151
|
Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, Imai H. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS One 2015; 10:e0135403. [PMID: 26287611 PMCID: PMC4544884 DOI: 10.1371/journal.pone.0135403] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/21/2015] [Indexed: 12/29/2022] Open
Abstract
Generation of pluripotent stem cells (PSCs) in large domestic animals has achieved only limited success; most of the PSCs obtained to date have been classified as primed PSCs, which possess very little capacity to produce chimeric offspring. By contrast, mouse PSCs have been classified as naïve PSCs that can contribute to most of the tissues of chimeras, including germ cells. Here, we describe the generation of two different types of bovine induced pluripotent stem cells (biPSCs) from amnion cells, achieved through introduction of piggyBac vectors containing doxycycline-inducible transcription factors (Oct3/4, Sox2, Klf4, and c-Myc). One type of biPSCs, cultured in medium supplemented with knockout serum replacement (KSR), FGF2, and bovine leukemia inhibitory factor (bLIF), had a flattened morphology like human PSCs; these were classified as primed-type. The other type biPSCs, cultured in KSR, bLIF, Mek/Erk inhibitor, GSK3 inhibitor and forskolin, had a compact morphology like mouse PSCs; these were classified as naïve-type. Cells could easily be switched between these two types of biPSCs by changing the culture conditions. Both types of biPSCs had strong alkaline phosphatase activity, expressed pluripotent markers (OCT3/4, NANOG, REX1, ESRRβ, STELLA, and SOCS3), and formed embryoid bodies that gave rise to differentiated cells from all three embryonic germ layers. However, only naïve-type biPSCs showed the hallmarks of naïve mouse PSCs, such as LIF-dependent proliferation, lack of FGF5 expression, and active XIST expression with two active X chromosomes. Furthermore, naïve-type biPSCs could contribute to the inner cell mass (ICM) of host blastocysts and most tissues within chimeric embryos. This is the first report of generation of biPSCs with several characteristics similar to those of naïve mouse PSCs and a demonstrated potential to contribute to chimeras.
Collapse
Affiliation(s)
- Takamasa Kawaguchi
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Tomoyuki Tsukiyama
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Koji Kimura
- Animal Feeding and Management Research Division, NARO Institute of Livestock and Grassland Science, Tochigi, Japan
| | - Shuichi Matsuyama
- Animal Feeding and Management Research Division, NARO Institute of Livestock and Grassland Science, Tochigi, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
152
|
Chen H, Zhang L, Guo Z, Wang Y, He R, Qin Y, Quan F, Zhang Y. Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C. Mol Reprod Dev 2015. [PMID: 26212732 DOI: 10.1002/mrd.22531] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vitamin C (Vc) has been widely studied in cell and embryo culture, and has recently been demonstrated to promote cellular reprogramming. The objective of this study was to identify a suitable Vc concentration that, when used to treat adult bovine fibroblasts serving as donor cells for nuclear transfer, improved donor-cell physiology and the developmental potential of the cloned embryos that the donor nuclei were used to create. A Vc concentration of 0.15 mM promoted cell proliferation and increased donor-cell 5-hydroxy methyl cytosine levels 2.73-fold (P < 0.05). The blastocyst rate was also significantly improved after nuclear transfer (39.6% treated vs. 26.0% control, P < 0.05); the average number of apoptotic cells in cloned blastocysts was significantly reduced (2.2 vs. 4.4, P < 0.05); and the inner cell mass-to-trophectoderm ratio (38.25% vs. 30.75%, P < 0.05) and expression of SOX2 (3.71-fold, P < 0.05) and POU5F1 (3.15-fold, P < 0.05) were significantly increased. These results suggested that Vc promotes cell proliferation, decreases DNA methylation levels in donor cells, and improves the developmental competence of bovine somatic-cell nuclear transfer embryos.
Collapse
Affiliation(s)
- Huanhuan Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Rongjun He
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yumin Qin
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| |
Collapse
|
153
|
Zhao S, Liu ZX, Gao H, Wu Y, Fang Y, Wu SS, Li MJ, Bai JH, Liu Y, Evans A, Zeng SM. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro. Theriogenology 2015; 84:184-92. [DOI: 10.1016/j.theriogenology.2015.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 11/25/2022]
|
154
|
Sheng G. Epiblast morphogenesis before gastrulation. Dev Biol 2015; 401:17-24. [DOI: 10.1016/j.ydbio.2014.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 12/21/2022]
|
155
|
Roth Z. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Cellular and molecular mechanisms of heat stress related to bovine ovarian function1. J Anim Sci 2015; 93:2034-44. [DOI: 10.2527/jas.2014-8625] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
156
|
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc Natl Acad Sci U S A 2015; 112:E2337-46. [PMID: 25870291 DOI: 10.1073/pnas.1504778112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here, we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074), followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG, can be propagated clonally on either Matrigel or gelatin, and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG, LEFTY1, and LEFTY2). In nonconditioned medium lacking FGF2, the colonies spontaneously differentiated along multiple lineages, including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast, and especially syncytiotrophoblast, whereas an A83-01/PD173074 combination favored increased expression of HLA-G, a marker of extravillous trophoblast. Together, these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo.
Collapse
|
157
|
Brinkhof B, van Tol HTA, Groot Koerkamp MJA, Riemers FM, IJzer SG, Mashayekhi K, Haagsman HP, Roelen BAJ. A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis. BMC Genomics 2015; 16:277. [PMID: 25888366 PMCID: PMC4397860 DOI: 10.1186/s12864-015-1448-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/06/2015] [Indexed: 01/09/2023] Open
Abstract
Background Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. Results Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. Conclusion The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1448-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas Brinkhof
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| | - Helena T A van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| | - Marian J A Groot Koerkamp
- University Medical Center Utrecht, Molecular Cancer Research, PO Box 85060, Utrecht, 3508 AB, The Netherlands.
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Utrecht, Yalelaan 108, Utrecht, 3584 CM, The Netherlands.
| | - Sascha G IJzer
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| | - Kaveh Mashayekhi
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands. .,BioTalentum Ltd, Aulich L u.26, Gödöllő, 2100, Hungary.
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, The Netherlands.
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| |
Collapse
|
158
|
Li Y, Parast MM. BMP4 regulation of human trophoblast development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:239-46. [PMID: 25023690 DOI: 10.1387/ijdb.130341mp] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the derivation of human embryonic stem cells, and the subsequent generation of induced pluripotent stem cells, there has been much excitement about the ability to model and evaluate human organ development in vitro. The finding that these cells, when treated with BMP4, are able to generate the extraembryonic cell type, trophoblast, which is the predominant functional epithelium in the placenta, has not been widely accepted. This review evaluates this model, providing comparison to early known events during placentation in both human and mouse and addresses specific challenges. Keeping in mind the ultimate goal of understanding human placental development and pregnancy disorders, our aim here is two-fold: to distinguish gaps in our knowledge arising from mis- or over-interpretation of data, and to recognize the limitations of both mouse and human models, but to work within those limitations towards the ultimate goal.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
159
|
Liu S, Bou G, Sun R, Guo S, Xue B, Wei R, Cooney AJ, Liu Z. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev Dyn 2015; 244:619-27. [PMID: 25619399 DOI: 10.1002/dvdy.24248] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mammalian first lineage segregation generates trophectoderm (TE) and pluripotent inner cell mass (ICM), which provides an ideal model for studying the mechanisms of maintenance and loss of pluripotency. In mouse, the transcription factor OCT4 restricts to ICM and plays a key role in TE/ICM specification and pluripotent regulatory networks. However, in pig, OCT4 does not restrict to ICM cells, suggesting a different molecular basis in TE/ICM specification and pluripotent regulatory networks. RESULTS To explore molecular basis of porcine TE/ICM specification and pluripotent regulatory networks, we examined expression pattern of pluripotency factors, including SOX2, REX1, SALL4, ESG1, NANOG, TBX3, LIN28, KLF2, and KLF5, in porcine blastocysts. We found that SOX2 is a faithful pluripotent marker that anchored to the pluripotent cells including embryonic part cells, ICM cells and newly EPI cells along with developmental progress, whereas OCT4 expressed in almost all the cells at the same time. Consistently, analysis of spatiotemporal distribution of SOX2 and the TE marker CDX2 revealed an exclusive expression pattern in D6 blastocysts, whereas no correlation was observed between OCT4 and CDX2 at the same stage. CONCLUSIONS Our results provide a molecular basis in porcine embryonic patterning and a clue for further studying porcine pluripotent regulatory networks.
Collapse
Affiliation(s)
- Shichao Liu
- College of life science, Northeast Agricultural University of China, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Lee SH, Kwon JW, Choi I, Kim NH. Expression and function of transcription factor AP-2? in early embryonic development of porcine parthenotes. Reprod Fertil Dev 2015; 28:RD14198. [PMID: 25562461 DOI: 10.1071/rd14198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023] Open
Abstract
Transcription factor AP-2? (TFAP2C) is a member of the transcription factor activating enhancer binding protein (AP) family. In the present study we determined the temporal and spatial expression patterns of TFAP2C in porcine parthenotes during preimplantation development. Porcine TFAP2C transcripts were expressed at all stages of preimplantation development, with highest expression at the 8-cell stage. In contrast with the mouse, TFAP2C protein was not restricted to the trophectoderm and was also detected in the ICM in blastocyst stage porcine parthenotes. In knockdown (KD) experiments, most TFAP2C-depleted embryos were arrested before the compacted 8-cell stage. This developmental failure is attributed to abnormal expression of genes involved in cell adhesion, tight junction biogenesis and cell proliferation. Interestingly, although the conserved region 4 (CR4) of the porcine OCT4 5? upstream regionlacked the AP2C-binding motif, OCT4 transcript levels were elevated in porcine TFAP2C-KD 8-cell embryos, suggesting TFAP2C may be involved in the regulation of OCT4 in porcine embryos through other mechanisms. In summary, the results suggest that TFAP2C is necessary for the transition from de novo transcript synthesis by activation to compaction and further development, and the different expression patterns of TFAP2C in porcine embryos may reflect species-specific functions during preimplantation embryo development.
Collapse
|
161
|
La Rosa I. Bone Morphogenetic Proteins in Preimplantation Embryos. BONE MORPHOGENIC PROTEIN 2015; 99:223-48. [DOI: 10.1016/bs.vh.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
162
|
Demant M, Deutsch DR, Fröhlich T, Wolf E, Arnold GJ. Proteome analysis of early lineage specification in bovine embryos. Proteomics 2014; 15:688-701. [PMID: 25143135 DOI: 10.1002/pmic.201400251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/19/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
Abstract
During mammalian embryo development, the zygote undergoes embryonic cleavage in the oviduct and reaches the uterus at the morula stage, when compaction and early lineage specification take place. To increase knowledge about the associated changes of the embryonic protein repertoire, we performed a comprehensive proteomic analysis of in vitro produced bovine morulae and blastocysts (six biological replicates), using an iTRAQ-based approach. A total of 560 proteins were identified of which 502 were quantified. The abundance of 140 proteins was significantly different between morulae and blastocysts, among them nucleophosmin (NPM1), eukaryotic translation initiation factor 5A-1 (EIF5A), receptor of activated protein kinase C 1 (GNB2L1/RACK1), and annexin A6 (ANXA6) with increased, and glutathione S-transferase mu 3 (GSTM3), peroxiredoxin 2 (PRDX2), and aldo-keto reductase family 1 member B1 (AKR1B1) with decreased abundance in blastocysts. Seventy-three percent of abundance altered proteins increased, reflecting an increase of translation activity in this period. This is further supported by an increase in the abundance of proteins involved in the translation machinery and the synthesis of ATP. Additionally, a complementary 2D saturation DIGE analysis led to the detection of protein isoforms, e.g. of GSTM3 and PRDX2, relevant for this period of mammalian development, and exemplarily verified the results of the iTRAQ approach. In summary, our systematic differential proteome analysis of bovine morulae and blastocysts revealed new molecular correlates of early lineage specification and differentiation events during bovine embryogenesis.
Collapse
Affiliation(s)
- Myriam Demant
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
163
|
Goissis MD, Cibelli JB. Functional characterization of CDX2 during bovine preimplantation development in vitro. Mol Reprod Dev 2014; 81:962-70. [PMID: 25251051 DOI: 10.1002/mrd.22415] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/20/2014] [Indexed: 01/26/2023]
Abstract
Placental defects are common in bovine embryos produced using assisted reproductive techniques. A proper understanding of the events leading to inner cell mass (ICM) and trophectoderm (TE) specification could help identify the origins of such developmental failures. We focused on caudal-type homeobox transcription factor 2 (CDX2) since it has a specific role during TE differentiation in mouse embryos. Of all the preimplantation stages analyzed, CDX2 protein was present only at the blastocyst stage. To further understand the roles of CDX2 during bovine development, we depleted CDX2 mRNA; despite a significant loss of detectable protein, embryos were able to form blastocysts at the same rate as controls. Embryos lacking CDX2 did not show abnormalities in the number of TE, ICM, or total cells in the blastocyst. Expression of the developmentally important genes SOX2, POU5F1, and NANOG, or TE markers such as IFN-T and KRT18 were not affected by the reduction in CDX2 levels, nor was the localization of SOX2 and POU5F1 protein. Using a functional barrier assay, we observed that the TE epithelial layer of embryos lacking CDX2 had lost its integrity. Our results thus indicate that CDX2 is not required for TE formation during bovine development; nevertheless, it is necessary for maintaining TE integrity.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Science, Michigan State University, East Lansing, Michigan; Capes Foundation, Ministry of Education, Brasília, Brazil
| | | |
Collapse
|
164
|
Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 2014; 149:46-58. [DOI: 10.1016/j.anireprosci.2014.05.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/09/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
|
165
|
Kim MS, Sakurai T, Bai H, Bai R, Sato D, Nagaoka K, Chang KT, Godkin JD, Min KS, Imakawa K. Presence of Transcription Factor OCT4 Limits Interferon-tau Expression during the Pre-attachment Period in Sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:638-45. [PMID: 25049833 PMCID: PMC4093334 DOI: 10.5713/ajas.2012.12462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/23/2012] [Accepted: 10/18/2012] [Indexed: 11/27/2022]
Abstract
Interferon-tau (IFNT) is thought to be the conceptus protein that signals maternal recognition of pregnancy in ruminants. We and others have observed that OCT4 expression persists in the trophectoderm of ruminants; thus, both CDX2 and OCT4 coexist during the early stages of conceptus development. The aim of this study was to examine the effect of CDX2 and OCT4 on IFNT gene transcription when evaluated with other transcription factors. Human choriocarcinoma JEG-3 cells were cotransfected with an ovine IFNT (-654-bp)-luciferase reporter (-654-IFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with Cdx2, Ets2 and Jun increased transcription of -654-IFNT-Luc by about 12-fold compared with transfection of the construct alone. When cells were initially transfected with Oct4 (0 h) followed by transfection with Cdx2, Ets2 and/or Jun 24 h later, the expression of -654-IFNT-Luc was reduced to control levels. OCT4 also inhibited the stimulatory activity of CDX2 alone, but not when CDX2 was combined with JUN and/or ETS2. Thus, when combined with the other transcription factors, OCT4 exhibited little inhibitory activity towards CDX2. An inhibitor of the transcriptional coactivator CREB binding protein (CREBBP), 12S E1A, reduced CDX2/ETS2/JUN stimulated -654-IFNT-Luc expression by about 40%, indicating that the formation of an appropriate transcription factor complex is required for maximum expression. In conclusion, the presence of OCT4 may initially minimize IFNT expression; however, as elongation proceeds, the increasing expression of CDX2 and formation of the transcription complex leads to greatly increased IFNT expression, resulting in pregnancy establishment in ruminants.
Collapse
Affiliation(s)
- Min-Su Kim
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rulan Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Daisuke Sato
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Nagaoka
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kyu-Tae Chang
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - James D Godkin
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kwan-Sik Min
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
166
|
Lee KB, Folger JK, Rajput SK, Smith GW. Temporal regulation of mRNAs for select bone morphogenetic proteins (BMP), BMP receptors and their associated SMAD proteins during bovine early embryonic development: effects of exogenous BMP2 on embryo developmental progression. Reprod Biol Endocrinol 2014; 12:67. [PMID: 25027287 PMCID: PMC4110370 DOI: 10.1186/1477-7827-12-67] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND We previously demonstrated embryotrophic actions of maternal (oocyte-derived) follistatin during bovine early embryogenesis. Classical actions of follistatin are attributed to inhibition of activity of growth factors including activins and bone morphogenetic proteins (BMP). However, temporal changes in BMP mRNA in early bovine embryos and the effects of exogenous BMP on embryo developmental progression are not understood. The objectives of present studies were to characterize mRNA abundance for select BMP, BMP receptors and BMP receptor associated SMADs during bovine oocyte maturation and early embryogenesis and determine effects of addition of exogenous BMP protein on early development. METHODS Relative abundance of mRNA for BMP2, BMP3, BMP7, BMP10, SMAD1, SMAD5, ALK3, ALK6, ALK2, BMPR2, ACVR2A and ACVR2B was determined by RT-qPCR analysis of germinal vesicle (GV) and in vitro matured metaphase II (MII) oocytes and in vitro produced embryos collected at pronuclear, 2-cell (C), 4C, 8C, 16C, morula and blastocyst stages. Effects of addition of recombinant human BMP2 (0, 1, 10 and 100 ng/ml) during initial 72 h of embryo culture on early cleavage (within 30 h post insemination), total cleavage, development to 8C-16C and blastocyst stages and blastocyst mRNA abundance for markers of inner cell mass (NANOG) and trophectoderm (CDX2) were also determined. RESULTS Abundance of mRNA for BMP2, BMP10, SMAD1, SMAD5, ALK3, ALK2, BMPR2 and ACVR2B was elevated in MII oocytes and/or pronuclear stage embryos (relative to GV) and remained elevated through the 8C -16C stages, whereas BMP3, BMP7 and ALK2 mRNAs were transiently elevated. Culture of embryos to the 8C stage in the presence of α-amanitin resulted in increased abundance for all of above transcripts examined relative to untreated 8C embryos. Effects of addition of exogenous BMP2 on early cleavage rates and rates of development to 8C-16C and blastocyst stages were not observed, but BMP2 treatment increased blastocyst mRNA for CDX2 and NANOG. CONCLUSIONS Abundance of maternally derived mRNAs for above BMP system components are dynamically regulated during oocyte maturation and early embryogenesis. Exogenous BMP2 treatment does not influence progression to various developmental endpoints, but impacts characteristics of resulting blastocysts. Results support a potential role for BMPs in bovine early embryogenesis.
Collapse
Affiliation(s)
- Kyung-Bon Lee
- Department of Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology Education, College of Education, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Joseph K Folger
- Department of Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Sandeep K Rajput
- Department of Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - George W Smith
- Department of Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
167
|
Irie N, Tang WWC, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol 2014; 13:203-215. [PMID: 25298745 PMCID: PMC4182624 DOI: 10.1007/s12522-014-0184-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022] Open
Abstract
Germ cells are unique cell types that generate a totipotent zygote upon fertilization, giving rise to the next generation in mammals and many other multicellular organisms. How germ cells acquire this ability has been of considerable interest. In mammals, primordial germ cells (PGCs), the precursors of sperm and oocytes, are specified around the time of gastrulation. PGCs are induced by signals from the surrounding extra-embryonic tissues to the equipotent epiblast cells that give rise to all cell types. Currently, the mechanism of PGC specification in mammals is best understood from studies in mice. Following implantation, the epiblast cells develop as an egg cylinder while the extra-embryonic ectoderm cells which are the source of important signals for PGC specification are located over the egg cylinder. However, in most cases, including humans, the epiblast cells develop as a planar disc, which alters the organization and the source of the signaling for cell fates. This, in turn, might have an effect on the precise mechanism of PGC specification in vivo as well as in vitro using pluripotent embryonic stem cells. Here, we discuss how the key early embryonic differences between rodents and other mammals may affect the establishment of the pluripotency network in vivo and in vitro, and consequently the basis for PGC specification, particularly from pluripotent embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - Walfred W. C. Tang
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| |
Collapse
|
168
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|
169
|
Denicol AC, Block J, Kelley DE, Pohler KG, Dobbs KB, Mortensen CJ, Ortega MS, Hansen PJ. The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J 2014; 28:3975-86. [PMID: 24858280 DOI: 10.1096/fj.14-253112] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/12/2014] [Indexed: 01/22/2023]
Abstract
Successful embryonic development is dependent on factors secreted by the reproductive tract. Dickkopf-1 (DKK1), an antagonist of the wingless-related mouse mammary tumor virus (WNT) signaling pathway, is one endometrial secretory protein potentially involved in maternal-embryo communication. The purpose of this study was to investigate the roles of DKK1 in embryo cell fate decisions and competence to establish pregnancy. Using in vitro-produced bovine embryos, we demonstrate that exposure of embryos to DKK1 during the period of morula to blastocyst transition (between d 5 and 8 of development) promotes the first 2 cell fate decisions leading to increased differentiation of cells toward the trophectoderm and hypoblast lineages compared with that for control embryos treated with vehicle. Moreover, treatment of embryos with DKK1 or colony-stimulating factor 2 (CSF2; an endometrial cytokine known to improve embryo development and pregnancy establishment) between d 5 and 7 of development improves embryo survival after transfer to recipients. Pregnancy success at d 32 of gestation was 27% for cows receiving control embryos treated with vehicle, 41% for cows receiving embryos treated with DKK1, and 39% for cows receiving embryos treated with CSF2. These novel findings represent the first evidence of a role for maternally derived WNT regulators during this period and could lead to improvements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna C Denicol
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Jeremy Block
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA; Ovatech LLC, Gainesville, Florida, USA; and
| | - Dale E Kelley
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Ky G Pohler
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kyle B Dobbs
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Christopher J Mortensen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - M Sofia Ortega
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Peter J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
170
|
Ramos-Ibeas P, Calle A, Pericuesta E, Laguna-Barraza R, Moros-Mora R, Lopera-Vásquez R, Maillo V, Yáñez-Mó M, Gutiérrez-Adán A, Rizos D, Ramírez MÁ. An efficient system to establish biopsy-derived trophoblastic cell lines from bovine embryos. Biol Reprod 2014; 91:15. [PMID: 24855108 DOI: 10.1095/biolreprod.114.118430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trophoblastic cells play a crucial role in implantation and placentogenesis and can be used as a model to provide substantial information on the peri-implantation period. Unfortunately, there are few cell lines for this purpose in cattle because of the difficulty of raising successive cell stocks in the long-term. Our results show that the combination of a monolayer culture system in microdrops on a surface treated with gelatin and the employment of conditioned media from mouse embryonic fibroblasts support the growth of bovine trophoblastic cells lines from an embryo biopsy. Expression profiles of mononucleate- and binucleate-specific genes in established trophoblastic cells lines represented various stages of gestation. Moreover, the ability to expand trophoblastic cell lines for more than 2 yr together with pluripotency-related gene expression patterns revealed certain self-renewal capacity. In summary, we have developed a system to expand in vitro trophoblastic cells from an embryo biopsy that solves the limitations of using amplified DNA from a small number of cells for bovine embryo genotyping and epigenotyping and, on the other hand, facilitates the establishment of trophoblastic cell lines that can be useful as peri-implantation in vitro models.
Collapse
Affiliation(s)
| | | | - Eva Pericuesta
- Departamento de Reproduccion Animal, INIA, Madrid, Spain
| | | | | | | | | | - María Yáñez-Mó
- Hospital Universitario Santa Cristina, Instituto de Investigaciones Sanitarias Princesa, Madrid, Spain
| | | | | | | |
Collapse
|
171
|
Pearton DJ, Smith CS, Redgate E, van Leeuwen J, Donnison M, Pfeffer PL. Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev Biol 2014; 392:344-57. [PMID: 24859262 DOI: 10.1016/j.ydbio.2014.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
In mice the transcription factor Elf5 is necessary for correct trophoblast development. Upon knockdown of Elf5, TS cells display neither a decrease in proliferation nor an increase in cell death but rather an increased propensity to differentiate. Such cells rapidly lose Sox2 and 3 expression, while transiently upregulating the giant cell differentiation determinant gene Hand1. Other genes affected within 24h of Elf5 knock-down, many of which have not previously been implicated in trophoblast development, exhibited in vivo expression domains and in vitro expression responses consistent with Elf5 having a role in counteracting trophoblast differentiation. In an ES to TS differentiation assay using Cdx2 overexpression with Elf5 loss of function cell lines, it was shown that Elf5 is necessary to prevent terminal trophoblast differentiation. This data thus suggest that Elf5 is a gatekeeper for the TS to differentiated trophoblast transition thereby preventing the precocious differentiation of the undifferentiated extraembryonic ectoderm.
Collapse
Affiliation(s)
- David J Pearton
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Craig S Smith
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Emma Redgate
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Jessica van Leeuwen
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; Department of Biological Sciences, University of Waikato, Hamilton 3214, New Zealand
| | - Martyn Donnison
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand
| | - Peter L Pfeffer
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
172
|
van Leeuwen J, Berg DK, Smith CS, Wells DN, Pfeffer PL. Specific epiblast loss and hypoblast impairment in cattle embryos sensitized to survival signalling by ubiquitous overexpression of the proapoptotic gene BAD. PLoS One 2014; 9:e96843. [PMID: 24806443 PMCID: PMC4013130 DOI: 10.1371/journal.pone.0096843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 04/11/2014] [Indexed: 01/16/2023] Open
Abstract
Early embryonic lethality is common, particularly in dairy cattle. We made cattle embryos more sensitive to environmental stressors by raising the threshold of embryo survival signaling required to overcome the deleterious effects of overexpressing the proapoptotic protein BAD. Two primary fibroblast cell lines expressing BAD and exhibiting increased sensitivity to stress-induced apoptosis were used to generate transgenic Day13/14 BAD embryos. Transgenic embryos were normal in terms of retrieval rates, average embryo length or expression levels of the trophectoderm marker ASCL2. However both lines of BAD-tg embryos lost the embryonic disc and thus the entire epiblast lineage at significantly greater frequencies than either co-transferrred IVP controls or LacZ-tg embryos. Embryos without epiblast still contained the second ICM-derived lineage, the hypopblast, albeit frequently in an impaired state, as shown by reduced expression of the hypoblast markers GATA4 and FIBRONECTIN. This indicates a gradient of sensitivity (epiblast > hypoblast > TE) to BAD overexpression. We postulate that the greater sensitivity of specifically the epiblast lineage that we have seen in our transgenic model, reflects an inherent greater susceptibility of this lineage to environmental stress and may underlie the epiblast-specific death seen in phantom pregnancies.
Collapse
Affiliation(s)
- Jessica van Leeuwen
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- Department of Biological Sciences, University of Waikato, Hamilton, Waikato, New Zealand
| | - Debra K. Berg
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Craig S. Smith
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - David N. Wells
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Peter L. Pfeffer
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- * E-mail:
| |
Collapse
|
173
|
De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. ACTA ACUST UNITED AC 2014; 20:599-618. [DOI: 10.1093/molehr/gau027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
174
|
Valdez Magaña G, Rodríguez A, Zhang H, Webb R, Alberio R. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol 2014; 387:15-27. [PMID: 24445281 DOI: 10.1016/j.ydbio.2014.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 02/02/2023]
Abstract
The crosstalk between the epiblast and the trophoblast is critical in supporting the early stages of conceptus development. FGF4 and BMP4 are inductive signals that participate in the communication between the epiblast and the extraembryonic ectoderm (ExE) of the developing mouse embryo. Importantly, however, it is unknown whether a similar crosstalk operates in species that lack a discernible ExE and develop a mammotypical embryonic disc (ED). Here we investigated the crosstalk between the epiblast and the trophectoderm (TE) during pig embryo elongation. FGF4 ligand and FGFR2 were detected primarily on the plasma membrane of TE cells of peri-elongation embryos. The binding of this growth factor to its receptor triggered a signal transduction response evidenced by an increase in phosphorylated MAPK/ERK. Particular enrichment was detected in the periphery of the ED in early ovoid embryos, indicating that active FGF signalling was operating during this stage. Gene expression analysis shows that CDX2 and ELF5, two genes expressed in the mouse ExE, are only co-expressed in the Rauber's layer, but not in the pig mural TE. Interestingly, these genes were detected in the nascent mesoderm of early gastrulating embryos. Analysis of BMP4 expression by in situ hybridisation shows that this growth factor is produced by nascent mesoderm cells. A functional test in differentiating epiblast shows that CDX2 and ELF5 are activated in response to BMP4. Furthermore, the effects of BMP4 were also demonstrated in the neighbouring TE cells, as demonstrated by an increase in phosphorylated SMAD1/5/8. These results show that BMP4 produced in the extraembryonic mesoderm is directly influencing the SMAD response in the TE of elongating embryos. These results demonstrate that paracrine signals from the embryo, represented by FGF4 and BMP4, induce a response in the TE prior to the extensive elongation. The study also confirms that expression of CDX2 and ELF5 is not conserved in the mural TE, indicating that although the signals that coordinate conceptus growth are similar between rodents and pigs, the gene regulatory network of the trophoblast lineage is not conserved in these species.
Collapse
Affiliation(s)
- Griselda Valdez Magaña
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Aida Rodríguez
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Haixin Zhang
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Ramiro Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK.
| |
Collapse
|
175
|
Dobbs KB, Khan FA, Sakatani M, Moss JI, Ozawa M, Ealy AD, Hansen PJ. Regulation of pluripotency of inner cell mass and growth and differentiation of trophectoderm of the bovine embryo by colony stimulating factor 2. Biol Reprod 2013; 89:141. [PMID: 24198123 DOI: 10.1095/biolreprod.113.113183] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Colony-stimulating factor 2 (CSF2) enhances competence of the bovine embryo to establish and maintain pregnancy after the embryo is transferred into a recipient. Mechanisms involved could include regulation of lineage commitment, growth, or differentiation of the inner cell mass (ICM) and trophectoderm (TE). Experiments were conducted to evaluate regulation by CSF2 of pluripotency of the ICM and differentiation and growth of the TE. Embryos were cultured with 10 ng/ml recombinant bovine CSF2 or a vehicle control from Days 5 to 7 or 6 to 8 postinsemination. CSF2 increased the number of putative zygotes that developed to blastocysts when the percent of embryos becoming blastocysts in the control group was low but decreased blastocyst yield when blastocyst development in controls was high. ICM isolated from blastocysts by lysing the trophectoderm using antibody and complement via immunosurgery were more likely to survive passage when cultured on mitomycin C-treated fetal fibroblasts if derived from blastocysts treated with CSF2 than if from control blastocysts. There was little effect of CSF2 on characteristics of TE outgrowths from blastocysts. The exception was a decrease in outgrowth size for embryos treated with CSF2 from Days 5 to 7 and an increase in expression of CDX2 when treatment was from Days 6 to 8. Expression of the receptor subunit gene CSF2RA increased from the zygote stage to the 9-16 cell stage before decreasing to the blastocyst stage. In contrast, CSF2RB was undetectable at all stages. In conclusion, CSF2 improves competence of the ICM to survive in a pluripotent state and alters TE outgrowths. Actions of CSF2 occur through a signaling pathway that is likely to be independent of CSF2RB.
Collapse
Affiliation(s)
- Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida
| | | | | | | | | | | | | |
Collapse
|
176
|
Hahn WH, Chang JY, Lee KS, Bae CW. Decreased expression of surfactant protein genes is associated with an increased expression of Forkhead box M1 gene in the fetal lung tissues of premature rabbits. Yonsei Med J 2013; 54:1422-9. [PMID: 24142647 PMCID: PMC3809867 DOI: 10.3349/ymj.2013.54.6.1422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Recently, Forkhead box M1 (FoxM1) was reported to be correlated with lung maturation and expression of surfactant proteins (SPs) in mice models. However, no study has been conducted in rabbit lungs despite their high homology with human lungs. Thus, we attempted to investigate serial changes in the expressions of FoxM1 and SP-A/B throughout lung maturation in rabbit fetuses. MATERIALS AND METHODS Pregnant New Zealand White rabbits were grouped according to gestational age from 5 days before to 2 days after the day of expected full term delivery (F5, F4, F3, F2, F1, F0, P1, and P2). A total of 64 fetuses were enrolled after Cesarean sections. The expressions of mRNA and proteins of FoxM1 and SP-A/B in fetal lung tissue were tested by quantitative reverse-transcriptase real-time PCR and Western blot. Furthermore, their correlations were analyzed. RESULTS The mRNA expression of SP-A/B showed an increasing tendency positively correlated with gestational age, while the expression of FoxM1 mRNA and protein decreased from F5 to F0. A significant negative correlation was found between the expression levels of FoxM1 and SP-A/B (SP-A: R=-0.517, p=0.001; SP-B: R=-0.615, p<0.001). CONCLUSION Preterm rabbits demonstrated high expression of FoxM1 mRNA and protein in the lungs compared to full term rabbits. Also, the expression of SP-A/B was inversely related with serial changes in FoxM1 expression. This is the first report to suggest an association between FoxM1 and expression of SP-A/B and lung maturation in preterm rabbits.
Collapse
Affiliation(s)
- Won-Ho Hahn
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul 134-727, Korea.
| | | | | | | |
Collapse
|
177
|
Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell 2013; 52:380-92. [PMID: 24120664 DOI: 10.1016/j.molcel.2013.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Sox2 is a transcription factor required for the maintenance of pluripotency. It also plays an essential role in different types of multipotent stem cells, raising the possibility that Sox2 governs the common stemness phenotype. Here we show that Sox2 is a critical downstream target of fibroblast growth factor (FGF) signaling, which mediates self-renewal of trophoblast stem cells (TSCs). Sustained expression of Sox2 together with Esrrb or Tfap2c can replace FGF dependency. By comparing genome-wide binding sites of Sox2 in embryonic stem cells (ESCs) and TSCs combined with inducible knockout systems, we found that, despite the common role in safeguarding the stem cell state, Sox2 regulates distinct sets of genes with unique functions in these two different yet developmentally related types of stem cells. Our findings provide insights into the functional versatility of transcription factors during embryogenesis, during which they can be recursively utilized in a variable manner within discrete network structures.
Collapse
Affiliation(s)
- Kenjiro Adachi
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 6500047, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Binas B, Verfaillie CM. Concise review: Bone marrow meets blastocyst: lessons from an unlikely encounter. Stem Cells 2013; 31:620-6. [PMID: 23169605 DOI: 10.1002/stem.1287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/28/2012] [Indexed: 12/17/2022]
Abstract
This article discusses the implications of the recent discovery that rat bone marrow-derived multipotent adult progenitor cells (rMAPCs), a cell type with broad somatic differentiation potential but of uncertain lineage identity, are similar to rat blastocyst-derived extraembryonic endoderm precursor (rXENP) cells, which appear to represent the committed extraembryonic endoderm precursor of the blastocyst. It was found that under rMAPC culture conditions, rXENP cells can be homogeneously cultured and similar cells, named rat hypoblast stem cells (rHypoSCs), can be derived from rat blastocysts more rapidly and directly. The detailed comparison of rHypoSCs, rXENP cells, and rMAPCs revealed highly similar gene expression profiles and developmental potentials. The significance of these findings for embryology, stem cell biology, and medicine is discussed. Specifically, the results assign a lineage identity to rMAPCs, indicate that rMAPCs originated by environmental reprogramming, and imply that HypoSCs, XENP cells, and MAPCs possess lineage plasticity. The MAPC-HypoSC relation also strengthens the consistency of rat and mouse embryology and consequently the idea that HypoSCs represent the committed extraembryonic endoderm precursor of the blastocyst. On this basis, it is argued that the direct comparison of HypoSCs (now available in pure form) with embryonic stem cells will be highly useful for the understanding of pluripotency and plasticity. Finally, the new findings suggest an explanation for an obscure observation on stem cell-induced transplantation tolerance. Thus, the HypoSC/XENP/MAPC phenotype provides a unique but broadly instructive model with which to study stem cell plasticity, reprogramming, and transplantation tolerance, all central themes in regenerative medicine.
Collapse
Affiliation(s)
- Bert Binas
- Division of Molecular and Life Science, Hanyang University, Kyeonggi-do, South Korea.
| | | |
Collapse
|
179
|
Li Y, Moretto-Zita M, Soncin F, Wakeland A, Wolfe L, Leon-Garcia S, Pandian R, Pizzo D, Cui L, Nazor K, Loring JF, Crum CP, Laurent LC, Parast MM. BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through a ΔNp63+ cytotrophoblast stem cell state. Development 2013; 140:3965-76. [PMID: 24004950 DOI: 10.1242/dev.092155] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The placenta is a transient organ that is necessary for proper fetal development. Its main functional component is the trophoblast, which is derived from extra-embryonic ectoderm. Little is known about early trophoblast differentiation in the human embryo, owing to lack of a proper in vitro model system. Human embryonic stem cells (hESCs) differentiate into functional trophoblast following BMP4 treatment in the presence of feeder-conditioned media; however, this model has not been widely accepted, in part owing to a lack of proof for a trophoblast progenitor population. We have previously shown that p63, a member of the p53 family of nuclear proteins, is expressed in proliferative cytotrophoblast (CTB), precursors to terminally differentiated syncytiotrophoblast (STB) in chorionic villi and extravillous trophoblast (EVT) at the implantation site. Here, we show that BMP4-treated hESCs differentiate into bona fide CTB by direct comparison with primary human placental tissues and isolated CTB through gene expression profiling. We show that, in primary CTB, p63 levels are reduced as cells differentiate into STB, and that forced expression of p63 maintains cyclin B1 and inhibits STB differentiation. We also establish that, similar to in vivo events, hESC differentiation into trophoblast is characterized by a p63(+)/KRT7(+) CTB stem cell state, followed by formation of functional KLF4(+) STB and HLA-G(+) EVT. Finally, we illustrate that downregulation of p63 by shRNA inhibits differentiation of hESCs into functional trophoblast. Taken together, our results establish that BMP4-treated hESCs are an excellent model of human trophoblast differentiation, closely mimicking the in vivo progression from p63(+) CTB stem cells to terminally differentiated trophoblast subtypes.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Schiffmacher AT, Keefer CL. CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells. Mol Reprod Dev 2013; 80:826-39. [PMID: 23836438 DOI: 10.1002/mrd.22212] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/27/2013] [Indexed: 11/06/2022]
Abstract
The bovine trophectoderm (TE) undergoes a dramatic morphogenetic transition prior to uterine endometrial attachment. Many studies have documented trophoblast-specific gene expression profiles at various pre-attachment stages, yet genetic interactions within the transitioning TE gene regulatory network are not well characterized. During bovine embryogenesis, transcription factors OCT4 and CDX2 are co-expressed during early trophoblast elongation. In this study, the bovine trophectoderm-derived CT-1 cell line was utilized as a genetic model to examine the roles of CDX2 and OCT4 within the bovine trophoblast gene regulatory network. An RT-PCR screen for TE-lineage transcription factors identified expression of CDX2, ERRB, ID2, SOX15, ELF5, HAND1, and ASCL2. CT-1 cells also express a nuclear-localized, 360 amino acid OCT4 ortholog of the pluripotency-specific human OCT4A. To delineate the roles of CDX2 and OCT4 within the CT-1 gene network, CDX2 and OCT4 levels were manipulated via overexpression and siRNA-mediated knockdown. An increase in CDX2 negatively regulated OCT4 expression, but increased expression of IFNT, HAND1, ASCL2, SOX15, and ELF5. A reduction of CDX2 levels exhibited a reciprocal effect, resulting in decreased expression of IFNT, HAND1, ASCL2, and SOX15. Both overexpression and knockdown of CDX2 increased ETS2 transcription. In contrast to CDX2, manipulation of OCT4 levels only revealed a positive autoregulatory mechanism and upregulation of ASCL2. Together, these results suggest that CDX2 is a core regulator of multiple trophoblast genes within CT-1 cells.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | | |
Collapse
|
181
|
Robust self-renewal of rat embryonic stem cells requires fine-tuning of glycogen synthase kinase-3 inhibition. Stem Cell Reports 2013; 1:209-17. [PMID: 24319657 PMCID: PMC3849254 DOI: 10.1016/j.stemcr.2013.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/02/2023] Open
Abstract
Germline-competent embryonic stem cells (ESCs) have been derived from mice and rats using culture conditions that include an inhibitor of glycogen synthase kinase 3 (GSK3). However, rat ESCs remain susceptible to sporadic differentiation. Here, we show that unsolicited differentiation is attributable to overinhibition of GSK3. The self-renewal effect of inhibiting GSK3 is mediated via β-catenin, which abrogates the repressive action of TCF3 on core pluripotency genes. In rat ESCs, however, GSK3 inhibition also leads to activation of differentiation-associated genes, notably lineage specification factors Cdx2 and T. Lowered GSK3 inhibition reduces differentiation and enhances clonogenicity and self-renewal. The differential sensitivity of rat ESCs to GSK3 inhibition is linked to elevated expression of the canonical Wnt pathway effector LEF1. These findings reveal that optimal GSK3 inhibition for ESC propagation is influenced by the balance of TCF/LEF factors and can vary between species.
Collapse
|
182
|
Paul S, Knott JG. Epigenetic control of cell fate in mouse blastocysts: the role of covalent histone modifications and chromatin remodeling. Mol Reprod Dev 2013; 81:171-82. [PMID: 23893501 DOI: 10.1002/mrd.22219] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022]
Abstract
The first cell-fate decision in mammalian preimplantation embryos is the segregation of the inner cell mass (ICM) and trophectoderm (TE) cell lineages. The ICM develops into the embryo proper, whereas the TE ensures embryo implantation and is the source of the extra-embryonic trophoblast cell lineages, which contribute to the functional components of the placenta. The development of a totipotent zygote into a multi-lineage blastocyst is associated with the generation of distinct transcriptional programs. Several key transcription factors participate in the ICM and TE-specific transcriptional networks, and recent studies indicate that post-translational histone modifications as well as ATP-dependent chromatin remodeling complexes converge with these transcriptional networks to regulate ICM and TE lineage specification. This review will discuss our current understanding and future perspectives related to transcriptional and epigenetic regulatory mechanisms that are implicated in the initial mammalian lineage commitment steps, with a focus on events in mice.
Collapse
Affiliation(s)
- Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; Institute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | |
Collapse
|
183
|
Madeja ZE, Sosnowski J, Hryniewicz K, Warzych E, Pawlak P, Rozwadowska N, Plusa B, Lechniak D. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC DEVELOPMENTAL BIOLOGY 2013; 13:32. [PMID: 23941255 PMCID: PMC3751447 DOI: 10.1186/1471-213x-13-32] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/07/2013] [Indexed: 02/27/2023]
Abstract
Background Preimplantation bovine development is emerging as an attractive experimental model, yet little is known about the mechanisms underlying trophoblast (TE)/inner cell mass (ICM) segregation in cattle. To gain an insight into these processes we have studied protein and mRNA distribution during the crucial stages of bovine development. Protein distribution of lineage specific markers OCT4, NANOG, CDX2 were analysed in 5-cell, 8–16 cell, morula and blastocyst stage embryos. ICM/TE mRNA levels were compared in hatched blastocysts and included: OCT4, NANOG, FN-1, KLF4, c-MYC, REX1, CDX2, KRT-18 and GATA6. Results At the mRNA level the observed distribution patterns agree with the mouse model. CDX2 and OCT4 proteins were first detected in 5-cell stage embryos. NANOG appeared at the morula stage and was located in the cytoplasm forming characteristic rings around the nuclei. Changes in sub-cellular localisation of OCT4, NANOG and CDX2 were noted from the 8–16 cell onwards. CDX2 initially co-localised with OCT4, but at the blastocyst stage a clear lineage segregation could be observed. Interestingly, we have observed in a small proportion of embryos (2%) that CDX2 immunolabelling overlapped with mitotic chromosomes. Conclusions Cell fate specification in cattle become evident earlier than presently anticipated – around the time of bovine embryonic genome activation. There is an intriguing possibility that for proper lineage determination certain transcription factors (such as CDX2) may need to occupy specific regions of chromatin prior to its activation in the interphase nucleus. Our observation suggests a possible role of CDX2 in the process of epigenetic regulation of embryonic cell fate.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan 60-673, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Furusawa T, Ohkoshi K, Kimura K, Matsuyama S, Akagi S, Kaneda M, Ikeda M, Hosoe M, Kizaki K, Tokunaga T. Characteristics of Bovine Inner Cell Mass-Derived Cell Lines and Their Fate in Chimeric Conceptuses1. Biol Reprod 2013; 89:28. [DOI: 10.1095/biolreprod.112.106641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
185
|
Dobbs KB, Rodriguez M, Sudano MJ, Ortega MS, Hansen PJ. Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS One 2013; 8:e66230. [PMID: 23799080 PMCID: PMC3683128 DOI: 10.1371/journal.pone.0066230] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2). Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6–8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2) than for trophectoderm (CDX2-positive). The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6–8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation.
Collapse
Affiliation(s)
- Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | | | | | | | | |
Collapse
|
186
|
Evidence that transcription factor AP-2γ is not required for Oct4 repression in mouse blastocysts. PLoS One 2013; 8:e65771. [PMID: 23741512 PMCID: PMC3669238 DOI: 10.1371/journal.pone.0065771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/27/2013] [Indexed: 11/23/2022] Open
Abstract
In mouse blastocysts segregation of the inner cell mass (ICM) and the trophectoderm (TE) is regulated by the mutually antagonistic effects of the transcription factors Oct4 and Cdx2 expressed in the ICM and TE, respectively. In contrast, in other species such as bovine and human, Oct4 is not restricted to the ICM and continues to be expressed in the Cdx2-positive TE. A recent comparative study of the bovine and mouse Oct4 promoters revealed that additional mechanisms might act in conjunction with Cdx2 to downregulate Oct4 expression in the mouse TE lineage. For instance, the mouse Oct4 distal enhancer contains an AP-2γ (Tcfap2c) binding motif that is absent in the bovine and human Oct4 distal enhancer. Nonetheless, the functional relevance of Tcfap2c in Oct4 repression during mouse preimplantation development was not tested. To elucidate the role of Tcfap2c in Oct4 expression an RNA interference approach was utilized. Depletion of Tcfap2c triggered a decrease in Oct4 expression at the 8-cell and morula stage. Remarkably, at the blastocyst stage depletion of Tcfap2c and/or its family member Tcfap2a had no effect on Oct4 repression. To test whether Tcfap2c interacts with Oct4 to positively regulate Oct4 expression, chromatin immunoprecipitation and in situ co-immunoprecipitation analyses were performed. These experiments revealed Tcfap2c and Oct4 binding were enriched at the Oct4 distal enhancer in embryonic stem (ES) cells, but were rapidly lost during differentiation into trophoblast-like cells when Oct4 became repressed. Moreover, Tcfap2c and Oct4 interactions were detected at the morula stage, but were lost during blastocyst formation. In summary, these data demonstrate that Tcfap2c is not required for Oct4 silencing in mouse blastocysts, but may be necessary for the maintenance of Oct4 expression during the 8 cell-to-morula transition. These findings support the notion Cdx2 is the predominant negative regulator of Oct4 expression during blastocyst formation in mice.
Collapse
|
187
|
Dupont C, Gribnau J. Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 2013; 25:314-21. [PMID: 23578369 DOI: 10.1016/j.ceb.2013.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Dosage compensation of X-linked gene products between the sexes in therians has culminated in the inactivation of one of the two X chromosomes in female cells. Over the years, the mouse has been the preferred animal model to study this X-chromosome inactivation (XCI) process in placental mammals (eutherians). Similar to the imprinted inactivation of the paternally inherited X chromosome (Xp) in marsupials (methatherians), the Xp is inactivated during early mouse development. In this eutherian model, cell derivatives of the primitive endoderm (PE) and trophectoderm (TE) will continue to display this imprinted form of XCI. Cells developing from the mouse epiblast will reactivate the Xp, and subsequently initiate XCI of either the Xp or the maternally inherited Xm, in a random manner. Examination of XCI in other eutherians and in metatherians, however, indicates clear differences in the form and timing of XCI. This review highlights and discusses imprinted and random XCI from such a comparative viewpoint.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3015GE Rotterdam, The Netherlands
| | | |
Collapse
|
188
|
Imakawa K, Yasuda J, Kobayashi T, Miyazawa T. Changes in Gene Expression Associated with Conceptus Implantation to the Maternal Endometrium. ACTA ACUST UNITED AC 2013. [DOI: 10.1274/jmor.30.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
189
|
Maraghechi P, Hiripi L, Tóth G, Bontovics B, Bősze Z, Gócza E. Discovery of pluripotency-associated microRNAs in rabbit preimplantation embryos and embryonic stem-like cells. Reproduction 2013; 145:421-37. [DOI: 10.1530/rep-12-0259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple biological processes. Increasing experimental evidence implies an important regulatory role of miRNAs during embryonic development and in embryonic stem (ES) cell biology. In the current study, we have described and analyzed the expression profile of pluripotency-associated miRNAs in rabbit embryos and ES-like cells. The rabbit specific ocu-miR-302 and ocu-miR-290 clusters, and three homologs of the human C19MC cluster (ocu-miR-512, ocu-miR-520e, and ocu-miR-498) were identified in rabbit preimplantation embryos and ES-like cells. The ocu-miR-302 cluster was highly similar to its human homolog, while ocu-miR-290 revealed a low level of evolutionary conservation with its mouse homologous cluster. The expression of the ocu-miR-302 cluster began at the 3.5 days post-coitum early blastocyst stage and they stayed highly expressed in rabbit ES-like cells. In contrast, a high expression level of the ocu-miR-290 cluster was detected during preimplantation embryonic development, but a low level of expression was found in rabbit ES-like cells. Differential expression of the ocu-miR-302 cluster and ocu-miR-512 miRNA was detected in rabbit trophoblast and embryoblast. We also found that Lefty has two potential target sites in its 3′UTR for ocu-miR-302a and its expression level increased upon ocu-miR-302a inhibition. We suggest that the expression of the ocu-miR-302 cluster is characteristic of the rabbit ES-like cell, while the ocu-miR-290 cluster may play a crucial role during early embryonic development. This study presents the first identification, to our knowledge, of pluripotency-associated miRNAs in rabbit preimplantation embryos and ES-like cells, which can open up new avenues to investigate the regulatory function of ocu-miRNAs in embryonic development and stem cell biology.
Collapse
|
190
|
Effects of long-term in vitro culturing of transgenic bovine donor fibroblasts on cell viability and in vitro developmental potential after nuclear transfer. In Vitro Cell Dev Biol Anim 2013; 49:250-9. [DOI: 10.1007/s11626-013-9592-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/09/2013] [Indexed: 10/27/2022]
|
191
|
Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 2013; 375:54-64. [PMID: 23261930 DOI: 10.1016/j.ydbio.2012.12.008] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/29/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022]
Abstract
Early mammalian embryogenesis is controlled by mechanisms governing the balance between pluripotency and differentiation. The expression of early lineage-specific genes can vary significantly between species, with implications for developmental control and stem cell derivation. However, the mechanisms involved in patterning the human embryo are still unclear. We analyzed the appearance and localization of lineage-specific transcription factors in staged preimplantation human embryos from the zygote until the blastocyst. We observed that the pluripotency-associated transcription factor OCT4 was initially expressed in 8-cell embryos at 3 days post-fertilization (dpf), and restricted to the inner cell mass (ICM) in 128-256 cell blastocysts (6dpf), approximately 2 days later than the mouse. The trophectoderm (TE)-associated transcription factor CDX2 was upregulated in 5dpf blastocysts and initially coincident with OCT4, indicating a lag in CDX2 initiation in the TE lineage, relative to the mouse. Once established, the TE expressed intracellular and cell-surface proteins cytokeratin-7 (CK7) and fibroblast growth factor receptor-1 (FGFR1), which are thought to be specific to post-implantation human trophoblast progenitor cells. The primitive endoderm (PE)-associated transcription factor SOX17 was initially heterogeneously expressed in the ICM where it co-localized with a sub-set of OCT4 expressing cells at 4-5dpf. SOX17 was progressively restricted to the PE adjacent to the blastocoel cavity together with the transcription factor GATA6 by 6dpf. We observed low levels of Laminin expression in the human PE, though this basement membrane component is thought to play an important role in mouse PE cell sorting, suggesting divergence in differentiation mechanisms between species. Additionally, while stem cell lines representing the three distinct cell types that comprise a mouse blastocyst have been established, the identity of cell types that emerge during early human embryonic stem cell derivation is unclear. We observed that derivation from plating intact human blastocysts resulted predominantly in the outgrowth of TE-like cells, which impairs human embryonic stem cell derivation. Altogether, our findings provide important insight into developmental patterning of preimplantation human embryos with potential consequences for stem cell derivation.
Collapse
Affiliation(s)
- Kathy K Niakan
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
192
|
Abstract
During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.
Collapse
Affiliation(s)
- Néstor Saiz
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
193
|
Giakoumopoulos M, Golos TG. Embryonic stem cell-derived trophoblast differentiation: a comparative review of the biology, function, and signaling mechanisms. J Endocrinol 2013; 216:R33-45. [PMID: 23291503 PMCID: PMC3809013 DOI: 10.1530/joe-12-0433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of the placenta is imperative for successful pregnancy establishment, yet the earliest differentiation events of the blastocyst-derived trophectoderm that forms the placenta remain difficult to study in humans. Human embryonic stem cells (hESC) display a unique ability to form trophoblast cells when induced to differentiate either by the addition of exogenous BMP4 or by the formation of cellular aggregates called embryoid bodies. While mouse trophoblast stem cells (TSC) have been isolated from blastocyst outgrowths, mouse ESC do not spontaneously differentiate into trophoblast cells. In this review, we focus on addressing the similarities and differences between mouse TSC differentiation and hESC-derived trophoblast differentiation. We discuss the functional and mechanistic diversity that is found in different species models. Of central importance are the unique signaling events that trigger downstream gene expression that create specific cellular fate decisions. We support the idea that we must understand the nuances that hESC differentiation models display so that investigators can choose the appropriate model system to fit experimental needs.
Collapse
Affiliation(s)
- M Giakoumopoulos
- Wisconsin National Primate Research Center, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 1223 Capitol Court, Madison, Wisconsin 53715-1299, USA
| | | |
Collapse
|
194
|
Harris D, Huang B, Oback B. Inhibition of MAP2K and GSK3 Signaling Promotes Bovine Blastocyst Development and Epiblast-Associated Expression of Pluripotency Factors1. Biol Reprod 2013; 88:74. [DOI: 10.1095/biolreprod.112.103390] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
195
|
Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development 2013; 140:965-75. [DOI: 10.1242/dev.091629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.
Collapse
Affiliation(s)
| | - Geoff Shaw
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Claudia Freyer
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Andrew J. Pask
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| |
Collapse
|
196
|
Lei L, Li L, Du F, Chen CH, Wang H, Keefer CL. Monitoring bovine fetal fibroblast reprogramming utilizing a bovine NANOG promoter-driven EGFP reporter system. Mol Reprod Dev 2013; 80:193-203. [PMID: 23280629 DOI: 10.1002/mrd.22147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/17/2012] [Indexed: 01/23/2023]
Abstract
NANOG is an essential transcription factor involved in the proliferation and maintenance of embryonic stem cells (ESC) and reprogramming of somatic cells to a pluripotent state. Oct4 and Nanog promoter-driven enhanced green fluorescent protein (EGFP) reporters have been employed for establishing lines of induced pluripotent stem cells (iPSC) from mouse, human, and pig. In ruminants, including cattle, in which no fully validated ESC lines have been established, iPSC generated by reprogramming somatic cells to an ESC-like state may prove useful in the production of genetically modified livestock. In this study, utility of the bovine NANOG reporter was tested for use with cattle. Seven proximal bovine NANOG promoter fragments of different size were fused to the LUC gene, and were tested in mouse ESC lines using a dual-luciferase assay. Three of the bovine NANOG promoters, 315 bp (-134/+181), 446 bp (-265/+181), and 1,100 bp (-919/+181), were fused to a nuclear localized signal EGFP reporter gene. The fidelity of these constructs was analyzed by transfection into mouse ESC and bovine fetal fibroblasts (bFFs), and subsequent reprogramming of the bFF. Fusion of the transgenic bFF with human teratocarcinoma (NTERA2) cells induced nuclear expression of the EGFP reporter. Similarly, bFF-derived somatic cell nuclear transfer (SCNT) embryos expressed EGFP in a stage- and location-appropriate manner. Following reprogramming of transgenic bFFs for 10 days with an Oct4-Sox2-Klf4-cMyc vector, iPSC expressed EGFP and alkaline phosphatase. These results indicate that NANOG reporters can be used to monitor nuclear reprogramming of bFFs and to distinguish cell allocation in SCNT-derived embryos.
Collapse
Affiliation(s)
- Lei Lei
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, P.R. China
| | | | | | | | | | | |
Collapse
|
197
|
Gandolfi F, Pennarossa G, Maffei S, Brevini T. Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reprod Domest Anim 2013; 47 Suppl 5:11-7. [PMID: 22913556 DOI: 10.1111/j.1439-0531.2012.02106.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells are the focus of an extremely active field of investigation that is bringing new light on our understanding of the mechanisms that control pluripotency and differentiation. Rodent and primates are the only species where true, or bona fide, pluripotent stem cells have been derived. The attempts to derive pluripotent stem cells from domestic ungulates have been going on for more than 20 years with little progress. Cell lines from these species present a series of limitations that have precluded their use for both basic and clinically oriented studies. However, in the last 3 years, some substantial progress have been made making the currently available ungulate pluripotent stem cells closest than ever before to their human and mouse counterpart. This result has been achieved through both conceptual and technical progress that will be illustrated and discussed in this review.
Collapse
Affiliation(s)
- F Gandolfi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy.
| | | | | | | |
Collapse
|
198
|
Ali H, Collnot EM, Windbergs M, Lehr CM. Nanomedicines for the treatment of inflammatory bowel diseases. EUROPEAN JOURNAL OF NANOMEDICINE 2013. [DOI: 10.1515/ejnm-2013-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
199
|
Nestle E, Graves-Herring J, Keefer C, Comizzoli P. Source of Protein Supplementation duringIn VitroCulture does not Affect the Quality of Resulting Blastocysts in the Domestic Cat. Reprod Domest Anim 2012; 47 Suppl 6:152-5. [DOI: 10.1111/rda.12047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/09/2012] [Indexed: 11/28/2022]
Affiliation(s)
- E Nestle
- Animal and Avian Sciences; University of Maryland; College Park; MD; USA
| | - J Graves-Herring
- Smithsonian Conservation Biology Institute; National Zoological Park; Washington; DC; USA
| | - C Keefer
- Animal and Avian Sciences; University of Maryland; College Park; MD; USA
| | - P Comizzoli
- Smithsonian Conservation Biology Institute; National Zoological Park; Washington; DC; USA
| |
Collapse
|
200
|
Fujii T, Sakurai N, Osaki T, Iwagami G, Hirayama H, Minamihashi A, Hashizume T, Sawai K. Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development. J Reprod Dev 2012; 59:151-8. [PMID: 23257836 PMCID: PMC3934199 DOI: 10.1262/jrd.2012-122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mouse embryos, segregation of the inner cell mass (ICM) and trophectoderm (TE)
lineages is regulated by genes, such as OCT-4, CDX2 and
TEAD4. However, the molecular mechanisms that regulate the segregation
of the ICM and TE lineages in porcine embryos remain unknown. To obtain insights regarding
the segregation of the ICM and TE lineages in porcine embryos, we examined the mRNA
expression patterns of candidate genes, OCT-4, CDX2,
TEAD4, GATA3, NANOG,
FGF4, FGFR1-IIIc and FGFR2-IIIc, in
blastocyst and elongated stage embryos. In blastocyst embryos, the expression levels of
OCT-4, FGF4 and FGFR1-IIIc were
significantly higher in the ICM than in the TE, while the CDX2,
TEAD4 and GATA3 levels did not differ between the ICM
and TE. The expression ratio of CDX2 to OCT-4
(CDX2/OCT-4) also did not differ between the ICM and
TE at the blastocyst stage. In elongated embryos, OCT-4,
NANOG, FGF4 and FGFR1-IIIc were
abundantly expressed in the embryo disc (ED; ICM lineage), but their expression levels
were very low in the TE. In contrast, the CDX2, TEAD4
and GATA3 levels were significantly higher in the TE than in the ED. In
addition, the CDX2/OCT-4 ratio was markedly higher in
the TE than in the ED. We demonstrated that differences in the expression levels of
OCT-4, CDX2, TEAD4,
GATA3, NANOG, FGF4,
FGFR1-IIIc and FGFR2-IIIc genes between ICM and TE
lineages cells become more clear during development from porcine blastocyst to elongated
embryos, which indicates the possibility that in porcine embryos, functions of ICM and TE
lineage cells depend on these gene expressions proceed as transition from blastocyst to
elongated stage.
Collapse
Affiliation(s)
- Takashi Fujii
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|