151
|
Rab23 activities and human cancer—emerging connections and mechanisms. Tumour Biol 2016; 37:12959-12967. [DOI: 10.1007/s13277-016-5207-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
|
152
|
Banushi B, Forneris F, Straatman-Iwanowska A, Strange A, Lyne AM, Rogerson C, Burden JJ, Heywood WE, Hanley J, Doykov I, Straatman KR, Smith H, Bem D, Kriston-Vizi J, Ariceta G, Risteli M, Wang C, Ardill RE, Zaniew M, Latka-Grot J, Waddington SN, Howe SJ, Ferraro F, Gjinovci A, Lawrence S, Marsh M, Girolami M, Bozec L, Mills K, Gissen P. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis. Nat Commun 2016; 7:12111. [PMID: 27435297 PMCID: PMC4961739 DOI: 10.1038/ncomms12111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 06/01/2016] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues.
Collapse
Affiliation(s)
- Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Federico Forneris
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Via Ferrata 9/A – 27100, Pavia, Italy
- Division of Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Adam Strange
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Anne-Marie Lyne
- Department of Statistical Science, University College London, London WC1E 6BT, UK
| | - Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Wendy E. Heywood
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Joanna Hanley
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ivan Doykov
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kornelis R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, UK
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Danai Bem
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Universitat Autonoma Barcelona, 119-129-08035 Barcelona, Spain
| | - Maija Risteli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, 90220 Oulu, Finland
- Unit of Cancer Research and Translational Medicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
| | - Chunguang Wang
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
- Medical Microbiology and Immunology, Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
| | | | | | - Julita Latka-Grot
- Children's Memorial Health Institute, 04-730 Warsaw, 20 Dzieci Polskich Avenue, Poland
| | - Simon N. Waddington
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - S. J. Howe
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Asllan Gjinovci
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Scott Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Girolami
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Laurent Bozec
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Kevin Mills
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute of Child Health, University College London, London WC1N 1EH, UK
- Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH, UK
| |
Collapse
|
153
|
Gu X, Li B, Jiang M, Fang M, Ji J, Wang A, Wang M, Jiang X, Gao C. RNA sequencing reveals differentially expressed genes as potential diagnostic and prognostic indicators of gallbladder carcinoma. Oncotarget 2016; 6:20661-71. [PMID: 25970782 PMCID: PMC4653033 DOI: 10.18632/oncotarget.3861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
Gallbladder carcinoma (GBC) is a rare tumor with a dismal survival rate overall. Hence, there is an urgent need for exploring more specific and sensitive biomarkers for the diagnosis and treatment of GBC. At first, amplified total RNAs from two paired GBC tumors and adjacent non-tumorous tissues (ANTTs) were subjected to RNA sequencing. 161 genes were identified differentially expressed between tumors and ANTTs. Functional enrichment analysis indicated that the up-regulated genes in tumor were primarily associated with signaling molecules and enzyme modulators, and mainly involved in cell cycles and pathways in cancer. Twelve differentially expressed genes (DEGs) were further confirmed in another independent cohort of 35 GBC patients. Expression levels of BIRC5, TK1, TNNT1 and MMP9 were found to be positively related to postoperative relapse. There was also a significant correlation between BIRC5 expression and tumor-node-metastasis (TNM) stage. Besides, we observed a positive correlation between serum CA19-9 concentration and the expression levels of TNNT1, MMP9 and CLIC3. Survival analysis revealed that GBC patients with high TK1 and MMP9 expression levels had worse prognosis. These identified DEGs might not only be promising biomarkers for GBC diagnosis and prognosis, but also expedite the discovery of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xing Gu
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Bin Li
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Mingming Jiang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Jun Ji
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Aihua Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Mengmeng Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, PR China
| |
Collapse
|
154
|
Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A, Vecchi M, Chavrier P, Perez F, Scita G. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep 2016. [PMID: 27255086 DOI: 10.1552/embr.201642032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER-to-Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post-endocytic trafficking of membrane-bound MT1-MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E-cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Yuko Kajiho
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Department of Pediatrics, Graduate School of Medicine The University of Tokyo, Tokyo, Japan
| | | | | | - Giovanni Bertalot
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Molecular Medicine Program, European Institute of Oncology, Milan, Italy Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Manuela Vecchi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Philippe Chavrier
- Institut Curie, PSL Research University, Paris Cedex 05, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144 CNRS UMR 144, Paris Cedex 05, France
| | - Frank Perez
- Institut Curie, PSL Research University, Paris Cedex 05, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144 CNRS UMR 144, Paris Cedex 05, France
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| |
Collapse
|
155
|
Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A, Vecchi M, Chavrier P, Perez F, Scita G. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep 2016; 17:1061-80. [PMID: 27255086 DOI: 10.15252/embr.201642032] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/28/2016] [Indexed: 11/09/2022] Open
Abstract
The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER-to-Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post-endocytic trafficking of membrane-bound MT1-MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E-cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Yuko Kajiho
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Department of Pediatrics, Graduate School of Medicine The University of Tokyo, Tokyo, Japan
| | | | | | - Giovanni Bertalot
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Molecular Medicine Program, European Institute of Oncology, Milan, Italy Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Manuela Vecchi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Philippe Chavrier
- Institut Curie, PSL Research University, Paris Cedex 05, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144 CNRS UMR 144, Paris Cedex 05, France
| | - Frank Perez
- Institut Curie, PSL Research University, Paris Cedex 05, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144 CNRS UMR 144, Paris Cedex 05, France
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| |
Collapse
|
156
|
Lee YS, Lee JK, Bae Y, Lee BS, Kim E, Cho CH, Ryoo K, Yoo J, Kim CH, Yi GS, Lee SG, Lee CJ, Kang SS, Hwang EM, Park JY. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells. Sci Rep 2016; 6:26413. [PMID: 27212225 PMCID: PMC4876403 DOI: 10.1038/srep26413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Anoctamin-1 (ANO1) acts as a Ca2+-activated Cl− channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis.
Collapse
Affiliation(s)
- Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea.,Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.,Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae Kwang Lee
- Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eunju Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea.,Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, College of Korean Medicine, KHU-KIST department of Convergging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - C Justin Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
157
|
Chamberland JP, Antonow LT, Dias Santos M, Ritter B. NECAP2 controls clathrin coat recruitment to early endosomes for fast endocytic recycling. J Cell Sci 2016; 129:2625-37. [PMID: 27206861 DOI: 10.1242/jcs.173708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/19/2016] [Indexed: 01/04/2023] Open
Abstract
Endocytic recycling returns receptors to the plasma membrane following internalization and is essential to maintain receptor levels on the cell surface, re-sensitize cells to extracellular ligands and for continued nutrient uptake. Yet, the protein machineries and mechanisms that drive endocytic recycling remain ill-defined. Here, we establish that NECAP2 regulates the endocytic recycling of EGFR and transferrin receptor. Our analysis of the recycling dynamics revealed that NECAP2 functions in the fast recycling pathway that directly returns cargo from early endosomes to the cell surface. In contrast, NECAP2 does not regulate the clathrin-mediated endocytosis of these cargos, the degradation of EGFR or the recycling of transferrin along the slow, Rab11-dependent recycling pathway. We show that protein knockdown of NECAP2 leads to enlarged early endosomes and causes the loss of the clathrin adapter AP-1 from the organelle. Through structure-function analysis, we define the protein-binding interfaces in NECAP2 that are crucial for AP-1 recruitment to early endosomes. Together, our data identify NECAP2 as a pathway-specific regulator of clathrin coat formation on early endosomes for fast endocytic recycling.
Collapse
Affiliation(s)
- John P Chamberland
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| | - Lauren T Antonow
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| | - Michel Dias Santos
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| | - Brigitte Ritter
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| |
Collapse
|
158
|
Manteghi S, Gingras MC, Kharitidi D, Galarneau L, Marques M, Yan M, Cencic R, Robert F, Paquet M, Witcher M, Pelletier J, Pause A. Haploinsufficiency of the ESCRT Component HD-PTP Predisposes to Cancer. Cell Rep 2016; 15:1893-900. [PMID: 27210750 DOI: 10.1016/j.celrep.2016.04.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/26/2016] [Accepted: 04/19/2016] [Indexed: 01/05/2023] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT) drive cell surface receptor degradation resulting in attenuation of oncogenic signaling and pointing to a tumor suppressor function. Here, we show that loss of function of an ESCRT protein (HD-PTP encoded by the PTPN23 gene, located on the tumor suppressor gene cluster 3p21.3) drives tumorigenesis in vivo. Indeed, Ptpn23(+/-) loss predisposes mice to sporadic lung adenoma, B cell lymphoma, and promotes Myc-driven lymphoma onset, dissemination, and aggressiveness. Ptpn23(+/-)-derived tumors exhibit an unaltered remaining allele and maintain 50% of HD-PTP expression. Consistent with the role of HD-PTP in attenuation of integrin recycling, cell migration, and invasion, hemizygous Ptpn23(+/-) loss increases integrin β1-dependent B cell lymphoma survival and dissemination. Finally, we reveal frequent PTPN23 deletion and downregulation in human tumors that correlates with poor survival. Altogether, we establish HD-PTP/PTPN23 as a prominent haploinsufficient tumor suppressor gene preventing tumor progression through control of integrin trafficking.
Collapse
Affiliation(s)
- Sanaz Manteghi
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Marie-Claude Gingras
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Dmitri Kharitidi
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Luc Galarneau
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Maud Marques
- Departments of Oncology and Experimental Medicine, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Ming Yan
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Michael Witcher
- Departments of Oncology and Experimental Medicine, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
159
|
Salao K, Jiang L, Li H, Tsai VWW, Husaini Y, Curmi PMG, Brown LJ, Brown DA, Breit SN. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis. Biol Open 2016; 5:620-30. [PMID: 27113959 PMCID: PMC4874360 DOI: 10.1242/bio.018119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1−/−) and wild-type (CLIC1+/+) mice, then studied them in vitro and in vivo. We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1−/− BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1+/+, but not CLIC1−/− cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1−/− BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases. Summary: DC phagosomes from CLIC1−/− mice display impaired acidification and in vivo and in vitro antigen processing and presentation, revealing CLIC1−/− as a potential therapeutic target in reducing the adaptive immune response in autoimmune diseases.
Collapse
Affiliation(s)
- Kanin Salao
- St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Lele Jiang
- St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Hui Li
- St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Vicky W-W Tsai
- St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Yasmin Husaini
- St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Louise J Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David A Brown
- St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Samuel N Breit
- St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
160
|
Boulay PL, Mitchell L, Turpin J, Huot-Marchand JÉ, Lavoie C, Sanguin-Gendreau V, Jones L, Mitra S, Livingstone JM, Campbell S, Hallett M, Mills GB, Park M, Chodosh L, Strathdee D, Norman JC, Muller WJ. Rab11-FIP1C Is a Critical Negative Regulator in ErbB2-Mediated Mammary Tumor Progression. Cancer Res 2016; 76:2662-74. [PMID: 26933086 PMCID: PMC5070470 DOI: 10.1158/0008-5472.can-15-2782] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
Rab coupling protein (FIP1C), an effector of the Rab11 GTPases, including Rab25, is amplified and overexpressed in 10% to 25% of primary breast cancers and correlates with poor clinical outcome. Rab25 is also frequently silenced in triple-negative breast cancer, suggesting its ability to function as either an oncogene or a tumor suppressor, depending on the breast cancer subtype. However, the pathobiologic role of FIP family members, such as FIP1C, in a tumor-specific setting remains elusive. In this study, we used ErbB2 mouse models of human breast cancer to investigate FIP1C function in tumorigenesis. Doxycycline-induced expression of FIP1C in the MMTV-ErbB2 mouse model resulted in delayed mammary tumor progression. Conversely, targeted deletion of FIP1C in the mammary epithelium of an ErbB2 model coexpressing Cre recombinase led to accelerated tumor onset. Genetic and biochemical characterization of these FIP1C-proficient and -deficient tumor models revealed that FIP1C regulated E-cadherin (CDH1) trafficking and ZONAB (YBX3) function in Cdk4-mediated cell-cycle progression. Furthermore, we demonstrate that FIP1C promoted lysosomal degradation of ErbB2. Consistent with our findings in the mouse, the expression of FIP1C was inversely correlated with ErbB2 levels in breast cancer patients. Taken together, our findings indicate that FIP1C acts as a tumor suppressor in the context of ErbB2-positive breast cancer and may be therapeutically exploited as an alternative strategy for targeting aberrant ErbB2 expression. Cancer Res; 76(9); 2662-74. ©2016 AACR.
Collapse
Affiliation(s)
- Pierre-Luc Boulay
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Louise Mitchell
- Integrin Cell Biology Cancer Research UK Beaston Institute, Glasgow, United Kingdom
| | - Jason Turpin
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Julie-Émilie Huot-Marchand
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Cynthia Lavoie
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Virginie Sanguin-Gendreau
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Laura Jones
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Shreya Mitra
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie M Livingstone
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Shirley Campbell
- Department of Pharmacology, University of Montreal, Québec, Canada
| | - Michael Hallett
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Gordon B Mills
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Morag Park
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Lewis Chodosh
- Cancer Biology Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Douglas Strathdee
- Integrin Cell Biology Cancer Research UK Beaston Institute, Glasgow, United Kingdom
| | - Jim C Norman
- Integrin Cell Biology Cancer Research UK Beaston Institute, Glasgow, United Kingdom
| | - William J Muller
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada.
| |
Collapse
|
161
|
Ioannou MS, McPherson PS. Regulation of Cancer Cell Behavior by the Small GTPase Rab13. J Biol Chem 2016; 291:9929-37. [PMID: 27044746 DOI: 10.1074/jbc.r116.715193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression.
Collapse
Affiliation(s)
- Maria S Ioannou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
162
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
163
|
Endosomes: Emerging Platforms for Integrin-Mediated FAK Signalling. Trends Cell Biol 2016; 26:391-398. [PMID: 26944773 DOI: 10.1016/j.tcb.2016.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022]
Abstract
Integrins are vital cell adhesion receptors with the ability to transmit extracellular matrix (ECM) cues to intracellular signalling pathways. ECM-integrin signalling regulates various cellular functions such as cell survival and movement. Integrin signalling has been considered to occur exclusively from adhesion sites at the plasma membrane (PM). However, recent data demonstrates integrin signalling also from endosomes. Integrin-mediated focal adhesion kinase (FAK) signalling is strongly dependent on integrin endocytosis, and endosomal FAK signalling facilitates cancer metastasis by supporting anchorage-independent growth and anoikis resistance. Here we discuss the possible mechanisms and functions of endosomal FAK signalling compared with its previously known roles in other cellular locations and discuss the potential of endosomal FAK as novel target for future cancer therapies.
Collapse
|
164
|
Hämälistö S, Jäättelä M. Lysosomes in cancer-living on the edge (of the cell). Curr Opin Cell Biol 2016; 39:69-76. [PMID: 26921697 DOI: 10.1016/j.ceb.2016.02.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
The lysosomes have definitely polished their status inside the cell. Being discovered as the last resort of discarded cellular biomass, the steady rising of this versatile signaling organelle is currently ongoing. This review discusses the recent data on the unconventional functions of lysosomes, focusing mainly on the less studied lysosomes residing in the cellular periphery. We emphasize our discussion on the emerging paths the lysosomes have taken in promoting cancer progression to metastatic disease. Finally, we address how the altered cancerous lysosomes in metastatic cancers may be specifically targeted and what are the pending questions awaiting for elucidation.
Collapse
Affiliation(s)
- Saara Hämälistö
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
165
|
Chou SY, Hsu KS, Otsu W, Hsu YC, Luo YC, Yeh C, Shehab SS, Chen J, Shieh V, He GA, Marean MB, Felsen D, Ding A, Poppas DP, Chuang JZ, Sung CH. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking. Nat Commun 2016; 7:10412. [PMID: 26786190 PMCID: PMC4736046 DOI: 10.1038/ncomms10412] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a mammalian homologue of EXC-4 whose mutation is associated with cystic excretory canals in nematodes. Here we show that CLIC4-null mouse embryos exhibit impaired renal tubulogenesis. In both developing and developed kidneys, CLIC4 is specifically enriched in the proximal tubule epithelial cells, in which CLIC4 is important for luminal delivery, microvillus morphogenesis, and endolysosomal biogenesis. Adult CLIC4-null proximal tubules display aberrant dilation. In MDCK 3D cultures, CLIC4 is expressed on early endosome, recycling endosome and apical transport carriers before reaching its steady-state apical membrane localization in mature lumen. CLIC4 suppression causes impaired apical vesicle coalescence and central lumen formation, a phenotype that can be rescued by Rab8 and Cdc42. Furthermore, we show that retromer- and branched actin-mediated trafficking on early endosome regulates apical delivery during early luminogenesis. CLIC4 selectively modulates retromer-mediated apical transport by negatively regulating the formation of branched actin on early endosomes.
Collapse
Affiliation(s)
- Szu-Yi Chou
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Kuo-Shun Hsu
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Wataru Otsu
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Ya-Chu Hsu
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Yun-Cin Luo
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Celine Yeh
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Syed S. Shehab
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Jie Chen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Vincent Shieh
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Guo-an He
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Michael B. Marean
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Diane Felsen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Aihao Ding
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Dix P. Poppas
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| |
Collapse
|
166
|
Slack RJ, Hafeji M, Rogers R, Ludbrook SB, Marshall JF, Flint DJ, Pyne S, Denyer JC. Pharmacological Characterization of the αvβ6 Integrin Binding and Internalization Kinetics of the Foot-and-Mouth Disease Virus Derived Peptide A20FMDV2. Pharmacology 2016; 97:114-25. [PMID: 26734728 DOI: 10.1159/000443180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
A20FMDV2 is a peptide derived from the foot-and-mouth disease virus with a high affinity and selectivity for the alpha-v beta-6 (αvβ6) arginyl-glycinyl-aspartic acid (RGD)-binding integrin. It has been shown to be an informative tool ligand in pre-clinical imaging studies for selective labelling of the αvβ6 integrin in a number of disease models. In a radioligand binding assay using a radiolabelled form of the peptide ([3H]A20FMDV2), its high affinity (K(D): 0.22 nmol/l) and selectivity (at least 85-fold) for αvβ6 over the other members of the RGD integrin family was confirmed. [3H]A20FMDV2 αvβ6 binding could be fully reversed only in the presence of EDTA, whereas a partial reversal was observed in the presence of excess concentrations of an RGD-mimetic small molecule (SC-68448) or unlabelled A20FMDV2. Using flow cytometry on bronchial epithelial cells, the ligand-induced internalization of αvβ6 by A20FMDV2 and latency-associated peptide-1 was shown to be fast (t(1/2): 1.5 and 3.1 min, respectively), concentration-dependent (EC50: values 1.1 and 3.6 nmol/l, respectively) and was followed by a moderately slow return of integrin to the surface. The results of the radioligand binding studies suggest that the binding of A20FMDV2 to the RGD-binding site on αvβ6 is required to maintain its engagement with the hypothesised A20FMDV2 synergy site on the integrin. In addition, there is evidence from flow cytometric studies that the RGD-ligand engagement of αvβ6 post-internalization plays a role in delaying recycling of the integrin to the cell surface. This mechanism may act as a homeostatic control of membrane αvβ6 following RGD ligand engagement.
Collapse
Affiliation(s)
- Robert J Slack
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Dmello C, Sawant S, Alam H, Gangadaran P, Tiwari R, Dongre H, Rana N, Barve S, Costea DE, Chaukar D, Kane S, Pant H, Vaidya M. Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. Int J Biochem Cell Biol 2016; 70:161-172. [PMID: 26646105 DOI: 10.1016/j.biocel.2015.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 02/02/2023]
Abstract
Vimentin expression correlates well with migratory and invasive potential of the carcinoma cells. The molecular mechanism by which vimentin regulates cell motility is not yet clear. Here, we addressed this issue by depleting vimentin in oral squamous cell carcinoma derived cell line. Vimentin knockdown cells showed enhanced adhesion and spreading to laminin-5. However, we found that they were less invasive as compared to the vector control cells. In addition, signaling associated with adhesion behavior of the cell was increased in vimentin knockdown clones. These findings suggest that the normal function of β4 integrin as mechanical adhesive device is enhanced upon vimentin downregulation. As a proof of principle, the compromised invasive potential of vimentin depleted cells could be rescued upon blocking with β4 integrin adhesion-blocking (ASC-8) antibody or downregulation of β4 integrin in vimentin knockdown background. Interestingly, plectin which associates with α6β4 integrin in the hemidesmosomes, was also found to be upregulated in vimentin knockdown clones. Furthermore, experiments on lysosome and proteasome inhibition revealed that perhaps vimentin regulates the turnover of β4 integrin and plectin. Moreover, an inverse association was observed between vimentin expression and β4 integrin in oral squamous cell carcinoma (OSCC). Collectively, our results show a novel role of vimentin in modulating cell motility by destabilizing β4 integrin-mediated adhesive interactions. Further, vimentin-β4 integrin together may prove to be useful markers for prognostication of human oral cancer.
Collapse
Affiliation(s)
- Crismita Dmello
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Sharada Sawant
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Hunain Alam
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Prakash Gangadaran
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Richa Tiwari
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Harsh Dongre
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Neha Rana
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Sai Barve
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Institute of Clinical Medicine, University of Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Davendra Chaukar
- Surgical Oncology, Head and Neck Unit, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Shubhada Kane
- Department of Pathology, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Harish Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milind Vaidya
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India.
| |
Collapse
|
168
|
Paul NR, Allen JL, Chapman A, Morlan-Mairal M, Zindy E, Jacquemet G, Fernandez del Ama L, Ferizovic N, Green DM, Howe JD, Ehler E, Hurlstone A, Caswell PT. α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J Cell Biol 2015; 210:1013-31. [PMID: 26370503 PMCID: PMC4576860 DOI: 10.1083/jcb.201502040] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab-coupling protein–mediated integrin trafficking promotes filopodia formation via RhoA-ROCK-FHOD3, generating non-lamellipodial actin spike protrusions that drive cancer cell migration in 3D extracellular matrix and in vivo. Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Jennifer L Allen
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Anna Chapman
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Maria Morlan-Mairal
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Egor Zindy
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Laura Fernandez del Ama
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Nermina Ferizovic
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - David M Green
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Jonathan D Howe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, Cardiovascular Division, BHF Research Excellence Centre, King's College London, London SE1 1UL, England, UK
| | - Adam Hurlstone
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
169
|
Fan SHY, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell 2015; 27:702-15. [PMID: 26700318 PMCID: PMC4750928 DOI: 10.1091/mbc.e15-04-0257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
The neuron-enriched Na+/H+ exchanger NHE5 is expressed in C6 glioma cells, acidifies recycling endosomes, and modulates cell surface abundance of receptor tyrosine kinases MET and EGFR. NHE5 depletion impairs MET recycling and facilitates degradation, thereby impairing cell migration and polarity. Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking.
Collapse
Affiliation(s)
- Steven Hung-Yi Fan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuka Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
170
|
Overexpression of Rab25 promotes hepatocellular carcinoma cell proliferation and invasion. Tumour Biol 2015; 37:7713-8. [PMID: 26692100 DOI: 10.1007/s13277-015-4606-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023] Open
Abstract
Rab25 was reported to be associated with several human cancers and malignant biological behavior of cancer cells. The goal of the present study was to determine its expression pattern and biological function in human hepatocellular carcinoma (HCC). We examined Rab25 protein in 92 cases of HCC tissues and 3 HCC cell lines. The results showed that Rab25 was upregulated in HCC tissues and cells compared with normal liver tissues and cell line. Rab25 overexpression correlated with advanced tumor stage and nodal metastasis. Rab25 small interfering RNA (siRNA) was employed in Bel7402 and SK-Hep-1 cell lines. Cell Counting Kit-8 (CCK-8) assay and colony formation assay showed that Rab25 depletion blocked cell growth rate and inhibited colony formation ability. Transwell assay showed that Rab25 depletion negatively regulated the invading ability of HCC cells. To explore the possible mechanisms, we checked several signaling pathways and found that Rab25 depletion downregulated AKT phosphorylation. In addition, luciferase reporter assay showed that Rab25 depletion inhibited the Wnt signaling pathway and its target genes such as cyclin D1, c-myc, and MMP7. In conclusion, Rab25 is overexpressed in human HCC and contributes to cancer cell proliferation and invasion possibly through regulation of the Wnt signaling pathway.
Collapse
|
171
|
Transcriptional over-expression of chloride intracellular channels 3 and 4 in malignant pleural mesothelioma. Comput Biol Chem 2015; 59 Pt A:111-6. [DOI: 10.1016/j.compbiolchem.2015.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/19/2015] [Accepted: 09/24/2015] [Indexed: 01/09/2023]
|
172
|
García-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JRW, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, Pol A, Tebar F, Murray RZ, Timpson P, Enrich C, Grewal T, Rentero C. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration. J Biol Chem 2015; 291:1320-35. [PMID: 26578516 DOI: 10.1074/jbc.m115.683557] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.
Collapse
Affiliation(s)
- Ana García-Melero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meritxell Reverter
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Monira Hoque
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elsa Meneses-Salas
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meryem Koese
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - James R W Conway
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Camilla H Johnsen
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Frederic Morales-Paytuvi
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Yasmin A Elmaghrabi
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Albert Pol
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Francesc Tebar
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Rachael Z Murray
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4095, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Carlos Enrich
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia,
| | - Carles Rentero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| |
Collapse
|
173
|
Wang Z, Ling S, Rettig E, Sobel R, Tan M, Fertig EJ, Considine M, El-Naggar AK, Brait M, Fakhry C, Ha PK. Epigenetic screening of salivary gland mucoepidermoid carcinoma identifies hypomethylation of CLIC3 as a common alteration. Oral Oncol 2015; 51:1120-5. [PMID: 26490796 DOI: 10.1016/j.oraloncology.2015.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The role of promoter methylation in the development of mucoepidermoid carcinoma (MEC) has not been fully explored. In this study, we investigated the epigenetic landscape of MEC. METHODS The Illumina HumanMethylation27 BeadChip array and differential methylation analysis were utilized to screen for epigenetic alterations in 14 primary MEC tumors and 14 matched normal samples. Bisulfite sequencing was used to validate these results, with subsequent quantitative Methylation-Specific PCR (qMSP) to validate chloride intracellular channel protein 3 (CLIC3) in a separate cohort. Furthermore, CLIC3 immunohistochemical (IHC) staining was performed in another separate cohort of MEC. Finally, clinical and pathological characteristics were statistically analyzed for correlation with methylation status of CLIC3 and CLIC3 IHC H-scores by Wilcoxon rank sum, Kruskall-Wallis, and X(2) test tests. RESULTS We obtained 6 significantly differentially methylated gene candidates demonstrating significant promoter hyper- or hypo-methylation from the array data. Using bisulfite sequencing, we found one gene, CLIC3, which showed differential methylation between MEC tumor and normal samples in a small validation cohort. qMSP analysis of the CLIC3 promoter in a separate validation set showed significantly lower methylation level in tumor than in normal. The level of CLIC3 methylation in MECs was not statistically correlated with clinical or pathological characteristics. However, IHC staining intensity and distribution of CLIC3 were significantly increased in MECs, compared with those of normal salivary gland tissues. CONCLUSIONS Hypomethylation of CLIC3 promoter and its overexpression are significant events in MEC. Its functional role and potential therapeutic utility in MEC are worthy of further exploration.
Collapse
Affiliation(s)
- Zhiming Wang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA.
| | - Shizhang Ling
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Eleni Rettig
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Sobel
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Marietta Tan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Considine
- Department of Oncology Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Carole Fakhry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Milton J. Dance Jr. Head and Neck Center at the Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Milton J. Dance Jr. Head and Neck Center at the Greater Baltimore Medical Center, Baltimore, MD, USA.
| |
Collapse
|
174
|
Kharitidi D, Apaja PM, Manteghi S, Suzuki K, Malitskaya E, Roldan A, Gingras MC, Takagi J, Lukacs GL, Pause A. Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1 Ubiquitination, Endocytic Sorting, and Cell Migration. Cell Rep 2015; 13:599-609. [PMID: 26456826 DOI: 10.1016/j.celrep.2015.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 01/18/2023] Open
Abstract
Membrane trafficking of integrins plays a pivotal role in cell proliferation and migration. How endocytosed integrins are targeted either for recycling or lysosomal delivery is not fully understood. Here, we show that fibronectin (FN) binding to α5β1 integrin triggers ubiquitination and internalization of the receptor complex. Acidification facilitates FN dissociation from integrin α5β1 in vitro and in early endosomes, promoting receptor complex deubiquitination by the USP9x and recycling to the cell surface. Depending on residual ligand occupancy of receptors, some α5β1 integrins remain ubiquitinated and are captured by ESCRT-0/I, containing histidine domain-containing protein tyrosine phosphatase (HD-PTP) and ubiquitin-associated protein 1 (UBAP1), and are directed for lysosomal proteolysis, limiting receptor downstream signaling and cell migration. Thus, HD-PTP or UBAP1 depletion confers a pro-invasive phenotype. Thus, pH-dependent FN-integrin dissociation and deubiquitination of the activated integrin α5β1 are required for receptor resensitization and cell migration, representing potential targets to modulate tumor invasiveness.
Collapse
Affiliation(s)
- Dmitri Kharitidi
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Pirjo M Apaja
- Department of Physiology and Research Group Focused on Protein Structure, McGill University, Montreal, Canada, H3G 1Y6
| | - Sanaz Manteghi
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Kei Suzuki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Elena Malitskaya
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Ariel Roldan
- Department of Physiology and Research Group Focused on Protein Structure, McGill University, Montreal, Canada, H3G 1Y6
| | - Marie-Claude Gingras
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Gergely L Lukacs
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6; Department of Physiology and Research Group Focused on Protein Structure, McGill University, Montreal, Canada, H3G 1Y6.
| | - Arnim Pause
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6.
| |
Collapse
|
175
|
Integrin endosomal signalling suppresses anoikis. Nat Cell Biol 2015; 17:1412-21. [PMID: 26436690 DOI: 10.1038/ncb3250] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
Integrin-containing focal adhesions transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, the potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localizes with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage independence and metastasis.
Collapse
|
176
|
Porther N, Barbieri MA. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases 2015; 6:135-44. [PMID: 26317377 PMCID: PMC4601184 DOI: 10.1080/21541248.2015.1050152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023] Open
Abstract
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon.
Collapse
Affiliation(s)
- N Porther
- Department of Biological Sciences; Florida International University; Miami, FL USA
| | - MA Barbieri
- Department of Biological Sciences; Florida International University; Miami, FL USA
- Biomolecular Sciences Institute; Florida International University; Miami, FL USA
- Fairchild Tropical Botanic Garden; Coral Gables, FL USA
- International Center of Tropical Botany; Florida International University; Miami, FL USA
| |
Collapse
|
177
|
Pu J, Schindler C, Jia R, Jarnik M, Backlund P, Bonifacino JS. BORC, a multisubunit complex that regulates lysosome positioning. Dev Cell 2015; 33:176-88. [PMID: 25898167 DOI: 10.1016/j.devcel.2015.02.011] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 01/10/2023]
Abstract
The positioning of lysosomes within the cytoplasm is emerging as a critical determinant of many lysosomal functions. Here we report the identification of a multisubunit complex named BORC that regulates lysosome positioning. BORC comprises eight subunits, some of which are shared with the BLOC-1 complex involved in the biogenesis of lysosome-related organelles, and the others of which are products of previously uncharacterized open reading frames. BORC associates peripherally with the lysosomal membrane, where it functions to recruit the small GTPase Arl8. This initiates a chain of interactions that promotes the kinesin-dependent movement of lysosomes toward the plus ends of microtubules in the peripheral cytoplasm. Interference with BORC or other components of this pathway results in collapse of the lysosomal population into the pericentriolar region. In turn, this causes reduced cell spreading and migration, highlighting the importance of BORC-dependent centrifugal transport for non-degradative functions of lysosomes.
Collapse
Affiliation(s)
- Jing Pu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina Schindler
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rui Jia
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Backlund
- Biomedical Mass Spectrometry Facility, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
178
|
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 2015; 36:41-7. [PMID: 26189062 DOI: 10.1016/j.ceb.2015.06.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022]
Abstract
Integrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves. Recent advances shed light onto how the interaction of specific intracellular proteins with the short cytoplasmic tails of integrins controls each of these activities.
Collapse
Affiliation(s)
- Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
179
|
Flores-Téllez TNJ, Lopez TV, Vásquez Garzón VR, Villa-Treviño S. Co-Expression of Ezrin-CLIC5-Podocalyxin Is Associated with Migration and Invasiveness in Hepatocellular Carcinoma. PLoS One 2015; 10:e0131605. [PMID: 26135398 PMCID: PMC4489913 DOI: 10.1371/journal.pone.0131605] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Prognostic markers are important for predicting the progression and staging of hepatocellular carcinoma (HCC). Ezrin (EZR) and Podocalyxin (PODXL) are proteins associated with invasion, migration and poor prognosis in various types of cancer. Recently, it has been observed that chloride intracellular channel 5 (CLIC5) forms a complex with EZR and PODXL and that it is required for podocyte structure and function. In this study, we evaluated the overexpression of EZR, PODXL and CLIC5 in HCC. Methods The modified resistant hepatocyte model (MRHR), human biopsies and HCC cell lines (HepG2, Huh7 and SNU387) were used in this study. Gene and protein expression levels were evaluated in the MRHR by qRT-PCR, Western blot and immunohistochemistry analyses, and protein expression in the human biopsies was evaluated by immunohistochemistry. Protein expression in the HCC cell lines was evaluated by immunofluorescence and Western blot, also the migration and invasive abilities of Huh7 cells were evaluated using shRNA-mediated inhibition. Results Our results indicated that these genes and proteins were overexpressed in HCC. Moreover, when the expression of CLIC5 and PODXL was inhibited in Huh7 cells, we observed decreased migration and invasion. Conclusion This study suggested that EZR, CLIC5 and PODXL could be biological markers to predict the prognosis of HCC and that these proteins participate in migration and invasion processes.
Collapse
Affiliation(s)
- Teresita N. J. Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
| | - Tania V. Lopez
- Instituto Nacional De Medicina Genómica (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, Distrito Federal
- * E-mail: (TVL); (SVT)
| | - Verónica Rocío Vásquez Garzón
- Facultad de Medicina y Cirugía, Universidad Benito Juárez de Oaxaca. Av Universidad S/N, Col. 5 Señores. C.P. 68120, México, Oaxaca
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
- * E-mail: (TVL); (SVT)
| |
Collapse
|
180
|
Gargalionis AN, Karamouzis MV, Adamopoulos C, Papavassiliou AG. Protein trafficking in colorectal carcinogenesis--targeting and bypassing resistance to currently applied treatments. Carcinogenesis 2015; 36:607-615. [PMID: 25863128 DOI: 10.1093/carcin/bgv052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
181
|
Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 2015; 6:7164. [PMID: 25968605 PMCID: PMC4435734 DOI: 10.1038/ncomms8164] [Citation(s) in RCA: 453] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Directional cell movement through tissues is critical for multiple biological processes and requires maintenance of polarity in the face of complex environmental cues. Here we use intravital imaging to demonstrate that secretion of exosomes from late endosomes is required for directionally persistent and efficient in vivo movement of cancer cells. Inhibiting exosome secretion or biogenesis leads to defective tumour cell migration associated with increased formation of unstable protrusions and excessive directional switching. In vitro rescue experiments with purified exosomes and matrix coating identify adhesion assembly as a critical exosome function that promotes efficient cell motility. Live-cell imaging reveals that exosome secretion directly precedes and promotes adhesion assembly. Fibronectin is found to be a critical motility-promoting cargo whose sorting into exosomes depends on binding to integrins. We propose that autocrine secretion of exosomes powerfully promotes directionally persistent and effective cell motility by reinforcing otherwise transient polarization states and promoting adhesion assembly.
Collapse
Affiliation(s)
- Bong Hwan Sung
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Tatiana Ketova
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Daisuke Hoshino
- Division of Cancer Cell Research, Kanagawa Cancer Center, Yokohama 241-8515, Japan
| | - Andries Zijlstra
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Alissa M. Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
182
|
Fukuda A. Molecular mechanism of intraductal papillary mucinous neoplasm and intraductal papillary mucinous neoplasm-derived pancreatic ductal adenocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:519-23. [PMID: 25900667 DOI: 10.1002/jhbp.246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/12/2015] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies. Dissecting the mechanisms underlying PDA development is important for developing early detection methods and effective prevention and therapies for the disease. PDA is considered to arise from distinct precursor lesions, including pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasia (IPMN). However, little is known about molecular mechanisms of development of IPMN and IPMN-derived PDA. We have recently reported that loss of Brg1, a core subunit of SWI/SNF chromatin remodeling complexes, cooperates with oncogenic Kras to form cystic neoplastic lesions that resemble human IPMN and progress to PDA. Brg1 null IPMN-PDA is less lethal compared to PanIN-derived PDA (PanIN-PDA) driven by mutant Kras and hemizygous p53 deletion, mirroring prognostic trends in PDA patients. Brg1 null IPMN-PDA possesses a distinct molecular signature that supports less malignant potential compared to PanIN-PDA. Furthermore, Brg1 deletion inhibits Kras-dependent PanIN development from adult acinar cells, but promotes Kras-driven preneoplastic transformation in adult duct cells. Therefore, Brg1 is a determinant of context-dependent Kras-driven pancreatic tumorigenesis and chromatin remodeling may underlie the development of distinct PDA subsets. Understanding molecular mechanism of IPMN and IPMN-derived PDA could provide critical clues for novel diagnostic and therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Syougoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
183
|
Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 2015; 25:388-97. [PMID: 25824971 DOI: 10.1016/j.tcb.2015.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 02/07/2023]
Abstract
The regulation of cell adhesion machinery is central to a wide variety of developmental and pathological processes and occurs primarily within integrin-associated adhesion complexes. Here, we review recent advances that have furthered our understanding of the composition, organisation, and dynamics of these complexes, and provide an updated view on their emerging functions. Key findings are that adhesion complexes contain both core and non-canonical components. As a result of the dramatic increase in the range of components observed in adhesion complexes by proteomics, we comment on newly emerging functions for adhesion signalling. We conclude that, from a cellular or tissue systems perspective, adhesion signalling should be viewed as an emergent property of both the core and non-canonical adhesion complex components.
Collapse
|
184
|
Lastraioli E, Perrone G, Sette A, Fiore A, Crociani O, Manoli S, D'Amico M, Masselli M, Iorio J, Callea M, Borzomati D, Nappo G, Bartolozzi F, Santini D, Bencini L, Farsi M, Boni L, Di Costanzo F, Schwab A, Onetti Muda A, Coppola R, Arcangeli A. hERG1 channels drive tumour malignancy and may serve as prognostic factor in pancreatic ductal adenocarcinoma. Br J Cancer 2015; 112:1076-1087. [PMID: 25719829 PMCID: PMC4366888 DOI: 10.1038/bjc.2015.28] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/02/2015] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND hERG1 channels are aberrantly expressed in human cancers. The expression, functional role and clinical significance of hERG1 channels in pancreatic ductal adenocarcinoma (PDAC) is lacking. METHODS hERG1 expression was tested in PDAC primary samples assembled as tissue microarray by immunohistochemistry using an anti-hERG1 monoclonal antibody (α-hERG1-MoAb). The functional role of hERG1 was studied in PDAC cell lines and primary cultures. ERG1 expression during PDAC progression was studied in Pdx-1-Cre,LSL-Kras(G12D/+),LSL-Trp53(R175H/+) transgenic (KPC) mice. ERG1 expression in vivo was determined by optical imaging using Alexa-680-labelled α-hERG1-MoAb. RESULTS (i) hERG1 was expressed at high levels in 59% of primary PDAC; (ii) hERG1 blockade decreased PDAC cell growth and migration; (iii) hERG1 was physically and functionally linked to the Epidermal Growth Factor-Receptor pathway; (iv) in transgenic mice, ERG1 was expressed in PanIN lesions, reaching high expression levels in PDAC; (v) PDAC patients whose primary tumour showed high hERG1 expression had a worse prognosis; (vi) the α-hERG1-MoAb could detect PDAC in vivo. CONCLUSIONS hERG1 regulates PDAC malignancy and its expression, once validated in a larger cohort also comprising of late-stage, non-surgically resected cases, may be exploited for diagnostic and prognostic purposes in PDAC either ex vivo or in vivo.
Collapse
Affiliation(s)
- E Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - G Perrone
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - A Sette
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - A Fiore
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - O Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - S Manoli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - M D'Amico
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
- DI.V.A.L Toscana Srl, Via Madonna del Piano 6, Sesto Fiorentino 50019, Italy
| | - M Masselli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - J Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - M Callea
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - D Borzomati
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - G Nappo
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - F Bartolozzi
- Casa di Cura Villa Margherita, Viale di Villa Massimo 48, Rome 00161, Italy
| | - D Santini
- Department of Medical Oncology, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - L Bencini
- Department of General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - M Farsi
- Department of General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - L Boni
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria Careggi/Istituto Toscano Tumori, Largo Brambilla 3, Florence 50134, Italy
| | - F Di Costanzo
- Department of Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - A Schwab
- Physiologisches Institut II, University of Münster, Robert-Koch-Str. 27b, Münster D-48149, Germany
| | - A Onetti Muda
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - R Coppola
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - A Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| |
Collapse
|
185
|
Wang K, Mao Z, Liu L, Zhang R, Liang Q, Xiong Y, Yuan W, Wei L. Rab17 inhibits the tumourigenic properties of hepatocellular carcinomas via the Erk pathway. Tumour Biol 2015; 36:5815-24. [PMID: 25707355 DOI: 10.1007/s13277-015-3251-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/10/2015] [Indexed: 12/12/2022] Open
Abstract
The small GTPase Rab17 is a member of the Rab family and plays a critical role in the regulation of membrane trafficking polarized eukaryotic cells. However, the role of Rab17 in hepatocellular carcinoma (HCC) is not clear. In the present study, we investigated the role of Rab17 in HCC tumourgenesis. The expressions of Rab17 in non-tumour hepatic tissues and HCCs were detected via immunohistochemistry. Rab17 was found in 31 of 48 (64.6 %) and in 23 of 62 (37.1 %) of non-tumour hepatic tissue samples and HCCs (P = 0.0068), respectively, and there were significant correlations between Rab17 reductions and unfavourable variables including tumour size (P = 0.0171), differentiation level (P = 0.0126), and lymph nodal (P = 0.0044) and distant metastases (P = 0.0047). To elucidate the role of Rab17 in HCC, we generated two Rab17-overexpressing HCC cell lines. Rab17 overexpression significantly inhibited the tumourigenic properties of HCC cells in vitro and in vivo as demonstrated by reduced cell proliferation and migration, elevated G1 arrest, and decreased tumour xenograft growth. However, the attenuated tumourigenic properties of the HCC cells that were induced by Rab17 overexpression were significantly rescued by the activator of the Erk pathway EGF, which indicates that the Erk pathway plays a critical role in the Rab17 up-regulation-induced reduced tumourigenic properties of HCC cells. Rab17 might act as a tumour suppressor gene in HCCs, and the anti-tumour effects of Rab17 might be partially mediated by the Erk pathway.
Collapse
Affiliation(s)
- Kejia Wang
- Department of Pathology, No. 401 Hospital of PLA, Qingdao, Shandong, 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Li Y, Jia Q, Zhang Q, Wan Y. Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma. Biochem Biophys Res Commun 2015; 458:745-50. [PMID: 25686498 DOI: 10.1016/j.bbrc.2015.01.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
Renal cell carcinoma (RCC) is a common urological cancer with a poor prognosis. A recent cohort study revealed that the median survival of RCC patients was only 1.5 years and that <10% of the patients in the study survived up to 5 years. In tumor development, Rab GTPase are known to play potential roles such as regulation of cell proliferation, migration, invasion, communication, and drug resistance in multiple tumors. However, the correlation between Rabs expression and the occurrence, development, and metastasis of RCC remains unclear. In this study, we analyzed the transcriptional levels of 52 Rab GTPases in RCC patients. Our results showed that high levels of Rab25 expression were significantly correlated with RCC invasion classification (P < 0.01), lymph-node metastasis (P < 0.001), and pathological stage (P < 0.01). Conversely, in 786-O and A-498 cells, knocking down Rab25 protein expression inhibited cell proliferation, migration, and invasion. Our results also demonstrated that Rab25 is a target gene of let-7d, and further suggested that Rab25 upregulation in RCC is due to diminished expression of let-7d. These findings indicate that Rab25 might be a novel candidate molecule involved in RCC development, thus identifying a potential biological therapeutic target for RCC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Qingzhu Jia
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Qian Zhang
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China.
| |
Collapse
|
187
|
Abstract
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin–extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin–ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled ‘Integrin traffic’. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update.
Collapse
Affiliation(s)
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| |
Collapse
|
188
|
Enrich C, Rentero C, Hierro A, Grewal T. Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci 2015; 128:1071-81. [PMID: 25653390 DOI: 10.1242/jcs.164459] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell surface delivery of extracellular matrix (ECM) and integrins is fundamental for cell migration in wound healing and during cancer cell metastasis. This process is not only driven by several soluble NSF attachment protein (SNAP) receptor (SNARE) proteins, which are key players in vesicle transport at the cell surface and intracellular compartments, but is also tightly modulated by cholesterol. Cholesterol-sensitive SNAREs at the cell surface are relatively well characterized, but it is less well understood how altered cholesterol levels in intracellular compartments impact on SNARE localization and function. Recent insights from structural biology, protein chemistry and cell microscopy have suggested that a subset of the SNAREs engaged in exocytic and retrograde pathways dynamically 'sense' cholesterol levels in the Golgi and endosomal membranes. Hence, the transport routes that modulate cellular cholesterol distribution appear to trigger not only a change in the location and functioning of SNAREs at the cell surface but also in endomembranes. In this Commentary, we will discuss how disrupted cholesterol transport through the Golgi and endosomal compartments ultimately controls SNARE-mediated delivery of ECM and integrins to the cell surface and, consequently, cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
189
|
Abstract
The biophysical, mechanical and chemical characteristics of extracellular matrixes influence many cellular functions to control tissue homoeostasis and drive progression of cancer and inflammatory diseases. To maintain normal tissue function, fibronectin-rich matrixes are subject to dynamic cell-mediated structural and chemical modification. In this article, we discuss how localized application of mechanical force, heterodimer-specific integrin engagement and matrix proteolysis regulate fibronectin assembly and turnover. We also speculate that recently identified integrin trafficking, syndecan signalling and adhesion receptor–growth factor receptor cross-talk mechanisms might dynamically control the function, assembly and mechanical properties of a viable, and mechanoresponsive, fibronectin network.
Collapse
|
190
|
Rainero E, Howe JD, Caswell PT, Jamieson NB, Anderson K, Critchley DR, Machesky L, Norman JC. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration. Cell Rep 2015; 10:398-413. [PMID: 25600874 DOI: 10.1016/j.celrep.2014.12.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.
Collapse
Affiliation(s)
- Elena Rainero
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Jonathan D Howe
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK; Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Patrick T Caswell
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK; Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Nigel B Jamieson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Alexandra Parade, Glasgow G31 2ER, UK
| | - Kurt Anderson
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK.
| |
Collapse
|
191
|
Mutch LJ, Howden JD, Jenner EPL, Poulter NS, Rappoport JZ. Polarised clathrin-mediated endocytosis of EGFR during chemotactic invasion. Traffic 2015; 15:648-64. [PMID: 24921075 PMCID: PMC4309520 DOI: 10.1111/tra.12165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility.
Collapse
Affiliation(s)
- Laura Jane Mutch
- School of Biosciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | - Jake Davey Howden
- School of Biosciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | | | - Natalie Sarah Poulter
- Centre for Cardiovascular Research, Institute for Biomedical Research, The College of Medical and Dental Sciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | - Joshua Zachary Rappoport
- School of Biosciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
- *Corresponding author: Joshua Z. Rappoport,
| |
Collapse
|
192
|
Bhuin T, Roy JK. Rab11 in disease progression. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:1-8. [PMID: 25815277 PMCID: PMC4359700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/24/2014] [Accepted: 12/16/2014] [Indexed: 10/26/2022]
Abstract
Membrane/protein trafficking in the secretory/biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases: the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular signalling pathways. Rab11 (a subfamily of the Ypt/Rab gene family), an evolutionarily conserved ubiquitously expressed subfamily of Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomes. Rabs have been grouped into different subfamilies based on the distinct unambiguous sequence motifs. Three members: Rab11a, Rab11b and Rab25 make up the Rab11 GTPase subfamily. In this review article, we describe an overview over Rab11 subfamily with a brief structural aspect and its roles in implicating different disease progression.
Collapse
Affiliation(s)
- Tanmay Bhuin
- Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag-713104, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India.,Corresponding author: Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India.
| |
Collapse
|
193
|
Abstract
Rab proteins represent the largest branch of the Ras-like small GTPase superfamily and there are 66 Rab genes in the human genome. They alternate between GTP- and GDP-bound states, which are facilitated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and function as molecular switches in regulation of intracellular membrane trafficking in all eukaryotic cells. Each Rab targets to an organelle and specify a transport step along exocytic, endocytic, and recycling pathways as well as the crosstalk between these pathways. Through interactions with multiple effectors temporally, a Rab can control membrane budding and formation of transport vesicles, vesicle movement along cytoskeleton, and membrane fusion at the target compartment. The large number of Rab proteins reflects the complexity of the intracellular transport system, which is essential for the localization and function of membrane and secretory proteins such as hormones, growth factors, and their membrane receptors. As such, Rab proteins have emerged as important regulators for signal transduction, cell growth, and differentiation. Altered Rab expression and/or activity have been implicated in diseases ranging from neurological disorders, diabetes to cancer.
Collapse
Affiliation(s)
- Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC 417, Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
194
|
Ion channel expression as promising cancer biomarker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2685-702. [PMID: 25542783 DOI: 10.1016/j.bbamem.2014.12.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
195
|
Chua CEL, Tang BL. The role of the small GTPase Rab31 in cancer. J Cell Mol Med 2014; 19:1-10. [PMID: 25472813 PMCID: PMC4288343 DOI: 10.1111/jcmm.12403] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/18/2014] [Indexed: 12/28/2022] Open
Abstract
Members of the small GTPase family Rab are emerging as potentially important factors in cancer development and progression. A good number of Rabs have been implicated or associated with various human cancers, and much recent excitement has been associated with the roles of the Rab11 subfamily member Rab25 and its effector, the Rab coupling protein (RCP), in tumourigenesis and metastasis. In this review, we focus on a Rab5 subfamily member, Rab31, and its implicated role in cancer. Well recognized as a breast cancer marker with good prognostic value, recent findings have provided some insights as to the mechanism underlying Rab31's influence on oncogenesis. Levels of Oestrogen Receptor α (ERα)- responsive Rab31 could be elevated through stabilization of its transcript by the RNA binding protein HuR, or though activation by the oncoprotein mucin1-C (MUC1-C), which forms a transcriptional complex with ERα. Elevated Rab31 stabilizes MUC1-C levels in an auto-inductive loop that could lead to aberrant signalling and gene expression associated with cancer progression. Rab31 and its guanine nucleotide exchange factor GAPex-5 have, however, also been shown to enhance early endosome-late endosome transport and degradation of the epidermal growth factor receptor (EGFR). The multifaceted action and influences of Rab31 in cancer is discussed in the light of its new interacting partners and pathways.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
196
|
Lunardi S, Jamieson NB, Lim SY, Griffiths KL, Carvalho-Gaspar M, Al-Assar O, Yameen S, Carter RC, McKay CJ, Spoletini G, D'Ugo S, Silva MA, Sansom OJ, Janssen KP, Muschel RJ, Brunner TB. IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 2014; 5:11064-11080. [PMID: 25415223 PMCID: PMC4294325 DOI: 10.18632/oncotarget.2519] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/24/2014] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant desmoplastic reaction driven by pancreatic stellate cells (PSCs) that contributes to tumor progression. Here we sought to characterize the interactions between pancreatic cancer cells (PCCs) and PSCs that affect the inflammatory and immune response in pancreatic tumors. Conditioned media from mono- and cocultures of PSCs and PCCs were assayed for expression of cytokines and growth factors. IP-10/CXCL10 was the most highly induced chemokine in coculture of PSCs and PCCs. Its expression was induced in the PSCs by PCCs. IP-10 was elevated in human PDAC specimens, and positively correlated with high stroma content. Furthermore, gene expression of IP-10 and its receptor CXCR3 were significantly associated with the intratumoral presence of regulatory T cells (Tregs). In an independent cohort of 48 patients with resectable pancreatic ductal adenocarcinoma, high IP-10 expression levels correlated with decreased median overall survival. Finally, IP-10 stimulated the ex vivo recruitment of CXCR3+ effector T cells as well as CXCR3+ Tregs derived from patients with PDAC. Our findings suggest that, in pancreatic cancer, CXCR3+ Tregs can be recruited by IP-10 expressed by PSCs in the tumor stroma, leading to immunosuppressive and tumor-promoting effects.
Collapse
Affiliation(s)
- Serena Lunardi
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nigel B. Jamieson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Su Yin Lim
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Manuela Carvalho-Gaspar
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Osama Al-Assar
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sabira Yameen
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ross C. Carter
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Colin J. McKay
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Gabriele Spoletini
- Hepatobiliary and Pancreatic Surgery, Churchill Hospital, Oxford, United Kingdom
| | - Stefano D'Ugo
- Hepatobiliary and Pancreatic Surgery, Churchill Hospital, Oxford, United Kingdom
| | - Michael A. Silva
- Hepatobiliary and Pancreatic Surgery, Churchill Hospital, Oxford, United Kingdom
| | - Owen J. Sansom
- Beatson Institute of Cancer Research, Garscube Estate, Glasgow, United Kingdom
| | - Klaus-Peter Janssen
- Department of Surgery, Technische Universitaet Muenchen, 81675 Muenchen, Germany
| | - Ruth J. Muschel
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Thomas B. Brunner
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, University Hospitals Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
197
|
Liu Z, Lu Y, He Z, Chen L, Lu Y. Expression analysis of the estrogen receptor target genes in renal cell carcinoma. Mol Med Rep 2014; 11:75-82. [PMID: 25351113 PMCID: PMC4237094 DOI: 10.3892/mmr.2014.2766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/04/2014] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate the differentially expressed genes (DEGs) and target genes of the estrogen receptor (ER) in renal cell carcinoma. The data (GSE12090) were downloaded from the gene expression omnibus database. Data underwent preprocessing using the affy package for Bioconductor software, then the DEGs were selected via the significance analysis of microarray algorithm within the siggenes package. Subsequently, the DEGs underwent functional and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery software. Following data analysis, transcriptional regulatory networks between the DEGs and transcription factors were constructed. Finally, the ER target genes were subjected to gene ontology enrichment analysis. A total of 215 DEGs were identified between the chromophobe renal cell carcinoma samples and the oncocytoma samples, including 126 upregulated and 89 downregulated genes. Functional enrichment analysis indicated that 25% of the DEGs were significantly enriched in functions associated with the plasma membrane. Among those DEGs, 105 were regulated by the ER. Further regulatory network analysis indicated that the ER was mainly involved in the regulation of oncogenes and tumor suppressor genes, including protease serine 8, claudin 7 and Ras-related protein Rab-25. In the present study, the identified ER target genes were demonstrated to be closely associated with tumor development; this knowledge may improve the understanding of the ER regulatory mechanisms during tumor development and promote the discovery of predictive markers for renal cell carcinoma.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - You Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zonghai He
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Libo Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yiping Lu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
198
|
Kozyulina PY, Loskutov YV, Kozyreva VK, Rajulapati A, Ice RJ, Jones BC, Pugacheva EN. Prometastatic NEDD9 Regulates Individual Cell Migration via Caveolin-1-Dependent Trafficking of Integrins. Mol Cancer Res 2014; 13:423-38. [PMID: 25319010 DOI: 10.1158/1541-7786.mcr-14-0353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. IMPLICATIONS This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins.
Collapse
Affiliation(s)
- Polina Y Kozyulina
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuriy V Loskutov
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Varvara K Kozyreva
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Anuradha Rajulapati
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Ryan J Ice
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Brandon C Jones
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
199
|
Xiao X, Mruk DD, Wong EWP, Lee WM, Han D, Wong CKC, Cheng CY. Differential effects of c-Src and c-Yes on the endocytic vesicle-mediated trafficking events at the Sertoli cell blood-testis barrier: an in vitro study. Am J Physiol Endocrinol Metab 2014; 307:E553-62. [PMID: 25117412 PMCID: PMC4187029 DOI: 10.1152/ajpendo.00176.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. However, it undergoes cyclic restructuring during the epithelial cycle of spermatogenesis in which the "old" BTB located above the preleptotene spermatocytes being transported across the immunological barrier is "disassembled," whereas the "new" BTB found behind these germ cells is rapidly "reassembled," i.e., mediated by endocytic vesicle-mediated protein trafficking events. Thus, the immunological barrier is maintained when preleptotene spermatocytes connected in clones via intercellular bridges are transported across the BTB. Yet the underlying mechanism(s) in particular the involving regulatory molecules that coordinate these events remains unknown. We hypothesized that c-Src and c-Yes might work in contrasting roles in endocytic vesicle-mediated trafficking, serving as molecular switches, to effectively disassemble and reassemble the old and the new BTB, respectively, to facilitate preleptotene spermatocyte transport across the BTB. Following siRNA-mediated specific knockdown of c-Src or c-Yes in Sertoli cells, we utilized biochemical assays to assess the changes in protein endocytosis, recycling, degradation and phagocytosis. c-Yes was found to promote endocytosed integral membrane BTB proteins to the pathway of transcytosis and recycling so that internalized proteins could be effectively used to assemble new BTB from the disassembling old BTB, whereas c-Src promotes endocytosed Sertoli cell BTB proteins to endosome-mediated protein degradation for the degeneration of the old BTB. By using fluorescence beads mimicking apoptotic germ cells, Sertoli cells were found to engulf beads via c-Src-mediated phagocytosis. A hypothetical model that serves as the framework for future investigation is thus proposed.
Collapse
Affiliation(s)
- Xiang Xiao
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Dolores D Mruk
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Elissa W P Wong
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Daishu Han
- Department of Cell Biology, School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China; and
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| |
Collapse
|
200
|
Chen PW, Luo R, Jian X, Randazzo PA. The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin α5β1 traffic. J Biol Chem 2014; 289:30237-30248. [PMID: 25225293 DOI: 10.1074/jbc.m114.596155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ruibai Luo
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|