151
|
Iwasaki H, Ichihara Y, Morino K, Lemecha M, Sugawara L, Sawano T, Miake J, Sakurai H, Nishi E, Maegawa H, Imamura T. MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells. Sci Rep 2021; 11:1161. [PMID: 33441918 PMCID: PMC7806978 DOI: 10.1038/s41598-020-80742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.
Collapse
Affiliation(s)
- Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Ichihara
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsutaro Morino
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan.
| | - Mengistu Lemecha
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
- Department of Molecular and Cellular Biology, City of Hope, Los Angeles, USA
| | - Lucia Sugawara
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Tatsuya Sawano
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Takeshi Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
152
|
Chen Y, Song Y, Mi Y, Jin H, Cao J, Li H, Han L, Huang T, Zhang X, Ren S, Ma Q, Zou Z. microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6. Apoptosis 2021; 25:205-216. [PMID: 31938895 DOI: 10.1007/s10495-019-01588-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence has indicated that microRNAs are involved in multiple processes of cancer development. Previous studies have demonstrated that microRNA-499a (miR-499a) plays both oncogenic and tumor suppressive roles in several types of malignancies, and genetic variants in miR-499a are associated with the risk of cervical cancer. However, the biological roles of miR-499a in cervical cancer have not been investigated. Quantitative real-time PCR was used to assess miR-499a expression in cervical cancer cells. Mimics or inhibitor of miR-499a was transfected into cervical cancer cells to upregulate or downregulate miR-499a expression. The effects of miR-499a expression change on cervical cancer cells proliferation, colony formation, tumorigenesis, chemosensitivity, transwell migration and invasion were assessed. The potential targets of miR-499a were predicted using online database tools and validated using real-time PCR, Western blot and luciferase reporter experiments. miR-499a was significantly upregulated in cervical cancer cells. Moreover, overexpression of miR-499a significantly enhanced the proliferation, cell cycle progression, colony formation, apoptosis resistance, migration and invasion of cervical cancer cells, while inhibiting miR-499a showed the opposite effects. Further exploration demonstrated that Sex-determining region Y box 6 was the direct target of miR-499a. miR-499a-induced SOX6 downregulation mediated the oncogenic effects of miR-499a in cervical cancer. Inhibiting miR-499a could enhance the anticancer effects of cisplatin in the xenograft mouse model of cervical cancer. Our findings for the first time suggest that miRNA-499a may play an important role in the development of cervical cancer and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China.
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Yanjun Mi
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Liping Han
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Xiaofei Zhang
- Department of Medical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shumin Ren
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Qian Ma
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
153
|
Dong YH, Zhou CJ, Zhang MY, Tao J, Zhang XM, An L, Zhang J, Yang J, Liu DJ, Cang M. MiR-455-5p monitors myotube morphogenesis by targeting mylip. J Cell Biochem 2021; 122:442-455. [PMID: 33399227 DOI: 10.1002/jcb.29873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/10/2022]
Abstract
As a posttranscriptional regulatory factor, microRNA (miRNA) plays an important role in the formation of myotubes. However, little is known about the mechanism of miRNA regulating myotube morphogenesis. Here, we aimed to characterize the function of miR-455-5p in myotube morphogenesis by inducing differentiation in C2C12 myoblasts containing murine Mylip fragments with the miR-455-5p target sequence. We found that miR-455-5p overexpression promoted the differentiation and hypertrophy of myotubes, while miR-455-5p inhibition led to the failure of myotube differentiation and formation of short myotubes. Furthermore, we demonstrated that miR-455-5p directly targeted the Mylip 3'-untranslated region, which plays a key role in monitoring myotube morphogenesis. Interestingly, the expression and function of Mylip were opposite to those of miR-455-5p during myogenesis. Our data uncovered novel miR-455-5p targets and established a functional link between Mylip and myotube morphogenesis. Understanding the involvement of Mylip in myotube morphogenesis provides insight into the function of the gene regulatory network.
Collapse
Affiliation(s)
- Yan-Hua Dong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Meng-Yuan Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jin Tao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiao-Meng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lu An
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ju Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jie Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Dong-Jun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ming Cang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
154
|
Gong L, Jiang H, Qiu G, Sun K. miR-208a Promotes Apoptosis in H9c2 Cardiomyocytes by Targeting GATA4. CONGENIT HEART DIS 2021. [DOI: 10.32604/chd.2021.015831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
155
|
Broadwell LJ, Smallegan MJ, Rigby KM, Navarro-Arriola JS, Montgomery RL, Rinn JL, Leinwand LA. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J Biol Chem 2021; 296:100694. [PMID: 33895132 PMCID: PMC8141895 DOI: 10.1016/j.jbc.2021.100694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 11/01/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, β-myosin heavy chain (β-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike β-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of β-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate β-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.
Collapse
Affiliation(s)
- Lindsey J Broadwell
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Michael J Smallegan
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - Jose S Navarro-Arriola
- Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - John L Rinn
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA.
| |
Collapse
|
156
|
Yang F, Yan J, Lu Y, Wang D, Liu L, Wang Z. MicroRNA-499-5p targets SIRT1 to aggravate lipopolysaccharide-induced acute lung injury. Free Radic Res 2020; 55:71-82. [PMID: 33307898 DOI: 10.1080/10715762.2020.1863393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease without effective and specific therapeutic strategies except the life-supporting treatments. Inflammation and oxidative stress are essential for the progression of ALI. MicroRNA-499-5p (miR-499-5p) has multiple pathophysiological actions; however, its function and mechanisms in ALI remain elusive. Mice were intravenously injected with miR-499-5p agomir, antagomir or the negative controls for 3 consecutive days and then received a single intratracheal injection of lipopolysaccharide (LPS, 5 mg/kg) to generate ALI model. Twenty four hours prior to LPS injection, EX-527 (1 mg/kg) was applied to inhibit SIRT1 activity. We identified a significant upregulation of miR-499-5p in LPS-treated lung tissues. miR-499-5p antagomir prevented, while miR-499-5p agomir promoted inflammation, oxidative stress and ALI in LPS-treated mice. Further studies indicated that miR-499-5p directly bound to the 3'-untranslated region of Sirtuin 1 (Sirt1) and decreased its protein level. SIRT1 inhibition blocked miR-499-5p antagomir-mediated pulmonary protection against LPS injury. miR-499-5p targets SIRT1 to aggravate LPS-induced ALI and it is a promising therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Fan Yang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Jie Yan
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Yuan Lu
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Dengyun Wang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Li Liu
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Zhengjun Wang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| |
Collapse
|
157
|
Xie WQ, Men C, He M, Li YS, Lv S. The Effect of MicroRNA-Mediated Exercise on Delaying Sarcopenia in Elderly Individuals. Dose Response 2020; 18:1559325820974543. [PMID: 33293908 PMCID: PMC7705785 DOI: 10.1177/1559325820974543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Sarcopenia is often regarded as an early sign of weakness and is the core element
of muscle weakness in elderly individuals. Sarcopenia is closely related to the
reduction of exercise, and elderly individuals often suffer from decreased
muscle mass and function due to a lack of exercise. At present, studies have
confirmed that resistance and aerobic exercise are related to muscle mass,
strength and fiber type and to the activation and proliferation of muscle stem
cells (MuSCs). Increasing evidence shows that microRNAs (miRNAs) play an
important role in exercise-related changes in the quantity, composition and
function of skeletal muscle. At the cellular level, miRNAs have been shown to
regulate the proliferation and differentiation of muscle cells. In addition,
miRNAs are related to the composition and transformation of muscle fibers and
involved in the transition of MuSCs from the resting state to the activated
state. Therefore, exercise may delay sarcopenia in elderly individuals by
regulating miRNAs in skeletal muscle. In future miRNA-focused treatment
strategies, these studies will provide valuable information for the formulation
of exercise methods and will provide useful and targeted exercise programs for
elderly individuals with sarcopenia.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Men
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miao He
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Lv
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
158
|
Koehorst E, Ballester-Lopez A, Arechavala-Gomeza V, Martínez-Piñeiro A, Nogales-Gadea G. The Biomarker Potential of miRNAs in Myotonic Dystrophy Type I. J Clin Med 2020; 9:3939. [PMID: 33291833 PMCID: PMC7762003 DOI: 10.3390/jcm9123939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are mostly known for their gene regulation properties, but they also play an important role in intercellular signaling. This means that they can be found in bodily fluids, giving them excellent biomarker potential. Myotonic Dystrophy type I (DM1) is the most frequent autosomal dominant muscle dystrophy in adults, with an estimated prevalence of 1:8000. DM1 symptoms include muscle weakness, myotonia, respiratory failure, cardiac conduction defects, cataracts, and endocrine disturbances. Patients display heterogeneity in both age of onset and disease manifestation. No treatment or cure currently exists for DM1, which shows the necessity for a biomarker that can predict disease progression, providing the opportunity to implement preventative measures before symptoms arise. In the past two decades, extensive research has been conducted in the miRNA expression profiles of DM1 patients and their biomarker potential. Here we review the current state of the field with a tissue-specific focus, given the multi-systemic nature of DM1 and the intracellular signaling role of miRNAs.
Collapse
Affiliation(s)
- Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (A.B.-L.); (A.M.-P.)
| | - Alfonsina Ballester-Lopez
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (A.B.-L.); (A.M.-P.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (A.B.-L.); (A.M.-P.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (A.B.-L.); (A.M.-P.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
159
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
160
|
Lam NT, Gartz M, Thomas L, Haberman M, Strande JL. Influence of microRNAs and exosomes in muscle health and diseases. J Muscle Res Cell Motil 2020; 41:269-284. [PMID: 31564031 PMCID: PMC7101267 DOI: 10.1007/s10974-019-09555-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah Thomas
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin, CVC/MEB 4679, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
161
|
Epigenetics and Heart Failure. Int J Mol Sci 2020; 21:ijms21239010. [PMID: 33260869 PMCID: PMC7729735 DOI: 10.3390/ijms21239010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to changes in phenotypes without changes in genotypes. These changes take place in a number of ways, including via genomic DNA methylation, DNA interacting proteins, and microRNAs. The epigenome is the second dimension of the genome and it contains key information that is specific to every type of cell. Epigenetics is essential for many fundamental processes in biology, but its importance in the development and progression of heart failure, which is one of the major causes of morbidity and mortality worldwide, remains unclear. Our understanding of the underlying molecular mechanisms is incomplete. While epigenetics is one of the most innovative research areas in modern biology and medicine, compounds that directly target the epigenome, such as epidrugs, have not been well translated into therapies. This paper focuses on epigenetics in terms of genomic DNA methylation, such as 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) modifications. These appear to be more dynamic than previously anticipated and may underlie a wide variety of conditions, including heart failure. We also outline possible new strategies for the development of novel therapies.
Collapse
|
162
|
Liu R, Liu X, Bai X, Xiao C, Dong Y. Identification and Characterization of circRNA in Longissimus Dorsi of Different Breeds of Cattle. Front Genet 2020; 11:565085. [PMID: 33324445 PMCID: PMC7726199 DOI: 10.3389/fgene.2020.565085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 01/16/2023] Open
Abstract
Shandong black cattle is a new breed of cattle that is developed by applying modern biotechnology, such as somatic cloning, and conventional breeding methods to Luxi cattle. It is very important to study the function and regulatory mechanism of circRNAs in muscle differentiation among different breeds to improve meat quality and meat production performance and to provide new ideas for beef cattle meat quality improvements and new breed development. Therefore, the goal of this study was to sequence and identify circRNAs in muscle tissues of different breeds of cattle. We used RNA-seq to identify circRNAs in the muscles of two breeds of cattle (Shandong black and Luxi). We identified 14,640 circRNAs and found 655 differentially expressed circRNAs. We also analyzed the classification and characteristics of circRNAs in muscle tissue. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used on the parental genes of circRNAs. They were mainly involved in a variety of biological processes, such as muscle fiber development, smooth muscle cell proliferation, bone system morphogenesis, tight junctions and the MAPK, AMPK, and mTOR signaling pathways. In addition, we used miRanda to predict the interactions between 14 circRNAs and 11 miRNAs. Based on the above assays, we identified circRNAs (circ0001048, circ0001103, circ0001159, circ0003719, circ0003424, circ0003721, circ0003720, circ0001519, circ0001530, circ0005011, circ0014518, circ0000181, circ0000190, circ0010558) that may play important roles in the regulation of muscle growth and development. Using real-time quantitative PCR, 14 circRNAs were randomly selected to verify the real circRNAs. Luciferase reporter gene system was used to verify the binding site of miR-1 in circ0014518. Our results provide more information about circRNAs regulating muscle development in different breeds of cattle and lay a solid foundation for future experiments.
Collapse
Affiliation(s)
- Ruili Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Chaozhu Xiao
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
163
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
164
|
Singh GB, Cowan DB, Wang DZ. Tiny Regulators of Massive Tissue: MicroRNAs in Skeletal Muscle Development, Myopathies, and Cancer Cachexia. Front Oncol 2020; 10:598964. [PMID: 33330096 PMCID: PMC7719840 DOI: 10.3389/fonc.2020.598964] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscles are the largest tissues in our body and the physiological function of muscle is essential to every aspect of life. The regulation of development, homeostasis, and metabolism is critical for the proper functioning of skeletal muscle. Consequently, understanding the processes involved in the regulation of myogenesis is of great interest. Non-coding RNAs especially microRNAs (miRNAs) are important regulators of gene expression and function. MiRNAs are small (~22 nucleotides long) noncoding RNAs known to negatively regulate target gene expression post-transcriptionally and are abundantly expressed in skeletal muscle. Gain- and loss-of function studies have revealed important roles of this class of small molecules in muscle biology and disease. In this review, we summarize the latest research that explores the role of miRNAs in skeletal muscle development, gene expression, and function as well as in muscle disorders like sarcopenia and Duchenne muscular dystrophy (DMD). Continuing with the theme of the current review series, we also briefly discuss the role of miRNAs in cancer cachexia.
Collapse
Affiliation(s)
- Gurinder Bir Singh
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
165
|
Ehrlich KC, Baribault C, Ehrlich M. Epigenetics of Muscle- and Brain-Specific Expression of KLHL Family Genes. Int J Mol Sci 2020; 21:E8394. [PMID: 33182325 PMCID: PMC7672584 DOI: 10.3390/ijms21218394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
KLHL and the related KBTBD genes encode components of the Cullin-E3 ubiquitin ligase complex and typically target tissue-specific proteins for degradation, thereby affecting differentiation, homeostasis, metabolism, cell signaling, and the oxidative stress response. Despite their importance in cell function and disease (especially, KLHL40, KLHL41, KBTBD13, KEAP1, and ENC1), previous studies of epigenetic factors that affect transcription were predominantly limited to promoter DNA methylation. Using diverse tissue and cell culture whole-genome profiles, we examined 17 KLHL or KBTBD genes preferentially expressed in skeletal muscle or brain to identify tissue-specific enhancer and promoter chromatin, open chromatin (DNaseI hypersensitivity), and DNA hypomethylation. Sixteen of the 17 genes displayed muscle- or brain-specific enhancer chromatin in their gene bodies, and most exhibited specific intergenic enhancer chromatin as well. Seven genes were embedded in super-enhancers (particularly strong, tissue-specific clusters of enhancers). The enhancer chromatin regions typically displayed foci of DNA hypomethylation at peaks of open chromatin. In addition, we found evidence for an intragenic enhancer in one gene upregulating expression of its neighboring gene, specifically for KLHL40/HHATL and KLHL38/FBXO32 gene pairs. Many KLHL/KBTBD genes had tissue-specific promoter chromatin at their 5' ends, but surprisingly, two (KBTBD11 and KLHL31) had constitutively unmethylated promoter chromatin in their 3' exons that overlaps a retrotransposed KLHL gene. Our findings demonstrate the importance of expanding epigenetic analyses beyond the 5' ends of genes in studies of normal and abnormal gene regulation.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Carl Baribault
- Center for Research and Scientific Computing (CRSC), Tulane University Information Technology, Tulane University, New Orleans, LA 70112, USA;
| | - Melanie Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane Cancer Center, Hayward Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
166
|
Hillis DA, Yadgary L, Weinstock GM, Pardo-Manuel de Villena F, Pomp D, Fowler AS, Xu S, Chan F, Garland T. Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics 2020; 216:781-804. [PMID: 32978270 PMCID: PMC7648575 DOI: 10.1534/genetics.120.303668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The biological basis of exercise behavior is increasingly relevant for maintaining healthy lifestyles. Various quantitative genetic studies and selection experiments have conclusively demonstrated substantial heritability for exercise behavior in both humans and laboratory rodents. In the "High Runner" selection experiment, four replicate lines of Mus domesticus were bred for high voluntary wheel running (HR), along with four nonselected control (C) lines. After 61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE estimation and other approaches to compare allele frequencies between the HR and C lines for both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic chromosomes, showed evidence of differentiation; 12 of these regions were differentiated by all methods of analysis. Gene function was inferred largely using Panther gene ontology terms and KO phenotypes associated with genes of interest. Some of the differentiated genes are known to be associated with behavior/motivational systems and/or athletic ability, including Sorl1, Dach1, and Cdh10 Sorl1 is a sorting protein associated with cholinergic neuron morphology, vascular wound healing, and metabolism. Dach1 is associated with limb bud development and neural differentiation. Cdh10 is a calcium ion binding protein associated with phrenic neurons. Overall, these results indicate that selective breeding for high voluntary exercise has resulted in changes in allele frequencies for multiple genes associated with both motivation and ability for endurance exercise, providing candidate genes that may explain phenotypic changes observed in previous studies.
Collapse
Affiliation(s)
- David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, California 92521
| | - Liran Yadgary
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Alexandra S Fowler
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| |
Collapse
|
167
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
168
|
Dos Santos M, Backer S, Saintpierre B, Izac B, Andrieu M, Letourneur F, Relaix F, Sotiropoulos A, Maire P. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun 2020; 11:5102. [PMID: 33037211 PMCID: PMC7547110 DOI: 10.1038/s41467-020-18789-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.
Collapse
Affiliation(s)
| | - Stéphanie Backer
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | | | - Brigitte Izac
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Frederic Relaix
- Université Paris-Est Creteil, INSERM U955 IMRB., 94000, Creteil, France
| | | | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France.
| |
Collapse
|
169
|
Estébanez B, Jiménez-Pavón D, Huang CJ, Cuevas MJ, González-Gallego J. Effects of exercise on exosome release and cargo in in vivo and ex vivo models: A systematic review. J Cell Physiol 2020; 236:3336-3353. [PMID: 33037627 DOI: 10.1002/jcp.30094] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
Exercise-released exosomes have been identified as novel players to mediate cell-to-cell communication in promoting systemic beneficial effects. This review aimed to systematically investigate the effects of exercise on exosome release and cargo, as well as provide an overview of their physiological implications. Among the 436 articles obtained in the database search (WOS, Scopus, and PubMed), 19 articles were included based on eligibility criteria. Results indicate that exercise promotes the release of exosomes without modification of its vesicle size. The literature has primarily shown an exercise-driven increase in exosome markers (Alix, CD63, CD81, and Flot-1), along with other exosome-carried proteins, into circulation. However, exosome isolation, characterization, and phenotyping methodology, as well as timing of sample recovery following exercise can influence the analysis and interpretation of findings. Moreover, a large number of exosome-carried microRNAs (miRNAs), including miR-1, miR-133a, miR-133b, miR-206, and miR-486, in response to exercise are involved in the modulation of proliferation and differentiation of skeletal muscle tissue, although antigen-presenting cells, leukocytes, endothelial cells, and platelets are the main sources of exosome release into the circulation. Collectively, with the physiological implications as evidenced by the ex vivo trials, the release of exercise-promoted exosomes and their cargo could provide the potential therapeutic applications via the role of intercellular communication.
Collapse
Affiliation(s)
| | - David Jiménez-Pavón
- Department of Physical Education, Faculty of Education Sciences, MOVE-IT Research Group, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Chun-Jung Huang
- Department of Exercise Science and Health Promotion, Exercise Biochemistry Laboratory, Florida Atlantic University, Boca Raton, Florida, USA
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | |
Collapse
|
170
|
MicroRNAs: roles in cardiovascular development and disease. Cardiovasc Pathol 2020; 50:107296. [PMID: 33022373 DOI: 10.1016/j.carpath.2020.107296] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) comprise a group of disorders ranging from peripheral artery, coronary artery, cardiac valve, cardiac muscle, and congenital heart diseases to arrhythmias and ultimately, heart failure. For all the advances in therapeutics, CVDs are still the leading cause of mortality the world over, hence the significance of a thorough understanding of CVDs at the molecular level. Disparities in the expressions of genes and microRNAs (miRNAs) play a crucial role in the determination of the fate of cellular pathways, which ultimately affect an organism's physiology. Indeed, miRNAs serve as the regulators of gene expressions in that they perform key functions both in several important cellular pathways and in the regulation of the onset of various diseases such as CVDs. Many miRNAs are expressed in embryonic, postnatal, and adult hearts; their aberrant expression or genetic deletion is associated with abnormal cardiac cell differentiation, disruption in heart development, and cardiac dysfunction. A substantial body of evidence implicates miRNAs in CVD development and suggests them as diagnostic biomarkers and intriguing therapeutic tools. The present review provides an overview of the history, biogenesis, and processing of miRNAs, as well as their function in the development, remodeling, and diseases of the heart.
Collapse
|
171
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
172
|
Fazmin IT, Achercouk Z, Edling CE, Said A, Jeevaratnam K. Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules 2020; 10:E1354. [PMID: 32977454 PMCID: PMC7598281 DOI: 10.3390/biom10101354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of sudden cardiac death in adults, and new methods of predicting disease and risk-stratifying patients will help guide intervention in order to reduce this burden. Current CAD detection involves multiple modalities, but the consideration of other biomarkers will help improve reliability. The aim of this narrative review is to help researchers and clinicians appreciate the growing relevance of miRNA in CAD and its potential as a biomarker, and also to suggest useful miRNA that may be targets for future study. We sourced information from several databases, namely PubMed, Scopus, and Google Scholar, when collating evidentiary information. MicroRNAs (miRNA) are short, noncoding RNAs that are relevant in cardiovascular physiology and pathophysiology, playing roles in cardiac hypertrophy, maintenance of vascular tone, and responses to vascular injury. CAD is associated with changes in miRNA expression profiles, and so are its risk factors, such as abnormal lipid metabolism and inflammation. Thus, they may potentially be biomarkers of CAD. Nevertheless, there are limitations in using miRNA. These include cost and the presence of several confounding factors that may affect miRNA profiles. Furthermore, there is difficulty in the normalisation of miRNA values between published studies, due to pre-analytical variations in samples.
Collapse
Affiliation(s)
- Ibrahim T. Fazmin
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Zakaria Achercouk
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Charlotte E. Edling
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Asri Said
- School of Medicine, University Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| |
Collapse
|
173
|
Zhang J, Meng Q, Zhong J, Zhang M, Qin X, Ni X, Ma J, He Y, Zeng D, Lan D. Serum MyomiRs as Biomarkers for Female Carriers of Duchenne/Becker Muscular Dystrophy. Front Neurol 2020; 11:563609. [PMID: 33071947 PMCID: PMC7530632 DOI: 10.3389/fneur.2020.563609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Duchenne/Becker muscular dystrophy (DMD/BMD) is an X-linked recessive lethal neuromuscular disease. MicroRNAs expressed in striated muscle, myomiRs, have been proposed as its potential biomarkers. Serum creatine kinase (CK) is commonly used as a biomarker in clinical practice, but it is not reliable. The aim of this study was to assess whether serum levels of myomiRs has diagnostic value for detection of female DMD/BMD carriers with normal or elevated CK. Methods: Thirty four female carriers and 33 age-matched healthy female controls were enrolled. Peripheral blood samples were collected and serum miRNAs were extracted for measurement of miR-1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, and miR-499 by quantitative real-time polymerase chain reaction. Results: MiR-1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, and miR-499 were upregulated in all female carriers in comparison to healthy controls. MiR-1 (Spearman's rho = +0.406, p = 0.017) was correlated with CK in the female carrier group. Receiver operating characteristic curve analysis of all seven myomiRs showed that the area under the curve (AUC) for miR-499, miR-133b, miR-1, miR-208b, and miR-133a exceeded 70.0%, and for miR-206 and miR-208a exceeded 60.0%. MiR-133b and miR-499 were significantly increased in all female carriers, even those with normal CK. AUC for the combination of all seven miRNAs was 87.2%. CK (OR 0.406, 95% CI 0.000–0.001, p < 0.0001) and miR-499 (OR 0.323, 95% CI 0.023–0.106, p = 0.003) were considered to be independent predictors for female carriers presence in the multivariable regression analysis model. Conclusions: MiR-133b and miR-499 are potentially useful biomarkers for female carriers with DMD/BMD (including those with normal CK). The combination of all seven serum miRNAs and their respective combinations with CK have better diagnostic value for female carriers than either CK or any separate miRNA.
Collapse
Affiliation(s)
- Jiapeng Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi Meng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohua Ni
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiawen Ma
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yangwen He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Zeng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
174
|
Regulation of microRNAs in Satellite Cell Renewal, Muscle Function, Sarcopenia and the Role of Exercise. Int J Mol Sci 2020; 21:ijms21186732. [PMID: 32937893 PMCID: PMC7555198 DOI: 10.3390/ijms21186732] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia refers to a condition of progressive loss of skeletal muscle mass and function associated with a higher risk of falls and fractures in older adults. Musculoskeletal aging leads to reduced muscle mass and strength, affecting the quality of life in elderly people. In recent years, several studies contributed to improve the knowledge of the pathophysiological alterations that lead to skeletal muscle dysfunction; however, the molecular mechanisms underlying sarcopenia are still not fully understood. Muscle development and homeostasis require a fine gene expression modulation by mechanisms in which microRNAs (miRNAs) play a crucial role. miRNAs modulate key steps of skeletal myogenesis including satellite cells renewal, skeletal muscle plasticity, and regeneration. Here, we provide an overview of the general aspects of muscle regeneration and miRNAs role in skeletal mass homeostasis and plasticity with a special interest in their expression in sarcopenia and skeletal muscle adaptation to exercise in the elderly.
Collapse
|
175
|
Zhang L, Ding H, Zhang Y, Wang Y, Zhu W, Li P. Circulating MicroRNAs: Biogenesis and Clinical Significance in Acute Myocardial Infarction. Front Physiol 2020; 11:1088. [PMID: 33013463 PMCID: PMC7494963 DOI: 10.3389/fphys.2020.01088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) causes many deaths around the world. Early diagnosis can prevent the development of AMI and provide theoretical support for the subsequent treatment. miRNAs participate in the AMI pathological processes. We aim to determine the early diagnostic and the prognostic roles of circulating miRNAs in AMI in the existing studies and summarize all the data to provide a greater understanding of their utility for clinical application. We reviewed current knowledge focused on the AMI development and circulating miRNA formation. Meanwhile, we collected and analyzed the potential roles of circulating miRNAs in AMI diagnosis, prognosis and therapeutic strategies. Additionally, we elaborated on the challenges and clinical perspectives of the application of circulating miRNAs in AMI diagnosis. Circulating miRNAs are stable in the circulation and have earlier increases of circulating levels than diagnostic golden criteria. In addition, they are tissue and disease-specific. All these characteristics indicate that circulating miRNAs are promising biomarkers for the early diagnosis of AMI. Although there are several limitations to be resolved before clinical use, the application of circulating miRNAs shows great potential in the early diagnosis and the prognosis of AMI.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
176
|
Effect of Lentivirus-Mediated miR-499a-3p on Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9372961. [PMID: 32908925 PMCID: PMC7471807 DOI: 10.1155/2020/9372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022]
Abstract
Objective To explore the possible role of miR-499a-3p in the function of primary human umbilical vein endothelial cells (HUVECs) and the expression of ADAM10 in primary HUVEC. Method miR-499a-3p was first transfected into primary HUVECs via lentivirus vector. The viability, proliferation, and migration of stable transfected primary HUVEC were then determined by flow cytometry, CCK8 assays, scratch tests, and Transwell tests. The transcription of miR-499a-3p and ADAM10 was examined by reverse transcription-polymerase chain reaction (RT-PCR), and the expression of ADAM10 was examined by Western blot (WB). Results After transfection, miR-499a-3p transcription was significantly increased (P < 0.01), compared to the blank and nonspecific control (NC) groups, while both ADAM10 transcription and expression were significantly decreased (P < 0.05). In contrast, in the inhibitors group, miR-499a-3p transcription was significantly reduced (P < 0.05) whereas both ADAM10 transcription and expression were significantly increased (P < 0.05). The viability, proliferation, and migration of primary HUVECs were significantly impaired (P < 0.05) by the transfection of miR-499a-3p but enhanced by miR-499a-3p inhibitors (P < 0.05). Conclusions Upregulation of miR-499a-3p transcription will inhibit the expression of ADAM10 in HUVECs; cell migration and proliferation, however, promote apoptosis. And reverse effects were established by downregulation of miR-499a-3p transcription. All these effects may be achieved by regulating the transcription and expression of ADAM10. These results combined suggested that miR-499a-3p may affect the proliferation, migration, and apoptosis of endothelial cells and regulate AS by regulating ADAM10. miR-499a-3p may become a candidate biomarker for the diagnosis of unstable angina pectoris (UA).
Collapse
|
177
|
Saheera S, Potnuri AG, Krishnamurthy P. Nano-Vesicle (Mis)Communication in Senescence-Related Pathologies. Cells 2020; 9:E1974. [PMID: 32859053 PMCID: PMC7564330 DOI: 10.3390/cells9091974] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising of exosomes, apoptotic bodies, and microvesicles. Of the extracellular vesicles, exosomes are the most widely sorted and extensively explored for their contents and function. The size of the nanovesicular structures (exosomes) range from 30 to 140 nm and are present in various biological fluids such as saliva, plasma, urine etc. These cargo-laden extracellular vesicles arise from endosome-derived multivesicular bodies and are known to carry proteins and nucleic acids. Exosomes are involved in multiple physiological and pathological processes, including cellular senescence. Exosomes mediate signaling crosstalk and play a critical role in cell-cell communications. Exosomes have evolved as potential biomarkers for aging-related diseases. Aging, a physiological process, involves a progressive decline of function of organs with a loss of homeostasis and increasing probability of illness and death. The review focuses on the classic view of exosome biogenesis, biology, and age-associated changes. Owing to their ability to transport biological information among cells, the review also discusses the interplay of senescent cell-derived exosomes with the aging process, including the susceptibility of the aging population to COVID-19 infections.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Ajay Godwin Potnuri
- Department of Animal Physiology, Indian Council for Medical Research—National Animal Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana 500078, India;
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, 1675 University Blvd, Volker Hall G094, Birmingham, AL 35294, USA
| |
Collapse
|
178
|
Bala S, Calenda CD, Catalano D, Babuta M, Kodys K, Nasser IA, Vidal B, Szabo G. Deficiency of miR-208a Exacerbates CCl 4-Induced Acute Liver Injury in Mice by Activating Cell Death Pathways. Hepatol Commun 2020; 4:1487-1501. [PMID: 33024918 PMCID: PMC7527689 DOI: 10.1002/hep4.1540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Acute liver injury (ALI) is associated with multiple cellular events such as necrosis, apoptosis, oxidative stress and inflammation, which can lead to liver failure. In this study, we demonstrate a new role of microRNA (miR)‐208a in ALI. ALI was induced in wild‐type (WT) and miR‐208a knockout (KO) mice by CCl4 administration. Increased alanine aminotransferase and decreased hepatic miR‐208a levels were found in WT mice after acute CCl4 treatment. Histopathological evaluations revealed increased necrosis and decreased inflammation in miR‐208a KO compared with WT mice after CCl4 treatment. CCl4 treatment induced a higher alanine aminotransferase elevation and increased numbers of circulating extracellular vesicles (exosomes and microvesicles) in miR‐208a KO compared with WT mice. We found increased CCl4‐induced nuclear factor kappa B activation and tumor necrosis factor‐α induction and decreased monocyte chemoattractant protein 1 levels in miR‐208a KO compared with WT mice. Terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick‐end labeling assay indicated aggravated hepatic apoptosis and necrosis in CCl4‐treated miR‐208a KO compared with WT mice. CCl4 treatment induced a greater increase in cleaved caspase‐8, p18, and caspase‐3 in miR‐208a KO compared with WT mice. p53 is involved in various cell death pathways, including necrosis and apoptosis. Our in silico analysis revealed p53 as a predicted miR‐208a target, and we found enhanced p53 and cyclophilin D protein expressions in miR‐208a KO mice after CCl4 treatment. Increased liver injury in miR‐208a KO mice was further associated with increased Bax (B cell lymphoma 2–associated X protein) and p21 expression. Our in vitro results indicated a role of miR‐208a in cell death. We found that CCl4‐induced cytotoxicity was partially rescued by miR‐208a overexpression in RAW macrophages. Altogether, our results revealed a role of miR‐208a in ALI in mice and suggest a role for miR‐208a in regulating cell death.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Charles D Calenda
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Donna Catalano
- Department of Medicine University of Massachusetts Medical School Worcester MA
| | - Mrigya Babuta
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Karen Kodys
- Department of Medicine University of Massachusetts Medical School Worcester MA
| | - Imad A Nasser
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Barbara Vidal
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Gyongyi Szabo
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| |
Collapse
|
179
|
Bjorkman KK, Guess MG, Harrison BC, Polmear MM, Peter AK, Leinwand LA. miR-206 enforces a slow muscle phenotype. J Cell Sci 2020; 133:jcs243162. [PMID: 32620696 PMCID: PMC7438006 DOI: 10.1242/jcs.243162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Striated muscle is a highly specialized collection of tissues with contractile properties that vary according to functional needs. Although muscle fiber types are established postnatally, lifelong plasticity facilitates stimulus-dependent adaptation. Functional adaptation requires molecular adaptation, which is partially provided by miRNA-mediated post-transcriptional regulation. miR-206 is a muscle-specific miRNA enriched in slow muscles. We investigated whether miR-206 drives the slow muscle phenotype or is merely an outcome. We found that miR-206 expression increases in both physiological (including female sex and endurance exercise) and pathological conditions (muscular dystrophy and adrenergic agonism) that promote a slow phenotype. Consistent with that observation, the slow soleus muscle of male miR-206-knockout mice displays a faster phenotype than wild-type mice. Moreover, left ventricles of male miR-206 knockout mice have a faster myosin profile, accompanied by dilation and systolic dysfunction. Thus, miR-206 appears to be necessary to enforce a slow skeletal and cardiac muscle phenotype and to play a key role in muscle sexual dimorphisms.
Collapse
Affiliation(s)
- Kristen K Bjorkman
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Martin G Guess
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Michael M Polmear
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Angela K Peter
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| |
Collapse
|
180
|
Sharlo KA, Paramonova II, Lvova ID, Vilchinskaya NA, Bugrova AE, Shevchenko TF, Kalamkarov GR, Shenkman BS. NO-Dependent Mechanisms of Myosin Heavy Chain Transcription Regulation in Rat Soleus Muscle After 7-Days Hindlimb Unloading. Front Physiol 2020; 11:814. [PMID: 32754051 PMCID: PMC7366496 DOI: 10.3389/fphys.2020.00814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) may affect myosin heavy chain (MyHC) isoform mRNA transcription in skeletal muscles. The content of NO in soleus muscles decreases during rat hindlimb unloading as well as slow MyHC mRNA transcription. We aimed to detect which signaling pathways are involved in NO-dependent prevention of hindlimb-suspension (HS)-induced changes in MyHCs’ expression pattern. Male Wistar rats were divided into four groups: cage control group (C), hindlimb suspended for 7 days (7HS), hindlimb suspended for 7 days with L-arginine administration (7HS+A) (500 mg/kg body mass), and hindlimb suspended for 7 days with both L-arginine (500 mg/kg) and NO-synthase inhibitor L-NAME administration (50 mg/kg) (7HS+A+N). L-arginine treatment during 7 days of rat HS prevented HS-induced NO content decrease and slow MyHC mRNA transcription decrease and attenuated fast MyHC IIb mRNA transcription increase; it also prevented NFATc1 nuclear content decrease, calsarcin-2 expression increase, and GSK-3β Ser 9 phosphorylation decrease. Moreover, L-arginine administration prevented the HS-induced myh7b and PGC1α mRNAs content decreases and slow-type genes repressor SOX6 mRNA transcription increase. All these slow fiber-type protective effects of L-arginine were blocked in HS+A+N group, indicating that these effects were NO-dependent. Thus, NO decrease prevention during HS restores calcineurin/NFATc1 and myh7b/SOX6 signaling.
Collapse
Affiliation(s)
- Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inna I Paramonova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina D Lvova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia A Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana F Shevchenko
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Grigoriy R Kalamkarov
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
181
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
182
|
Governali S, Caremani M, Gallart C, Pertici I, Stienen G, Piazzesi G, Ottenheijm C, Lombardi V, Linari M. Orthophosphate increases the efficiency of slow muscle-myosin isoform in the presence of omecamtiv mecarbil. Nat Commun 2020; 11:3405. [PMID: 32636378 PMCID: PMC7341760 DOI: 10.1038/s41467-020-17143-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Omecamtiv mecarbil (OM) is a putative positive inotropic tool for treatment of systolic heart dysfunction, based on the finding that in vivo it increases the ejection fraction and in vitro it prolongs the actin-bond life time of the cardiac and slow-skeletal muscle isoforms of myosin. OM action in situ, however, is still poorly understood as the enhanced Ca2+-sensitivity of the myofilaments is at odds with the reduction of force and rate of force development observed at saturating Ca2+. Here we show, by combining fast sarcomere-level mechanics and ATPase measurements in single slow demembranated fibres from rabbit soleus, that the depressant effect of OM on the force per attached motor is reversed, without effect on the ATPase rate, by physiological concentrations of inorganic phosphate (Pi) (1-10 mM). This mechanism could underpin an energetically efficient reduction of systolic tension cost in OM-treated patients, whenever [Pi] increases with heart-beat frequency. Omecamtiv mecarbil is a small molecule effector under clinical trial for the treatment of systolic heart failure. Here the authors define the molecular mechanisms of its inotropic action and find it can increase the efficiency of contraction in muscle fibres when the orthophosphate concentration rises with the beat frequency.
Collapse
Affiliation(s)
- Serena Governali
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy.,Department of Physiology, Amsterdam UMC (location VUmc), 1081 HZ, Amsterdam, The Netherlands
| | - Marco Caremani
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Cristina Gallart
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Irene Pertici
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Ger Stienen
- Department of Physiology, Amsterdam UMC (location VUmc), 1081 HZ, Amsterdam, The Netherlands.,Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Gabriella Piazzesi
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), 1081 HZ, Amsterdam, The Netherlands
| | - Vincenzo Lombardi
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy.
| | - Marco Linari
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
183
|
miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Sci Rep 2020; 10:10619. [PMID: 32606372 PMCID: PMC7326969 DOI: 10.1038/s41598-020-67482-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 down-regulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 down-regulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens.
Collapse
|
184
|
Paoletti C, Divieto C, Tarricone G, Di Meglio F, Nurzynska D, Chiono V. MicroRNA-Mediated Direct Reprogramming of Human Adult Fibroblasts Toward Cardiac Phenotype. Front Bioeng Biotechnol 2020; 8:529. [PMID: 32582662 PMCID: PMC7297084 DOI: 10.3389/fbioe.2020.00529] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Modulation of microRNA expression holds the promise to achieve direct reprogramming of fibroblasts into cardiomyocyte-like cells as a new strategy for myocardial regeneration after ischemic heart disease. Previous reports have shown that murine fibroblasts can be directly reprogrammed into induced cardiomyocytes (iCMs) by transient transfection with four microRNA mimics (miR-1, 133, 208, and 499, termed "miRcombo"). Hence, study on the effect of miRcombo transfection on adult human cardiac fibroblasts (AHCFs) deserves attention in the perspective of a future clinical translation of the approach. In this brief report, we studied for the first time whether miRcombo transient transfection of AHCFs by non-viral vectors might trigger direct reprogramming of AHCFs into cardiomyocyte-like cells. Initially, efficient miRNA delivery to cells was demonstrated through the use of a commercially available transfection agent (DharmaFECT1). Transient transfection of AHCFs with miRcombo was found to upregulate early cardiac transcription factors after 7 days post-transfection and cardiomyocyte specific marker cTnT after 15 days post-transfection, and to downregulate the expression of fibroblast markers at 15 days post-transfection. The percentage of cTnT-positive cells after 15 days from miRcombo transfection was ∼11%, as evaluated by flow cytometry. Furthermore, a relevant percentage of miRcombo-transfected AHCFs (∼38%) displayed spontaneous calcium transients at 30 days post-transfection. Results evidenced the role of miRcombo transfection on triggering the trans differentiation of AHCFs into iCMs. Although further investigations are needed to achieve iCM maturation, early findings from this study pave the way toward new advanced therapies for human cardiac regeneration.
Collapse
Affiliation(s)
- C. Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - C. Divieto
- Istituto Nazionale di Ricerca Metrologica, Advanced Materials Metrology and Life Science, Turin, Italy
| | - G. Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - F. Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - D. Nurzynska
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - V. Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
185
|
Li B, Yin D, Li P, Zhang Z, Zhang X, Li H, Li R, Hou L, Liu H, Wu W. Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles. Front Cell Dev Biol 2020; 8:322. [PMID: 32528948 PMCID: PMC7264268 DOI: 10.3389/fcell.2020.00322] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
The different skeletal muscle fiber types exhibit distinctively different physiological and metabolic properties, and have been linked to both human metabolic diseases and meat quality traits in livestock. Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression, but regulatory mechanisms of skeletal muscle fibers involved in circRNAs remain poorly understood. Here, we constructed circRNA expression profiles of three fast-twitch biceps femoris (Bf) and three slow-twitch soleus (Sol) muscles in pigs using RNA-seq and identified 16,342 distinct circRNA candidates. Notably, 242 differentially expressed (DE) circRNAs between Bf and Sol muscles were identified, including 105 upregulated and 137 downregulated circRNAs, and are thus potential candidates for the regulation of skeletal muscle fiber conversion. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of host genes of DE circRNAs revealed that host genes were mainly involved in skeletal muscle fiber-related GO terms (e.g., muscle contraction, contractile fiber part, and Z disk) and skeletal muscle fiber-related signaling pathways (e.g., AMPK and cGMP-PKG). We also constructed co-expression networks of DE circRNA-miRNA-mRNA using previously acquired high-throughput sequencing mRNA and miRNA data, from which 112 circRNA-miRNA and 95 miRNA-mRNA interactions were identified. Multiple circRNAs essentially serve as a sponge for miR-499-5p, which is preferentially expressed in slow-twitch muscle and reduces the severity of Duchenne muscular dystrophy (DMD). Taken together, a series of novel candidate circRNAs involved in the growth and development of porcine skeletal muscle was identified. Furthermore, they provide a comprehensive circRNA resource for further in-depth research on the regulatory mechanisms of circRNA in the formation of skeletal muscle fiber, and may provide insights into human skeletal muscle diseases.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Di Yin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengkai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiying Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongqiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
186
|
Kmecova Z, Veteskova J, Lelkova-Zirova K, Bies Pivackova L, Doka G, Malikova E, Paulis L, Krenek P, Klimas J. Disease severity-related alterations of cardiac microRNAs in experimental pulmonary hypertension. J Cell Mol Med 2020; 24:6943-6951. [PMID: 32395887 PMCID: PMC7299706 DOI: 10.1111/jcmm.15352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH). We hypothesized that heart‐relevant microRNAs, that is myomiRs (miR‐1, miR‐133a, miR‐208, miR‐499) and miR‐214, can have a role in the right ventricle in the development of PAH. To mimic PAH, male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.); control group received vehicle. MCT rats were divided into two groups, based on the clinical presentation: MCT group terminated 4 weeks after MCT administration and prematurely terminated group (ptMCT) displaying signs of terminal disease. Myocardial damage genes and candidate microRNAs expressions were determined by RT‐qPCR. Reduced blood oxygen saturation, breathing disturbances, RV enlargement as well as elevated levels of markers of myocardial damage confirmed PH in MCT animals and were more pronounced in ptMCT. MyomiRs (miR‐1/miR‐133a/miR‐208a/miR‐499) were decreased and the expression of miR‐214 was increased only in ptMCT group (P < 0.05). The myomiRs negatively correlated with Fulton index as a measure of RV hypertrophy in MCT group (P < 0.05), whereas miR‐214 showed a positive correlation (P < 0.05). We conclude that the expression of determined microRNAs mirrored the disease severity and targeting their pathways might represent potential future therapeutic approach in PAH.
Collapse
Affiliation(s)
- Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jana Veteskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Katarina Lelkova-Zirova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Eva Malikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
187
|
Chemello F, Grespi F, Zulian A, Cancellara P, Hebert-Chatelain E, Martini P, Bean C, Alessio E, Buson L, Bazzega M, Armani A, Sandri M, Ferrazza R, Laveder P, Guella G, Reggiani C, Romualdi C, Bernardi P, Scorrano L, Cagnin S, Lanfranchi G. Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Rep 2020; 26:3784-3797.e8. [PMID: 30917329 DOI: 10.1016/j.celrep.2019.02.105] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles. mRNA and miRNA signatures of all myofiber types obtained at the single-cell level unveiled fiber-specific regulatory networks and identified two master miRNAs that coordinately control myofiber fuel preference and mitochondrial morphology. Our work provides a complete and integrated mouse myofiber type-specific catalog of gene and miRNA expression and establishes miR-27a-3p and miR-142-3p as regulators of lipid use in skeletal muscle.
Collapse
Affiliation(s)
- Francesco Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Francesca Grespi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Alessandra Zulian
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Camilla Bean
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Enrico Alessio
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Lisa Buson
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Martina Bazzega
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Andrea Armani
- Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Ruggero Ferrazza
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Paolo Laveder
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
188
|
Wang Z, Yang Y, Xiong W, Zhou R, Song N, Liu L, Qian J. Dexmedetomidine protects H9C2 against hypoxia/reoxygenation injury through miR-208b-3p/Med13/Wnt signaling pathway axis. Biomed Pharmacother 2020; 125:110001. [PMID: 32070878 DOI: 10.1016/j.biopha.2020.110001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/22/2023] Open
Abstract
Dexmedetomidine (Dex) has been reported to be cardioprotective. Differential expression of miR-208b-3p is associated with myocardial injury. But it is unknown that aberrant expression of miR-208b-3p is implicated in myocardial protection of Dex. Hypoxia/reoxygenation (HR) model was established in H9C2 cells. qRT-PCR was performed to detect expression levels of miR-208b-3p in H9C2 undergoing HR, Dex preconditioning, overexpression of miR-208b-3p or inhibition, and to assess expression of Med13 in H9C2 following knockdown of Med13 mRNA. CCK8 and, flow cytometry and Western blot were conducted respectively to examine viability, apoptosis rate and protein expressions of H9C2 subjected to a variety of treatments. Dex preconditioning reduced expression of miR-208b-3p and apoptosis of H9C2 cells caused by HR, while Dex preconditioning increased viability of H9C2. Dex preconditioning increased expression of Med13, which was reduced after knockdown of Med13 mRNA in H9C2. Overexpression of miR-208b-3p attenuated Dex exerted protective effects of myocardial cells, which was reversed by inhibition of miR-208b-3p. Increased expression of Med13 or/and decreased expression of miR-208b-3p decreased expression levels of Wnt/β-catenin signaling pathway-related proteins (Wnt3a, Wnt5a and β-catenin), while knockdown of Med13 mRNA or increased expression of miR-208b-3p increased the expression levels of those proteins. Dex protects H9C2 cells against HR injury through miR-208b-3p/Med13/Wnt/β-catenin signaling pathway axis.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui Zhou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Ning Song
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Lan Liu
- Department of Pathology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
189
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
190
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
191
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
192
|
Cardiac miRNA Expression and their mRNA Targets in a Rat Model of Prediabetes. Int J Mol Sci 2020; 21:ijms21062128. [PMID: 32244869 PMCID: PMC7139428 DOI: 10.3390/ijms21062128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Little is known about the mechanism of prediabetes-induced cardiac dysfunction. Therefore, we aimed to explore key molecular changes with transcriptomic and bioinformatics approaches in a prediabetes model showing heart failure with preserved ejection fraction phenotype. To induce prediabetes, Long-Evans rats were fed a high-fat diet for 21 weeks and treated with a single low-dose streptozotocin at week 4. Small RNA-sequencing, in silico microRNA (miRNA)-mRNA target prediction, Gene Ontology analysis, and target validation with qRT-PCR were performed in left ventricle samples. From the miRBase-annotated 752 mature miRNA sequences expression of 356 miRNAs was detectable. We identified two upregulated and three downregulated miRNAs in the prediabetic group. We predicted 445 mRNA targets of the five differentially expressed miRNAs and selected 11 mRNAs targeted by three differentially expressed miRNAs, out of which five mRNAs were selected for validation. Out of these five targets, downregulation of three mRNAs i.e., Juxtaposed with another zinc finger protein 1 (Jazf1); RAP2C, member of RAS oncogene family (Rap2c); and Zinc finger with KRAB and SCAN domains 1 (Zkscan1) were validated. This is the first demonstration that prediabetes alters cardiac miRNA expression profile. Predicted targets of differentially expressed miRNAs include Jazf1, Zkscan1, and Rap2c mRNAs. These transcriptomic changes may contribute to the diastolic dysfunction and may serve as drug targets.
Collapse
|
193
|
Silva FCD, Iop RDR, Andrade A, Costa VP, Gutierres Filho PJB, Silva RD. Effects of Physical Exercise on the Expression of MicroRNAs: A Systematic Review. J Strength Cond Res 2020; 34:270-280. [PMID: 31877120 DOI: 10.1519/jsc.0000000000003103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silva, FCd, Iop, RdR, Andrade, A, Costa, VP, Gutierres Filho, PJB, and Silva, Rd. Effects of physical exercise on the expression of microRNAs: A systematic review 34(1): 270-280, 2020-Studies have detected changes in the expression of miRNAs after physical exercise, which brings new insight into the molecular control of adaptation to exercise. Therefore, the objective of the current systematic review of experimental and quasiexperimental studies published in the past 10 years was to assess evidence related to acute effects, chronic effects, and both acute and chronic effects of physical exercise on miRNA expression in humans, as well as its functions, evaluated in serum, plasma, whole blood, saliva, or muscle biopsy. For this purpose, the following electronic databases were selected: MEDLINE by Pubmed, SCOPUS, Web of Science, and also a manual search in references of the selected articles to April 2017. Experimental and quasiexperimental studies were included. Results indicate that, of the 345 studies retrieved, 40 studies met the inclusion criteria and two articles were included as a result of the manual search. The 42 studies were analyzed, and it can be observed acute and chronic effects of physical exercises (aerobic and resistance) on the expression of several miRNAs in healthy subjects, athletes, young, elderly and in patients with congestive heart failure, chronic kidney disease, diabetes mellitus type 2 associated with morbid obesity, prediabetic, and patients with intermittent claudication. It is safe to assume that miRNA changes, both in muscle tissues and bodily fluids, are presumably associated with the benefits induced by acute and chronic physical exercise. Thus, a better understanding of changes in miRNAs as a response to physical exercise might contribute to the development of miRNAs as therapeutic targets for the improvement of exercise capacity in individuals with any given disease. However, additional studies are necessary to draw accurate conclusions.
Collapse
Affiliation(s)
- Franciele Cascaes da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo da Rosa Iop
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Alexandro Andrade
- Laboratory of Psychology of Sport and Exercise, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Vitor Pereira Costa
- Exercise Physiology Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil; and
| | | | - Rudney da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
194
|
Chen P, Li Z, Nie J, Wang H, Yu B, Wen Z, Sun Y, Shi X, Jin L, Wang DW. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1347-1362. [DOI: 10.1007/s11427-019-1627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
|
195
|
Ge L, Dong X, Gong X, Kang J, Zhang Y, Quan F. Mutation in myostatin 3'UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN. Int J Biol Macromol 2020; 154:634-643. [PMID: 32156541 DOI: 10.1016/j.ijbiomac.2020.03.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
The point mutation in myostatin (MSTN) can produce the Texel sheep double muscle phenotype. However, whether other species have the same mode of action as MSTN and whether breeding materials can be obtained through cross-species genetic editing remain unclear. The mutation in the mouse MSTN 3'UTR could create a target site for mmu-miR-1/206, as verified by the dual luciferase reporter system. A C2C12 cell model with the mutation in MSTN 3'UTR was constructed using CRISPR/Cas9 gene editing. Then, the mRNA and protein expression of MSTN was analyzed in the mutant C2C12 cell model. Results revealed that the mutation blocked the translational level of MSTN. By inhibiting mmu-mir-206, low expression of MSTN protein in mutant C2C12 cell can be rescued. Furthermore, the proliferation and differentiation abilities of the mutant C2C12 cell model were tested by RT-PCR, CCK8 analysis, EDU (5-ethynyl-2'-deoxyuridine) proliferation analysis, immunofluorescence analysis, Western blot, and myotube fusion statistics. This study may serve as a reference for elucidating the function and molecular mechanism of MSTN and as a foundation for accurate breeding improvement.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xutong Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
196
|
Luca E, Turcekova K, Hartung A, Mathes S, Rehrauer H, Krützfeldt J. Genetic deletion of microRNA biogenesis in muscle cells reveals a hierarchical non-clustered network that controls focal adhesion signaling during muscle regeneration. Mol Metab 2020; 36:100967. [PMID: 32240622 PMCID: PMC7139120 DOI: 10.1016/j.molmet.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Decreased muscle mass is a major contributor to age-related morbidity, and strategies to improve muscle regeneration during ageing are urgently needed. Our aim was to identify the subset of relevant microRNAs (miRNAs) that partake in critical aspects of muscle cell differentiation, irrespective of computational predictions, genomic clustering or differential expression of the miRNAs. METHODS miRNA biogenesis was deleted in primary myoblasts using a tamoxifen-inducible CreLox system and combined with an add-back miRNA library screen. RNA-seq experiments, cellular signalling events, and glycogen synthesis, along with miRNA inhibitors, were performed in human primary myoblasts. Muscle regeneration in young and aged mice was assessed using the cardiotoxin (CTX) model. RESULTS We identified a hierarchical non-clustered miRNA network consisting of highly (miR-29a), moderately (let-7) and mildly active (miR-125b, miR-199a, miR-221) miRNAs that cooperate by directly targeting members of the focal adhesion complex. Through RNA-seq experiments comparing single versus combinatorial inhibition of the miRNAs, we uncovered a fundamental feature of this network, that miRNA activity inversely correlates to miRNA cooperativity. During myoblast differentiation, combinatorial inhibition of the five miRNAs increased activation of focal adhesion kinase (FAK), AKT, and p38 mitogen-activated protein kinase (MAPK), and improved myotube formation and insulin-dependent glycogen synthesis. Moreover, antagonizing the miRNA network in vivo following CTX-induced muscle regeneration enhanced muscle mass and myofiber formation in young and aged mice. CONCLUSION Our results provide novel insights into the dynamics of miRNA cooperativity and identify a miRNA network as therapeutic target for impaired focal adhesion signalling and muscle regeneration during ageing.
Collapse
Affiliation(s)
- Edlira Luca
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland
| | - Katarina Turcekova
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland; Competence Center Personalized Medicine UZH/ETH, ETH Zurich and University of Zurich, 8091, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland
| | - Sebastian Mathes
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, 8091, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich UZH/ETH, ETH Zurich and University of Zurich, 8091, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland; Competence Center Personalized Medicine UZH/ETH, ETH Zurich and University of Zurich, 8091, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, 8091, Switzerland.
| |
Collapse
|
197
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
198
|
Fu L, Wang H, Liao Y, Zhou P, Xu Y, Zhao Y, Xie S, Zhao S, Li X. miR-208b modulating skeletal muscle development and energy homoeostasis through targeting distinct targets. RNA Biol 2020; 17:743-754. [PMID: 32037961 DOI: 10.1080/15476286.2020.1728102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Embryonic and neonatal skeletal muscles grow via the proliferation and fusion of myogenic cells, whereas adult skeletal muscle adapts largely by remodelling pre-existing myofibers and optimizing metabolic balance. It has been reported that miRNAs played key roles during skeletal muscle development through targeting different genes at post-transcriptional level. In this study, we show that a single miRNA (miR-208b) can modulate both the myogenesis and homoeostasis of skeletal muscle by distinct targets. As results, miR-208b accelerates the proliferation and inhibits the differentiation of myogenic cells by targeting the E-protein family member transcription factor 12 (TCF12). Also, miR-208b can stimulate fast-to-slow fibre conversion and oxidative metabolism programme through targeting folliculin interacting protein 1 (FNIP1) but not TCF12 gene. Further, miR-208b could active the AMPK/PGC-1a signalling and mitochondrial biogenesis through targeting FNIP1. Thus, miR-208b could mediate skeletal muscle development and homoeostasis through specifically targeting of TCF12 and FNIP1.
Collapse
Affiliation(s)
- Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Heng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Yinlong Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Peng Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Yueyuan Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Yunxia Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| |
Collapse
|
199
|
Mullins Y, Keogh K, Kenny DA, Kelly A, O' Boyle P, Waters SM. Label-free quantitative proteomic analysis of M. longissimus dorsi from cattle during dietary restriction and subsequent compensatory growth. Sci Rep 2020; 10:2613. [PMID: 32054912 PMCID: PMC7018817 DOI: 10.1038/s41598-020-59412-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Compensatory growth (CG) is a naturally occurring physiological process whereby an animal has the ability to undergo enhanced growth following a period of restricted feeding. This studies objective was to identify key proteins involved in the expression of CG. Forty Holstein Friesian bulls were equally assigned to one of four groups. R1 and R2 groups were subjected to restricted feed allowance for 125 days (Period 1). A1 and A2 animals had ad libitum access to feed in Period 1. Following Period 1, all animals from R1 and A1 were slaughtered. Remaining animals (R2 and A2) were slaughtered following ad libitum access to feed for successive 55 days (Period 2). M. longissimus dorsi samples were collected at slaughter from all animals. Proteins were isolated from samples and subjected to label-free mass spectrometry proteomic quantification. Proteins which were differentially abundant during CG (n = 39) were involved in cellular binding processes, oxidative phosphorylation and mitochondrial function. There was also evidence for up regulation of three pathways involved in nucleotide biosynthesis. Genetic variants in or regulating genes pertaining to proteins identified in this study may hold potential for use as DNA based biomarkers for genomic selection of animals with a greater ability to undergo CG.
Collapse
Affiliation(s)
- Yvonne Mullins
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Alan Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Padraig O' Boyle
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Co., Galway, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland.
| |
Collapse
|
200
|
Zhao X, Wang Y, Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract 2020; 160:108004. [PMID: 31911250 DOI: 10.1016/j.diabres.2020.108004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a major chronic complication of obesity and diabetes. Due to several patients with obesity and diabetes, it is necessary to urgently explore early diagnostic biomarkers and innovative therapeutic strategies to prevent the progression of cardiovascular diseases. Recently, microRNAs (also known as miRNAs) have emerged as important players in heart disease and energy regulation. MiRNAs are a group of small, highly conserved non-coding RNA molecules that regulate gene expression by suppressing the translation of messenger RNA of target genes or by promoting mRNA degradation. These act as a class of potential biomarkers and may provide key information in diagnosing common diseases such as tumors, tissue damage, and autoimmune diseases. Among all the known miRNAs, microRNA-208 (miR-208) is specifically expressed in myocardial cells and showed close association with the development of cardiac diseases, such as myocardial hypertrophy, cardiac fibrosis, myocardial infarction, arrhythmia, and heart failure. However, the functions and underlying mechanisms of miR-208 in heart are still unclear. In this review, we highlighted the novel insights of miR-208 functions and associated mechanisms in the regulation of cardiac diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Outpatient Clinic, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|