Jang
- Department of Life science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
159
|
Wu J, Feng S, Chen X, Lv Z, Qu Z, Chen H, Xue C, Zhu M, Guo K, Wu P. Intra-Articular Injection of Tranexamic Acid on Perioperative Blood Loss During Unicompartmental Knee Arthroplasty. Med Sci Monit 2019; 25:5068-5074. [PMID: 31285414 PMCID: PMC6636410 DOI: 10.12659/msm.914817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Tranexamic acid (TXA) is safe and effective in total knee arthroplasty (TKA) for the prevention of bleeding. However, the role of TXA during unicompartmental knee arthroplasty (UKA) remains unclear. This study aimed to compare operative blood loss in patients undergoing UKA treated with an intra-articular injection of TXA with controls undergoing UKA without TXA. Material/Methods The prospective study included 101 patients who underwent UKA between January 2014 to March 2018. All patients completed a preoperative routine examination and were randomized to the study group (n=54) and the control group (n-47). The study group was given an articular injection of TXA (1.5 g in 50 ml normal saline) after the fascia was closed; the control group was injected with the same volume of normal saline. Blood volumes were measured from the drainage tube of the two groups during 48 hours. Total blood loss, postoperative drainage, hidden blood loss, blood transfusion rates, postoperative hemoglobin values, indicators of coagulation function, and the rates of wound complications were recorded. Results Total blood loss in the study group was 745.6±105.1 ml, total drainage volume was 353.9±79.5 ml, and the hidden blood loss was 391.7±80.5 ml, which were all significantly lower when compared with the control group (P<0.05). None of the patients in the two groups suffered complications of surgery. Conclusions Intra-articular injection of TXA significantly reduced the total blood loss in patients who underwent UKA and did not increase the rate of complications.
Collapse
Affiliation(s)
- Jutai Wu
- Department of Orthopaedics, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Shuo Feng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Xiangyang Chen
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Zexiang Lv
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Zhe Qu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Hongliang Chen
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth Peoples' Hospital Affiliated to Tongji University, Shanghai, China (mainland)
| | - Min Zhu
- Department of Orthopedics, Shanghai Tenth Peoples' Hospital Affiliated to Tongji University, Shanghai, China (mainland)
| | - Kaijin Guo
- Department of Orthopaedics, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth Peoples' Hospital Affiliated to Tongji University, Shanghai, China (mainland)
| |
Collapse
|
160
|
Hong T, Ge Z, Zhang B, Meng R, Zhu D, Bi Y. Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21. Int J Mol Med 2019; 44:469-478. [PMID: 31173165 PMCID: PMC6605699 DOI: 10.3892/ijmm.2019.4210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO), known primarily for its role in erythropoiesis, was recently reported to play a beneficial role in regulating lipid metabolism; however, the underlying mechanism through which EPO decreases hepatic lipid accumulation requires further investigation. Endoplasmic reticulum (ER) stress may contribute to the progression of hepatic steatosis. The present study investigated the effects of EPO on regulating ER stress in fatty liver. It was demonstrated that EPO inhibited hepatic ER stress and steatosis in vivo and in vitro. Interestingly, these beneficial effects were abrogated in liver-specific sirtuin 1 (SIRT1)-knockout mice compared with wild-type littermates. In addition, in palmitate-treated hepatocytes, small interfering RNA-mediated SIRT1 silencing suppressed the effects of EPO on lipid-induced ER stress. Additionally, EPO stimulated hepatic fibroblast growth factor 21 (FGF21) expression and secretion in a SIRT1-dependent manner in mice. Furthermore, the sensitivity of hepatocytes from obese mice to FGF21 was restored following treatment with EPO. Collectively, the results of the present study revealed a new mechanism underlying the regulation of hepatic ER stress and FGF21 expression induced by EPO; thus, EPO may be considered as a potential therapeutic agent for the treatment of fatty liver and obesity.
Collapse
Affiliation(s)
- Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bingjie Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
161
|
Abstract
Endoplasmic reticulum (ER) stress is a major contributor to liver disease and hepatic fibrosis, but the role it plays varies depending on the cause and progression of the disease. Furthermore, ER stress plays a distinct role in hepatocytes versus hepatic stellate cells (HSCs), which adds to the complexity of understanding ER stress and its downstream signaling through the unfolded protein response (UPR) in liver disease. Here, the authors focus on the current literature of ER stress in nonalcoholic and alcoholic fatty liver diseases, how ER stress impacts hepatocyte injury, and the role of ER stress in HSC activation and hepatic fibrosis. This review provides insight into the complex signaling and regulation of the UPR, parallels and distinctions between different liver diseases, and how ER stress may be targeted as an antisteatotic or antifibrotic therapy to limit the progression of liver disease.
Collapse
Affiliation(s)
- Jessica L. Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
162
|
Gu M, Zhao P, Zhang S, Fan S, Yang L, Tong Q, Ji G, Huang C. Betulinic acid alleviates endoplasmic reticulum stress-mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. Br J Pharmacol 2019; 176:847-863. [PMID: 30635917 PMCID: PMC6433649 DOI: 10.1111/bph.14570] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The molecular mechanism for the pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains elusive. Both farnesoid X receptor (FXR) signalling and endoplasmic reticulum (ER) stress contribute to the progression of NAFLD; however, it is not clear whether the actions of these two pathways are dependent on each other. Moreover, the pharmacological benefits and mechanism of betulinic acid (BA) in controlling metabolic syndrome and NAFLD are largely unknown. EXPERIMENTAL APPROACH A reporter assay and a time-resolved FRET assay were used to identify BA as an agonist of the FXR. NAFLD was induced by a methionine and choline-deficient L-amino acid diet (MCD) and high-fat diet (HFD). The pharmacological effects of BA (100 mg·kg-1 ·day-1 ) and potential interactions between hepatic FXR activation and ER stress pathways were evaluated by FXR silencing, Western blot and RT-PCR analyses using control and FXR-/- mice. KEY RESULTS Activation of the FXR inhibited intracellular PERK/EIF2α/ATF4 and CHOP signalling, thereby alleviating hepatic ER stress, whereas FXR silencing resulted in an opposite effect. Furthermore, we identified BA as an FXR agonist that effectively attenuated the progression of NAFLD and metabolic disorders in both HFD- and MCD diet-fed mice and restored the hepatocellular ER homeostasis by stimulating the FXR signalling pathway and blocking PERK/EIF2α signalling. In contrast, the effects of BA were attenuated in FXR-/- mice. CONCLUSIONS AND IMPLICATIONS Our data demonstrate that pharmacological activation of the FXR by BA reduces hepatocellular ER stress and attenuates NAFLD in an animal model of hepatic steatosis.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Disease, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ping Zhao
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shiying Zhang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shengjie Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Yang
- Research Center for Traditional Chinese Medicine of Complexity SystemsShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological SciencesUniversity of Texas McGovern Medical SchoolHoustonTexasUSA
| | - Guang Ji
- Institute of Digestive Disease, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Huang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
163
|
Séité S, Pioche T, Ory N, Plagnes-Juan E, Panserat S, Seiliez I. The Autophagic Flux Inhibitor Bafilomycine A1 Affects the Expression of Intermediary Metabolism-Related Genes in Trout Hepatocytes. Front Physiol 2019; 10:263. [PMID: 30936838 PMCID: PMC6431650 DOI: 10.3389/fphys.2019.00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Autophagy is an evolutionarily conserved process of cellular self-eating which emerged these last years as a major adaptive metabolic response to various stresses such as fasting, hypoxia, or environmental pollutants. However, surprisingly very few data is currently available on its role in fish species which are directly exposed to frequent environmental perturbations. Here, we report that the treatment of fasted trout hepatocytes with the autophagy inhibitor Bafilomycine A1 lowered the mRNA levels of many of the gluconeogenesis-related genes and increased those of genes involved in intracellular lipid stores. Concurrently, intracellular free amino acid levels dropped and the expression of the main genes involved in the endoplasmic reticulum (ER) stress exhibited a sharp increase in autophagy inhibited cells. Together these results highlight the strong complexity of the crosstalk between ER, autophagy and metabolism and support the importance of considering this function in future studies on metabolic adaptation of fish to environmental stresses.
Collapse
Affiliation(s)
- Sarah Séité
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
- Evonik Rexim, Ham, France
- Evonik Nutrition and Care GmbH, Hanau, Germany
| | - Tracy Pioche
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Nicolas Ory
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
164
|
Abstract
Lipid droplets are storage organelles at the centre of lipid and energy homeostasis. They have a unique architecture consisting of a hydrophobic core of neutral lipids, which is enclosed by a phospholipid monolayer that is decorated by a specific set of proteins. Originating from the endoplasmic reticulum, lipid droplets can associate with most other cellular organelles through membrane contact sites. It is becoming apparent that these contacts between lipid droplets and other organelles are highly dynamic and coupled to the cycles of lipid droplet expansion and shrinkage. Importantly, lipid droplet biogenesis and degradation, as well as their interactions with other organelles, are tightly coupled to cellular metabolism and are critical to buffer the levels of toxic lipid species. Thus, lipid droplets facilitate the coordination and communication between different organelles and act as vital hubs of cellular metabolism.
Collapse
Affiliation(s)
- James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, USA.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
165
|
Hughes S, Vrinds I, de Roo J, Francke C, Shimeld SM, Woollard A, Sato A. DnaJ chaperones contribute to canalization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2019; 331:201-212. [PMID: 30653842 DOI: 10.1002/jez.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
Canalization, an intrinsic robustness of development to external (environmental) or internal (genetic) perturbations, was first proposed over half a century ago. However, whether the robustness to environmental stress (environmental canalization [EC]) and to genetic variation (genetic canalization) are underpinned by the same molecular basis remains elusive. The recent discovery of the involvement of two endoplasmic reticulum (ER)-associated DnaJ genes in developmental buffering, orthologues of which are conserved across Metazoa, indicates that the role of ER-associated DnaJ genes might be conserved across the animal kingdom. To test this, we surveyed the ER-associated DnaJ chaperones in the nematode Caenorhabditis elegans. We then quantified the phenotype, in the form of variance and mean of seam cell counts, from RNA interference knockdown of DnaJs under three different temperatures. We find that seven out of eight ER-associated DnaJs are involved in either EC or microenvironmental canalization. Moreover, we also found two DnaJ genes not specifically associated with ER (DNAJC2/dnj-11 and DNAJA2/dnj-19) were involved in canalization. Protein expression pattern showed that these DnaJs are upregulated by heat stress, yet not all of them are expressed in the seam cells. Moreover, we found that most of the buffering DnaJs also control lifespan. We therefore concluded that a number of DnaJ chaperones, not limited to those associated with the ER, are involved in canalization as a part of the complex system that underlies development.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Inge Vrinds
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Joris de Roo
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Christof Francke
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | | | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
166
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
167
|
Havighorst A, Zhang Y, Farmaki E, Kaza V, Chatzistamou I, Kiaris H. Differential regulation of the unfolded protein response in outbred deer mice and susceptibility to metabolic disease. Dis Model Mech 2019; 12:dmm.037242. [PMID: 30733237 PMCID: PMC6398494 DOI: 10.1242/dmm.037242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/28/2019] [Indexed: 01/10/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been causatively linked to the onset of various pathologies. However, whether and how inherent variations in the resulting unfolded protein response (UPR) affect predisposition to ER-stress-associated metabolic conditions remains to be established. By using genetically diverse deer mice (Peromyscus maniculatus) as a model, we show that the profile of tunicamycin-induced UPR in fibroblasts isolated at puberty varies between individuals and predicts deregulation of lipid metabolism and diet-induced hepatic steatosis later in life. Among the different UPR targets tested, CHOP (also known as Ddit3) more consistently predicted elevated plasma cholesterol and hepatic steatosis. Compared with baseline levels or inducibility, the maximal intensity of the UPR following stimulation best predicts the onset of pathology. Differences in the expression profile of the UPR recorded in cells from different populations of deer mice correlate with the varying response to ER stress in altitude adaptation. Our data suggest that the response to ER stress in cultured cells varies among individuals, and its profile early in life might predict the onset of ER-stress-associated disease in the elderly. This article has an associated First Person interview with the first author of the paper. Summary: By using genetically diverse deer mice, we show that the expression of different chaperones is highly coordinated in individual animals and its profile predicts the onset of metabolic pathology.
Collapse
Affiliation(s)
- Amanda Havighorst
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Youwen Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Elena Farmaki
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA .,Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC 29208-3402, USA
| |
Collapse
|
168
|
Wu W, Li W, Wei J, Wang C, Yao Y, Zhu W, He W, Zhou W, Liu J. Chronic intermittent hypoxia accelerates liver fibrosis in rats with combined hypoxia and nonalcoholic steatohepatitis via angiogenesis rather than endoplasmic reticulum stress. Acta Biochim Biophys Sin (Shanghai) 2019; 51:159-167. [PMID: 30668625 DOI: 10.1093/abbs/gmy169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aimed to investigate the role of endoplasmic reticulum stress (ERS) and its related inflammation and angiogenesis in liver fibrosis in a rat model of combined hypoxia and nonalcoholic steatohepatitis (NASH) and to confirm whether the intervention of hypoxia-inducible factor 1α (HIF1α) can improve fibrosis. Liver histological changes and biochemical indices, HIF1α, inflammatory factors, ERS-related parameters (GRP78, CHOP, caspase-3, and caspase-12), and angiogenesis indices (VEGFA, VEGFR2, and CD34) were evaluated. Compared with the control rats, the liver tissue of rats with hypoxia and NASH had obvious NASH characteristics and hepatic fibrosis was significantly aggravated, including bridging fibrosis in some rats. The mRNA expression levels of HIF1α, VEGFA, and VEGFR2 and total immunohistochemical staining scores of VEGFR2 and CD34 were significantly increased. In addition, HIF1α silencing significantly decreased HIF1α, biochemical indices (ALT, AST, and TG), inflammatory factors (TNFα, IL6, and IL1β), and angiogenesis indices (CD34 and VEGFR2), consequently, improved the hepatic fibrosis score in the rat model of combined hypoxia and NASH. Taken together, chronic intermittent hypoxia accelerates liver fibrosis in rats with combined hypoxia and NASH via angiogenesis rather than ERS and HIF1α intervention can improve liver fibrosis, angiogenesis, inflammatory factors, and biochemical indices. Therefore, HIF1α is a key regulatory factor of liver fibrosis in rats with combined hypoxia and NASH.
Collapse
Affiliation(s)
- Wei Wu
- Department of Gastroenterology, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Weiping Li
- Department of Gastroenterology, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Jiaojiao Wei
- Department of Gastroenterology, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Chunsheng Wang
- Department of Microbiology and Immunology, School of Medicine, Huzhou University, China
| | - Yunliang Yao
- Department of Microbiology and Immunology, School of Medicine, Huzhou University, China
| | - Weihua Zhu
- Department of Gastroenterology, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Weimei He
- Department of Gastroenterology, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Weimei Zhou
- Department of Gastroenterology, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Jiang Liu
- Department of Gastroenterology, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
169
|
Excessive Oxidative Stress Contributes to Increased Acute ER Stress Kidney Injury in Aged Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2746521. [PMID: 30809321 PMCID: PMC6369482 DOI: 10.1155/2019/2746521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/30/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022]
Abstract
The aged kidney is susceptible to acute injury due presumably to its decreased ability to handle additional challenges, such as endoplasmic reticulum (ER) stress. This was tested by giving tunicamycin, an ER stress inducer, to either old or young mice. Injection of high dose caused renal failure in old mice, not in young mice. Moreover, injection of low dose resulted in severe renal damage in old mice, confirming the increased susceptibility of aged kidney to ER stress. There existed an abnormality in ER stress response kinetics in aged kidney, characterized by a loss of XBP-1 splicing and decreased PERK-eIF2α phosphorylation at late time point. The presence of excessive oxidative stress in aged kidney may play a role since high levels of oxidation increased ER stress-induced cell death and decreased IRE1 levels and XBP-1 splicing. Importantly, treatment with antioxidants protected old mice from kidney injury and normalized IRE1 and XBP-1 responses. Furthermore, older mice (6 months old) transgenic with antioxidative stress AGER1 were protected from ER stress-induced kidney injury. In conclusion, the decreased ability to handle ER stress, partly due to the presence of excessive oxidative stress, may contribute to increased susceptibility of the aging kidney to acute injury.
Collapse
|
170
|
Pinto BAS, França LM, Laurindo FRM, Paes AMDA. Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:67-82. [DOI: 10.1007/978-3-030-11488-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
171
|
Kim SH, Kwon DY, Kwak JH, Lee S, Lee YH, Yun J, Son TG, Jung YS. Tunicamycin-Induced ER Stress is Accompanied with Oxidative Stress via Abrogation of Sulfur Amino Acids Metabolism in the Liver. Int J Mol Sci 2018; 19:ijms19124114. [PMID: 30567393 PMCID: PMC6321199 DOI: 10.3390/ijms19124114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in non-alcoholic fatty liver disease (NAFLD), but the relationship between oxidative stress, another well-known risk factor of NAFLD, and ER stress has yet to be elucidated. In this study, we treated mice with tunicamycin (TM) (2 mg/kg body weight) for 48 h to induce ER stress in the liver and examined the metabolic pathway that synthesizes the endogenous antioxidant, glutathione (GSH). Tunicamycin (TM) treatment significantly increased mRNA levels of CHOP and GRP78, and induced lipid accumulation in the liver. Lipid peroxidation in the liver tissue also increased from TM treatment (CON vs. TM; 3.0 ± 1.8 vs. 11.1 ± 0.8 nmol MDA/g liver, p < 0.001), which reflects an imbalance between the generation of reactive substances and antioxidant capacity. To examine the involvement of GSH synthetic pathway, we determined the metabolomic changes of sulfur amino acids in the liver. TM significantly decreased hepatic S-adenosylmethionine concentration in the methionine cycle. The levels of cysteine in the liver were increased, while taurine concentration was maintained and GSH levels profoundly decreased (CON vs. TM; 8.7 ± 1.5 vs. 5.4 ± 0.9 µmol GSH/g liver, p < 0.001). These results suggest that abnormal cysteine metabolism by TM treatment resulted in a decrease in GSH, followed by an increase in oxidative stress in the liver. In HepG2 cells, decreased GSH levels were examined by TM treatment in a dose dependent manner. Furthermore, pretreatment with TM in HepG2 cells potentiated oxidative cell death, by exacerbating the effects of tert-butyl hydroperoxide. In conclusion, TM-induced ER stress was accompanied by oxidative stress by reducing the GSH synthesis, which made the liver more susceptible to oxidative stress.
Collapse
Affiliation(s)
- Sou Hyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Do-Young Kwon
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2280, USA.
| | - Jae-Hwan Kwak
- College of Pharmacy, Brain Busan 21 Plus Program, Kyungsung University, Busan 48434, Korea.
| | - Seunghyun Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jieun Yun
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Korea.
| | - Tae Gen Son
- Division for Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Korea.
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
172
|
Comparative hepatic transcriptome analyses revealed possible pathogenic mechanisms of fasiglifam (TAK-875)-induced acute liver injury in mice. Chem Biol Interact 2018; 296:185-197. [DOI: 10.1016/j.cbi.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/16/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
|
173
|
Clark VC, Marek G, Liu C, Collinsworth A, Shuster J, Kurtz T, Nolte J, Brantly M. Clinical and histologic features of adults with alpha-1 antitrypsin deficiency in a non-cirrhotic cohort. J Hepatol 2018; 69:1357-1364. [PMID: 30138687 DOI: 10.1016/j.jhep.2018.08.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Alpha-1 antitrypsin deficiency (AATD) is an uncommonly recognized cause of liver disease in adults, with descriptions of its natural history limited to case series and patient-reported data from disease registries. Liver pathology is limited to selected patients or unavailable. Therefore, we aimed to determine the prevalence and severity of liver fibrosis in an adult AATD population who were not known to have cirrhosis, while defining risk factors for fibrosis and testing non-invasive markers of disease. METHODS A total of 94 adults with classic genotype 'PI*ZZ' AATD were recruited from North America and prospectively enrolled in the study. Liver aminotransferases and markers of synthetic function, transient elastography, and liver biopsy were performed. RESULTS The prevalence of clinically significant liver fibrosis (F ≥ 2) was 35.1%. Alanine aminotransferase, aspartate aminotransferase and gamma-glutamyltransferase values were higher in the F ≥ 2 group. Metabolic syndrome was associated with the presence of clinically significant fibrosis (OR 14.2; 95% CI 3.7-55; p <0.001). Additionally, the presence of accumulated abnormal AAT in hepatocytes, portal inflammation, and hepatocellular degeneration were associated with clinically significant fibrosis. The accuracy of transient elastography to detect F ≥ 2 fibrosis was fair, with an AUC of 0.70 (95% CI 0.58-0.82). CONCLUSIONS Over one-third of asymptomatic and lung affected adults with 'PI*ZZ' AATD have significant underlying liver fibrosis. Liver biopsies demonstrated variable amounts of accumulated Z AAT. The risk of liver fibrosis increases in the presence of metabolic syndrome, accumulation of AAT in hepatocytes, and portal inflammation on baseline biopsy. The results support the hypothesis that liver disease in this genetic condition may be related to a "toxic gain of function" from accumulation of AAT in hepatocytes. LAY SUMMARY Individuals diagnosed with classic alpha-1 antitrypsin deficiency (ZZ) are at risk of liver injury and scarring, because of the accumulation of abnormal alpha-1 antitrypsin in the liver. A liver biopsy in ZZ individuals can demonstrate the accumulation of alpha-1 antitrypsin within the liver and identify if any associated liver scarring is present. Indviduals with large amounts of alpha-1 antitrypsin on biopsy may be at risk of liver injury and fibrosis. Additional common medical conditions of diabetes, obesity, high cholesterol, and hypertension (known as metabolic syndrome) are associated with a greater degree of liver injury. CLINICAL TRIAL NUMBER: clinicaltrials.gov NCT01810458.
Collapse
Affiliation(s)
- Virginia C Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, United States.
| | - George Marek
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, United States
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, United States; Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, United States
| | - Amy Collinsworth
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, United States
| | - Jonathan Shuster
- Department of Health Outcomes and Policy, University of Florida, United States
| | - Tracie Kurtz
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, United States
| | - Joanna Nolte
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, United States
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, United States
| |
Collapse
|
174
|
Henkel AS. Harnessing the Integrated Stress Response to Counteract Metabolic Disease. Hepatology 2018; 68:2056-2058. [PMID: 30004129 DOI: 10.1002/hep.30152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/22/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
175
|
Olivares S, Henkel AS. The role of X-box binding protein 1 in the hepatic response to refeeding in mice. J Lipid Res 2018; 60:353-359. [PMID: 30482806 DOI: 10.1194/jlr.m086413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/08/2018] [Indexed: 02/03/2023] Open
Abstract
Refeeding mice after a prolonged fast is a potent stimulus of hepatic lipogenesis, but is also associated with induction of the hepatic unfolded protein response (UPR). The X-box binding protein 1 (Xbp1), a key regulator of the adaptive UPR, transcriptionally activates hepatic lipogenesis genes. We therefore determined whether hepatic Xbp1 mediates the hepatic lipogenic response to refeeding. Mice bearing a hepatocyte-specific deletion of Xbp1 and littermate controls were fasted overnight, followed by refeeding for up to 6 h. Among control mice, refeeding induced hepatic expression of activated Xbp1 and, as expected, induced hepatic expression of genes controlling de novo lipogenesis of fatty acids. Unexpectedly, deletion of hepatic Xbp1 allowed for normal induction of hepatic lipogenesis genes, yet impaired translation of SREBP1c and its targets in response to refeeding. Impaired protein translation was associated with enhanced postprandial activation of the global translational arrest protein, eukaryotic initiation factor 2α, among mice lacking hepatic Xbp1 Deletion of hepatic Xbp1 prevented postprandial induction of genes regulating protein folding and processing and shifted the pattern of postprandial UPR activation to favor proapoptotic signals. We conclude that activation of hepatic Xbp1 in the postprandial states serves the dual roles of restoring postprandial hepatic lipogenesis and proteostasis.
Collapse
Affiliation(s)
- Shantel Olivares
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL .,Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
176
|
Leclerc D, Christensen KE, Cauvi O, Yang E, Fournelle F, Bahous RH, Malysheva OV, Deng L, Wu Q, Zhou Z, Gao ZH, Chaurand P, Caudill MA, Rozen R. Mild Methylenetetrahydrofolate Reductase Deficiency Alters Inflammatory and Lipid Pathways in Liver. Mol Nutr Food Res 2018; 63:e1801001. [PMID: 30408316 DOI: 10.1002/mnfr.201801001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary and genetic folate disturbances can lead to nonalcoholic fatty liver disease (NAFLD). A common variant in methylenetetrahydrofolate reductase (MTHFR 677C→T) causes mild MTHFR deficiency with lower 5-methyltetrahydrofolate for methylation reactions. The goal is to determine whether mild murine MTHFR deficiency contributes to NAFLD-related effects. METHODS AND RESULTS Wild-type and Mthfr+/- mice, a model for the human variant, are fed control (CD) or high-fat (HFAT) diets for 8 weeks. On both diets, MTHFR deficiency results in decreased S-adenosylmethionine, increased S-adenosylhomocysteine, and decreased betaine with reduced methylation capacity, and changes in expression of several inflammatory or anti-inflammatory mediators (Saa1, Apoa1, and Pon1). On CD, MTHFR deficiency leads to microvesicular steatosis with expression changes in lipid regulators Xbp1s and Cyp7a1. The combination of MTHFR deficiency and HFAT exacerbates changes in inflammatory mediators and introduces additional effects on inflammation (Saa2) and lipid metabolism (Nr1h4, Srebf1c, Ppara, and Crot). These effects are consistent with increased expression of pro-inflammatory HDL precursors and greater lipid accumulation. MTHFR deficiency may enhance liver injury through alterations in methylation capacity, inflammatory response, and lipid metabolism. CONCLUSION Individuals with the MTHFR variant may be at increased risk for liver disease and related complications, particularly when consuming high-fat diets.
Collapse
Affiliation(s)
- Daniel Leclerc
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olivia Cauvi
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Ethan Yang
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Frédéric Fournelle
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Renata H Bahous
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Liyuan Deng
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Qing Wu
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zili Zhou
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, H4A 3J1, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marie A Caudill
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| |
Collapse
|
177
|
Jiang H, Guan Q, Xiao Y, Feng Z, Yu G, Pan Q. Strontium Alleviates Endoplasmic Reticulum Stress in a Nonalcoholic Fatty Liver Disease Model. J Med Food 2018; 21:1228-1237. [PMID: 30457429 DOI: 10.1089/jmf.2018.4186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to explore the effects of strontium on fatty liver, and to clarify the possible mechanisms by which strontium improves nonalcoholic fatty liver disease (NAFLD). We also evaluated how strontium affected the endoplasmic reticulum stress (ERS) pathways. We established an in vitro model of NAFLD using a human hepatocyte cell line (L02) treated with 0.2 mM palmitic acid. The Sprague-Dawley rats were fed with a high-fat diet (HFD) to establish NAFLD model in vivo. After strontium treatment, the total cholesterol (TC), triglyceride (TG), and lipid deposition in L02 cells and liver tissues were determined. Strontium treatment suppressed intracellular TC and TG levels and lipid accumulation in L02 cells, and the effect of high concentrations of strontium were more obvious. Strontium significantly reduced the mRNA and protein expression of glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1), SREBP cleavage activator protein (SCAP), sterol regulatory element binding protein 1c (SREBP-1c), and SREBP-2 in L02 cells. In HFD-fed rats, strontium treatment reduced serum TC, TG, and low density lipoprotein cholesterol (LDL-C) levels, concurrent with a decrease in hepatic lipid accumulation. Furthermore, strontium treatment reduced the expression of GRP78 and SREBP-2 protein in liver tissues. Overall, strontium alleviated hepatic steatosis by decreasing ERS-related protein expression in vivo and in vitro models. The results indicated that strontium has the potential to become a new therapy for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Huiling Jiang
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Qiaowei Guan
- 2 Department of Basic Medicine, Medical College of Shaoguan University, Shaoguan, China
| | - Yewei Xiao
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Zhiqiang Feng
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Guang Yu
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Qiangwen Pan
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
178
|
Taalab YM, Ibrahim N, Maher A, Hassan M, Mohamed W, Moustafa AA, Salama M, Johar D, Bernstein L. Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK). Rev Neurosci 2018; 29:387-415. [PMID: 29303785 DOI: 10.1515/revneuro-2017-0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, Parkinson's disease, prion disease, and amyotrophic lateral sclerosis, are a dissimilar group of disorders that share a hallmark feature of accumulation of abnormal intraneuronal or extraneuronal misfolded/unfolded protein and are classified as protein misfolding disorders. Cellular and endoplasmic reticulum (ER) stress activates multiple signaling cascades of the unfolded protein response (UPR). Consequently, translational and transcriptional alterations in target gene expression occur in response directed toward restoring the ER capacity of proteostasis and reestablishing the cellular homeostasis. Evidences from in vitro and in vivo disease models indicate that disruption of ER homeostasis causes abnormal protein aggregation that leads to synaptic and neuronal dysfunction. However, the exact mechanism by which it contributes to disease progression and pathophysiological changes remains vague. Downstream signaling pathways of UPR are fully integrated, yet with diverse unexpected outcomes in different disease models. Three well-identified ER stress sensors have been implicated in UPR, namely, inositol requiring enzyme 1, protein kinase RNA-activated-like ER kinase (PERK), and activating transcription factor 6. Although it cannot be denied that each of the involved stress sensor initiates a distinct downstream signaling pathway, it becomes increasingly clear that shared pathways are crucial in determining whether or not the UPR will guide the cells toward adaptive prosurvival or proapoptotic responses. We review a body of work on the mechanism of neurodegenerative diseases based on oxidative stress and cell death pathways with emphasis on the role of PERK.
Collapse
Affiliation(s)
- Yasmeen M Taalab
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Mansoura University, Al-Mansoura, 35111, Egypt
| | - Nour Ibrahim
- Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Ahmed Maher
- Zoonotic Disease Department, National Research Center, Dokki, Giza, 25200, Egypt
| | - Mubashir Hassan
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju-do 32588, South Korea
| | - Wael Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Al-Menoufia University, Al-Menoufia, 25200 Egypt.,Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kunatan Pahang, Malaysia
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology and MARCS Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, 2751 Australia
| | - Mohamed Salama
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Mansoura University, Al-Mansoura, 35111, Egypt.,Medical Experimental Research Center (MERC), Al-Mansoura University, Al-Mansoura, Egypt
| | - Dina Johar
- Department of Biochemistry and Nutrition, Faculty of Women for Arts, Sciences and Education, Ain Shams University, Heliopolis, Cairo, 11291, Egypt.,Max Rady College of Medicine, Rady Faculty of Health Sciences, Department of Physiology & Pathophysiology 432 Basic Medical Sciences Building, 745 Bannatyne Avenue University of Manitoba, Winnipeg, MB R3E 0J9, Canada, e-mail:
| | - Larry Bernstein
- Triplex Consulting, 54 Firethorn Lane, Northampton, MA 01060, USA
| |
Collapse
|
179
|
Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA, Souza-Mello V. GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol 2018; 474:227-237. [PMID: 29580823 DOI: 10.1016/j.mce.2018.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/10/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) stress and hepatic steatosis are intertwined with insulin resistance. PPARs are at the crossroads of these pathways. This study aimed to investigate the effects of GW0742 (PPAR-beta agonist) on hepatic energy metabolism and ER stress in a murine diet-induced obesity model. HF diet caused overweight, hyperinsulinemia, hepatic inflammation (increased NF-kB, TNF-alpha, and IL-6 protein expression) and favored hepatic lipogenesis, leading to ER stress, with ultrastructural and molecular alterations, ending up in proapoptotic stimulus. GW0742 rescued the overweight and the glucose tolerance, tackled hepatic inflammation and favored hepatic beta-oxidation over lipogenesis. These results comply with ER ultrastructure improvement, reducing ER stress and apoptosis in treated animals. Our results indicate that the PPAR-beta/delta activation alleviated the ER stress by improving the insulin sensitivity and maximizing the hepatic energy metabolism with a shift towards beta-oxidation. PPAR-beta/delta activation could be an essential tool to avoid the NAFLD progression and other obesity constraints.
Collapse
Affiliation(s)
- Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Tamiris Lima Rachid
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Letícia de Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Francielle Graus-Nunes
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
180
|
Yu X, Ren LP, Wang C, Zhu YJ, Xing HY, Zhao J, Song GY. Role of X-Box Binding Protein-1 in Fructose-Induced De Novo Lipogenesis in HepG2 Cells. Chin Med J (Engl) 2018; 131:2310-2319. [PMID: 30246717 PMCID: PMC6166463 DOI: 10.4103/0366-6999.241799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A high consumption of fructose leads to hepatic steatosis. About 20-30% of triglycerides are synthesized via de novo lipogenesis. Some studies showed that endoplasmic reticulum stress (ERS) is involved in this process, while others showed that a lipotoxic environment directly influences ER homeostasis. Here, our aim was to investigate the causal relationship between ERS and fatty acid synthesis and the effect of X-box binding protein-1 (XBP-1), one marker of ERS, on hepatic lipid accumulation stimulated by high fructose. METHODS HepG2 cells were incubated with different concentrations of fructose. Upstream regulators of de novo lipogenesis (i.e., carbohydrate response element-binding protein [ChREBP] and sterol regulatory element-binding protein 1c [SREBP-1c]) were measured by polymerase chain reaction and key lipogenic enzymes (acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], and stearoyl-CoA desaturase-1 [SCD-1]) by Western blotting. The same lipogenesis-associated factors were then evaluated after exposure of HepG2 cells to high fructose followed by the ERS inhibitor tauroursodeoxycholic acid (TUDCA) or the ERS inducer thapsigargin. Finally, the same lipogenesis-associated factors were evaluated in HepG2 cells after XBP-1 upregulation or downregulation through cell transfection. RESULTS Exposure to high fructose increased triglyceride levels in a dose- and time-dependent manner and significantly increased mRNA levels of SREBP-1c and ChREBP and protein levels of FAS, ACC, and SCD-1, concomitant with XBP-1 conversion to an active spliced form. Lipogenesis-associated factors induced by high fructose were inhibited by TUDCA and induced by thapsigargin. Triglyceride level in XBP-1-deficient group decreased significantly compared with high-fructose group (4.41 ± 0.54 μmol/g vs. 6.52 ± 0.38 μmol/g, P < 0.001), as mRNA expressions of SREBP-1c (2.92 ± 0.46 vs. 5.08 ± 0.41, P < 0.01) and protein levels of FAS (0.53 ± 0.06 vs. 0.85 ± 0.05, P = 0.01), SCD-1 (0.65 ± 0.06 vs. 0.90 ± 0.04, P = 0.04), and ACC (0.38 ± 0.03 vs. 0.95 ± 0.06, P < 0.01) decreased. Conversely, levels of triglyceride (4.22 ± 0.54 μmol/g vs. 2.41 ± 0.35 μmol/g, P < 0.001), mRNA expression of SREBP-1c (2.70 ± 0.33 vs. 1.00 ± 0.00, P < 0.01), and protein expression of SCD-1 (0.93 ± 0.06 vs. 0.26 ± 0.05, P < 0.01), ACC (0.98 ± 0.09 vs. 0.43 ± 0.03, P < 0.01), and FAS (0.90 ± 0.33 vs. 0.71 ± 0.02, P = 0.04) in XBP-1s-upregulated group increased compared with the untransfected group. CONCLUSIONS ERS is associated with de novo lipogenesis, and XBP-1 partially mediates high-fructose-induced lipid accumulation in HepG2 cells through augmentation of de novo lipogenesis.
Collapse
Affiliation(s)
- Xian Yu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Lu-Ping Ren
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Ya-Jun Zhu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Han-Ying Xing
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Jing Zhao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Guang-Yao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
181
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 634] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
182
|
Zahra M, Azzazy H, Moustafa A. Transcriptional Regulatory Networks in Hepatitis C Virus-induced Hepatocellular Carcinoma. Sci Rep 2018; 8:14234. [PMID: 30250040 PMCID: PMC6155139 DOI: 10.1038/s41598-018-32464-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
Understanding the transcriptional regulatory elements that influence the progression of liver disease in the presence of hepatitis C virus (HCV) infection is critical for the development of diagnostic and therapeutic approaches. Systems biology provides a roadmap by which these elements may be integrated. In this study, a previously published dataset of 124 microarray samples was analyzed in order to determine differentially expressed genes across four tissue types/conditions (normal, cirrhosis, cirrhosis HCC, and HCC). Differentially expressed genes were assessed for their functional clustering and those genes were annotated with their potential transcription factors and miRNAs. Transcriptional regulatory networks were constructed for each pairwise comparison between the 4 tissue types/conditions. Based on our analysis, it is predicted that the disruption in the regulation of transcription factors such as AP-1, PPARγ, and NF-κB could contribute to the liver progression from cirrhosis to steatosis and eventually to HCC. Whereas the condition of the liver digresses, the downregulation of miRNAs' (such as miR-27, Let-7, and miR-106a) expression makes the transition of the liver through each pathological stage more apparent. This preliminary data can be used to guide future experimental work. An understanding of the transcriptional regulatory attributes acts as a road map to help design interference strategies in order to target the key regulators of progression of HCV induced HCC.
Collapse
Affiliation(s)
- Marwa Zahra
- Biotechnology Graduate Program, American University, New Cairo, 11835, Egypt
| | - Hassan Azzazy
- Biotechnology Graduate Program, American University, New Cairo, 11835, Egypt. .,Department of Chemistry, The American University in Cairo, School of Sciences & Engineering, New Cairo, 11835, Egypt.
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University, New Cairo, 11835, Egypt.,Department of Biology, The American University in Cairo, New Cairo, 11835, Egypt
| |
Collapse
|
183
|
Exploring Seipin: From Biochemistry to Bioinformatics Predictions. Int J Cell Biol 2018; 2018:5207608. [PMID: 30402103 PMCID: PMC6192094 DOI: 10.1155/2018/5207608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 01/30/2023] Open
Abstract
Seipin is a nonenzymatic protein encoded by the BSCL2 gene. It is involved in lipodystrophy and seipinopathy diseases. Named in 2001, all seipin functions are still far from being understood. Therefore, we reviewed much of the research, trying to find a pattern that could explain commonly observed features of seipin expression disorders. Likewise, this review shows how this protein seems to have tissue-specific functions. In an integrative view, we conclude by proposing a theoretical model to explain how seipin might be involved in the triacylglycerol synthesis pathway.
Collapse
|
184
|
Flister KFT, Pinto BAS, França LM, Coêlho CFF, Dos Santos PC, Vale CC, Kajihara D, Debbas V, Laurindo FRM, Paes AMDA. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice. J Nutr Biochem 2018; 62:155-166. [PMID: 30300835 DOI: 10.1016/j.jnutbio.2018.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Childhood consumption of added sugars, such as sucrose, has been associated to increased risk of metabolic syndrome (MetS) and nonalcoholic fatty liver disease (NAFLD). Although the mechanisms underlying NAFLD onset are incompletely defined, recent evidence has proposed a role for the endoplasmic reticulum (ER) stress. Thus, the present study sought to investigate the metabolic outcomes of high-sucrose intake on weaned Swiss mice fed a 25% sucrose diet for 30, 60 and 90 days in comparison to regular chow-fed controls. High-sucrose feeding promoted progressive metabolic and oxidative disturbances, starting from fasting and fed hyperglycemia, hyperinsulinemia, glucose intolerance and increased adiposity at 30-days; passing by insulin resistance, hypertriglyceridemia and NAFLD onset at 60 days; until late hepatic oxidative damage at 90 days. In parallel, assessment of transcriptional and/or translational levels of de novo lipogenesis (DNL) and ER stress markers showed up-regulation of both fatty acid synthesis (ChREBP and SCD1) and oxidation (PPARα and CPT-1α), as well as overexpression of unfolded protein response sensors (IRE1α, PERK and ATF6), chaperones (GRP78 and PDIA1) and antioxidant defense (NRF2) genes at 30 days. At 60 days, fatty acid oxidation genes were down-regulated, and ER stress switched over toward a proapoptotic pattern via up-regulation of BAK protein and CHOP gene levels. Finally, down-regulation of both NRF2 and CPT-1α protein levels led to late up-regulation of SREBP-1c and exponential raise of fatty acids synthesis. In conclusion, our study originally demonstrates a temporal relationship between DNL and ER stress pathways toward MetS and NAFLD development on weaned rats fed a high-sucrose diet.
Collapse
Affiliation(s)
- Karla Frida Torres Flister
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Caio Fernando Ferreira Coêlho
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Pâmela Costa Dos Santos
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Caroline Castro Vale
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Daniela Kajihara
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, (SP), Brazil
| | - Victor Debbas
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, (SP), Brazil
| | | | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil.
| |
Collapse
|
185
|
Tong X, Zhang Q, Wang L, Ji Y, Zhang L, Xie L, Chen W, Zhang H. RNF186 impairs insulin sensitivity by inducing ER stress in mouse primary hepatocytes. Cell Signal 2018; 52:155-162. [PMID: 30223017 DOI: 10.1016/j.cellsig.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
RING finger 186 (RNF186) is involved in the process of endoplasmic reticulum (ER)-stress-mediated apoptosis and inflammation of different cell types, such as HeLa cells and colon epithelial cells. However, the physiological and functional roles of RNF186 in peripheral tissues remain largely unknown. In the current study, we investigate the physiological function of RNF186 in the regulation of ER stress with respect to its biological roles in regulating insulin sensitivity in mouse primary hepatocytes. RNF186 expression is induced in the livers of diabetic, obese and diet-induced obese (DIO) mice. Mouse primary hepatocytes were isolated and treated with Ad-RNF186 or Ad-GFP. The results suggest that overexpression of RNF186 increases the protein levels of the ER stress sensors inositol requiring kinase 1 (IRE1) and C/EBP homologous protein (CHOP) protein, as well as the phosphorylation level of eukaryotic initiation factor 2α (eIF2α), in mouse primary hepatocytes. This effect impedes the action of insulin through c-Jun N-terminal kinase (JNK)-mediated phosphorylation of insulin receptor substrate 1 (IRS1). Furthermore, overexpression of RNF186 also significantly increases the levels of proinflammatory cytokines, including TNFα, IL-6 and MCP1. In addition, tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, alleviates the expression of ER stress markers induced by RNF186 overexpression. Taken together, the results of the present study show that overexpression of RNF186 induces ER stress and impairs insulin signalling in mouse primary hepatocytes, suggesting that RNF186 merits further investigation as a potential therapeutic target for treatment of insulin-resistance-associated metabolic diseases.
Collapse
Affiliation(s)
- Xin Tong
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Qifan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Lu Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yizhong Ji
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Lei Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Huabing Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
186
|
Brachychiton populneus (Schott & Endl.) R.Br. ameliorate carbon tetrachloride induced oxidative stress through regulation of endoplasmic reticulum stress markers and inflammatory mediators in Sprague-Dawley male rats. Biomed Pharmacother 2018; 107:1601-1610. [PMID: 30257378 DOI: 10.1016/j.biopha.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
In this study hepatoprotective aptitude of Brachychiton populneus against carbon tetrachloride (CCl4) instigated liver injuries in rats was investigated. High-performance liquid chromatography (HPLC) with a diode array detector (DAD) analysis of methanol extract of B. populneus (BPM) indicated existence of rutin, catechin and myricetin. Administration of CCl4 to rat decreased (p < 0.01) the level of catalase (CAT), total superoxide dismutase (SOD), peroxidase (POD), soluble protein and reduced glutathione (GSH) whereas elevated the concentration of H2O2, thiobarbituric acid reactive substances and nitrite in hepatic samples. In serum the level of hepatic markers; aspartate transaminase, alanine transaminase, alkaline phosphatase and total bilirubin increased with CCl4 treatment against control animals. In hepatic samples the expression level of endoplasmic reticulum stress associated genes like glucose regulated protein (GRP78), x-box binding protein- 1 total (XBP-1 t), x-box binding protein- 1 spliced (XBP-1 s), x-box binding protein- 1 unspliced (XBP-1 u), glutamate-cysteine ligase catalytic subunit (GCLC) and pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was elevated many fold with CCl4 administration to rat. Co-administration of BPM along with CCl4 to rats decreased (p < 0.05) the expression of above genes except GCLC where expression level was enhanced as compared to CCl4 treatment. Histopathology of liver showed injuries of hepatocytes, infiltration of leukocytes and damaged central lobule in CCl4 treated rats. However, BPM administration to CCl4 intoxicated rats restored the altered parameters towards the control rats. These results suggested the presence of antioxidant and anti-inflammatory constituents in methanol extract of B. populneus.
Collapse
|
187
|
Lai Y, Zhou C, Huang P, Dong Z, Mo C, Xie L, Lin H, Zhou Z, Deng G, Liu Y, Chen Y, Huang S, Wu Z, Sun X, Gao L, Lv Z. Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress. J Pharmacol Sci 2018; 138:46-53. [DOI: 10.1016/j.jphs.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
|
188
|
Tan N, Li X, Zhai L, Liu D, Li J, Yokota H, Zhang P. Effects of knee loading on obesity-related non-alcoholic fatty liver disease in an ovariectomized mouse model with high-fat diet. Hepatol Res 2018; 48:839-849. [PMID: 29601135 PMCID: PMC6143407 DOI: 10.1111/hepr.13076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/27/2022]
Abstract
AIM Hormonal and nutritional disorders are the main causes of obesity and non-alcoholic fatty liver disease, especially in the elderly and in postmenopausal women. Although physical activity might alleviate these disorders, the elderly may often have difficulty in carrying out physical exercise. The purpose of this study was to investigate the therapeutic effect of knee loading, a new form of physical stimulation, on the symptoms of obesity and fatty liver. METHODS Using ovariectomized mice fed a high-fat diet, we evaluated the effect of knee loading that applies gentle cyclic loads to the knee. Female C57BL/6 mice were divided into five groups: control (SCD), high-fat diet (HF), HF with loading (HF + L), HF with ovariectomy (HF + OVX), and HF + OVX with loading (HF + OVX + L). Except for SCD, mice underwent sham operation or ovariectomy and were maintained on HF diet. After 6 weeks, the mice in the HF + L and HF + OVX + L groups were treated with knee loading for 6 weeks. RESULTS Compared to the obesity groups (HF and HF + OVX), knee loading significantly decreased a gain in body weight, liver weight, and white adipose tissue (all P < 0.01). It also reduced the lipid level in the serum (P < 0.01) and histological severity of hepatic steatosis (P < 0.01). Furthermore, knee loading downregulated biomarkers related to endoplasmic reticulum (ER) stress (GRP78, p-eIF2α, and ATF4) and altered biomarkers in autophagy (LC3 and p62). CONCLUSIONS Knee loading suppressed obesity-associated metabolic alterations and hepatic steatosis. These effects with knee loading might be associated with suppression of ER stress and promotion of autophagy.
Collapse
Affiliation(s)
- Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA,Corresponding Author: Ping Zhang, MD, Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China, Phone: 86-22-83336818, Fax: 86-22-83336810,
| |
Collapse
|
189
|
Jia Y, Han Y, Wang X, Han F. Role of apoptosis in the Post-traumatic stress disorder model-single prolonged stressed rats. Psychoneuroendocrinology 2018; 95:97-105. [PMID: 29843020 DOI: 10.1016/j.psyneuen.2018.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a stress-related mental disorder which occurs following exposure to traumatic events. A number of brain neuroimaging studies have revealed that PTSD patients have reduced volume and abnormal functions in the hippocampus and the amygdala. However, the pathogenesis of abnormalities in certain brain regions, as induced by PTSD, remains unclear. Recent studies, using the single prolonged stress (SPS) model, an animal model of PTSD, have found that abnormal apoptosis in certain brain regions, including the hippocampus, the amygdala, and the medial prefrontal cortex (mPFC); these areas are closely associated with emotion and cognition. In this review, we summarize the mechanism of apoptosis in SPS rats, including the endoplasmic reticulum (ER) and the mitochondria pathways. For the ER pathway, three individual pathways: PERK, IRE1, and ATF6 showed different roles on apoptosis and neuroprotection. Three key factors are thought to be involved in the mitochondrial pathway and PTSD-induced apoptosis: corticosteroid receptors, apoptosis-related factors, and anti-apoptosis factors. We have investigated the role of these factors and have attempted to identify which factors of the pathways are more focused towards neuronal protection, and which are more direct towards apoptosis. We also discussed the role of autophagy and the specific differences between autophagy and apoptosis in SPS rats. Finally, we discussed emerging researches related to anti-apoptosis treatment, including PERK inhibitors, IRE1 inhibitors, and metformin; collectively, these were exciting, but limited, This review provides a summary of the current understanding of apoptosis in SPS rats and the potential anti-apoptosis treatment strategies for PTSD.
Collapse
Affiliation(s)
- Yunbo Jia
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Yunhe Han
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Xinyue Wang
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Fang Han
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
190
|
Forouhan M, Mori K, Boot-Handford RP. Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X. Matrix Biol 2018; 70:50-71. [PMID: 29522813 PMCID: PMC6090092 DOI: 10.1016/j.matbio.2018.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 01/05/2023]
Abstract
Whilst the role of ATF6α in modulating the unfolded protein response (UPR) has been well documented, the function of its paralogue ATF6β is less well understood. Using knockdown in cell culture and gene ablation in mice we have directly compared the roles of ATF6α & β in responding to the increased ER stress induced by mutant forms of type X collagen that cause the ER stress-associated metaphyseal chondrodysplasia type Schmid (MCDS). ATF6α more efficiently deals with the disease-associated ER stress in the absence of ATF6β and conversely, ATF6β is less effective in the absence of ATF6α. Furthermore, disease severity in vivo is increased by ATF6α ablation and decreased by ATF6β ablation. In addition, novel functions for each paralogue are described including an ATF6β-specific role in controlling growth plate chondrocyte proliferation. The clear demonstration of the intimate relationship of the two ATF6 isoforms and how ATF6β can moderate the activity of ATF6α and vice versa is of great significance for understanding the UPR mechanism. The activities of both ATF6 isoforms and their separate roles need consideration when deciding how to target increased ER stress as a means of treating MCDS and other ER stress-associated diseases.
Collapse
Affiliation(s)
- M Forouhan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK
| | - K Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - R P Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
191
|
Tam AB, Roberts LS, Chandra V, Rivera IG, Nomura DK, Forbes DJ, Niwa M. The UPR Activator ATF6 Responds to Proteotoxic and Lipotoxic Stress by Distinct Mechanisms. Dev Cell 2018; 46:327-343.e7. [PMID: 30086303 DOI: 10.1016/j.devcel.2018.04.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is induced by proteotoxic stress of the endoplasmic reticulum (ER). Here we report that ATF6, a major mammalian UPR sensor, is also activated by specific sphingolipids, dihydrosphingosine (DHS) and dihydroceramide (DHC). Single mutations in a previously undefined transmembrane domain motif that we identify in ATF6 incapacitate DHS/DHC activation while still allowing proteotoxic stress activation via the luminal domain. ATF6 thus possesses two activation mechanisms: DHS/DHC activation and proteotoxic stress activation. Reporters constructed to monitor each mechanism show that phenobarbital-induced ER membrane expansion depends on transmembrane domain-induced ATF6. DHS/DHC addition preferentially induces transcription of ATF6 target lipid biosynthetic and metabolic genes over target ER chaperone genes. Importantly, ATF6 containing a luminal achromatopsia eye disease mutation, unresponsive to proteotoxic stress, can be activated by fenretinide, a drug that upregulates DHC, suggesting a potential therapy for this and other ATF6-related diseases including heart disease and stroke.
Collapse
Affiliation(s)
- Arvin B Tam
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, NSB#1, Rm5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Lindsay S Roberts
- Department of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Vivek Chandra
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, NSB#1, Rm5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Io Guane Rivera
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, NSB#1, Rm5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Daniel K Nomura
- Department of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Douglass J Forbes
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 2124A Pacific Hall, 9500 Gilman Drive, La Jolla, CA 92093-0347, USA
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, NSB#1, Rm5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA.
| |
Collapse
|
192
|
Lebeaupin C, Vallée D, Rousseau D, Patouraux S, Bonnafous S, Adam G, Luciano F, Luci C, Anty R, Iannelli A, Marchetti S, Kroemer G, Lacas-Gervais S, Tran A, Gual P, Bailly-Maitre B. Bax inhibitor-1 protects from nonalcoholic steatohepatitis by limiting inositol-requiring enzyme 1 alpha signaling in mice. Hepatology 2018; 68:515-532. [PMID: 29457838 DOI: 10.1002/hep.29847] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
Abstract
UNLABELLED Endoplasmic reticulum (ER) stress is activated in nonalcoholic fatty liver disease (NAFLD), raising the possibility that ER stress-dependent metabolic dysfunction, inflammation, and cell death underlie the transition from steatosis to steatohepatitis (nonalcoholic steatohepatitis; NASH). B-cell lymphoma 2 (BCL2)-associated X protein (Bax) inhibitor-1 (BI-1), a negative regulator of the ER stress sensor, inositol-requiring enzyme 1 alpha (IRE1α), has yet to be explored in NAFLD as a hepatoprotective agent. We hypothesized that the genetic ablation of BI-1 would render the liver vulnerable to NASH because of unrestrained IRE1α signaling. ER stress was induced in wild-type and BI-1-/- mice acutely by tunicamycin (TM) injection (1 mg/kg) or chronically by high-fat diet (HFD) feeding to determine NAFLD phenotype. Livers of TM-treated BI-1-/- mice showed IRE1α-dependent NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation, hepatocyte death, fibrosis, and dysregulated lipid homeostasis that led to liver failure within a week. The analysis of human NAFLD liver biopsies revealed BI-1 down-regulation parallel to the up-regulation of IRE1α endoribonuclease (RNase) signaling. In HFD-fed BI-1-/- mice that presented NASH and type 2 diabetes, exaggerated hepatic IRE1α, X-box binding protein 1 (XBP1), and C/EBP homologous protein (CHOP) expression was linked to activated NLRP3 inflammasome and caspase-1/-11. Rises in interleukin (IL)-1β, IL-6, monocyte chemoattractant protein 1 (MCP1), chemokine (C-X-C motif) ligand 1 (CXCL1), and alanine transaminase (ALT)/aspartate transaminase (AST) levels revealed significant inflammation and injury, respectively. Pharmacological inhibition of IRE1α RNase activity with the small molecules, STF-083010 or 4μ8c, was evaluated in HFD-induced NAFLD. In BI-1-/- mice, either treatment effectively counteracted IRE1α RNase activity, improving glucose tolerance and rescuing from NASH. The hepatocyte-specific role of IRE1α RNase activity in mediating NLRP3 inflammasome activation and cell death was confirmed in primary mouse hepatocytes by IRE1α axis knockdown or its inhibition with STF-083010 or 4μ8c. CONCLUSION Targeting IRE1α-dependent NLRP3 inflammasome signaling with pharmacological agents or by BI-1 may represent a tangible therapeutic strategy for NASH. (Hepatology 2018).
Collapse
Affiliation(s)
| | - Déborah Vallée
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | | | - Stéphanie Patouraux
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Centre Hospitalier Universitaire Nice, Archet Hospital, Biology Department, Nice, France
| | - Stéphanie Bonnafous
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Centre Hospitalier Universitaire Nice, Archet Hospital, Digestive Department, Nice, France
| | - Gilbert Adam
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | | | - Carmelo Luci
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | - Rodolphe Anty
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Centre Hospitalier Universitaire Nice, Archet Hospital, Digestive Department, Nice, France
| | - Antonio Iannelli
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Centre Hospitalier Universitaire Nice, Archet Hospital, Digestive Department, Nice, France
| | | | - Guido Kroemer
- University Paris Descartes, Sorbonne Paris Cité, Paris, France.,Team 11 certified Ligue Nationale contre le Cancer, Cordeliers Research Center, Paris, France.,INSERM, U1138, Paris, France.,University Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus Villejuif, France.,Biology Department, Georges Pompidou European Hospital, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Lacas-Gervais
- University Côte d'Azur, CCMA (Centre Commun de Microscopie Appliquée), Nice, France
| | - Albert Tran
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Centre Hospitalier Universitaire Nice, Archet Hospital, Digestive Department, Nice, France
| | - Philippe Gual
- University Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | | |
Collapse
|
193
|
Erez N, Hubel E, Avraham R, Cohen R, Fishman S, Bantel H, Manns M, Tirosh B, Zvibel I, Shibolet O. Hepatic Amiodarone Lipotoxicity Is Ameliorated by Genetic and Pharmacological Inhibition of Endoplasmatic Reticulum Stress. Toxicol Sci 2018; 159:402-412. [PMID: 28962527 DOI: 10.1093/toxsci/kfx143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amiodarone is a commonly used antiarrhythmic drug and can cause liver steatosis. We investigated the role of endoplasmic reticulum (ER) stress/unfolded protein response in the pathogenesis of amiodarone-induced steatosis. Amiodarone-induced liver injury was obtained by 1 intraperitoneal injection to wild-type (WT) or C/EBP homologous protein knock-out mice (Ddit3-/-). Amiodarone directly reduced intracellular ATP and Ca2+ in hepatocytes invitro, inducing ER stress and lipid accumulation. In vivo, amiodarone-driven liver damage and lipid accumulation was accompanied by activation of ER stress/unfolded protein response, as demonstrated by up-regulation of genes encoding key ER stress mediators and by phosphorylation of eIF2α. In contrast to WT mice, Ddit3-/- mice were protected from amiodarone-induced ER stress and lipid accumulation. Importantly, amiodarone-induced lipid accumulation was not mediated by de novo hepatic lipogenesis, increased adipose tissue lipolysis or increased hepatic uptake of triglycerides or free fatty acids. Rather, amiodarone strongly increased hepatic mRNA expression of lipid droplet proteins, particularly Cidea and Cidec, in WT, but less so in Ddit3-/- mice, suggesting a link between ER stress and increased triglyceride storage. Moreover, while insulin attenuated amiodarone-induced phosphorylation of hormone sensitive lipase (HSL) in WT, it did not affect pHSL in Ddit3-/-, indicating increased lipolysis and therefore reduced lipid accumulation in these mice. Finally, ER stress attenuation using 2 different pharmacological chaperones reduced lipid accumulation, accompanied by reduced mRNA expression of Cidec. In conclusion, amiodarone-induced ER stress drives liver steatosis and may be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Noam Erez
- Gastroenterology Institute, Tel-Aviv Sourasky Medical Center and Tel-Aviv University, Affiliated with Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einav Hubel
- Gastroenterology Institute, Tel-Aviv Sourasky Medical Center and Tel-Aviv University, Affiliated with Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roy Avraham
- Gastroenterology Institute, Tel-Aviv Sourasky Medical Center and Tel-Aviv University, Affiliated with Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raya Cohen
- Gastroenterology Institute, Tel-Aviv Sourasky Medical Center and Tel-Aviv University, Affiliated with Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sigal Fishman
- Gastroenterology Institute, Tel-Aviv Sourasky Medical Center and Tel-Aviv University, Affiliated with Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Isabel Zvibel
- Gastroenterology Institute, Tel-Aviv Sourasky Medical Center and Tel-Aviv University, Affiliated with Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Oren Shibolet
- Gastroenterology Institute, Tel-Aviv Sourasky Medical Center and Tel-Aviv University, Affiliated with Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
194
|
Wang X, Du H, Shao S, Bo T, Yu C, Chen W, Zhao L, Li Q, Wang L, Liu X, Su X, Sun M, Song Y, Gao L, Zhao J. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 2018; 68:62-77. [PMID: 29356058 DOI: 10.1002/hep.29788] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 01/04/2023]
Abstract
Physiological opening of the mitochondrial permeability transition pore (mPTP) is indispensable for maintaining mitochondrial function and cell homeostasis, but the role of the mPTP and its initial factor, cyclophilin D (CypD), in hepatic steatosis is unclear. Here, we demonstrate that excess mPTP opening is mediated by an increase of CypD expression induced hepatic mitochondrial dysfunction. Notably, such mitochondrial perturbation occurred before detectable triglyceride accumulation in the liver of high-fat diet-fed mice. Moreover, either genetic knockout or pharmacological inhibition of CypD could ameliorate mitochondrial dysfunction, including excess mPTP opening and stress, and down-regulate the transcription of sterol regulatory element-binding protein-1c, a key factor of lipogenesis. In contrast, the hepatic steatosis in adenoviral overexpression of CypD-infected mice was aggravated relative to the control group. Blocking p38 mitogen-activated protein kinase or liver-specific Ire1α knockout could resist CypD-induced sterol regulatory element-binding protein-1c expression and steatosis. Importantly, CypD inhibitor applied prior to or after the onset of triglyceride deposition substantially prevented or ameliorated fatty liver. CONCLUSION CypD stimulates mPTP excessive opening, subsequently causing endoplasmic reticulum stress through p38 mitogen-activated protein kinase activation, and results in enhanced sterol regulatory element-binding protein-1c transcription and hepatic steatosis. (Hepatology 2018;68:62-77).
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Qiu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Li Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Physiology and Neurobiology and the Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Xiaojing Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiaohui Su
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mingqi Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
195
|
Zhu B, Dacso CC, O’Malley BW. Unveiling "Musica Universalis" of the Cell: A Brief History of Biological 12-Hour Rhythms. J Endocr Soc 2018; 2:727-752. [PMID: 29978151 PMCID: PMC6025213 DOI: 10.1210/js.2018-00113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
"Musica universalis" is an ancient philosophical concept claiming the movements of celestial bodies follow mathematical equations and resonate to produce an inaudible harmony of music, and the harmonious sounds that humans make were an approximation of this larger harmony of the universe. Besides music, electromagnetic waves such as light and electric signals also are presented as harmonic resonances. Despite the seemingly universal theme of harmonic resonance in various disciplines, it was not until recently that the same harmonic resonance was discovered also to exist in biological systems. Contrary to traditional belief that a biological system is either at stead-state or cycles with a single frequency, it is now appreciated that most biological systems have no homeostatic "set point," but rather oscillate as composite rhythms consisting of superimposed oscillations. These oscillations often cycle at different harmonics of the circadian rhythm, and among these, the ~12-hour oscillation is most prevalent. In this review, we focus on these 12-hour oscillations, with special attention to their evolutionary origin, regulation, and functions in mammals, as well as their relationship to the circadian rhythm. We further discuss the potential roles of the 12-hour clock in regulating hepatic steatosis, aging, and the possibility of 12-hour clock-based chronotherapy. Finally, we posit that biological rhythms are also musica universalis: whereas the circadian rhythm is synchronized to the 24-hour light/dark cycle coinciding with the Earth's rotation, the mammalian 12-hour clock may have evolved from the circatidal clock, which is entrained by the 12-hour tidal cues orchestrated by the moon.
Collapse
Affiliation(s)
- Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
196
|
Archer AE, Von Schulze AT, Geiger PC. Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0529. [PMID: 29203714 DOI: 10.1098/rstb.2016.0529] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 12/30/2022] Open
Abstract
Best known as chaperones, heat shock proteins (HSPs) also have roles in cell signalling and regulation of metabolism. Rodent studies demonstrate that heat treatment, transgenic overexpression and pharmacological induction of HSP72 prevent high-fat diet-induced glucose intolerance and skeletal muscle insulin resistance. Overexpression of skeletal muscle HSP72 in mice has been shown to increase endurance running capacity nearly twofold and increase mitochondrial content by 50%. A positive correlation between HSP72 mRNA expression and mitochondrial enzyme activity has been observed in human skeletal muscle, and HSP72 expression is markedly decreased in skeletal muscle of insulin resistant and type 2 diabetic patients. In addition, decreased levels of HSP72 correlate with insulin resistance and non-alcoholic fatty liver disease progression in livers from obese patients. These data suggest the targeted induction of HSPs could be a therapeutic approach for preventing metabolic disease by maintaining the body's natural stress response. Exercise elicits a number of metabolic adaptations and is a powerful tool in the prevention and treatment of insulin resistance. Exercise training is also a stimulus for increased HSP expression. Although the underlying mechanism(s) for exercise-induced HSP expression are currently unknown, the HSP response may be critical for the beneficial metabolic effects of exercise. Exercise-induced extracellular HSP release may also contribute to metabolic homeostasis by actively restoring HSP72 content in insulin resistant tissues containing low endogenous levels of HSPs.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Ashley E Archer
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alex T Von Schulze
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
197
|
den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid Droplets as Immune Modulators in Myeloid Cells. Trends Immunol 2018; 39:380-392. [DOI: 10.1016/j.it.2018.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022]
|
198
|
Luo L, Jiang W, Liu H, Bu J, Tang P, Du C, Xu Z, Luo H, Liu B, Xiao B, Zhou Z, Liu F. De-silencing Grb10 contributes to acute ER stress-induced steatosis in mouse liver. J Mol Endocrinol 2018; 60:285-297. [PMID: 29555819 DOI: 10.1530/jme-18-0018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
The growth factor receptor bound protein GRB10 is an imprinted gene product and a key negative regulator of the insulin, IGF1 and mTORC1 signaling pathways. GRB10 is highly expressed in mouse fetal liver but almost completely silenced in adult mice, suggesting a potential detrimental role of this protein in adult liver function. Here we show that the Grb10 gene could be reactivated in adult mouse liver by acute endoplasmic reticulum stress (ER stress) such as tunicamycin or a short-term high-fat diet (HFD) challenge, concurrently with increased unfolded protein response (UPR) and hepatosteatosis. Lipogenic gene expression and acute ER stress-induced hepatosteatosis were significantly suppressed in the liver of the liver-specific GRB10 knockout mice, uncovering a key role of Grb10 reactivation in acute ER stress-induced hepatic lipid dysregulation. Mechanically, acute ER stress induces Grb10 reactivation via an ATF4-mediated increase in Grb10 gene transcription. Our study demonstrates for the first time that the silenced Grb10 gene can be reactivated by acute ER stress and its reactivation plays an important role in the early development of hepatic steatosis.
Collapse
Affiliation(s)
- Liping Luo
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanxiang Jiang
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jicheng Bu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Tang
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongyangzi Du
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhipeng Xu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bilian Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of PharmacologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
199
|
Yoshino J, Almeda-Valdes P, Moseley AC, Mittendorfer B, Klein S. Percutaneous muscle biopsy-induced tissue injury causes local endoplasmic reticulum stress. Physiol Rep 2018; 6:e13679. [PMID: 29687616 PMCID: PMC5913661 DOI: 10.14814/phy2.13679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/12/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is likely involved in the pathogenesis of metabolic dysfunction in people with obesity and diabetes. Although tissue biopsy is often used to evaluate the presence and severity of ER stress, it is not known whether acute tissue injury‐induced by percutaneous muscle biopsy causes ER stress and its potential downstream effects on markers of inflammation and metabolic function. In this study, we tested the hypothesis that percutaneous biopsy‐induced tissue injury causes ER stress and alters inflammatory and metabolic pathways in skeletal muscle. Vastus lateralis muscle tissue was obtained by percutaneous biopsy at 0600 h and 12 h later from either the contralateral leg (Group 1, n = 6) or at the same site as the initial biopsy (Group 2, n = 6) in women who were overweight. Muscle gene expression of selected markers of ER stress, inflammation, and regulators of glucose and lipid metabolism were determined. Compared with Group 1, muscle gene expression in the second biopsy sample obtained in Group 2 demonstrated marked increases in markers of ER stress (GRP78, XBP1, ATF6) and inflammation (IL6, TNF), and alterations in metabolic regulators (decreased expression of GLUT4 and PPARGC1A and increased expression of FASN). Our results suggest that acute tissue injury induced by percutaneous muscle biopsy causes an integrated local response that involves an induction of ER stress and alterations in markers of inflammation and regulators of glucose and lipid metabolism.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Paloma Almeda-Valdes
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Anna C Moseley
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Klein
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
200
|
Li D, Zhang H, Zhong Y. Hepatic GDF15 is regulated by CHOP of the unfolded protein response and alleviates NAFLD progression in obese mice. Biochem Biophys Res Commun 2018; 498:388-394. [DOI: 10.1016/j.bbrc.2017.08.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 10/19/2022]
|