151
|
Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao KH, Wang G, Cockerill G, Hu Y, Xu Q, Li T, Zeng L. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep 2016; 6:28627. [PMID: 27338006 PMCID: PMC4919660 DOI: 10.1038/srep28627] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
The interaction between endothelial cells (ECs) and smooth muscle cells (SMCs) plays a critical role in the maintenance of vessel wall homeostasis. The X-box binding protein 1 (XBP1) plays an important role in EC and SMC cellular functions. However, whether XBP1 is involved in EC-SMC interaction remains unclear. In this study, In vivo experiments with hindlimb ischemia models revealed that XBP1 deficiency in SMCs significantly attenuated angiogenesis in ischemic tissues, therefore retarded the foot blood perfusion recovery. In vitro studies indicated that either overexpression of the spliced XBP1 or treatment with platelet derived growth factor-BB up-regulated miR-150 expression and secretion via extracellular vesicles (EVs). The XBP1 splicing-mediated up-regulation of miR-150 might be due to increased stability. The SMC-derived EVs could trigger EC migration, which was abolished by miR-150 knockdown in SMCs, suggesting miR-150 is responsible for SMC-stimulated EC migration. The SMC-derived miR-150-containing EVs or premiR-150 transfection increased vascular endothelial growth factor (VEGF)-A mRNA and secretion in ECs. Both inhibitors SU5416 and LY294002 attenuated EVs-induced EC migration. This study demonstrates that XBP1 splicing in SMCs can control EC migration via SMC derived EVs-mediated miR-150 transfer and miR-150-driven VEGF-A/VEGFR/PI3K/Akt pathway activation, thereby modulating the maintenance of vessel wall homeostasis.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Heart Centre, Tianjin Third Central Hospital, Tianjin 300170, China
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Yi Li
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Peiyi Luo
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Yingtang Gao
- Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Junyao Yang
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Ka-Hou Lao
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Gang Wang
- Department of Emergency Medicine, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | | | - Yanhua Hu
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Tong Li
- Department of Heart Centre, Tianjin Third Central Hospital, Tianjin 300170, China
- Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Lingfang Zeng
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| |
Collapse
|
152
|
Endothelial Cell Response to Fusobacterium nucleatum. Infect Immun 2016; 84:2141-2148. [PMID: 27185790 DOI: 10.1128/iai.01305-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Vascular response is an essential aspect of an effective immune response to periodontal disease pathogens, as new blood vessel formation contributes to wound healing and inflammation. Gaining a greater understanding of the factors that affect vascular response may then contribute to future breakthroughs in dental medicine. In this study, we have characterized the endothelial cell response to the common bacterium Fusobacterium nucleatum, an important bridging species that facilitates the activity of late colonizers of the dental biofilm. Endothelial cells were infected with Fusobacterium nucleatum (strain 25586) for periods of 4, 12, 24, or 48 h. Cell proliferation and tube formation were analyzed, and expression of adhesion molecules (CD31 and CD34) and vascular endothelial growth factor (VEGF) receptors 1 and 2 was measured by fluorescence-activated cell sorter (FACS) analysis. Data indicate that F. nucleatum impaired endothelial cell proliferation and tube formation. The findings suggest that the modified endothelial cell response acts as a mechanism promoting the pathogenic progression of periodontal diseases and may potentially suggest the involvement of periodontopathogens in systemic diseases associated with periodontal inflammation.
Collapse
|
153
|
Talaat RM, Adel S, Salem TA, Nasr MI. Correlation between angiogenic/inflammatory mediators in Wister rat model of liver dysplasia. J Immunoassay Immunochem 2016; 37:472-84. [DOI: 10.1080/15321819.2016.1157490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
154
|
Wallace DM, O'Brien CJ. The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Exp Eye Res 2016; 142:102-9. [PMID: 26675406 DOI: 10.1016/j.exer.2014.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Glaucoma is a chronic progressive optic neuropathy. There are extracellular matrix (ECM) changes associated with optic disc cupping in the optic nerve head (ONH) and subsequent visual field defects. The primary risk factor for onset and progression of glaucoma is raised intraocular pressure (IOP). Elevated IOP causes deformation at the ONH specifically at the lamina cribrosa (LC) region where there is also deposition of ECM causing the LC to initially undergo thickening and posterior migration with eventual shearing and collapse of the LC plates leading to a thin fibrotic connective tissue structure/scar. Cells that populate the LC region of the ONH are those cells that are positive for GFAP (the astrocytes) and those negative for GFAP (the LC cells). The LC cell plays an integral role in ECM remodelling producing ECM when exposed to high level mechanical stretch, TGF- β1 and a hypoxic environment.
Collapse
Affiliation(s)
- Deborah M Wallace
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.
| | - Colm J O'Brien
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
155
|
Tam IS, Giguère V. There and back again: The journey of the estrogen-related receptors in the cancer realm. J Steroid Biochem Mol Biol 2016; 157:13-9. [PMID: 26151739 DOI: 10.1016/j.jsbmb.2015.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
The identification of two genes encoding polypeptides with structural features common with the estrogen receptor more than a quarter century ago, referred to as the estrogen-related receptors (ERRs), subsequently led to the discovery of several previously unrecognized hormone responsive systems through the application of reverse endocrinology. Paradoxically, the natural ligand(s) associated with members of the ERR subfamily remains to be identified. While initial studies on the mode of action and physiological functions of the ERRs focused on interaction with estrogen signalling in breast cancer, subsequent work showed that the ERRs are ubiquitous master regulators of cellular energy metabolism. This review aims to demonstrate that the ERRs occupy a central node at the interface of cancer and metabolism, and that modulation of their activity may represent a worthwhile strategy to induce metabolic vulnerability in tumors of various origins and thus achieve a more comprehensive response to current therapies.
Collapse
Affiliation(s)
- Ingrid S Tam
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, QC H3A 1A3, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, QC H3A 1A3, Canada; Departments of Biochemistry, Medicine and Oncology, McGill University, Montréal, PQ H3G 1Y6, Canada.
| |
Collapse
|
156
|
Fang Z, He QW, Li Q, Chen XL, Baral S, Jin HJ, Zhu YY, Li M, Xia YP, Mao L, Hu B. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J 2016; 30:2097-107. [PMID: 26887441 DOI: 10.1096/fj.201500126] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Abstract
The mechanism of blood-brain barrier (BBB) disruption, involved in poststroke edema and hemorrhagic transformation, is important but elusive. We investigated microRNA-150 (miR-150)-mediated mechanism in the disruption of BBB after stroke in rats. We found that up-regulation of miR-150 increased permeability of BBB as detected by MRI after permanent middle cerebral artery occlusion in vivo as well as increased permeability of brain microvascular endothelial cells after oxygen-glucose deprivation in vitro. The expression of claudin-5, a key tight junction protein, was decreased in the ischemic boundary zone after up-regulation of miR-150. We found in brain microvascular endothelial cells that overexpression of miR-150 decreased not only cell survival rate but also the expression levels of claudin-5 after oxygen-glucose deprivation. With dual-luciferase assay, we confirmed that miR-150 could directly regulate the angiopoietin receptor Tie-2. Moreover, silencing Tie-2 with lentivirus-delivered small interfering RNA reversed the effect of miR-150 on endothelial permeability, cell survival, and claudin-5 expression. Furthermore, poststroke treatment with antagomir-150, a specific miR-150 antagonist, contributed to BBB protection, infarct volume reduction, and amelioration of neurologic deficits. Collectively, our findings suggested that miR-150 could regulate claudin-5 expression and endothelial cell survival by targeting Tie-2, thus affecting the permeability of BBB after permanent middle cerebral artery occlusion in rats, and that miR-150 might be a potential alternative target for the treatment of stroke.-Fang, Z., He, Q.-W., Li, Q., Chen, X.-L., Baral, S., Jin, H.-J., Zhu, Y.-Y., Li, M., Xia, Y.-P., Mao, L., Hu, B. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats.
Collapse
Affiliation(s)
- Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Lu Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suraj Baral
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Yi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
157
|
Tokudome T, Kishimoto I, Shindo T, Kawakami H, Koyama T, Otani K, Nishimura H, Miyazato M, Kohno M, Nakao K, Kangawa K. Importance of Endogenous Atrial and Brain Natriuretic Peptides in Murine Embryonic Vascular and Organ Development. Endocrinology 2016; 157:358-67. [PMID: 26517044 DOI: 10.1210/en.2015-1344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) bind to the receptor guanylyl cyclase (GC)-A, leading to diuresis, natriuresis, and blood vessel dilation. In addition, ANP and BNP have various angiogenic properties in ischemic tissue. When breeding mice devoid of GC-A, we noted significant skewing of the Mendelian ratio in the offspring, suggesting embryonic lethality due to knockout of GC-A. Consequently, we here investigated the roles of endogenous ANP and BNP in embryonic neovascularization and organ morphogenesis. Embryos resulting from GC-A(-/-) × GC-A(+/-) crosses developed hydrops fetalis (HF) beginning at embryonic day (E)14.5. All embryos with HF had the genotype GC-A(-/-). At E17.5, 33.3% (12 of 36) of GC-A(-/-) embryos had HF, and all GC-A(-/-) embryos with HF were dead. Beginning at E16.0, HF-GC-A(-/-) embryos demonstrated poorly developed superficial vascular vessels and sc hemorrhage, the fetal side of the placenta appeared ischemic, and vitelline vessels on the yolk sac were poorly developed. Furthermore, HF-GC-A(-/-) embryos also showed abnormal constriction of umbilical cord vascular vessels, few cardiac trabeculae and a thin compact zone, hepatic hemorrhage, and poor bone development. Electron microscopy of E16.5 HF-GC-A(-/-) embryos revealed severe vacuolar degeneration in endothelial cells, and the expected 3-layer structure of the smooth muscle wall of the umbilical artery was indistinct. These data demonstrate the importance of the endogenous ANP/BNP-GC-A system not only in the neovascularization of ischemic tissues but also in embryonic vascular development and organ morphogenesis.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Cells, Cultured
- Crosses, Genetic
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Embryo, Mammalian/ultrastructure
- Female
- Gene Expression Regulation, Developmental
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/ultrastructure
- Humans
- Hydrops Fetalis/genetics
- Hydrops Fetalis/pathology
- Hydrops Fetalis/veterinary
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice, Knockout
- Microscopy, Electron, Transmission
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Neovascularization, Physiologic
- Organogenesis
- Pregnancy
- Receptors, Atrial Natriuretic Factor/agonists
- Receptors, Atrial Natriuretic Factor/deficiency
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Takeshi Tokudome
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Ichiro Kishimoto
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Takayuki Shindo
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Hayato Kawakami
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Teruhide Koyama
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Kentaro Otani
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Hirohito Nishimura
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Mikiya Miyazato
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Masakazu Kohno
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Kazuwa Nakao
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Kenji Kangawa
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| |
Collapse
|
158
|
Xu XY, Yan B. An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Trans 2016; 45:7078-84. [DOI: 10.1039/c6dt00361c] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, an amino group functionalized MOF (Al-MIL-101-NH2), which shows strong blue luminescence, is used as pH sensor. Due to the protonated amino group, the fluorescence intensity of Al-MIL-101-NH2almost increases with increasing pH and gives a good linear relationship (R2= 0.99688) with the pH value.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai 200092
- China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
159
|
Suppression of vascular network formation by chronic hypoxia and prolyl-hydroxylase 2 (phd2) deficiency during vertebrate development. Angiogenesis 2015; 19:119-31. [DOI: 10.1007/s10456-015-9492-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
160
|
Kuraishi T, Kenmoku H, Kurata S. From mouth to anus: Functional and structural relevance of enteric neurons in the Drosophila melanogaster gut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:21-26. [PMID: 26232723 DOI: 10.1016/j.ibmb.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
The intestinal tract is the main organ involved in host nutritional homeostasis. Intestinal function in both vertebrates and invertebrates is partly controlled by enteric neurons that innervate the gut. Though anatomical and functional aspects of enteric neurons are relatively less characterized in Drosophila than in large insects, analyses of the role of the enteric neurons in flies have remarkably progressed in the last few years. In this review, we first provide a summary of the structure and function of the Drosophila intestine. We then discuss recent studies of the structure and function of enteric neurons in Drosophila melanogaster.
Collapse
Affiliation(s)
- Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
| | - Hiroyuki Kenmoku
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
161
|
Madsen CD, Pedersen JT, Venning FA, Singh LB, Moeendarbary E, Charras G, Cox TR, Sahai E, Erler JT. Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep 2015; 16:1394-408. [PMID: 26323721 PMCID: PMC4662858 DOI: 10.15252/embr.201540107] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 01/31/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) interact with tumour cells and promote growth and metastasis. Here, we show that CAF activation is reversible: chronic hypoxia deactivates CAFs, resulting in the loss of contractile force, reduced remodelling of the surrounding extracellular matrix and, ultimately, impaired CAF-mediated cancer cell invasion. Hypoxia inhibits prolyl hydroxylase domain protein 2 (PHD2), leading to hypoxia-inducible factor (HIF)-1α stabilisation, reduced expression of αSMA and periostin, and reduced myosin II activity. Loss of PHD2 in CAFs phenocopies the effects of hypoxia, which can be prevented by simultaneous depletion of HIF-1α. Treatment with the PHD inhibitor DMOG in an orthotopic breast cancer model significantly decreases spontaneous metastases to the lungs and liver, associated with decreased tumour stiffness and fibroblast activation. PHD2 depletion in CAFs co-injected with tumour cells similarly prevents CAF-induced metastasis to lungs and liver. Our data argue that reversion of CAFs towards a less active state is possible and could have important clinical implications.
Collapse
Affiliation(s)
- Chris D Madsen
- Tumour Cell Biology Laboratory, The Francis Crick Institute (formerly Cancer Research UK London Research Institute), London, UK Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper T Pedersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Freja A Venning
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Lukram Babloo Singh
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillaume Charras
- Department of Cell and Developmental Biology, University College London, London, UK London Centre for Nanotechnology, University College London, London, UK
| | - Thomas R Cox
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute (formerly Cancer Research UK London Research Institute), London, UK
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
162
|
van Hinsbergh VWM, Eringa EC, Daemen MJAP. Neovascularization of the atherosclerotic plaque: interplay between atherosclerotic lesion, adventitia-derived microvessels and perivascular fat. Curr Opin Lipidol 2015; 26:405-11. [PMID: 26241102 DOI: 10.1097/mol.0000000000000210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Neovascularization is a prominent feature in advanced human atherosclerotic plaques. This review surveys recent evidence for and remaining uncertainties regarding a role of neovascularization in atherosclerotic plaque progression. Specific emphasis is given to hypoxia, angiogenesis inhibition, and perivascular adipose tissue (PVAT). RECENT FINDINGS Immunohistochemical and imaging studies showed a strong association between hypoxia, inflammation and neovascularization, and the progression of the atherosclerotic plaque both in humans and mice. Whereas in humans, a profound invasion of microvessels from the adventitia into the plaque occurs, neovascularization in mice is found mainly (peri)adventitially. Influencing neovascularization in mice affected plaque progression, possibly by improving vessel perfusion, but supportive clinical data are not available. Whereas plaque neovascularization contributes to monocyte/macrophage accumulation in the plaque, lymphangiogenesis may facilitate egress of cells and waste products. A specific role for PVAT and its secreted factors is anticipated and wait further clinical evaluation. SUMMARY Hypoxia, inflammation, and plaque neovascularization are associated with plaque progression as underpinned by recent imaging data in humans. Recent studies provide new insights into modulation of adventitia-associated angiogenesis, PVAT, and plaque development in mice, but there is still a need for detailed information on modulating human plaque vascularization in patients.
Collapse
Affiliation(s)
- Victor W M van Hinsbergh
- aLaboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center bDepartment of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
163
|
MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep 2015; 5:13316. [PMID: 26294080 PMCID: PMC4543985 DOI: 10.1038/srep13316] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
Abstract
Previous studies have suggested that microRNA-107 (miR-107) regulates cell migration in tumor and promotes Hypoxia Inducible Factor 1α (HIF1α) regulated angiogenesis under hypoxia. We found that miR-107 was strongly expressed in ischemic boundary zone (IBZ) after permanent middle cerebral artery occlusion (pMCAO) in rats and inhibition of miR-107 could reduce capillary density in the IBZ after stroke. Such finding led us to hypothesize that miR-107 might regulate post-stroke angiogenesis and therefore serve as a therapeutic target. We also found that antagomir-107, a synthetic miR-107 inhibitor, decreased the number of capillaries in IBZ and increased overall infarct volume after pMCAO in rats. We demonstrated that miR-107 could directly down-regulate Dicer-1, a gene that encodes an enzyme essential for processing microRNA (miRNA) precursors. This resulted in translational desupression of VEGF (vascular endothelial growth factor) mRNA, thereby increasing expression of endothelial cell-derived VEGF (VEGF165/VEGF164), leading to angiogenesis after stroke. This process might be a protective mechanism for ischemia-induced cerebral injury and miR-107 might be used as a novel tool in stroke treatment.
Collapse
|
164
|
Interrelationship between angiogenesis, inflammation and oxidative stress in Indian patients with multiple myeloma. Clin Transl Oncol 2015; 18:132-7. [PMID: 26169214 DOI: 10.1007/s12094-015-1344-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal population of plasma cells in the bone marrow (BM). A variety of angiogenic factors, proteases, reactive oxygen species and inflammatory cytokines induce the formation of an extensive and suitable BM microenvironment. Previous studies have established the importance of angiogenic factors, inflammatory molecules and oxidative stress in MM but their interplay and effect on each other are not being taken together. METHODS Circulatory levels of VEGF, angiopoietin-2 (Ang-2), IL-6 and TNF-α along with the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were investigated in 112 subjects including 62 MM patients and 50 healthy controls. Inter-stage analysis was done to evaluate the association of these molecules with the severity of disease. Pearson correlation was determined to find interrelationship, if any, between these molecules. RESULTS We have observed elevated levels of VEGF, Ang-2, IL-6, TNF-α and decreased activity of SOD, GPx in MM patients in comparison to controls. All these molecules also showed a trend with the severity of disease. We have found strong association between these factors upon their correlation and regression analysis. CONCLUSION This study is a step toward understanding the indepth contribution of angiogenesis, inflammation and oxidative stress together in making BM microenvironment suitable for growth, survival and proliferation of malignant plasma cells in MM.
Collapse
|
165
|
Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J 2015; 31:427-34. [PMID: 25214198 DOI: 10.1007/s10719-014-9547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression of vascular endothelial growth factor, major endothelial specific glycoprotein growth factor that promotes angiogenesis is regulated at transcriptional, post transcriptional and posttranslational levels. One of the key posttranslational modifications involved in regulating the angiogenic potential of VEGF is covalent modification involving polyADP ribosylation. Major factors contributing to the regulation of VEGF include factors relating to hypoxia, growth factors and cytokines and hormones. Apart from these, the metabolite status of the cell as sensed by various metabolite regulators can influence the angiogenic potential. Changes in the metabolite status of the cell occur during different conditions associated with excessive or insufficient angiogenesis contributing to pathology. Effect of metabolites, as exemplified by certain metabolites such as lactate, citrate, sarcosine, metabolites of arachidonic acid on angiogenesis through the regulation of expression of VEGF as well as its angiogenic potential through polyADP ribosylation is discussed.
Collapse
|
166
|
Woik N, Kroll J. Regulation of lung development and regeneration by the vascular system. Cell Mol Life Sci 2015; 72:2709-18. [PMID: 25894695 PMCID: PMC11113134 DOI: 10.1007/s00018-015-1907-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 02/08/2023]
Abstract
Blood vessels have been described a long time ago as passive circuits providing sufficient blood supply to ensure proper distribution of oxygen and nutrition. Blood vessels are mainly formed during embryonic development and in the early postnatal period. In the adult, blood vessels are quiescent, but can be activated and subsequently induced under pathophysiological conditions, such as ischemia and tumor growth. Surprisingly, recent data have suggested an active function for blood vessels, named angiocrine signaling, releasing trophogens which regulate organ development and organ regeneration including in the pancreas, lung, tumor cells, liver and bone. Lung development is driven by hypoxia as well as an intense endothelial-epithelial interaction, and important mechanisms contributing to these processes have recently been identified. This review aims to summarize recent developments and concepts about embryonic pulmonary vascular development and lung regeneration. We discuss hypoxia-inducible factor HIF-2α and vascular endothelial growth factor VEGF as important mediators in lung development and focus on endothelial-epithelial interactions and angiocrine signaling mechanisms.
Collapse
Affiliation(s)
- Nicole Woik
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
167
|
Mohammadi M, Chen P. Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: A computational model. Microvasc Res 2015; 101:26-32. [PMID: 26093178 DOI: 10.1016/j.mvr.2015.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 01/25/2023]
Abstract
Solid tumors with different microvascular densities (MVD) have been shown to have different outcomes in clinical studies. Other studies have demonstrated the significant correlation between high MVD, elevated interstitial fluid pressure (IFP) and metastasis in cancers. Elevated IFP in solid tumors prevents drug macromolecules reaching most cancerous cells. To overcome this barrier, antiangiogenesis drugs can reduce MVD within the tumor and lower IFP. A quantitative approach is essential to compute how much reduction in MVD is required for a specific tumor to reach a desired amount of IFP for drug delivery purposes. Here we provide a computational framework to investigate how IFP is affected by the tumor size, the MVD, and location of vessels within the tumor. A general physiologically relevant tumor type with a heterogenous vascular structure surrounded by normal tissue is utilized. Then the continuity equation, Darcy's law, and Starling's equation are applied in the continuum mechanics model, which can calculate IFP for different cases of solid tumors. High MVD causes IFP elevation in solid tumors, and IFP distribution correlates with microvascular distribution within tumor tissue. However, for tumors with constant MVD but different microvascular structures, the average values of IFP were found to be the same. Moreover, for a constant MVD and vascular distribution, an increase in tumor size leads to increased IFP.
Collapse
Affiliation(s)
- M Mohammadi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - P Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
168
|
Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE, Petrova LL. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol 2015; 64:174-84. [PMID: 25900038 DOI: 10.1016/j.biocel.2015.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 12/29/2022]
Abstract
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.
Collapse
Affiliation(s)
- Alla B Salmina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Natalia V Kuvacheva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Andrey V Morgun
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yulia K Komleva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Elena A Pozhilenkova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Olga L Lopatina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yana V Gorina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Tatyana E Taranushenko
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Lyudmila L Petrova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| |
Collapse
|
169
|
Kagawa Y, Matsuura K, Shimizu T, Tsuneda S. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment. Biotechnol Bioeng 2015; 112:1263-74. [PMID: 25565074 DOI: 10.1002/bit.25531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 02/02/2023]
Abstract
Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture.
Collapse
Affiliation(s)
- Yuki Kagawa
- Institute for Nanoscience and Nanotechnology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | | | | | | |
Collapse
|
170
|
Abstract
Recent data indicate that hepatic angiogenesis, regardless of the etiology, takes place in chronic liver diseases (CLDs) that are characterized by inflammation and progressive fibrosis. Because anti-angiogenic therapy has been found to be efficient in the prevention of fibrosis in experimental models of CLDs, it is suggested that blocking angiogenesis could be a promising therapeutic option in patients with advanced fibrosis. Consequently, efforts are being directed to revealing the mechanisms involved in angiogenesis during the progression of liver fibrosis. Literature evidences indicate that hepatic angiogenesis and fibrosis are closely related in both clinical and experimental conditions. Hypoxia is a major inducer of angiogenesis together with inflammation and hepatic stellate cells. These profibrogenic cells stand at the intersection between inflammation, angiogenesis and fibrosis and play also a pivotal role in angiogenesis. This review mainly focuses to give a clear view on the relevant features that communicate angiogenesis with progression of fibrosis in CLDs towards the-end point of cirrhosis that may be translated into future therapies. The pathogenesis of hepatic angiogenesis associated with portal hypertension, viral hepatitis, non-alcoholic fatty liver disease and alcoholic liver disease are also discussed to emphasize the various mechanisms involved in angiogenesis during liver fibrogenesis.
Collapse
Affiliation(s)
- Gülsüm Özlem Elpek
- Gülsüm Özlem Elpek, Department of Pathology, Akdeniz University Medical School, 07070 Antalya, Turkey
| |
Collapse
|
171
|
Alig SK, Stampnik Y, Pircher J, Rotter R, Gaitzsch E, Ribeiro A, Wörnle M, Krötz F, Mannell H. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia. PLoS One 2015; 10:e0121113. [PMID: 25799543 PMCID: PMC4370726 DOI: 10.1371/journal.pone.0121113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia. Results SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence. Conclusions SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.
Collapse
Affiliation(s)
- Stefan K. Alig
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
- Department of Internal Medicine III, University of Munich, Munich, Germany
| | - Yvonn Stampnik
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| | - Joachim Pircher
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
- Department of Internal Medicine I, University of Munich, Munich, Germany
| | - Raffaela Rotter
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| | - Erik Gaitzsch
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| | - Andrea Ribeiro
- Department of Internal Medicine IV, University of Munich, Munich, Germany
| | - Markus Wörnle
- Department of Internal Medicine IV, University of Munich, Munich, Germany
| | - Florian Krötz
- Interventional Cardiology, Starnberg Community Hospital, Starnberg, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
172
|
Matsumoto T, Sato S. Stimulating angiogenesis mitigates the unloading-induced reduction in osteogenesis in early-stage bone repair in rats. Physiol Rep 2015; 3:e12335. [PMID: 25780087 PMCID: PMC4393168 DOI: 10.14814/phy2.12335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 11/24/2022] Open
Abstract
Accelerating fracture healing during bed rest allows early mobilization and avoids prolonged fracture healing times. We tested the hypothesis that stimulating angiogenesis with deferoxamine (DFO) mitigates the unloading-induced reduction in early-stage bone repair. Rats aged 12 weeks were subjected to cortical drilling on their tibial diaphysis under anesthesia and treated with hindlimb unloading (HU), HU and DFO administration (DFOHU), or weight bearing (WB) for 5 or 10 days (HU5/10, DFOHU5/10, WB5/10; n = 8 per groups) until sacrifice for vascular casting with a zirconium dioxide-based contrast agent. Taking advantage of its absorption discontinuity at the K-absorption edge, vascular and bone images in the drill-hole defects were acquired by synchrotron radiation subtraction CT. Bone repair was reduced in HU rats. The bone volume fraction (B.Vf) was 88% smaller in HU5 and 42% smaller in HU10 than in WB5/10. The bone segment densities (B.Seg) were 97% smaller in HU5 and 141% larger in HU10 than in WB5/10, and bone thickness (B.Th) was 38% smaller in HU10 than in WB10. The vascular volume fraction (V.Vf) was 35% and the mean vessel diameter (V.D) was 13% smaller in HU10 than in WB10. When compared according to categorized vessel sizes, V.Vf in the diameter ranges 20-30, 30-40, and >40 μm were smaller in HU10 than in WB10, and V.Seg in the diameter range >40 μm was smaller in HU10 than in WB10. In contrast, there was no difference in B.Vf between DFOHU5/10 and WB5/10 and in V.Vf between DFOHU10 and WB10, though B.Seg remained 86% smaller in DFOHU5 and 94% larger in DFOHU10 than in WB5/10, and B.Th and V.D were 23% and 14% lower in DFOHU10 than in WB10. Vessel size-specific V.Vf in the diameter ranges 10-20 and 20-30 μm was larger in DFOHU5 than in HU5. In conclusion, the enhanced angiogenic ingrowth mitigates the reduction in bone repair during mechanical unloading.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Bioengineering Division, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Shota Sato
- Bioengineering Division, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| |
Collapse
|
173
|
Guo J, Zhang Y, Mihic A, Li SH, Sun Z, Shao Z, Wu J, Weisel RD, Li RK. A secreted protein (Canopy 2, CNPY2) enhances angiogenesis and promotes smooth muscle cell migration and proliferation. Cardiovasc Res 2015; 105:383-393. [PMID: 25589425 DOI: 10.1093/cvr/cvv010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
174
|
Dennis AT, Castro JM. Hypertension and haemodynamics in pregnant women--is a unified theory for pre-eclampsia possible? Anaesthesia 2015; 69:1183-9. [PMID: 25302966 DOI: 10.1111/anae.12832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A T Dennis
- Department of Anaesthesia, The Royal Women's Hospital, Parkville, Victoria, Australia; Departments of Pharmacology and Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
175
|
The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis 2015; 6:e1600. [PMID: 25590810 PMCID: PMC4669763 DOI: 10.1038/cddis.2014.565] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/24/2023]
Abstract
Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies.
Collapse
|
176
|
Carlier A, Geris L, Gastel NV, Carmeliet G, Oosterwyck HV. Oxygen as a critical determinant of bone fracture healing—A multiscale model. J Theor Biol 2015; 365:247-64. [DOI: 10.1016/j.jtbi.2014.10.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/28/2014] [Accepted: 10/09/2014] [Indexed: 12/30/2022]
|
177
|
Ng SR, O'Hare D. An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells. Analyst 2015; 140:4224-31. [DOI: 10.1039/c5an00377f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A microelectrode on a chip was modified to detect the local pH changes of the attached endothelial cells under the stimulation of thrombin.
Collapse
Affiliation(s)
- Shu Rui Ng
- Department of Bioengineering
- Imperial College London
- UK SW7 2AZ
- School of Chemical and Biomedical Engineering
- Division of Bioengineering
| | - Danny O'Hare
- Department of Bioengineering
- Imperial College London
- UK SW7 2AZ
| |
Collapse
|
178
|
Li J, Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Tang K, Yin S. Effects of nickel chloride on the erythrocytes and erythrocyte immune adherence function in broilers. Biol Trace Elem Res 2014; 161:173-9. [PMID: 25108640 DOI: 10.1007/s12011-014-0096-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
This study was conducted to investigate the immune adherence function of erythrocytes and erythrocyte induced by dietary nickel chloride (NiCl2) in broilers fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Blood samples were collected from five broilers in each group at 14, 28, and 42 days of age. Changes of erythrocyte parameters showed that total erythrocyte count (TEC), hemoglobin (Hb) contents, and packed cell volume (PCV) were significantly lower (p < 0.05 or p < 0.01) and erythrocyte osmotic fragility (EOF) was higher (p < 0.05 or p < 0.01) in the 600 and 900 mg/kg groups at 28 and 42 days of age than those in the control group, and the sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase) and calcium adenosine triphosphatase (Ca(2+)-ATPase) activities were significantly decreased (p < 0.05 or p < 0.01) in the NiCl2-treated groups. The results of erythrocyte immune adherence function indicated that erythrocyte C3b receptor rosette rate (E-C3bRR) was significantly decreased (p < 0.05 or p < 0.01) in the 600 and 900 mg/kg groups and in the 300 mg/kg group at 42 days of age, whereas the erythrocyte immune complex rosette rate (E-ICRR) was markedly increased (p < 0.05 or p < 0.01) in the 300, 600, and 900 mg/kg groups at 28 and 42 days of age. It was concluded that dietary NiCl2 in excess of 300 mg/kg caused anemia and impaired the erythrocytic integrity, erythrocytic ability to transport oxygen, and erythrocyte immune adherence function in broilers. Impairment of the erythrocytes and erythrocyte immune adherence function was one of main effect mechanisms of NiCl2 on the blood function.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, 625014, Ya'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 2014; 13:852-69. [PMID: 25359381 PMCID: PMC4259899 DOI: 10.1038/nrd4422] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.
Collapse
Affiliation(s)
- Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
180
|
Manresa MC, Godson C, Taylor CT. Hypoxia-sensitive pathways in inflammation-driven fibrosis. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1369-80. [PMID: 25298511 DOI: 10.1152/ajpregu.00349.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue injury can occur for a variety of reasons, including physical damage, infection, and ischemia. The ability of tissues to effectively recover from injury is a cornerstone of human health. The healing response in tissues is conserved across organs and typically involves distinct but overlapping inflammatory, proliferative, and maturation/resolution phases. If the inflammatory phase is not successfully controlled and appropriately resolved, an excessive healing response characterized by scar formation can lead to tissue fibrosis, a major clinical complication in disorders such as Crohn's disease (CD). As a result of enhanced metabolic and inflammatory processes during chronic inflammation, profound changes in tissue oxygen levels occur leading to localized tissue hypoxia. Therefore, inflammation, fibrosis, and hypoxia are coincidental events during inflammation-driven fibrosis. Our current understanding of the mechanism(s) underpinning fibrosis is limited as are the therapeutic options available. In this review, we discuss what is known about the cellular and molecular mechanisms underpinning inflammation-driven fibrosis and how hypoxia may play a role in shaping this process.
Collapse
Affiliation(s)
- Mario C Manresa
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Catherine Godson
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
181
|
Sulaiman RS, Basavarajappa HD, Corson TW. Natural product inhibitors of ocular angiogenesis. Exp Eye Res 2014; 129:161-71. [PMID: 25304218 DOI: 10.1016/j.exer.2014.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
Abstract
Natural products are characterized by high chemical diversity and biochemical specificity; therefore, they are appealing as lead compounds for drug discovery. Given the importance of angiogenesis to many pathologies, numerous natural products have been explored as potential anti-angiogenic drugs. Ocular angiogenesis underlies blinding eye diseases such as retinopathy of prematurity (ROP) in children, proliferative diabetic retinopathy (DR) in adults of working age, and age-related macular degeneration (AMD) in the elderly. Despite the presence of effective therapy in many cases, these diseases are still a significant health burden. Anti-VEGF biologics are the standard of care, but may cause ocular or systemic side effects after intraocular administration and patients may be refractory. Many anti-angiogenic compounds inhibit tumor growth and metastasis alone or in combination therapy, but a more select subset of them has been tested in the context of ocular neovascular diseases. Here, we review the promise of natural products as anti-angiogenic agents, with a specific focus on retinal and choroidal neovascularization. The multifunctional curcumin and the chalcone isoliquiritigenin have demonstrated promising anti-angiogenic effects in mouse models of DR and choroidal neovascularization (CNV) respectively. The homoisoflavanone cremastranone and the flavonoid deguelin have been shown to inhibit ocular neovascularization in more than one disease model. The isoflavone genistein and the flavone apigenin on the other hand are showing potential in the prevention of retinal and choroidal angiogenesis with long-term administration. Many other products with anti-angiogenic potential in vitro such as the lactone withaferin A, the flavonol quercetin, and the stilbenoid combretastatin A4 are awaiting investigation in different ocular disease-relevant animal models. These natural products may serve as lead compounds for the design of more specific, efficacious, and affordable drugs with minimal side effects.
Collapse
Affiliation(s)
- Rania S Sulaiman
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Halesha D Basavarajappa
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
182
|
|
183
|
Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab 2014; 2:19. [PMID: 25250177 PMCID: PMC4171726 DOI: 10.1186/2049-3002-2-19] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 02/08/2023] Open
Abstract
The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells.
Collapse
Affiliation(s)
- Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Stapor
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| |
Collapse
|
184
|
Stapor P, Wang X, Goveia J, Moens S, Carmeliet P. Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism. J Cell Sci 2014; 127:4331-41. [PMID: 25179598 DOI: 10.1242/jcs.153908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinically approved therapies that target angiogenesis in tumors and ocular diseases focus on controlling pro-angiogenic growth factors in order to reduce aberrant microvascular growth. Although research on angiogenesis has revealed key mechanisms that regulate tissue vascularization, therapeutic success has been limited owing to insufficient efficacy, refractoriness and tumor resistance. Emerging concepts suggest that, in addition to growth factors, vascular metabolism also regulates angiogenesis and is a viable target for manipulating the microvasculature. Recent studies show that endothelial cells rely on glycolysis for ATP production, and that the key glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) regulates angiogenesis by controlling the balance of tip versus stalk cells. As endothelial cells acquire a tip cell phenotype, they increase glycolytic production of ATP for sprouting. Furthermore, pharmacological blockade of PFKFB3 causes a transient, partial reduction in glycolysis, and reduces pathological angiogenesis with minimal systemic harm. Although further assessment of endothelial cell metabolism is necessary, these results represent a paradigm shift in anti-angiogenic therapy from targeting angiogenic factors to focusing on vascular metabolism, warranting research on the metabolic pathways that govern angiogenesis.
Collapse
Affiliation(s)
- Peter Stapor
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Xingwu Wang
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
185
|
In vitro inhibitory effect of crab shell extract on human umbilical vein endothelial cell. In Vitro Cell Dev Biol Anim 2014; 51:36-41. [DOI: 10.1007/s11626-014-9810-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/13/2014] [Indexed: 01/14/2023]
|
186
|
Ben-Ami R. Angiogenesis at the mold-host interface: a potential key to understanding and treating invasive aspergillosis. Future Microbiol 2014; 8:1453-62. [PMID: 24199803 DOI: 10.2217/fmb.13.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) in neutropenic patients is characterized by angioinvasion, intravascular thrombosis and tissue infarction, features that lead to sequestration of infected tissue and impaired fungal clearance. Recent research has shown that host angiogenesis, the homeostatic compensatory response to tissue hypoxia, is downregulated by Aspergillus fumigatus secondary metabolites. A. fumigatus metabolites inhibit multiple key angiogenic mediators, notably basic FGF, VEGF and their respective receptors. Moreover, repletion of basic FGF and VEGF enhances angiogenesis at the site of infection, induces trafficking of polymorphonuclear leukocytes into fungal-infected tissue and enhances antifungal drug activity. This review summarizes the emerging roles of vasculopathy and angiogenesis in the pathogenesis of IA, emphasizing the importance of the underlying mode of immunosuppression. Modulation of angiogenesis is a potential target for novel therapeutic strategies against IA.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Medical Center & the Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
187
|
Black CK, Mihai DM, Washington I. The photosynthetic eukaryote Nannochloris eukaryotum as an intracellular machine to control and expand functionality of human cells. NANO LETTERS 2014; 14:2720-2725. [PMID: 24766546 DOI: 10.1021/nl500655h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To construct an intracellular machine, we sought a symbiotic relationship between a photosynthetic green alga and human cells. Human cells selectively take up the minimal eukaryote Nannochloris eukaryotum and the resulting symbionts are able to survive and proliferate. Host cells can utilize N. eukaryotum's photosynthetic apparatus for survival, and expression of cellular vascular endothelial growth factor can be controlled with input of photonic energy. This seemingly rare spontaneous association provides an opportunity to fabricate light-controlled, intracellular machines.
Collapse
Affiliation(s)
- Cara K Black
- Ophthalmology, Columbia University Medical Center , New York, New York 10032, United States
| | | | | |
Collapse
|
188
|
Nogueira-Ferreira R, Ferreira R, Henriques-Coelho T. Cellular interplay in pulmonary arterial hypertension: Implications for new therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:885-93. [DOI: 10.1016/j.bbamcr.2014.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/22/2022]
|
189
|
Functional analysis reveals angiogenic potential of human mesenchymal stem cells from Wharton’s jelly in dermal regeneration. Angiogenesis 2014; 17:851-66. [DOI: 10.1007/s10456-014-9432-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
|
190
|
Inoue T, Kohro T, Tanaka T, Kanki Y, Li G, Poh HM, Mimura I, Kobayashi M, Taguchi A, Maejima T, Suehiro JI, Sugiyama A, Kaneki K, Aruga H, Dong S, Stevens JF, Yamamoto S, Tsutsumi S, Fujita T, Ruan X, Aburatani H, Nangaku M, Ruan Y, Kodama T, Wada Y. Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements. Genome Biol 2014; 15:R63. [PMID: 24721177 PMCID: PMC4053749 DOI: 10.1186/gb-2014-15-4-r63] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Background Synergistic transcriptional activation by different stimuli has been reported along with a diverse array of mechanisms, but the full scope of these mechanisms has yet to be elucidated. Results We present a detailed investigation of hypoxia-inducible factor (HIF) 1 dependent gene expression in endothelial cells which suggests the importance of crosstalk between the peroxisome proliferator-activated receptor (PPAR) β/δ and HIF signaling axes. A migration assay shows a synergistic interaction between these two stimuli, and we identify angiopoietin-like 4 (ANGPTL4) as a common target gene by using a combination of microarray and ChIP-seq analysis. We profile changes of histone marks at enhancers under hypoxia, PPARβ/δ agonist and dual stimulations and these suggest that the spatial proximity of two response elements is the principal cause of the synergistic transcription induction. A newly developed quantitative chromosome conformation capture assay shows the quantitative change of the frequency of proximity of the two response elements. Conclusions To the best of our knowledge, this is the first report that two different transcription factors cooperate in transcriptional regulation in a synergistic fashion through conformational change of their common target genes.
Collapse
|
191
|
Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching. Cell 2014; 156:69-83. [PMID: 24439370 PMCID: PMC3898607 DOI: 10.1016/j.cell.2013.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/26/2013] [Accepted: 11/05/2013] [Indexed: 12/30/2022]
Abstract
During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives—rather than responds to—metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture. The Drosophila tracheal system exhibits nutrient-dependent plasticity Tracheal plasticity is organ specific and metabolically significant Nutrient- and hypoxia-responsive neurons drive adaptive tracheation Distinct insulin-like and Pdf neuropeptides control organ-specific tracheal branching
Collapse
|
192
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
193
|
Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A 2014; 111:5508-13. [PMID: 24706792 DOI: 10.1073/pnas.1402723111] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Collapse
|
194
|
Takeuchi R, Kuruma Y, Sekine H, Dobashi I, Yamato M, Umezu M, Shimizu T, Okano T. In vivovascularization of cell sheets provided better long-term tissue survival than injection of cell suspension. J Tissue Eng Regen Med 2014; 10:700-10. [DOI: 10.1002/term.1854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 10/05/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Ryohei Takeuchi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University (TWIns); Tokyo Japan
- Terumo Corporation; Research and Development Headquarters; Kanagawa Japan
- Graduate School of Advanced Science and Engineering; Waseda University; Tokyo Japan
| | - Yosuke Kuruma
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University (TWIns); Tokyo Japan
- Terumo Corporation; Research and Development Headquarters; Kanagawa Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University (TWIns); Tokyo Japan
| | - Izumi Dobashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University (TWIns); Tokyo Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University (TWIns); Tokyo Japan
| | - Mitsuo Umezu
- Graduate School of Advanced Science and Engineering; Waseda University; Tokyo Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University (TWIns); Tokyo Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University (TWIns); Tokyo Japan
| |
Collapse
|
195
|
Zimarino M, D'Andreamatteo M, Waksman R, Epstein SE, De Caterina R. The dynamics of the coronary collateral circulation. Nat Rev Cardiol 2014; 11:191-7. [DOI: 10.1038/nrcardio.2013.207] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
196
|
Chang J, Erler J. Hypoxia-Mediated Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:55-81. [DOI: 10.1007/978-1-4614-5915-6_3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
197
|
Marxreiter S, Thummel CS. Will branch for food-nutrient-dependent tracheal remodeling in Drosophila. EMBO J 2014; 33:179-80. [DOI: 10.1002/embj.201387412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Stefanie Marxreiter
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City UT USA
| | - Carl S Thummel
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City UT USA
| |
Collapse
|
198
|
Abstract
Pathogenesis of cerebral ischemia has so far been described in the context of proteins and the pathways that they regulate. The discovery of biomarkers has also been focussed mainly on proteins and to some extent on the mRNAs that encode them. The knowledge on the role of microRNAs in understanding the pathogenesis of cerebral ischemia is still at its infancy. In this study, using rat models subjected to middle cerebral artery occlusion, we have profiled the microRNAs at different reperfusion times (0 to 48 h) to understand the progression of cerebral ischemia. We have also attempted to correlate the expression of microRNAs to treatment with an NMDA antagonist (MK801) and to protein expression with the hope of demonstrating the potential use of microRNAs as early biomarkers of stroke.
Collapse
|
199
|
Eelen G, Cruys B, Welti J, De Bock K, Carmeliet P. Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab 2013; 24:589-96. [PMID: 24075830 DOI: 10.1016/j.tem.2013.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023]
Abstract
Vessel sprouting by endothelial cells (ECs) during angiogenesis relies on a navigating tip cell and on proliferating stalk cells that elongate the shaft. To date, only genetic signals have been shown to regulate vessel sprouting. However, emerging evidence indicates that the angiogenic switch also requires a metabolic switch. Indeed, angiogenic signals not only induce a change in EC metabolism but this metabolic adaptation also co-determines vessel sprouting. The glycolytic activator PFKFB3 regulates stalk cell proliferation and renders ECs more competitive to reach the tip. We discuss the emerging link between angiogenesis and EC metabolism during the various stages of vessel sprouting, focusing only on genetic signals for which an effect on EC metabolism has been documented.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Vlaams Instituut voor Biotechnologie (VIB), Department of Oncology, Katholieke Universiteit Leuven (KU Leuven), Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
200
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|