151
|
Li H, Cheng C, Shi S, Wu Y, Gao Y, Liu Z, Liu M, Li Z, Huo L, Pan X, Liu S, Song G. Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. Eur J Med Chem 2022; 238:114426. [PMID: 35551037 PMCID: PMC9076589 DOI: 10.1016/j.ejmech.2022.114426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic generates a global threat to public health and continuously emerging SARS-CoV-2 variants bring a great challenge to the development of both vaccines and antiviral agents. In this study, we identified UA-18 and its optimized analog UA-30 via the hit-to-lead strategy as novel SARS-CoV-2 fusion inhibitors. The lead compound UA-30 showed potent antiviral activity against infectious SARS-CoV-2 (wuhan-HU-1 variant) in Vero-E6 cells and was also effective against infection of diverse pseudotyped SARS-CoV-2 variants with mutations in the S protein including the Omicron and Delta variants. More importantly, UA-30 might target the cavity between S1 and S2 subunits to stabilize the prefusion state of the SARS-CoV-2 S protein, thus leading to interfering with virus-cell membrane fusion. This study offers a set of novel SARS-CoV-2 fusion inhibitors against SARS-CoV-2 and its variants based on the 3-O-β-chacotriosyl UA skeleton.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Shi
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaodong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Lijian Huo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
152
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2021. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:867-885. [PMID: 35543739 PMCID: PMC9091141 DOI: 10.1007/s00210-022-02250-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
The second year of the COVID-19 pandemic had no adverse effect on the number of new drug approvals by the US Food and Drug Administration (FDA). Quite the contrary, with a total of 50 new drugs, 2021 belongs to the most successful FDA years. We assign these new drugs to one of three levels of innovation: (1) first drug against a condition ("first-in-indication"), (2) first drug using a novel molecular mechanism ("first-in-class"), and (3) "next-in-class", i.e., a drug using an already exploited molecular mechanism. We identify 21 first-in-class, 28 next-in-class, and only one first-in-indication drugs. By treatment area, the largest group is once again cancer drugs, many of which target specific genetic alterations. Every second drug approved in 2021 targets an orphan disease, half of them being cancers. Small molecules continue to dominate new drug approvals, followed by antibodies and non-antibody biopharmaceuticals. In 2021, the FDA continued to approve drugs without strong evidence of clinical effects, best exemplified by the aducanumab controversy.
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| |
Collapse
|
153
|
Shamji MH, Boyle RJ. Immune modulation and COVID 19 in the Asia-Pacific region. Clin Exp Allergy 2022; 52:922-923. [PMID: 35906962 PMCID: PMC9353368 DOI: 10.1111/cea.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| | - Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
154
|
Ren Q, Yu N, Zou P, He Q, Macharia DK, Sheng Y, Zhu B, Lin Y, Wu G, Chen Z. Reusable Cu 2-xS-modified masks with infrared lamp-driven antibacterial and antiviral activity for real-time personal protection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 441:136043. [PMID: 35370448 PMCID: PMC8956354 DOI: 10.1016/j.cej.2022.136043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Disposable surgical masks are widely used by the general public since the onset of the coronavirus outbreak in 2019. However, current surgical masks cannot self-sterilize for reuse or recycling for other purposes, resulting in high economic and environmental costs. To solve these issue, herein we report a novel low-cost surgical mask decorated with copper sulfide (Cu2-xS) nanocrystals for photothermal sterilization in a short time (6 min). With the spun-bonded nonwoven fabrics (SNF) layer from surgical masks as the substrate, Cu2-xS nanocrystals are in-situ grown on their surface with the help of a commercial textile adhesion promoter. The SNF-Cu2-xS layer possesses good hydrophobicity and strong near infrared absorption. Under the irradiation with an infrared baking lamp (IR lamp, 50 mW cm-2), the surface temperature of SNF-Cu2-xS layer on masks can quickly increase to over 78 °C, resulting from the high photothermal effects of Cu2-xS nanocrystals. As a result, the polluted masks exhibit an outstanding antibacterial rate of 99.9999% and 85.4% for the Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) as well as the inactivation of human coronavirus OC43 (3.18-log10 decay) and influenza A virus A/PR/8/34 (H1N1) (3.93-log10 decay) after 6 min irradiation, and achieve rapid sterilization for reuse and recycling. Therefore, such Cu2-xS-modified masks with IR lamp-driven antibacterial and antiviral activity have great potential for real-time personal protection.
Collapse
Affiliation(s)
- Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peng Zou
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qiang He
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yangyi Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bo Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guoyi Wu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
155
|
Mahaboob Ali AA, Bugarcic A, Naumovski N, Ghildyal R. Ayurvedic formulations: Potential COVID-19 therapeutics? PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100286. [PMID: 35474908 PMCID: PMC9020642 DOI: 10.1016/j.phyplu.2022.100286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
BACKGROUND While Molnupiravir and Paxlovid have recently been approved for use in some countries, there are no widely available treatments for COVID-19, the disease caused by SARS-CoV-2 infection. Herbal extracts have been used to treat respiratory clinical indications by Ayurvedic medicine practitioners with minimal adverse reactions and intense research efforts are currently under way to develop some of these formulations for COVID-19 treatment. METHODS Literature search for in silico, in vitro, in vivo, and clinical studies on the topic of Ayurvedic formulations for potential COVID-19 treatment, in order to present the current state of current knowledge by integrating information across all systems. RESULTS The search yielded 20 peer reviewed articles on in silico studies examining the interaction of phytoconstituents of popular Ayurvedic formulations with SARS-CoV-2 components and its receptors; five articles on preclinical investigations of the ability of selected Ayurvedic formulations to inhibit functions of SARS-CoV-2 proteins; and 51 completed clinical trials on the efficacy of using Ayurvedic formulations for treatment of mild to moderate COVID-19. Clinical data was available from 17 of the 51 trials. There was a considerable overlap between formulations used in the in silico studies and the clinical trials. This finding was unexpected as there is no clearly stated alignment between studies and the traditional pathway to drug discovery- basic discovery leading to in vitro and in vivo proof of concept, followed by validation in clinical trials. This was further demonstrated in the majority of the in silico studies where focus was on potential antiviral mechanisms, while the clinical trials were focused on patient recovery using oral treatments. In all 17 clinical trials where data was available, Ayurvedic treatments lead to a shorter period to recovery in participants with COVID-19. CONCLUSION The most commonly used Ayurvedic treatments for management of respiratory symptoms associated with SARS-CoV-2 infection appear to have prophylactic and/or therapeutic properties. It would be of particular interest to assess synergistic and concomitant systemic effects and antiviral activities of individual phytoconstituents and their combinations in the Ayurvedic treatments.
Collapse
Affiliation(s)
- Anees Ahmed Mahaboob Ali
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Andrea Bugarcic
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Nenad Naumovski
- Functional Foods and Nutrition Research Laboratory, Faculty of Health, University of Canberra, Canberra, Ngunnawal Country, Australia
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
156
|
Qian Z, Zhang Z, Ma H, Shao S, Kang H, Tong Z. The efficiency of convalescent plasma in COVID-19 patients: A systematic review and meta-analysis of randomized controlled clinical trials. Front Immunol 2022; 13:964398. [PMID: 35967398 PMCID: PMC9366612 DOI: 10.3389/fimmu.2022.964398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to assess whether convalescent plasma therapy could offer survival advantages for patients with novel coronavirus disease 2019 (COVID-19). An electronic search of Pubmed, Web of Science, Embase, Cochrane library and MedRxiv was performed from January 1st, 2020 to April 1st, 2022. We included studies containing patients with COVID-19 and treated with CCP. Data were independently extracted by two reviewers and synthesized with a random-effect analysis model. The primary outcome was 28-d mortality. Secondary outcomes included length of hospital stay, ventilation-free days, 14-d mortality, improvements of symptoms, progression of diseases and requirements of mechanical ventilation. Safety outcomes included the incidence of all adverse events (AEs) and serious adverse events (SAEs). The Cochrane risk-of-bias assessment tool 2.0 was used to assess the potential risk of bias in eligible studies. The heterogeneity of results was assessed by I^2 test and Q statistic test. The possibility of publication bias was assessed by conducting Begg and Egger test. GRADE (Grading of Recommendations Assessment, Development and Evaluation) method were used for quality of evidence. This study had been registered on PROSPERO, CRD42021273608. 32 RCTs comprising 21478 patients with Covid-19 were included. Compared to the control group, COVID-19 patients receiving CCP were not associated with significantly reduced 28-d mortality (CCP 20.0% vs control 20.8%; risk ratio 0.94; 95% CI 0.87-1.02; p = 0.16; I² = 8%). For all secondary outcomes, there were no significant differences between CCP group and control group. The incidence of AEs (26.9% vs 19.4%,; risk ratio 1.14; 95% CI 0.99-01.31; p = 0.06; I² = 38%) and SAEs (16.3% vs 13.5%; risk ratio 1.03; 95% CI 0.87-1.20; p = 0.76; I² = 42%) tended to be higher in the CCP group compared to the control group, while the differences did not reach statistical significance. In all, CCP therapy was not related to significantly improved 28-d mortality or symptoms recovery, and should not be viewed as a routine treatment for COVID-19 patients. Trial registration number CRD42021273608. Registration on February 28, 2022. Systematic review registration https://www.crd.york.ac.uk/prospero/, Identifier CRD42022313265.
Collapse
Affiliation(s)
- Zhenbei Qian
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haomiao Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
157
|
Al-Sayyar A, Hulme KD, Thibaut R, Bayry J, Sheedy FJ, Short KR, Alzaid F. Respiratory Tract Infections in Diabetes - Lessons From Tuberculosis and Influenza to Guide Understanding of COVID-19 Severity. Front Endocrinol (Lausanne) 2022; 13:919223. [PMID: 35957811 PMCID: PMC9363013 DOI: 10.3389/fendo.2022.919223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.
Collapse
Affiliation(s)
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ronan Thibaut
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | | | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| |
Collapse
|
158
|
Podlipnik Č, Alexandrova R, Pleško S, Bren U, Jukič M. Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
SARS-CoV-2 belongs to the family of coronaviruses, which are characterized by spikes that sit densely on the surface of the virus. The spike protein (Spro) is responsible for the attachment of the virus to the host cell via the ACE2 receptor on the surface of the host cell. The strength of the interaction between the receptor-binding domain (RBD) of the highly glycosylated spike protein of the virus and the host cell ACE2 receptor represents the key determinant of the infectivity of the virus. The SARS-CoV-2 virus has mutated since the beginning of the outbreak, and the vast majority of mutations has been detected in the spike protein or its RBD. Since specific mutations significantly affect the ability of the virus to transmit and to evade immune response, studies of these mutations are critical. We investigate GISAID data to show how viral spike protein mutations evolved during the pandemic. We further present the interactions of the viral Spro RBD with the host ACE2 receptor. We have performed a large-scale mutagenesis study of the Spro RBD-ACE2 interface by performing point mutations in silico and identifying the ambiguous interface stabilization by the most common point mutations in the viral variants of interest (beta, gamma, delta, omicron).
Collapse
|
159
|
COVID-19 Update: The Golden Time Window for Pharmacological Treatments and Low Dose Radiation Therapy. RADIATION 2022. [DOI: 10.3390/radiation2030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
At the beginning of the COVID-19 emergence, many scientists believed that, thanks to the proofreading enzyme of SARS-CoV-2, the virus would not have many mutations. Our team introduced the concept of radiation at extremely low doses in an attempt to establish selected pressure-free treatment approaches for COVID-19. The capacity of low-dose radiation to modulate excessive inflammatory responses, optimize the immune system, prevent the occurrence of dangerous cytokine storm, regulate lymphocyte counts, and control bacterial co-infections as well as different modalities were proposed as a treatment program for patients with severe COVID-19-associated pneumonia. There is now substantial evidence which indicates that it would be unwise not to further investigate low-dose radiation therapy (LDRT) as an effective remedy against COVID-19-associated pneumonia.
Collapse
|
160
|
Yang KS, Leeuwon SZ, Xu S, Liu WR. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. J Med Chem 2022; 65:8686-8698. [PMID: 35731933 PMCID: PMC9236210 DOI: 10.1021/acs.jmedchem.2c00404] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/15/2022]
Abstract
The U.S. FDA approval of PAXLOVID, a combination therapy of nirmatrelvir and ritonavir has significantly boosted our morale in fighting the COVID-19 pandemic. Nirmatrelvir is an inhibitor of the main protease (MPro) of SARS-CoV-2. Since many SARS-CoV-2 variants that resist vaccines and antibodies have emerged, a concern of acquired viral resistance to nirmatrelvir naturally arises. Here, possible mutations in MPro to confer viral evasion of nirmatrelvir are analyzed and discussed from both evolutionary and structural standpoints. The analysis indicates that those mutations will likely reside in the whole aa45-51 helical region and residues including M165, L167, P168, R188, and Q189. Relevant mutations have also been observed in existing SARS-CoV-2 samples. Implications of this analysis to the fight against future drug-resistant viral variants and the development of broad-spectrum antivirals are discussed as well.
Collapse
Affiliation(s)
- Kai S. Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Sunshine Z. Leeuwon
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
161
|
Exploring the Immunomodulatory Aspect of Mesenchymal Stem Cells for Treatment of Severe Coronavirus Disease 19. Cells 2022; 11:cells11142175. [PMID: 35883618 PMCID: PMC9322532 DOI: 10.3390/cells11142175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped, positive sense, single stranded RNA (+ssRNA) virus, belonging to the genus Betacoronavirus and family Coronaviridae. It is primarily transmitted from infected persons to healthy ones through inhalation of virus-laden respiratory droplets. After an average incubation period of 2–14 days, the majority of infected individuals remain asymptomatic and/or mildly symptomatic, whereas the remaining individuals manifest a myriad of clinical symptoms, including fever, sore throat, dry cough, fatigue, chest pain, and breathlessness. SARS-CoV-2 exploits the angiotensin converting enzyme 2 (ACE-2) receptor for cellular invasion, and lungs are amongst the most adversely affected organs in the body. Thereupon, immune responses are elicited, which may devolve into a cytokine storm characterized by enhanced secretion of multitude of inflammatory cytokines/chemokines and growth factors, such as interleukin (IL)-2, IL-6, IL-7, IL-8, IL-9, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (GCSF), basic fibroblast growth factor 2 (bFGF2), monocyte chemotactic protein-1 (MCP1), interferon-inducible protein 10 (IP10), macrophage inflammatory protein 1A (MIP1A), platelet-derived growth factor subunit B (PDGFB), and vascular endothelial factor (VEGF)-A. The systemic persistence of inflammatory molecules causes widespread histological injury, leading to functional deterioration of the infected organ(s). Although multiple treatment modalities with varying effectiveness are being employed, nevertheless, there is no curative COVID-19 therapy available to date. In this regard, one plausible supportive therapeutic modality may involve administration of mesenchymal stem cells (MSCs) and/or MSC-derived bioactive factors-based secretome to critically ill COVID-19 patients with the intention of accomplishing better clinical outcome owing to their empirically established beneficial effects. MSCs are well established adult stem cells (ASCs) with respect to their immunomodulatory, anti-inflammatory, anti-oxidative, anti-apoptotic, pro-angiogenic, and pro-regenerative properties. The immunomodulatory capabilities of MSCs are not constitutive but rather are highly dependent on a holistic niche. Following intravenous infusion, MSCs are known to undergo considerable histological trapping in the lungs and, therefore, become well positioned to directly engage with lung infiltrating immune cells, and thereby mitigate excessive inflammation and reverse/regenerate damaged alveolar epithelial cells and associated tissue post SARS-CoV-2 infection. Considering the myriad of abovementioned biologically beneficial properties and emerging translational insights, MSCs may be used as potential supportive therapy to counteract cytokine storms and reduce disease severity, thereby facilitating speedy recovery and health restoration.
Collapse
|
162
|
Vechorko VI, Averkov OV, Zimin AA. New SARS-CoV-2 Omicron variant — clinical picture, treatment, prevention (literature review). КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Despite the decrease in the incidence rate, today the problem of a coronavirus disease 2019 (COVID-19) remains relevant on a global scale. Among the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) variants, the Omicron is currently dominant. The differentiating properties of the Omicron variant are a shorter incubation period (1-5 days), high contagiousness, and a relatively mild course of the disease, which is associated with the highest number of genome mutations among all SARS-CoV-2 variants. The new variant is characterized by upper respiratory tract symptoms: rhinorrhea, severe sore throat, sneezing, less commonly cough, headache, and weakness. Oral antiviral drugs Paxlovid and Molnupiravir are effective for treating mild to moderate COVID-19, including in outpatients. While corticosteroids and interleukin-6 receptor antagonists are still effective in treating patients with moderate to severe COVID-19, the effectiveness of anti-SARS-CoV-2 monoclonal antibodies has not yet been fully proven. Vaccination, especially booster doses, against SARS-CoV-2 is the most effective method of preventing COVID-19. The review purpose was to analyze the literature to determine the key aspects of prevention, clinical picture and treatment of a new SARSCoV-2 Omicron variant. The work used publications for the period from November 2021 to February 25, 2022, dedicated to the prevention, diagnosis and treatment of COVID-19 caused by the Omicron variant from the following databases: PubMed, eLibrary, MedRxiv, Google Scholar. The following key words were used: “Omicron”, “SARS CoV-2”, “COVID-19”, “Omicron treatment”. The analysis showed that COVID-19 caused by the Omicron variant is characterized by a relatively mild course. However, due to high contagiousness, this variant poses a significant problem due to the excessive load on outpatient and inpatient healthcare, including intensive care units.
Collapse
Affiliation(s)
| | | | - A. A. Zimin
- City Clinical Hospital № 15; Research Center of Neurology
| |
Collapse
|
163
|
Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and vulnerability at the global level. J Med Virol 2022; 94:2986-3005. [PMID: 35277864 PMCID: PMC9088647 DOI: 10.1002/jmv.27717] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Numerous variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have evolved. Viral variants may evolve with harmful susceptibility to the immunity established with the existing COVID-19 vaccination. These variants are more transmissible, induce relatively extreme illness, have evasive immunological features, decrease neutralization using antibodies from vaccinated persons, and are more susceptible to re-infection. The Centers for Disease Control and Prevention (CDC) has categorized SARS-CoV-2 mutations as variants of interest (VOI), variants of concern (VOC), and variants of high consequence (VOHC). At the moment, four VOC and many variants of interest have been defined and require constant observation. This review article summarizes various variants of SARS-CoV-2 surfaced with special emphasis on VOCs that are spreading across the world, as well as several viral mutational impacts and how these modifications alter the properties of the virus.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL.M. College of PharmacyAhmedabadGujaratIndia
| | | | | |
Collapse
|
164
|
Sagulkoo P, Chuntakaruk H, Rungrotmongkol T, Suratanee A, Plaimas K. Multi-Level Biological Network Analysis and Drug Repurposing Based on Leukocyte Transcriptomics in Severe COVID-19: In Silico Systems Biology to Precision Medicine. J Pers Med 2022; 12:jpm12071030. [PMID: 35887528 PMCID: PMC9319133 DOI: 10.3390/jpm12071030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic causes many morbidity and mortality cases. Despite several developed vaccines and antiviral therapies, some patients experience severe conditions that need intensive care units (ICU); therefore, precision medicine is necessary to predict and treat these patients using novel biomarkers and targeted drugs. In this study, we proposed a multi-level biological network analysis framework to identify key genes via protein–protein interaction (PPI) network analysis as well as survival analysis based on differentially expressed genes (DEGs) in leukocyte transcriptomic profiles, discover novel biomarkers using microRNAs (miRNA) from regulatory network analysis, and provide candidate drugs targeting the key genes using drug–gene interaction network and structural analysis. The results show that upregulated DEGs were mainly enriched in cell division, cell cycle, and innate immune signaling pathways. Downregulated DEGs were primarily concentrated in the cellular response to stress, lysosome, glycosaminoglycan catabolic process, and mature B cell differentiation. Regulatory network analysis revealed that hsa-miR-6792-5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-5p were predicted biomarkers. CDC25A, GUSB, MYBL2, and SDAD1 were identified as key genes in severe COVID-19. In addition, drug repurposing from drug–gene and drug–protein database searching and molecular docking showed that camptothecin and doxorubicin were candidate drugs interacting with the key genes. In conclusion, multi-level systems biology analysis plays an important role in precision medicine by finding novel biomarkers and targeted drugs based on key gene identification.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Center of Excellence in Biocatalyst and Sustainable Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Center of Excellence in Biocatalyst and Sustainable Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; (P.S.); (H.C.); (T.R.)
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
165
|
Zhang C. Fluorine in Medicinal Chemistry: In Perspective to COVID-19. ACS OMEGA 2022; 7:18206-18212. [PMID: 35663284 PMCID: PMC9159071 DOI: 10.1021/acsomega.2c01121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/05/2022] [Indexed: 05/17/2023]
Abstract
Over two years into the outbreak of COVID-19, the quest for effective and economical drugs has become starkly clear to reduce the risk of progression of coronavirus disease. A number of drugs have been investigated, and they can be taken orally at home and be used after exposure to SARS-CoV-2 or at the first sign of COVID-19. Fluorinated oral anti-COVID-19 drugs-including Paxlovid, the first oral tablet for the treatment of COVID-19-constitute an important subgroup. Fluorine has been widely used in the pharmaceutical market and can lead to improved selectivity indices, increased lipophilicity, greater metabolic stability, and improved anti-COVID-19 efficacy. In this mini-review, we will give an update on fluorinated anti-COVID-19 drugs by providing the key information and current knowledge of these drugs, including their molecular design, metabolism and pharmacokinetics, and mechanism of action.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering
and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano
Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
166
|
Najjar-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, Goldstein LH, Saliba W. Effectiveness of Paxlovid in Reducing Severe Coronavirus Disease 2019 and Mortality in High-Risk Patients. Clin Infect Dis 2022; 76:e342-e349. [PMID: 35653428 PMCID: PMC9214014 DOI: 10.1093/cid/ciac443] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Paxlovid was granted an Emergency Use Authorization for the treatment of mild to moderate coronavirus disease 2019 (COVID-19), based on the interim analysis of the Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients (EPIC-HR) trial. Paxlovid effectiveness needs to be assessed in a noncontrolled setting. In this study we used population-based real-world data to evaluate the effectiveness of Paxlovid. METHODS The database of the largest healthcare provider in Israel was used to identify all adults aged 18 years or older with first-ever positive test for severe acute respiratory syndrome coronavirus 2 between January and February 2022, who were at high risk for severe COVID-19 and had no contraindications for Paxlovid use. Patients were included irrespective of their COVID-19 vaccination status. Cox hazard regression was used to estimate the 28-day hazard ratio (HR) for severe COVID-19 or mortality with Paxlovid examined as time-dependent variable. RESULTS Overall, 180 351 eligible patients were included; of these, only 4737 (2.6%) were treated with Paxlovid, and 135 482 (75.1%) had adequate COVID-19 vaccination status. Both Paxlovid and adequate COVID-19 vaccination status were associated with significant decrease in the rate of severe COVID-19 or mortality with adjusted HRs of 0.54 (95% confidence interval [CI], .39-.75) and 0.20 (95% CI, .17-.22), respectively. Paxlovid appears to be more effective in older patients, immunosuppressed patients, and patients with underlying neurological or cardiovascular disease (interaction P < .05 for all). No significant interaction was detected between Paxlovid treatment and COVID-19 vaccination status. CONCLUSIONS This study suggests that in the era of Omicron and in real-life settings, Paxlovid is highly effective in reducing the risk of severe COVID-19 or mortality.
Collapse
Affiliation(s)
- Ronza Najjar-Debbiny
- Correspondence: R. Najjar-Debbiny, Infection Control and Prevention Unit, Lady Davis Carmel Medical Center, 7 Michal St, Haifa 3436212, Israel ()
| | | | - Gabriel Weber
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel,Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Johad Khoury
- Pulmonology Division, Lady Davis Carmel Medical Center, Haifa, Israel,Pulmonology, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maisam Amar
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel,Internal Medicine C, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Nili Stein
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel,Statistical Unit, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Lee Hilary Goldstein
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel,Internal Medicine C, Emek Medical Center, Afula, Israel,Clinical Pharmacology Unit, Emek Medical Center, Afula, Israel
| | - Walid Saliba
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel,Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel,Translational Epidemiology Unit and Research Authority, Lady Davis Carmel Medical Center, Haifa, Israel
| |
Collapse
|
167
|
Yang W, Zhang D, Li Z, Zhang K. Predictors of poor serologic response to COVID-19 vaccine in patients with cancer: a systematic review and meta-analysis. Eur J Cancer 2022; 172:41-50. [PMID: 35752155 PMCID: PMC9160160 DOI: 10.1016/j.ejca.2022.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Backgrounds Patients with cancer presented a lower probability to obtain seroconversion after a complete course of COVID-19 vaccination. However, little was known on the factors that predict poor seroconversion in this frail population. Methods We searched the PubMed, EMBASE, and China National Knowledge Infrastructure databases for all articles within a range of published years from 2019 to 2022 on the predictors of response to COVID-19 vaccine in patients with cancer (last search was updated on 2st March 2022). The odds ratio corresponding to the 95% confidence interval was used to assess the outcome. The statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. The review was registered with PROSPERO (CRD42022315687) and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results Twenty cohort studies met the inclusion criteria for this study, with 5,499 patients with cancer. We found that advanced age, male patients, and metastatic disease increased negative seropositivity to COVID-19 vaccine. Immunoglobulin heavy chain variable mutation status, high concentration of Ig G, Ig M, and Ig A were correlated with seropositivity. Relating to cancer treatment strategy, anti-CD20 therapy within recent 12 months and chemotherapy were negatively correlated with seroconversion. Meta-analysis found no significant difference associated with targeted treatment, immunotherapy, and endocrine treatment. Conclusions Our meta-analysis assessed the factors that predict poor seroconversion in order to plan better prevention strategies in this frail population. The results proposed that enhanced vaccination strategies would be beneficial for the special patients such as advanced male, or patients receiving active chemotherapy, and carefully prevention should be emphasised even after a complete course of vaccination.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Dongxue Zhang
- Equipment and Material Department, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhuo Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
168
|
Garibyan A, Delyagina E, Agafonov M, Khodov I, Terekhova I. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
169
|
Gorący A, Rosik J, Szostak B, Ustianowski Ł, Ustianowska K, Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022; 14:v14051092. [PMID: 35632833 PMCID: PMC9144443 DOI: 10.3390/v14051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the life-threatening pandemic amongst all age groups and geographic areas caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). The Coronavirus Disease 2019 (COVID-19) pandemic, which has led to more than 468 million cases and over 6 million deaths reported worldwide (as of 20 March 2022), is one of the greatest threats to human health in history. Meanwhile, the lack of specific and irresistible treatment modalities provoked concentrated efforts in scientists around the world. Various mechanisms of cell entry and cellular dysfunction were initially proclaimed. Especially, mitochondria and cell membrane are crucial for the course of infection. The SARS-CoV-2 invasion depends on angiotensin converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cluster of differentiation 147 (CD147), expressed on host cells. Moreover, in this narrative review, we aim to discuss other cell organelles targeted by SARS-CoV-2. Lastly, we briefly summarize the studies on various drugs.
Collapse
Affiliation(s)
- Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jakub Rosik
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Jarosław Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
| |
Collapse
|
170
|
Sagulkoo P, Suratanee A, Plaimas K. Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing. Biomolecules 2022; 12:biom12050690. [PMID: 35625619 PMCID: PMC9138873 DOI: 10.3390/biom12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an active global public health issue. Although vaccines and therapeutic options are available, some patients experience severe conditions and need critical care support. Hence, identifying key genes or proteins involved in immune-related severe COVID-19 is necessary to find or develop the targeted therapies. This study proposed a novel construction of an immune-related protein interaction network (IPIN) in severe cases with the use of a network diffusion technique on a human interactome network and transcriptomic data. Enrichment analysis revealed that the IPIN was mainly associated with antiviral, innate immune, apoptosis, cell division, and cell cycle regulation signaling pathways. Twenty-three proteins were identified as key proteins to find associated drugs. Finally, poly (I:C), mitomycin C, decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin were the potential drugs interacting with the key proteins to heal severe COVID-19. In conclusion, IPIN can be a good representative network for the immune system that integrates the protein interaction network and transcriptomic data. Thus, the key proteins and target drugs in IPIN help to find a new treatment with the use of existing drugs to treat the disease apart from vaccination and conventional antiviral therapy.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
171
|
Jang D, Lee D, Jung J, Ryoo S. Low molecular weight chitooligosaccharide inhibits infection of SARS-CoV-2 in vitro. J Appl Microbiol 2022; 133:1089-1098. [PMID: 35543341 PMCID: PMC9347542 DOI: 10.1111/jam.15618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
AIMS The discovery of antiviral substances to respond to COVID-19 is a global issue, including the field of drug development based on natural materials. Here, we showed that chitosan-based substances have natural antiviral properties against SARS-CoV-2 in vitro. METHODS AND RESULTS The molecular weight of chitosan-based substances was measured by the gel permeation chromatography analysis. In MTT assay, the chitosan-based substances have low cytotoxicity to Vero cells. The antiviral effect of these substances was confirmed by quantitative viral RNA targeting the RdRp and E genes and plaque assay. Among the substances tested, low molecular weight chitooligosaccharide decreased the fluorescence intensity of SARS-CoV-2 nucleocapsid protein of the virus-infected cells in a dose-dependent manner. CONCLUSIONS In conclusion, the chitooligosaccharide, a candidate for natural treatment, has antiviral effects against the SARS-CoV-2 virus in vitro. SIGNIFICANCE AND IMPACT OF STUDY In this study, it was suggested for the first time that chitosan-based substances such as chitooligosaccharide can have an antiviral effect on SARS-CoV-2 in vitro.
Collapse
Affiliation(s)
- Donghwan Jang
- Clinical Research Center, Masan National Tuberculosis Hospital, Masan Happo-gu, Changwon, 51755, Republic of Korea
| | - Dagyum Lee
- Clinical Research Center, Masan National Tuberculosis Hospital, Masan Happo-gu, Changwon, 51755, Republic of Korea
| | - Jihee Jung
- Clinical Research Center, Masan National Tuberculosis Hospital, Masan Happo-gu, Changwon, 51755, Republic of Korea
| | - Sungweon Ryoo
- Clinical Research Center, Masan National Tuberculosis Hospital, Masan Happo-gu, Changwon, 51755, Republic of Korea
| |
Collapse
|
172
|
Mencoboni M, Fontana V, Damiani A, Spitaleri A, Raso A, Bottaro LC, Rossi G, Canobbio L, La Camera A, Filiberti RA, Taveggia P, Cavo A. Antibody Response to COVID-19 mRNA Vaccines in Oncologic and Hematologic Patients Undergoing Chemotherapy. Curr Oncol 2022; 29:3364-3374. [PMID: 35621663 PMCID: PMC9139308 DOI: 10.3390/curroncol29050273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Information on immune responses in cancer patients following mRNA COVID-19 vaccines is still insufficient, but generally, patients had impaired serological responses, especially those with hematological malignancies. We evaluated serological response to COVID-19 mRNA vaccine in cancer patients receiving chemotherapy compared with healthy controls. METHODS In total, 195 cancer patients and 400 randomly selected controls who had been administered a Pfizer-BioNTech or Moderna COVID-19 vaccines in two doses were compared. The threshold of positivity was 4.33 BAU/mL. Patients were receiving anticancer treatment after the first and second dose of the vaccines. RESULTS a TOTAL OF 169 patients (87%) had solid tumors and 26 hemolymphopoietic diseases. Seropositivity rate was lower in patients than controls (91% vs. 96%), with an age/gender-adjusted rate ratio (RR) of 0.95 (95% CL = 0.89-1.02). Positivity was found in 97% of solid cancers and in 50% of hemolymphopoietic tumors. Both advanced and adjuvant therapy seemed to slightly reduce seropositivity rates in patients when compared to controls (RR = 0.97, 95% CL = 0.89-1.06; RR = 0.94, 95% CL = 0.87-1.01). CONCLUSIONS the response to vaccination is similar in patients affected by solid tumors to controls. On the contrary, hemolymphopietic patients show a much lower response than controls.
Collapse
Affiliation(s)
- Manlio Mencoboni
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 12, 16100 Genoa, Italy;
| | - Azzurra Damiani
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Antonino Spitaleri
- Analysis Laboratory, ASL 3, Via Bertani 4, 16125 Genoa, Italy; (A.S.); (A.R.)
| | - Alessandro Raso
- Analysis Laboratory, ASL 3, Via Bertani 4, 16125 Genoa, Italy; (A.S.); (A.R.)
| | | | - Giovanni Rossi
- Oncology Unit, Antero Micone Hospital, Largo Nevio Rosso 2, 16100 Genoa, Italy; (G.R.); (L.C.)
| | - Luciano Canobbio
- Oncology Unit, Antero Micone Hospital, Largo Nevio Rosso 2, 16100 Genoa, Italy; (G.R.); (L.C.)
| | - Antonella La Camera
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Rosa Angela Filiberti
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 12, 16100 Genoa, Italy;
| | - Paola Taveggia
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Alessia Cavo
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| |
Collapse
|
173
|
Guo Y, Han J, Zhang Y, He J, Yu W, Zhang X, Wu J, Zhang S, Kong Y, Guo Y, Lin Y, Zhang J. SARS-CoV-2 Omicron Variant: Epidemiological Features, Biological Characteristics, and Clinical Significance. Front Immunol 2022; 13:877101. [PMID: 35572518 PMCID: PMC9099228 DOI: 10.3389/fimmu.2022.877101] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 Omicron (B.1.1529) variant was designated as a variant of concern (VOC) by the World Health Organization (WHO) on November 26, 2021. Within two months, it had replaced the Delta variant and had become the dominant circulating variant around the world. The Omicron variant possesses an unprecedented number of mutations, especially in the spike protein, which may be influencing its biological and clinical aspects. Preliminary studies have suggested that increased transmissibility and the reduced protective effects of neutralizing antibodies have contributed to the rapid spread of this variant, posing a significant challenge to control the coronavirus disease 2019 (COVID-19) pandemic. There is, however, a silver lining for this wave of the Omicron variant. A lower risk of hospitalization and mortality has been observed in prevailing countries. Booster vaccination also has ameliorated a significant reduction in neutralization. Antiviral drugs are minimally influenced. Moreover, the functions of Fc-mediated and T-cell immunity have been retained to a great extent, both of which play a key role in preventing severe disease.
Collapse
Affiliation(s)
- Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Weien Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yide Kong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxue Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Jing’An Branch of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
174
|
Yang KS, Alex Kuo ST, Blankenship LR, Geng ZZ, Li SG, Russell DH, Yan X, Xu S, Liu WR. Repurposing Halicin as a potent covalent inhibitor for the SARS-CoV-2 main protease. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2022; 2:100025. [PMID: 35815070 PMCID: PMC9023366 DOI: 10.1016/j.crchbi.2022.100025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
The rapid spread of COVID-19 has caused a worldwide public health crisis. For prompt and effective development of antivirals for SARS-CoV-2, the pathogen of COVID-19, drug repurposing has been broadly conducted by targeting the main protease (MPro), a key enzyme responsible for the replication of virus inside the host. In this study, we evaluate the inhibition potency of a nitrothiazole-containing drug, halicin, and reveal its reaction and interaction mechanism with MPro. The in vitro potency test shows that halicin inhibits the activity of MPro an IC50 of 181.7 nM. Native mass spectrometry and X-ray crystallography studies clearly indicate that the nitrothiazole fragment of halicin covalently binds to the catalytic cysteine C145 of MPro. Interaction and conformational changes inside the active site of MPro suggest a favorable nucleophilic aromatic substitution reaction mechanism between MPro C145 and halicin, explaining the high inhibition potency of halicin towards MPro.
Collapse
Affiliation(s)
- Kai S Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Syuan-Ting Alex Kuo
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren R Blankenship
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Shuhua G Li
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David H Russell
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xin Yan
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
175
|
Hussein MAA, Hussein HAM, Thabet AA, Selim KM, Dawood MA, El-Adly AM, Wardany AA, Sobhy A, Magdeldin S, Osama A, Anwar AM, Abdel-Wahab M, Askar H, Bakhiet EK, Sultan S, Ezzat AA, Abdel Raouf U, Afifi MM. Human Wharton's Jelly Mesenchymal Stem Cells Secretome Inhibits Human SARS-CoV-2 and Avian Infectious Bronchitis Coronaviruses. Cells 2022; 11:1408. [PMID: 35563714 PMCID: PMC9101656 DOI: 10.3390/cells11091408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic agents are highly in demand for controlling viral transmission and disease progression. Mesenchymal stem cells (MSC) secreted factors (secretome) are safe and efficient alternatives to stem cells in MSC-based therapies. This study aimed to investigate the antiviral potentials of human Wharton’s jelly MSC secretome (hWJ-MSC-S) against SARS-CoV-2 and IBV infections in vitro and in ovo. The half-maximal inhibitory concentrations (IC50), cytotoxic concentration (CC50), and selective index (SI) values of hWJ-MSC-S were determined using Vero-E6 cells. The virucidal, anti-adsorption, and anti-replication antiviral mechanisms of hWJ-MSC-S were evaluated. The hWJ-MSC-S significantly inhibited infection of SARS-CoV-2 and IBV, without affecting the viability of cells and embryos. Interestingly, hWJ-MSC-S reduced viral infection by >90%, in vitro. The IC50 and SI of hWJ-MSC secretome against SARS-CoV-2 were 166.6 and 235.29 µg/mL, respectively, while for IBV, IC50 and SI were 439.9 and 89.11 µg/mL, respectively. The virucidal and anti-replication antiviral effects of hWJ-MSC-S were very prominent compared to the anti-adsorption effect. In the in ovo model, hWJ-MSC-S reduced IBV titer by >99%. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis of hWJ-MSC-S revealed a significant enrichment of immunomodulatory and antiviral proteins. Collectively, our results not only uncovered the antiviral potency of hWJ-MSC-S against SARS-CoV-2 and IBV, but also described the mechanism by which hWJ-MSC-S inhibits viral infection. These findings indicate that hWJ-MSC-S could be utilized in future pre-clinical and clinical studies to develop effective therapeutic approaches against human COVID-19 and avian IB respiratory diseases.
Collapse
Affiliation(s)
- Mohamed A. A. Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Hosni A. M. Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ali A. Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt;
| | - Mervat A. Dawood
- Clinical Pathology, Mansoura Research Center for Cord Stem Cells (MARC-CSC), Faculty of Medicine, Mansoura University, El Mansoura 35516, Egypt;
| | - Ahmed M. El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ahmed A. Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
| | - Ali M. Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
| | - Mohammed Abdel-Wahab
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Hussam Askar
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Elsayed K. Bakhiet
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Amgad A. Ezzat
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Usama Abdel Raouf
- Department of Botany and Microbiology, Faculty of Science, Aswan University, Aswan 81528, Egypt;
| | - Magdy M. Afifi
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| |
Collapse
|
176
|
SMYD2 Inhibition Downregulates TMPRSS2 and Decreases SARS-CoV-2 Infection in Human Intestinal and Airway Epithelial Cells. Cells 2022; 11:cells11081262. [PMID: 35455942 PMCID: PMC9033063 DOI: 10.3390/cells11081262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has lasted for more than two years. Despite the presence of very effective vaccines, the number of virus variants that escape neutralizing antibodies is growing. Thus, there is still a need for effective antiviral treatments that target virus replication independently of the circulating variant. Here, we show for the first time that deficiency or pharmacological inhibition of the cellular lysine-methyltransferase SMYD2 decreases TMPRSS2 expression on both mRNA and protein levels. SARS-CoV-2 uses TMPRSS2 for priming its spike protein to infect target cells. Treatment of cultured cells with the SMYD2 inhibitors AZ505 or BAY598 significantly inhibited viral replication. In contrast, treatment of Vero E6 cells, which do not express detectable amounts of TMPRSS2, had no effect on SARS-CoV-2 infection. Moreover, by generating a recombinant reporter virus that expresses the spike protein of the Delta variant of SARS-CoV-2, we demonstrate that BAY598 exhibits similar antiviral activity against this variant of concern. In summary, SMYD2 inhibition downregulates TMPRSS2 and blocks viral replication. Targeting cellular SMYD2 represents a promising tool to curtail SARS-CoV-2 infection.
Collapse
|
177
|
Armenta-Medina D, Brambila-Tapia AJL, Miranda-Jiménez S, Rodea-Montero ER. A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder. Diagnostics (Basel) 2022; 12:887. [PMID: 35453935 PMCID: PMC9028729 DOI: 10.3390/diagnostics12040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, a web application was developed that comprises scientific literature associated with the Coronaviridae family, specifically for those viruses that are members of the Genus Betacoronavirus, responsible for emerging diseases with a great impact on human health: Middle East Respiratory Syndrome-Related Coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV, SARS-CoV-2). The information compiled on this webserver aims to understand the basics of these viruses' infection, and the nature of their pathogenesis, enabling the identification of molecular and cellular components that may function as potential targets on the design and development of successful treatments for the diseases associated with the Coronaviridae family. Some of the web application's primary functions are searching for keywords within the scientific literature, natural language processing for the extraction of genes and words, the generation and visualization of gene networks associated with viral diseases derived from the analysis of latent semantic space, and cosine similarity measures. Interestingly, our gene association analysis reveals drug targets in understudies, and new targets suggested in the scientific literature to treat coronavirus.
Collapse
Affiliation(s)
- Dagoberto Armenta-Medina
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | | - Sabino Miranda-Jiménez
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | |
Collapse
|
178
|
Lim SCL, Hor CP, Tay KH, Mat Jelani A, Tan WH, Ker HB, Chow TS, Zaid M, Cheah WK, Lim HH, Khalid KE, Cheng JT, Mohd Unit H, An N, Nasruddin AB, Low LL, Khoo SWR, Loh JH, Zaidan NZ, Ab Wahab S, Song LH, Koh HM, King TL, Lai NM, Chidambaram SK, Peariasamy KM. Efficacy of Ivermectin Treatment on Disease Progression Among Adults With Mild to Moderate COVID-19 and Comorbidities: The I-TECH Randomized Clinical Trial. JAMA Intern Med 2022; 182:426-435. [PMID: 35179551 PMCID: PMC8980926 DOI: 10.1001/jamainternmed.2022.0189] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Importance Ivermectin, an inexpensive and widely available antiparasitic drug, is prescribed to treat COVID-19. Evidence-based data to recommend either for or against the use of ivermectin are needed. Objective To determine the efficacy of ivermectin in preventing progression to severe disease among high-risk patients with COVID-19. Design, Setting, and Participants The Ivermectin Treatment Efficacy in COVID-19 High-Risk Patients (I-TECH) study was an open-label randomized clinical trial conducted at 20 public hospitals and a COVID-19 quarantine center in Malaysia between May 31 and October 25, 2021. Within the first week of patients' symptom onset, the study enrolled patients 50 years and older with laboratory-confirmed COVID-19, comorbidities, and mild to moderate disease. Interventions Patients were randomized in a 1:1 ratio to receive either oral ivermectin, 0.4 mg/kg body weight daily for 5 days, plus standard of care (n = 241) or standard of care alone (n = 249). The standard of care consisted of symptomatic therapy and monitoring for signs of early deterioration based on clinical findings, laboratory test results, and chest imaging. Main Outcomes and Measures The primary outcome was the proportion of patients who progressed to severe disease, defined as the hypoxic stage requiring supplemental oxygen to maintain pulse oximetry oxygen saturation of 95% or higher. Secondary outcomes of the trial included the rates of mechanical ventilation, intensive care unit admission, 28-day in-hospital mortality, and adverse events. Results Among 490 patients included in the primary analysis (mean [SD] age, 62.5 [8.7] years; 267 women [54.5%]), 52 of 241 patients (21.6%) in the ivermectin group and 43 of 249 patients (17.3%) in the control group progressed to severe disease (relative risk [RR], 1.25; 95% CI, 0.87-1.80; P = .25). For all prespecified secondary outcomes, there were no significant differences between groups. Mechanical ventilation occurred in 4 (1.7%) vs 10 (4.0%) (RR, 0.41; 95% CI, 0.13-1.30; P = .17), intensive care unit admission in 6 (2.4%) vs 8 (3.2%) (RR, 0.78; 95% CI, 0.27-2.20; P = .79), and 28-day in-hospital death in 3 (1.2%) vs 10 (4.0%) (RR, 0.31; 95% CI, 0.09-1.11; P = .09). The most common adverse event reported was diarrhea (14 [5.8%] in the ivermectin group and 4 [1.6%] in the control group). Conclusions and Relevance In this randomized clinical trial of high-risk patients with mild to moderate COVID-19, ivermectin treatment during early illness did not prevent progression to severe disease. The study findings do not support the use of ivermectin for patients with COVID-19. Trial Registration ClinicalTrials.gov Identifier: NCT04920942.
Collapse
Affiliation(s)
| | - Chee Peng Hor
- Department of Medicine, Kepala Batas Hospital, Penang, Malaysia
- Clinical Research Centre, Seberang Jaya Hospital, Penang, Malaysia
| | - Kim Heng Tay
- Department of Medicine, Sungai Buloh Hospital, Selangor, Malaysia
| | | | - Wen Hao Tan
- Department of Medicine, Taiping Hospital, Perak, Malaysia
| | - Hong Bee Ker
- Department of Medicine, Raja Permaisuri Bainun Hospital, Perak, Malaysia
| | - Ting Soo Chow
- Department of Medicine, Penang Hospital, Penang, Malaysia
| | - Masliza Zaid
- Department of Medicine, Sultanah Aminah Hospital, Johor, Malaysia
| | - Wee Kooi Cheah
- Department of Medicine, Taiping Hospital, Perak, Malaysia
| | - Han Hua Lim
- Department of Medicine, Sarawak General Hospital, Sarawak, Malaysia
| | | | - Joo Thye Cheng
- Department of Medicine, Kepala Batas Hospital, Penang, Malaysia
| | | | - Noralfazita An
- Department of Medicine, Sultan Abdul Halim Hospital, Kedah, Malaysia
| | | | - Lee Lee Low
- Department of Medicine, Sultanah Bahiyah Hospital, Kedah, Malaysia
| | | | - Jia Hui Loh
- Department of Medicine, Duchess of Kent Hospital, Sabah, Malaysia
| | | | - Suhaila Ab Wahab
- Department of Medicine, Tuanku Fauziah Hospital, Perlis, Malaysia
| | - Li Herng Song
- Clinical Research Centre, Raja Permaisuri Bainun Hospital, Perak, Malaysia
| | - Hui Moon Koh
- Department of Pharmacy, Sungai Buloh Hospital, Selangor, Malaysia
| | - Teck Long King
- Clinical Research Centre, Sarawak General Hospital, Sarawak, Malaysia
| | - Nai Ming Lai
- School of Medicine, Taylor’s University, Selangor, Malaysia
| | | | | |
Collapse
|
179
|
Repurposing Probenecid to Inhibit SARS-CoV-2, Influenza Virus, and Respiratory Syncytial Virus (RSV) Replication. Viruses 2022; 14:v14030612. [PMID: 35337018 PMCID: PMC8955960 DOI: 10.3390/v14030612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Viral replication and transmissibility are the principal causes of endemic and pandemic disease threats. There remains a need for broad-spectrum antiviral agents. The most common respiratory viruses are endemic agents such as coronaviruses, respiratory syncytial viruses, and influenza viruses. Although vaccines are available for SARS-CoV-2 and some influenza viruses, there is a paucity of effective antiviral drugs, while for RSV there is no vaccine available, and therapeutic treatments are very limited. We have previously shown that probenecid is safe and effective in limiting influenza A virus replication and SARS-CoV-2 replication, along with strong evidence showing inhibition of RSV replication in vitro and in vivo. This review article will describe the antiviral activity profile of probenecid against these three viruses.
Collapse
|
180
|
Maitz T, Parfianowicz D, Vojtek A, Rajeswaran Y, Vyas AV, Gupta R. COVID-19 Cardiovascular Connection: A Review of Cardiac Manifestations in COVID-19 Infection and Treatment Modalities. Curr Probl Cardiol 2022:101186. [PMID: 35351486 PMCID: PMC8957382 DOI: 10.1016/j.cpcardiol.2022.101186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus pandemic has crippled healthcare system since its outbreak in 2020, and has led to over 2.6 million deaths worldwide. Clinical manifestations of COVID-19 range from asymptomatic carrier to severe pneumonia, to life-threatening acute respiratory distress syndrome (ARDS). The early efforts of the pandemic surrounded treating the pulmonary component of COVID-19, however, there has been robust data surrounding the cardiac complications associated with the virus. This is suspected to be from a marked inflammatory response as well as direct viral injury. Arrhythmias, acute myocardial injury, myocarditis, cardiomyopathy, thrombosis, and myocardial fibrosis are some of the observed cardiac complications. There have been high morbidity and mortality rates in those affected by cardiac conditions associated with COVID-19. Additionally, there have been documented cases of patients presenting with typical cardiac symptoms who are subsequently discovered to have COVID-19 infection. In those who test positive for COVID-19, clinical awareness of the significant cardiac components of the virus is pertinent to prevent morbidity and mortality. Unfortunately, treatment and preventative measures developed for COVID-19 have been shown to be also be associated with cardiac complications. This is a comprehensive review of the cardiac complications and manifestations of COVID-19 infection in addition to those associated with both treatment and vaccination.
Collapse
Affiliation(s)
- Theresa Maitz
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA
| | | | - Ashley Vojtek
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA
| | | | - Apurva V Vyas
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| |
Collapse
|
181
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-safi I, Mechchate H, Lyoussi B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022; 14:nu14050942. [PMID: 35267917 PMCID: PMC8912813 DOI: 10.3390/nu14050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
- Correspondence:
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
182
|
Lu J, Yin Q, Pei R, Zhang Q, Qu Y, Pan Y, Sun L, Gao D, Liang C, Yang J, Wu W, Li J, Cui Z, Wang Z, Li X, Li D, Wang S, Duan K, Guan W, Liang M, Yang X. Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants. Virol Sin 2022; 37:238-247. [PMID: 35527227 PMCID: PMC8855614 DOI: 10.1016/j.virs.2022.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have constantly emerged, as the delta and omicron variants, which have developed resistance to currently gained neutralizing antibodies. This highlights a critical need to discover new therapeutic agents to overcome the variants mutations. Despite the availability of vaccines against coronavirus disease 2019 (COVID-19), the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-CoV-2 variants infection. Here, we show that the nasal delivery of two previously characterized broadly neutralizing antibodies (F61 and H121) protected K18-hACE2 mice against lethal challenge with SARS-CoV-2 variants. The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain (WIV04) and multiple variants, including beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) at 200 or 1000 TCID50, and the minimum antibody administration doses (5–1.25 mg/kg body weight) were also evaluated with delta and omicron challenge. Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 mg/kg body weight, and corresponding mice lung viral RNA showed negative, with almost all alveolar septa and cavities remaining normal. Furthermore, low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants, whereas the F61/H121 combination showed excellent results against omicron infection. Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-CoV-2 variants infection. The mAbs could be detected in lungs shortly after nasal spray and kept in the lungs for a long time. High dose mAbs nasal delivery could fully prophylactic protection mice from omicron lethal challenged. Significant enhancement of broadly neutralizing activity against variants were confirmed in F61 and H121 combination use.
Collapse
|