151
|
Probing Mammalian Cell Size Homeostasis by Channel-Assisted Cell Reshaping. Cell Rep 2017; 20:397-410. [DOI: 10.1016/j.celrep.2017.06.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 01/11/2023] Open
|
152
|
Hilbi H, Kortholt A. Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial infection. Small GTPases 2017. [PMID: 28632994 DOI: 10.1080/21541248.2017.1331721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Rap1 belongs to the Ras family of small GTPases, which are involved in a multitude of cellular signal transduction pathways and have extensively been linked to cancer biogenesis and metastasis. The small GTPase is activated in response to various extracellular and intracellular cues. Rap1 has conserved functions in Dictyostelium discoideum amoeba and mammalian cells, which are important for cell polarity, substrate and cell-cell adhesion and other processes that involve the regulation of cytoskeletal dynamics. Moreover, our recent study has shown that Rap1 is required for the formation of the replication-permissive vacuole of an intracellular bacterial pathogen. Here we review the function and regulation of Rap1 in these distinct processes, and we discuss the underlying signal transduction pathways.
Collapse
Affiliation(s)
- Hubert Hilbi
- a Institute of Medical Microbiology, University of Zürich , Zürich , Switzerland
| | - Arjan Kortholt
- b Department of Cell Biochemistry, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
153
|
Li YR, Zhong A, Dong H, Ni LH, Tan FQ, Yang WX. Myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability. Oncotarget 2017; 8:54654-54671. [PMID: 28903372 PMCID: PMC5589611 DOI: 10.18632/oncotarget.17920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
Myosin Va, a member of Class V myosin, functions in organelle motility, spindle formation, nuclear morphogenesis and cell motility. The purpose of this study is to explore the expression and localization of myosin Va in testicular cancer and prostate cancer, and its specific roles in tumor progression including cell division, migration and proliferation. We detected myosin Va in testicular and prostate tumor tissues using sqRT-PCR, western blot, and immunofluorescence. Tumor samples showed an increased expression of myosin Va, abnormal actin and myosin Va distribution. Immunofluorescence images during the cell cycle showed that myosin Va tended to gather at cytoplasm during anaphase but co-localized with nucleus during other phases, suggesting the roles of myosin Va in disassembly of spindle microtubule, movement of chromosomes and normal cytokinesis. In addition, multi-nucleation and aberrant nuclear morphology were observed in myosin Va-knockdown cells. Wounding assay and CCK-8-based cell counting were conducted to explore myosin Va roles in cell migration, viability and proliferation. Our results suggest that myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability, and these properties are the hallmark of tumor progression and metastasis development. Therefore, an increased understanding of myosin Va expression and function will assist in the development of future oncodiagnosis and -therapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ai Zhong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Han Dong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lu-Han Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
154
|
Guild J, Ginzberg MB, Hueschen CL, Mitchison TJ, Dumont S. Increased lateral microtubule contact at the cell cortex is sufficient to drive mammalian spindle elongation. Mol Biol Cell 2017; 28:1975-1983. [PMID: 28468979 PMCID: PMC5541847 DOI: 10.1091/mbc.e17-03-0171] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022] Open
Abstract
Dynamic cell confinement is used to show that increasing lateral contacts between astral microtubules and the cell cortex is sufficient to drive spindle elongation in mammals. This study suggests a mechanism—a change of microtubule-to-cortex contact geometry—for translating changes in cell shape into dramatic intracellular remodeling. The spindle is a dynamic structure that changes its architecture and size in response to biochemical and physical cues. For example, a simple physical change, cell confinement, can trigger centrosome separation and increase spindle steady-state length at metaphase. How this occurs is not understood, and is the question we pose here. We find that metaphase and anaphase spindles elongate at the same rate when confined, suggesting that similar elongation forces can be generated independent of biochemical and spindle structural differences. Furthermore, this elongation does not require bipolar spindle architecture or dynamic microtubules. Rather, confinement increases numbers of astral microtubules laterally contacting the cortex, shifting contact geometry from “end-on” to “side-on.” Astral microtubules engage cortically anchored motors along their length, as demonstrated by outward sliding and buckling after ablation-mediated release from the centrosome. We show that dynein is required for confinement-induced spindle elongation, and both chemical and physical centrosome removal demonstrate that astral microtubules are required for such spindle elongation and its maintenance. Together the data suggest that promoting lateral cortex–microtubule contacts increases dynein-mediated force generation and is sufficient to drive spindle elongation. More broadly, changes in microtubule-to-cortex contact geometry could offer a mechanism for translating changes in cell shape into dramatic intracellular remodeling.
Collapse
Affiliation(s)
- Joshua Guild
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94131
| | - Miriam B Ginzberg
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115.,The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Christina L Hueschen
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94131.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94131
| | | | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94131 .,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94131.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
155
|
Nematbakhsh A, Sun W, Brodskiy PA, Amiri A, Narciso C, Xu Z, Zartman JJ, Alber M. Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia. PLoS Comput Biol 2017; 13:e1005533. [PMID: 28531187 PMCID: PMC5460904 DOI: 10.1371/journal.pcbi.1005533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/06/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive.
Collapse
Affiliation(s)
- Ali Nematbakhsh
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Wenzhao Sun
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Aboutaleb Amiri
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| |
Collapse
|
156
|
Abstract
Ongoing work shows that misplaced epithelial cells have the capacity to reintegrate back into tissue layers. This movement appears to underlie tissue stability and may also control aspects of tissue structure. A recent study reveals that cell reintegration in at least one tissue, the Drosophila follicular epithelium, is based on adhesion molecules that line lateral cell surfaces. In this article we will review these observations, discuss their implications for epithelial tissue development and maintenance, and identify future directions for study.
Collapse
Affiliation(s)
- Tyler J Wilson
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Dan T Bergstralh
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
157
|
Alibert C, Goud B, Manneville JB. Are cancer cells really softer than normal cells? Biol Cell 2017; 109:167-189. [DOI: 10.1111/boc.201600078] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Charlotte Alibert
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Bruno Goud
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Jean-Baptiste Manneville
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| |
Collapse
|
158
|
|
159
|
Abstract
The mitotic spindle has a crucial role in ensuring the accurate segregation of chromosomes into the two daughter cells during cell division, which is paramount for maintaining genome integrity. It is a self-organized and dynamic macromolecular structure that is constructed from microtubules, microtubule-associated proteins and motor proteins. Thirty years of research have led to the identification of centrosome-, chromatin- and microtubule-mediated microtubule nucleation pathways that each contribute to mitotic spindle assembly. Far from being redundant pathways, data are now emerging regarding how they function together to ensure the timely completion of mitosis. We are also beginning to comprehend the multiple mechanisms by which cells regulate spindle scaling. Together, this research has increased our understanding of how cells coordinate hundreds of proteins to assemble the dynamic, precise and robust structure that is the mitotic spindle.
Collapse
|
160
|
Abstract
Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
161
|
Dudka D, Meraldi P. Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. Results Probl Cell Differ 2017; 61:301-321. [PMID: 28409311 DOI: 10.1007/978-3-319-53150-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis cells can divide symmetrically to proliferate or asymmetrically to generate tissue diversity. While the mechanisms that ensure asymmetric cell division have been extensively studied, it is often assumed that a symmetric cell division is the default outcome of mitosis. Recent studies, however, imply that the symmetric nature of cell division is actively controlled, as they reveal numerous mechanisms that ensure the formation of equal-sized daughter cells as cells progress through cell division. Here we review our current knowledge of these mechanisms and highlight possible key questions in the field.
Collapse
Affiliation(s)
- Damian Dudka
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrick Meraldi
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
162
|
Cellular Reorganization during Mitotic Entry. Trends Cell Biol 2017; 27:26-41. [DOI: 10.1016/j.tcb.2016.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
|
163
|
Chaigne A, Terret ME, Verlhac MH. Asymmetries and Symmetries in the Mouse Oocyte and Zygote. Results Probl Cell Differ 2017; 61:285-299. [PMID: 28409310 DOI: 10.1007/978-3-319-53150-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian oocytes grow periodically after puberty thanks to the dialogue with their niche in the follicle. This communication between somatic and germ cells promotes the accumulation, inside the oocyte, of maternal RNAs, proteins and other molecules that will sustain the two gamete divisions and early embryo development up to its implantation. In order to preserve their stock of maternal products, oocytes from all species divide twice minimizing the volume of their daughter cells to their own benefit. For this, they undergo asymmetric divisions in size where one main objective is to locate the division spindle with its chromosomes off-centred. In this chapter, we will review how this main objective is reached with an emphasis on the role of actin microfilaments in this process in mouse oocytes, the most studied example in mammals. This chapter is subdivided into three parts: I-General features of asymmetric divisions in mouse oocytes, II-Mechanism of chromosome positioning by actin in mouse oocytes and III-Switch from asymmetric to symmetric division at the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, UCL, London, WC1E 6BT, UK.,Institute for the Physics of Living Systems, UCL, London, WC1E 6BT, UK
| | | | | |
Collapse
|
164
|
He L, Chen W, Wu PH, Jimenez A, Wong BS, San A, Konstantopoulos K, Wirtz D. Local 3D matrix confinement determines division axis through cell shape. Oncotarget 2016; 7:6994-7011. [PMID: 26515603 PMCID: PMC4872764 DOI: 10.18632/oncotarget.5848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/03/2015] [Indexed: 12/24/2022] Open
Abstract
How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.
Collapse
Affiliation(s)
- Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela Jimenez
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela San
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
165
|
Seaman L, Meixner W, Snyder J, Rajapakse I. Periodicity of nuclear morphology in human fibroblasts. Nucleus 2016; 6:408-16. [PMID: 26734724 DOI: 10.1080/19491034.2015.1095432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
MOTIVATION Morphology of the cell nucleus has been used as a key indicator of disease state and prognosis, but typically without quantitative rigor. It is also not well understood how nuclear morphology varies with time across different genetic backgrounds in healthy cells. To help answer these questions we measured the size and shape of nuclei in cell-cycle-synchronized primary human fibroblasts from 6 different individuals at 32 time points over a 75 hour period. RESULTS The nucleus was modeled as an ellipsoid and its dynamics analyzed. Shape and volume changed significantly over this time. Two prominent frequencies were found in the 6 individuals: a 17 hour period consistent with the cell cycle and a 26 hour period. Our findings suggest that the shape of the nucleus changes over time and thus any time-invariant shape property may provide a misleading characterization of cellular populations at different phases of the cell cycle. The proposed methodology provides a general method to analyze morphological change using multiple time points even for non-live-cell experiments.
Collapse
Affiliation(s)
- Laura Seaman
- a Department of Computational Medicine and Bioinformatics ; University of Michigan ; Ann Arbor , MI USA
| | - Walter Meixner
- a Department of Computational Medicine and Bioinformatics ; University of Michigan ; Ann Arbor , MI USA
| | | | - Indika Rajapakse
- a Department of Computational Medicine and Bioinformatics ; University of Michigan ; Ann Arbor , MI USA.,c Department of Mathematics ; University of Michigan ; Ann Arbor , MI USA
| |
Collapse
|
166
|
Vleugel M, Roth S, Groenendijk CF, Dogterom M. Reconstitution of Basic Mitotic Spindles in Spherical Emulsion Droplets. J Vis Exp 2016. [PMID: 27584979 DOI: 10.3791/54278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule shrinkage into pulling forces, when attached, for example, to cortical dynein or chromosomes. In addition, motor proteins and diffusible cross-linkers within the spindle contribute to spindle architecture by connecting and sliding anti-parallel microtubules. In vivo, it has proven difficult to unravel the relative contribution of individual players to the overall balance of forces. Here we present the methods that we recently developed in our efforts to reconstitute basic mitotic spindles bottom-up in vitro. Using microfluidic techniques, centrosomes and tubulin are encapsulated in water-in-oil emulsion droplets, leading to the formation of geometrically confined (double) microtubule asters. By additionally introducing cortically anchored dynein, plus-end directed microtubule motors and diffusible cross-linkers, this system is used to reconstitute spindle-like structures. The methods presented here provide a starting point for reconstitution of more complete mitotic spindles, allowing for a detailed study of the contribution of each individual component, and for obtaining an integrated quantitative view of the force-balance within the mitotic spindle.
Collapse
Affiliation(s)
- Mathijs Vleugel
- Department of Bionanoscience, Delft University of Technology
| | - Sophie Roth
- Department of Bionanoscience, Delft University of Technology
| | | | | |
Collapse
|
167
|
Huang J, Wang L, Xiong C, Yuan F. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 2016; 98:103-12. [DOI: 10.1016/j.biomaterials.2016.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
|
168
|
di Pietro F, Echard A, Morin X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 2016; 17:1106-30. [PMID: 27432284 DOI: 10.15252/embr.201642292] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France Institute of Doctoral Studies (IFD), Sorbonne Universités Université Pierre et Marie Curie-Université Paris 6, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Cell Biology and Infection Department, Institut Pasteur, Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3691, Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France
| |
Collapse
|
169
|
Abstract
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.
Collapse
|
170
|
Xi W, Schmidt CK, Sanchez S, Gracias D, Carazo-Salas RE, Butler R, Lawrence N, Jackson SP, Schmidt O. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes. ACS NANO 2016; 10:5835-46. [PMID: 27267364 PMCID: PMC4961266 DOI: 10.1021/acsnano.6b00461] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/06/2016] [Indexed: 05/04/2023]
Abstract
In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo.
Collapse
Affiliation(s)
- Wang Xi
- Institute
for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany
| | - Christine K. Schmidt
- The
Gurdon Institute and Departments of Biochemistry, Genetics and Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Samuel Sanchez
- Institute
for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany
| | - David
H. Gracias
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rafael E. Carazo-Salas
- The
Gurdon Institute and Departments of Biochemistry, Genetics and Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Richard Butler
- The
Gurdon Institute and Departments of Biochemistry, Genetics and Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Nicola Lawrence
- The
Gurdon Institute and Departments of Biochemistry, Genetics and Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Stephen P. Jackson
- The
Gurdon Institute and Departments of Biochemistry, Genetics and Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- The Wellcome
Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United
Kingdom
| | - Oliver
G. Schmidt
- Institute
for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany
- Material
Systems for Nanoelectronics, Chemnitz University
of Technology, Reichenhainer
Str. 70, D-09107 Chemnitz, Germany
- Center
for Advancing Electronics Dresden, Dresden
University of Technology, Georg-Schumann-Str. 11, 01187 Dresden, Germany
| |
Collapse
|
171
|
Chromosomal instability: A common feature and a therapeutic target of cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:64-75. [PMID: 27345585 DOI: 10.1016/j.bbcan.2016.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/31/2023]
Abstract
Most cancer cells are aneuploid, containing abnormal numbers of chromosomes, mainly caused by elevated levels of chromosome missegregation, known as chromosomal instability (CIN). These well-recognized, but poorly understood, features of cancers have recently been studied extensively, unraveling causal relationships between CIN and cancer. Here we review recent findings regarding how CIN and aneuploidy occur, how they affect cellular functions, how cells respond to them, and their relevance to diseases, especially cancer. Aneuploid cells are under various kinds of stresses that result in reduced cellular fitness. Nevertheless, genetic heterogeneity derived from CIN allows the selection of cells better adapted to their environment, which supposedly facilitates generation and progression of cancer. We also discuss how we can exploit the properties of cancer cells exhibiting CIN for effective cancer therapy.
Collapse
|
172
|
Vilmos P, Kristó I, Szikora S, Jankovics F, Lukácsovich T, Kari B, Erdélyi M. The actin-binding ERM protein Moesin directly regulates spindle assembly and function during mitosis. Cell Biol Int 2016; 40:696-707. [PMID: 27006187 DOI: 10.1002/cbin.10607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/19/2016] [Indexed: 12/21/2022]
Abstract
Ezrin-Radixin-Moesin proteins are highly conserved, actin-binding cytoskeletal proteins that play an essential role in microvilli formation, T-cell activation, and tumor metastasis by linking actin filaments to the plasma membrane. Recent studies demonstrated that the only Ezrin-Radixin-Moesin protein of Drosophila melanogaster, Moesin, is involved in mitotic spindle function through stabilizing cell shape and microtubules at the cell cortex. We previously observed that Moesin localizes to the mitotic spindle; hence, we tested for the biological significance of this surprising localization and investigated whether it plays a direct role in spindle function. To separate the cortical and spindle functions of Moesin during mitosis we combined cell biological and genetic methods. We used early Drosophila embryos, in which mitosis occurs in the absence of a cell cortex, and found in vivo evidence for the direct requirement of Moesin in mitotic spindle assembly and function. We also found that the accumulation of Moesin precedes the construction of the microtubule spindle, and the fusiform structure formed by Moesin persists even after the microtubules have disassembled.
Collapse
Affiliation(s)
- Péter Vilmos
- Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62., Hungary
| | - Ildikó Kristó
- Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62., Hungary
| | - Szilárd Szikora
- Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Jankovics
- Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62., Hungary
| | - Tamás Lukácsovich
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Beáta Kari
- Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62., Hungary
| | - Miklós Erdélyi
- Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62., Hungary
| |
Collapse
|
173
|
Abstract
A century ago, Oscar Hertwig discovered that cells orient their cleavage plane orthogonal to their long axis. Reporting recently in Nature, Bosveld et al. (2016) shed light on how, showing that NuMA/Mud localization at tricellular junctions provides mitotic cells with the memory of interphase shape used to orient cleavage plane.
Collapse
|
174
|
Son S, Kang JH, Oh S, Kirschner MW, Mitchison TJ, Manalis S. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J Cell Biol 2016; 211:757-63. [PMID: 26598613 PMCID: PMC4657169 DOI: 10.1083/jcb.201505058] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Suspended cells transiently increase their volume during mitosis because of ion exchange through the plasma membrane. Osmotic regulation of intracellular water during mitosis is poorly understood because methods for monitoring relevant cellular physical properties with sufficient precision have been limited. Here we use a suspended microchannel resonator to monitor the volume and density of single cells in suspension with a precision of 1% and 0.03%, respectively. We find that for transformed murine lymphocytic leukemia and mouse pro–B cell lymphoid cell lines, mitotic cells reversibly increase their volume by more than 10% and decrease their density by 0.4% over a 20-min period. This response is correlated with the mitotic cell cycle but is not coupled to nuclear osmolytes released by nuclear envelope breakdown, chromatin condensation, or cytokinesis and does not result from endocytosis of the surrounding fluid. Inhibiting Na-H exchange eliminates the response. Although mitotic rounding of adherent cells is necessary for proper cell division, our observations that suspended cells undergo reversible swelling during mitosis suggest that regulation of intracellular water may be a more general component of mitosis than previously appreciated.
Collapse
Affiliation(s)
- Sungmin Son
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Seungeun Oh
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - T J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Scott Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
175
|
Zlotek-Zlotkiewicz E, Monnier S, Cappello G, Le Berre M, Piel M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J Cell Biol 2016; 211:765-74. [PMID: 26598614 PMCID: PMC4657168 DOI: 10.1083/jcb.201505056] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells.
Collapse
Affiliation(s)
| | - Sylvain Monnier
- UMR 144, Institut Curie, Centre de Recherche, 75005 Paris, France UMR 168, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | | - Mael Le Berre
- UMR 144, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Matthieu Piel
- UMR 144, Institut Curie, Centre de Recherche, 75005 Paris, France
| |
Collapse
|
176
|
Abstract
Sexual reproduction is essential for many organisms to propagate themselves. It requires the formation of haploid female and male gametes: oocytes and sperms. These specialized cells are generated through meiosis, a particular type of cell division that produces cells with recombined genomes that differ from their parental origin. In this review, we highlight the end process of female meiosis, the divisions per se, and how they can give rise to a functional female gamete preparing itself for the ensuing zygotic development. In particular, we discuss why such an essential process in the propagation of species is so poorly controlled, producing a strong percentage of abnormal female gametes in the end. Eventually, we examine aspects related to the lack of centrosomes in female oocytes, the asymmetry in size of the mammalian oocyte upon division, and in mammals the direct consequences of these long-lived cells in the ovary.
Collapse
|
177
|
Wyatt T, Baum B, Charras G. A question of time: tissue adaptation to mechanical forces. Curr Opin Cell Biol 2016; 38:68-73. [PMID: 26945098 DOI: 10.1016/j.ceb.2016.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
While much attention has been focused on the force-generating mechanisms responsible for shaping developing embryos, less is known about the ways in which cells in animal tissues respond to mechanical stimuli. Forces will arise within a tissue as the result of processes such as local cell death, growth and division, but they can also be an indirect consequence of morphogenetic movements in neighbouring tissues or be imposed from the outside, for example, by gravity. If not dealt with, the accumulation of stress and the resulting tissue deformation can pose a threat to tissue integrity and structure. Here we follow the time-course of events by which cells and tissues return to their preferred state following a mechanical perturbation. In doing so, we discuss the spectrum of biological and physical mechanisms known to underlie mechanical homeostasis in animal tissues.
Collapse
Affiliation(s)
- Tom Wyatt
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
178
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
179
|
Heald R, Khodjakov A. Thirty years of search and capture: The complex simplicity of mitotic spindle assembly. J Cell Biol 2015; 211:1103-11. [PMID: 26668328 PMCID: PMC4687881 DOI: 10.1083/jcb.201510015] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
Cell division is enacted by a microtubule-based, self-assembling macromolecular machine known as the mitotic spindle. In 1986, Kirschner and Mitchison proposed that by undergoing dynamic cycles of growth and disassembly, microtubules search for chromosomes. Capture of microtubules by the kinetochores progressively connects chromosomes to the bipolar spindle. 30 years later, “search and capture” remains the cornerstone of spindle assembly. However, a variety of facilitating mechanisms such as regulation of microtubule dynamics by diffusible gradients, spatially selective motor activities, and adaptive changes in chromosome architecture have been discovered. We discuss how these mechanisms ensure that the spindle assembles rapidly and with a minimal number of errors.
Collapse
Affiliation(s)
- Rebecca Heald
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201 Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
180
|
Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun 2015; 6:8872. [PMID: 26602832 PMCID: PMC4696517 DOI: 10.1038/ncomms9872] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.
Collapse
|
181
|
Zatulovskiy E, Skotheim JM. Mitosis is swell. J Cell Biol 2015; 211:733-5. [PMID: 26598610 PMCID: PMC4657178 DOI: 10.1083/jcb.201511007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022] Open
Abstract
Cell volume and dry mass are typically correlated. However, in this issue, Zlotek-Zlotkiewicz et al. (2015. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201505056) and Son et al. (2015. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201505058) use new live-cell techniques to show that entry to mitosis coincides with rapid cell swelling, which is reversed before division.
Collapse
Affiliation(s)
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
182
|
Amicis AD, Sanctis SD, Cristofaro SD, Franchini V, Lista F, Regalbuto E, Giovenale E, Gallerano GP, Nenzi P, Bei R, Fantini M, Benvenuto M, Masuelli L, Coluzzi E, Cicia C, Sgura A. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:150-60. [DOI: 10.1016/j.mrgentox.2015.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/26/2022]
|
183
|
Aydogan V, Lenard A, Denes AS, Sauteur L, Belting HG, Affolter M. Endothelial cell division in angiogenic sprouts of differing cellular architecture. Biol Open 2015; 4:1259-69. [PMID: 26369932 PMCID: PMC4610218 DOI: 10.1242/bio.012740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The vasculature of the zebrafish trunk is composed of tubes with different cellular architectures. Unicellular tubes form their lumen through membrane invagination and transcellular cell hollowing, whereas multicellular vessels become lumenized through a chord hollowing process. Endothelial cell proliferation is essential for the subsequent growth and maturation of the blood vessels. However, how cell division, lumen formation and cell rearrangement are coordinated during angiogenic sprouting has so far not been investigated at detailed cellular level. Reasoning that different tubular architectures may impose discrete mechanistic constraints on endothelial cell division, we analyzed and compared the sequential steps of cell division, namely mitotic rounding, cytokinesis, actin re-distribution and adherence junction formation, in different blood vessels. In particular, we characterized the interplay between cell rearrangement, mitosis and lumen dynamics within unicellular and multicellular tubes. The lumen of unicellular tubes becomes constricted and is ultimately displaced from the plane of cell division, where a de novo junction forms through the recruitment of junctional proteins at the site of abscission. By contrast, the new junctions separating the daughter cells within multicellular tubes form through the alteration of pre-existing junctions, and the lumen is retained throughout mitosis. We also describe variations in the progression of cytokinesis: while membrane furrowing between daughter cells is symmetric in unicellular tubes, we found that it is asymmetric in those multicellular tubes that contained a taut intercellular junction close to the plane of division. Our findings illustrate that during the course of normal development, the cell division machinery can accommodate multiple tube architectures, thereby avoiding disruptions to the vascular network.
Collapse
Affiliation(s)
- Vahap Aydogan
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Anna Lenard
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | | | - Loic Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
184
|
Abstract
Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.
Collapse
|
185
|
Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. eLife 2015; 4. [PMID: 26267307 PMCID: PMC4558647 DOI: 10.7554/elife.07455] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/11/2015] [Indexed: 01/27/2023] Open
Abstract
Cardiomyocyte (CM) maturation in mammals is accompanied by a sharp decline in their proliferative and regenerative potential shortly after birth. In this study, we explored the role of the mechanical properties of the underlying matrix in the regulation of CM maturation. We show that rat and mouse neonatal CMs cultured on rigid surfaces exhibited increased myofibrillar organization, spread morphology, and reduced cell cycle activity. In contrast, compliant elastic matrices induced features of CM dedifferentiation, including a disorganized sarcomere network, rounding, and conspicuous cell-cycle re-entry. The rigid matrix facilitated nuclear division (karyokinesis) leading to binucleation, while compliant matrices promoted CM mitotic rounding and cell division (cytokinesis), associated with loss of differentiation markers. Moreover, the compliant matrix potentiated clonal expansion of CMs that involves multiple cell divisions. Thus, the compliant microenvironment facilitates CM dedifferentiation and proliferation via its effect on the organization of the myoskeleton. Our findings may be exploited to design new cardiac regenerative approaches.
Collapse
Affiliation(s)
- Yfat Yahalom-Ronen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Rajchman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Sarig
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
186
|
Mitchison TJ, Ishihara K, Nguyen P, Wühr M. Size Scaling of Microtubule Assemblies in Early Xenopus Embryos. Cold Spring Harb Perspect Biol 2015; 7:a019182. [PMID: 26261283 DOI: 10.1101/cshperspect.a019182] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first 12 cleavage divisions in Xenopus embryos provide a natural experiment in size scaling, as cell radius decreases ∼16-fold with little change in biochemistry. Analyzing both natural cleavage and egg extract partitioned into droplets revealed that mitotic spindle size scales with cell size, with an upper limit in very large cells. We discuss spindle-size scaling in the small- and large-cell regimes with a focus on the "limiting-component" hypotheses. Zygotes and early blastomeres show a scaling mismatch between spindle and cell size. This problem is solved, we argue, by interphase asters that act to position the spindle and transport chromosomes to the center of daughter cells. These tasks are executed by the spindle in smaller cells. We end by discussing possible mechanisms that limit mitotic aster size and promote interphase aster growth to cell-spanning dimensions.
Collapse
Affiliation(s)
- Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Phuong Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
187
|
Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat Cell Biol 2015; 17:1134-44. [PMID: 26258631 PMCID: PMC4553083 DOI: 10.1038/ncb3223] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/13/2015] [Indexed: 12/15/2022]
Abstract
Mitotic spindle formation relies on the stochastic capture of microtubules at kinetochores. Kinetochore architecture affects the efficiency and fidelity of this process with large kinetochores expected to accelerate assembly at the expense of accuracy, and smaller kinetochores to suppress errors at the expense of efficiency. We demonstrate that upon mitotic entry, kinetochores in cultured human cells form large crescents that subsequently compact into discrete structures on opposite sides of the centromere. This compaction occurs only after the formation of end-on microtubule attachments. Live-cell microscopy reveals that centromere rotation mediated by lateral kinetochore-microtubule interactions precedes formation of end-on attachments and kinetochore compaction. Computational analyses of kinetochore expansion-compaction in the context of lateral interactions correctly predict experimentally-observed spindle assembly times with reasonable error rates. The computational model suggests that larger kinetochores reduce both errors and assembly times, which can explain the robustness of spindle assembly and the functional significance of enlarged kinetochores.
Collapse
|
188
|
Abstract
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| |
Collapse
|
189
|
Rodrigues NTL, Lekomtsev S, Jananji S, Kriston-Vizi J, Hickson GRX, Baum B. Kinetochore-localized PP1-Sds22 couples chromosome segregation to polar relaxation. Nature 2015; 524:489-92. [PMID: 26168397 DOI: 10.1038/nature14496] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/16/2015] [Indexed: 02/06/2023]
Abstract
Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division.
Collapse
Affiliation(s)
- Nelio T L Rodrigues
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sergey Lekomtsev
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Jananji
- Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5, Canada
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gilles R X Hickson
- Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.,CelTisPhyBio Labex, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
190
|
Kumar M, Pushpa K, Mylavarapu SVS. Splitting the cell, building the organism: Mechanisms of cell division in metazoan embryos. IUBMB Life 2015; 67:575-87. [PMID: 26173082 PMCID: PMC5937677 DOI: 10.1002/iub.1404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/12/2022]
Abstract
The unicellular metazoan zygote undergoes a series of cell divisions that are central to its development into an embryo. Differentiation of embryonic cells leads eventually to the development of a functional adult. Fate specification of pluripotent embryonic cells occurs during the early embryonic cleavage divisions in several animals. Early development is characterized by well-known stages of embryogenesis documented across animals--morulation, blastulation, and morphogenetic processes such as gastrulation, all of which contribute to differentiation and tissue specification. Despite this broad conservation, there exist clearly discernible morphological and functional differences across early embryonic stages in metazoans. Variations in the mitotic mechanisms of early embryonic cell divisions play key roles in governing these gross differences that eventually encode developmental patterns. In this review, we discuss molecular mechanisms of both karyokinesis (nuclear division) and cytokinesis (cytoplasmic separation) during early embryonic divisions. We outline the broadly conserved molecular pathways that operate in these two stages in early embryonic mitoses. In addition, we highlight mechanistic variations in these two stages across different organisms. We finally discuss outstanding questions of interest, answers to which would illuminate the role of divergent mitotic mechanisms in shaping early animal embryogenesis.
Collapse
Affiliation(s)
- Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sivaram V. S. Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
191
|
Kondo T, Hayashi S. Mechanisms of cell height changes that mediate epithelial invagination. Dev Growth Differ 2015; 57:313-23. [DOI: 10.1111/dgd.12224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Takefumi Kondo
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
- Department of Biology; Kobe University Graduate School of Science; Kobe Japan
| |
Collapse
|
192
|
Kiyomitsu T. Mechanisms of daughter cell-size control during cell division. Trends Cell Biol 2015; 25:286-95. [DOI: 10.1016/j.tcb.2014.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
193
|
Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuzé M, Takaki T, Voituriez R, Piel M. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 2015; 160:659-672. [PMID: 25679760 DOI: 10.1016/j.cell.2015.01.007] [Citation(s) in RCA: 580] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/31/2014] [Accepted: 12/31/2014] [Indexed: 12/24/2022]
Abstract
The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility.
Collapse
Affiliation(s)
- Yan-Jun Liu
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Maël Le Berre
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France.
| | - Franziska Lautenschlaeger
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France; Universität des Saarlandes, Campus E2 6, 3. OG, Zi. 3.17, 66123 Saarbrücken, Germany
| | - Paolo Maiuri
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS/Université Paris Diderot, UMR 7057, 75204 Paris Cedex, France
| | - Mélina Heuzé
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Tohru Takaki
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK
| | - Raphaël Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Université Pierre et Marie Curie, 75005 Paris, France
| | - Matthieu Piel
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
194
|
Rosa A, Vlassaks E, Pichaud F, Baum B. Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry. Dev Cell 2015; 32:604-16. [PMID: 25703349 PMCID: PMC4359025 DOI: 10.1016/j.devcel.2015.01.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 02/06/2023]
Abstract
Entry into mitosis is accompanied by profound changes in cortical actomyosin organization. Here, we delineate a pathway downstream of the RhoGEF Pbl/Ect2 that directs this process in a model epithelium. Our data suggest that the release of Pbl/Ect2 from the nucleus at mitotic entry drives Rho-dependent activation of Myosin-II and, in parallel, induces a switch from Arp2/3 to Diaphanous-mediated cortical actin nucleation that depends on Cdc42, aPKC, and Par6. At the same time, the mitotic relocalization of these apical protein complexes to more lateral cell surfaces enables Cdc42/aPKC/Par6 to take on a mitosis-specific function—aiding the assembly of a relatively isotropic metaphase cortex. Together, these data reveal how the repolarization and remodeling of the actomyosin cortex are coordinated upon entry into mitosis to provide cells with the isotropic and rigid form they need to undergo faithful chromosome segregation and division in a crowded tissue environment. Pbl/Ect2 drives a shift in epithelial polarity upon entry into mitosis Lateral spreading of Cdc42/aPKC/Par6 aids assembly of an isotropic metaphase cortex Mitosis triggers a switch from Arp2/3 to Dia-mediated cortical actin nucleation
Collapse
Affiliation(s)
- André Rosa
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-465 Porto, Portugal
| | - Evi Vlassaks
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Franck Pichaud
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
195
|
Lázaro-Diéguez F, Ispolatov I, Müsch A. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum. Mol Biol Cell 2015; 26:1286-95. [PMID: 25657320 PMCID: PMC4454176 DOI: 10.1091/mbc.e14-08-1330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spindle confinement within the x-z plane occurs in cultured MDCK and HeLa cells due to incomplete cell rounding and yields nonrandom x-z spindle orientation when astral MTs are absent. On the other hand, astral MT–based rotation forces disrupt the core metaphase spindle in situations in which the metaphase plate does not clear the cortex. All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Iaroslav Ispolatov
- Departamento de Física, Universidad de Santiago de Chile, 9170124 Santiago, Chile
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
196
|
Kanshin E, Bergeron-Sandoval LP, Isik S, Thibault P, Michnick S. A Cell-Signaling Network Temporally Resolves Specific versus Promiscuous Phosphorylation. Cell Rep 2015; 10:1202-14. [DOI: 10.1016/j.celrep.2015.01.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023] Open
|
197
|
Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat Cell Biol 2015; 17:148-59. [DOI: 10.1038/ncb3098] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/17/2014] [Indexed: 12/16/2022]
|
198
|
A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat Commun 2015; 6:6027. [PMID: 25597399 DOI: 10.1038/ncomms7027] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023] Open
Abstract
Cell mechanics control the outcome of cell division. In mitosis, external forces applied on a stiff cortex direct spindle orientation and morphogenesis. During oocyte meiosis on the contrary, spindle positioning depends on cortex softening. How changes in cortical organization induce cortex softening has not yet been addressed. Furthermore, the range of tension that allows spindle migration remains unknown. Here, using artificial manipulation of mouse oocyte cortex as well as theoretical modelling, we show that cortical tension has to be tightly regulated to allow off-center spindle positioning: a too low or too high cortical tension both lead to unsuccessful spindle migration. We demonstrate that the decrease in cortical tension required for spindle positioning is fine-tuned by a branched F-actin network that triggers the delocalization of myosin-II from the cortex, which sheds new light on the interplay between actin network architecture and cortex tension.
Collapse
|
199
|
Abstract
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.
Collapse
Affiliation(s)
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110 Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160
| |
Collapse
|
200
|
Kittur H, Weaver W, Di Carlo D. Well-plate mechanical confinement platform for studies of mechanical mutagenesis. Biomed Microdevices 2014; 16:439-47. [PMID: 24619125 DOI: 10.1007/s10544-014-9846-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Limited space for cell division, perhaps similar to the compressed microenvironment of a growing tumor, has been shown to induce phenotypic and karyotypic changes to a cell during mitosis. To expand understanding of this missegregation of chromosomes in aberrant multi-daughter or asymmetric cell divisions, we present a simple technique for subjecting mammalian cells to adjustable levels of confinement which allows subsequent interrogation of intracellular molecular components using high resolution confocal imaging. PDMS micropatterned confinement structures of subcellular height with neighboring taller media reservoir channels were secured on top of confluent cells with a custom compression well-plate system. The system improved ease of use over previous devices since confined cells could be initially grown on glass coverslips in a 12-well plate, and subsequently be imaged by high resolution confocal imaging, or during compression by live cell imaging. Live cell imaging showed a significant increase in abnormal divisions of confined cells across three different cell lines (HeLa, A375, and A549). Immunofluoresecence stains revealed a significant increase in cell diameter and chromosome area of confined cells, but no significant increase in centrosome-centromere distance upon division when compared to unconfined cells. The developed system could open up studies more broadly on confinement effects on mitotic processes, and increase the throughput of such studies.
Collapse
Affiliation(s)
- H Kittur
- University of California - Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|