151
|
Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother 2023; 161:114420. [PMID: 36812713 DOI: 10.1016/j.biopha.2023.114420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer has been confirmed to have lipid disorders in the tumour microenvironment. Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPARα regulates the expression of genes involved in fatty acid homeostasis and is a major regulator of lipid metabolism. Because of its effects on lipid metabolism, an increasing number of studies have investigated the relationship of PPARα with breast cancer. PPARα has been shown to impact the cell cycle and apoptosis in normal cells and tumoral cells through regulating genes of the lipogenic pathway, fatty acid oxidation, fatty acid activation, and uptake of exogenous fatty acids. Besides, PPARα is involved in the regulation of the tumour microenvironment (anti-inflammation and inhibition of angiogenesis) by modulating different signal pathways such as NF-κB and PI3K/AKT/mTOR. Some synthetic PPARα ligands are used in adjuvant therapy for breast cancer. PPARα agonists are reported to reduce the side effects of chemotherapy and endocrine therapy. In addition, PPARα agonists enhance the curative effects of targeted therapy and radiation therapy. Interestingly, with the emerging role of immunotherapy, attention has been focused on the tumour microenvironment. The dual functions of PPARα agonists in immunotherapy need further research. This review aims to consolidate the operations of PPARα in lipid-related and other ways, as well as discuss the current and potential applications of PPARα agonists in tackling breast cancer.
Collapse
Affiliation(s)
- Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Jiayu Liu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Ying Jiang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
152
|
Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Cells 2023; 12:cells12040650. [PMID: 36831317 PMCID: PMC9954612 DOI: 10.3390/cells12040650] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors that orchestrate the transcriptional regulation of genes involved in a variety of biological responses, such as energy metabolism and homeostasis, regulation of inflammation, cellular development, and differentiation. The many roles played by the PPAR signaling pathways indicate that PPARs may be useful targets for various human diseases, including metabolic and inflammatory conditions and tumors. Accumulating evidence suggests that each PPAR plays prominent but different roles in viral, bacterial, and parasitic infectious disease development. In this review, we discuss recent PPAR research works that are focused on how PPARs control various infections and immune responses. In addition, we describe the current and potential therapeutic uses of PPAR agonists/antagonists in the context of infectious diseases. A more comprehensive understanding of the roles played by PPARs in terms of host-pathogen interactions will yield potential adjunctive personalized therapies employing PPAR-modulating agents.
Collapse
|
153
|
Hu X, Guo R, Zhang XG. Effects of PPARα against ethanol-induced oxidative stress in mouse gastric mucosa. Shijie Huaren Xiaohua Zazhi 2023; 31:113-120. [DOI: 10.11569/wcjd.v31.i3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ethanol as an exogenous invasive factor, when persistently contacting with the gastric mucosa, can result in the generation of large amounts of reactive oxygen species in the gastric mucosa and cause oxidative stress damage. PPARα has an important regulatory effect on oxidative stress and plays a preventive role in multiple related disease models.
AIM To investigate whether PPARα has an effect against ethanol-induced chronic gastric mucosal injury.
METHODS Mice were randomly divided into three groups: Wild-type mice given an ethanol diet (WT-EtOH), PPARα-knockout mice given an ethanol diet (KO-EtOH), and PPARα-knockout mice given an ethanol diet plus vitamin E (KO-EtOH+VE). After feeding 16 wk, gastric histopathological changes were observed. The contents of reduced glutathione (GSH), oxidized glutathione (GSSG), and malondialdehyde (MDA) in serum and gastric tissue, the expression of 4-hydroxynonenal (4-HNE) in gastric tissue, and the activity and mRNA relative expression levels of superoxide dismutase (SOD) and catalase (CAT) in gastric tissue, were detected.
RESULTS Loss of PPARα aggravated ethanol-induced gastric mucosal pathological injury in mice, significantly decreased GSH and GSH/GSSG ratio in serum and gastric tissue, increased the content of MDA and the positive expression of 4-HNE, and significantly reduced the activity of SOD and CAT and the relative expression level of SOD mRNA in gastric tissues. Treatment with vitamin E improved gastric mucosal histopathological changes, and the activity and relative expression level of CAT mRNA.
CONCLUSION Deficiency of PPARα worsens ethanol-induced oxidative stress injury in the gastric mucosa of mice.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Ran Guo
- The Third General Surgery Department, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang 050004, Hebei Province, China
| | - Xu-Guang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-0803, Nagano, Japan
| |
Collapse
|
154
|
PPARs and Their Neuroprotective Effects in Parkinson's Disease: A Novel Therapeutic Approach in α-Synucleinopathy? Int J Mol Sci 2023; 24:ijms24043264. [PMID: 36834679 PMCID: PMC9963164 DOI: 10.3390/ijms24043264] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.
Collapse
|
155
|
ZHONG JIATENG, GUO JINGYU, ZHANG XINYU, FENG SHUANG, DI WENYU, WANG YANLING, ZHU HUIFANG. The remodeling roles of lipid metabolism in colorectal cancer cells and immune microenvironment. Oncol Res 2023; 30:231-242. [PMID: 37305350 PMCID: PMC10207963 DOI: 10.32604/or.2022.027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lipid is a key component of plasma membrane, which plays an important role in the regulation of various cell biological behaviors, including cell proliferation, growth, differentiation and intracellular signal transduction. Studies have shown that abnormal lipid metabolism is involved in many malignant processes, including colorectal cancer (CRC). Lipid metabolism in CRC cells can be regulated not only by intracellular signals, but also by various components in the tumor microenvironment, including various cells, cytokines, DNA, RNA, and nutrients including lipids. In contrast, abnormal lipid metabolism provides energy and nutrition support for abnormal malignant growth and distal metastasis of CRC cells. In this review, we highlight the remodeling roles of lipid metabolism crosstalk between the CRC cells and the components of tumor microenvironment.
Collapse
Affiliation(s)
- JIATENG ZHONG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - JINGYU GUO
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - XINYU ZHANG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - SHUANG FENG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - WENYU DI
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - YANLING WANG
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - HUIFANG ZHU
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
156
|
Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:ijms24032907. [PMID: 36769229 PMCID: PMC9917820 DOI: 10.3390/ijms24032907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
|
157
|
Sadasivam N, Radhakrishnan K, Choi HS, Kim DK. Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:2907. [DOI: https:/doi.org/10.3390/ijms24032907 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Centre, Department of Microbiology, Combinatorial Tumour Immunotheraphy MRC, Medical School, Chonnam National University, Gwangju 58128, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
158
|
Fatty Acids as Potent Modulators of Autophagy Activity in White Adipose Tissue. Biomolecules 2023; 13:biom13020255. [PMID: 36830623 PMCID: PMC9953325 DOI: 10.3390/biom13020255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A high-fat diet is one of the causative factors of obesity. The dietary profile of fatty acids is also an important variable in developing obesity, as saturated fatty acids are more obesogenic than monounsaturated and polyunsaturated fatty acids. Overweight and obesity are inseparably connected with the excess of adipose tissue in the body, characterized by hypertrophy and hyperplasia of fat cells, which increases the risk of developing metabolic syndrome. Changes observed within hypertrophic adipocytes result in elevated oxidative stress, unfolded protein accumulation, and increased endoplasmic reticulum (ER) stress. One of the processes involved in preservation of cellular homeostasis is autophagy, which is defined as an intracellular lysosome-dependent degradation system that serves to recycle available macromolecules and eliminate damaged organelles. In obesity, activation of autophagy is increased and the process appears to be regulated by different types of dietary fatty acids. This review describes the role of autophagy in adipose tissue and summarizes the current understanding of the effects of saturated and unsaturated fatty acids in autophagy modulation in adipocytes.
Collapse
|
159
|
Lan Q, Lian Y, Peng P, Yang L, Zhao H, Huang P, Ma H, Wei H, Yin Y, Liu M. Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs. Front Microbiol 2023; 14:1117965. [PMID: 36778880 PMCID: PMC9911695 DOI: 10.3389/fmicb.2023.1117965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Finishing weight is a key economic trait in the domestic pig industry. Evidence has linked the gut microbiota and SCFAs to health and production performance in pigs. Nevertheless, for Diannan small ear (DSE) pigs, a specific pig breed in China, the potential effect of gut microbiota and SCFAs on their finishing weight remains unclear. Herein, based on the data of the 16S ribosomal RNA gene and metagenomic sequencing analysis, we found that 13 OTUs could be potential biomarkers and 19 microbial species were associated with finishing weight. Among these, carbohydrate-decomposing bacteria of the families Streptococcaceae, Lactobacillaceae, and Prevotellaceae were positively related to finishing weight, whereas the microbial taxa associated with intestinal inflammation and damage exhibited opposite effects. In addition, interactions of these microbial species were found to be linked with finishing weight for the first time. Gut microbial functional annotation analysis indicated that CAZymes, such as glucosidase and glucanase could significantly affect finishing weight, given their roles in increasing nutrient absorption efficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies (KOs) and KEGG pathways analysis indicated that glycolysis/gluconeogenesis, phosphotransferase system (PTS), secondary bile acid biosynthesis, ABC transporters, sulfur metabolism, and one carbon pool by folate could act as key factors in regulating finishing weight. Additionally, SCFA levels, especially acetate and butyrate, had pivotal impacts on finishing weight. Finishing weight-associated species Prevotella sp. RS2, Ruminococcus sp. AF31-14BH and Lactobacillus pontis showed positive associations with butyrate concentration, and Paraprevotella xylaniphila and Bacteroides sp. OF04-15BH were positively related to acetate level. Taken together, our study provides essential knowledge for manipulating gut microbiomes to improve finishing weight. The underlying mechanisms of how gut microbiome and SCFAs modulate pigs' finishing weight required further elucidation.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuju Lian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongjiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China,*Correspondence: Yulong Yin, ✉
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China,Mei Liu, ✉
| |
Collapse
|
160
|
Li Y, Chen G, Zhang K, Cao J, Zhao H, Cong Y, Qiao G. Integrated transcriptome and network analysis identifies EZH2/CCNB1/PPARG as prognostic factors in breast cancer. Front Genet 2023; 13:1117081. [PMID: 36712863 PMCID: PMC9873965 DOI: 10.3389/fgene.2022.1117081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BC) has high morbidity, with significant relapse and mortality rates in women worldwide. Therefore, further exploration of its pathogenesis is of great significance. This study selected therapy genes and possible biomarkers to predict BC using bioinformatic methods. To this end, the study examined 21 healthy breasts along with 457 BC tissues in two Gene Expression Omnibus (GEO) datasets and then identified differentially expressed genes (DEGs). Survival-associated DEGs were screened using the Kaplan-Meier curve. Based on Gene Ontology (GO) annotation, survival-associated DEGs were mostly associated with cell division and cellular response to hormone stimulus. The enriched Kyoto Encyclopedia of Gene and Genome (KEGG) pathway was mostly correlated with cell cycle and tyrosine metabolism. Using overlapped survival-associated DEGs, a survival-associated PPI network was constructed. PPI analysis revealed three hub genes (EZH2, CCNB1, and PPARG) by their degree of connection. These hub genes were confirmed using The Cancer Genome Atlas (TCGA)-BRCA dataset and BC tissue samples. Through Gene Set Enrichment Analysis (GSEA), the molecular mechanism of the potential therapy and prognostic genes were evaluated. Thus, hub genes were shown to be associated with KEGG_CELL_CYCLE and VANTVEER_BREAST_CANCER_POOR_PROGNOSIS gene sets. Finally, based on integrated bioinformatics analysis, this study identified three hub genes as possible prognostic biomarkers and therapeutic targets for BC. The results obtained further understanding of the underground molecular mechanisms related to BC occurrence and prognostic outcomes.
Collapse
Affiliation(s)
- Yalun Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Kun Zhang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
161
|
Omale S, Amagon KI, Johnson TO, Bremner SK, Gould GW. A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials. PeerJ 2023; 11:e14639. [PMID: 36627919 PMCID: PMC9826616 DOI: 10.7717/peerj.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Diabetes is one of the fastest-growing health emergencies of the 21st century, placing a severe economic burden on many countries. Current management approaches have improved diabetic care, but several limitations still exist, such as decreased efficacy, adverse effects, and the high cost of treatment, particularly for developing nations. There is, therefore, a need for more cost-effective therapies for diabetes management. The evidence-based application of phytochemicals from plants in the management of diseases is gaining traction. Methodology Various plants and plant parts have been investigated as antidiabetic agents. This review sought to collate and discuss published data on the cellular and molecular effects of medicinal plants and phytochemicals on insulin signaling pathways to better understand the current trend in using plant products in the management of diabetes. Furthermore, we explored available information on medicinal plants that consistently produced hypoglycemic effects from isolated cells to animal studies and clinical trials. Results There is substantial literature describing the effects of a range of plant extracts on insulin action and insulin signaling, revealing a depth in knowledge of molecular detail. Our exploration also reveals effective antidiabetic actions in animal studies, and clear translational potential evidenced by clinical trials. Conclusion We suggest that this area of research should be further exploited in the search for novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Simeon Omale
- African Centre for Excellence in Phytomedicine, University of Jos, Jos, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Kennedy I. Amagon
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Titilayo O. Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Shaun Kennedy Bremner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
162
|
Sree CG, Buddolla V, Lakshmi BA, Kim YJ. Phthalate toxicity mechanisms: An update. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109498. [PMID: 36374650 DOI: 10.1016/j.cbpc.2022.109498] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Phthalates are one of the most widely used plasticizers in polymer products, and they are increasingly being exposed to people all over the world, generating health concerns. Phthalates are often used as excipients in controlled-release capsules and enteric coatings, and patients taking these drugs may be at risk. In both animals and human, phthalates are mainly responsible for testicular dysfunction, ovarian toxicity, reduction in steroidogenesis. In this regard, for a better understanding of the health concerns corresponding to phthalates and their metabolites, still more research is required. Significantly, multifarious forms of phthalates and their biomedical effects are need to be beneficial to investigate in the various tissues or organs. Based on these investigations, researchers can decipher their toxicity concerns and related mechanisms in the body after phthalate's exposure. This review summarizes the chemical interactions, mechanisms, and their biomedical applications of phthalates in animals and human.
Collapse
Affiliation(s)
- Chendruru Geya Sree
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
163
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
164
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
165
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
166
|
Chu X, Zhou Y, Zhang S, Liu S, Li G, Xin Y. Chaetomorpha linum polysaccharides alleviate NAFLD in mice by enhancing the PPARα/CPT-1/MCAD signaling. Lipids Health Dis 2022; 21:140. [PMID: 36529726 PMCID: PMC9762026 DOI: 10.1186/s12944-022-01730-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Green algae contain many polysaccharides. However, there is no information on whether Chaetomorpha linum polysaccharides (CLP) can modulate lipid and glucose metabolism. MATERIAL AND METHODS CLP were extracted from chlorella and their components were characterized. Male C57BL/6 mice were randomized and provided with control chow as the control, or high fat diet (HFD) to induce nonalcoholic fatty liver disease (NAFLD). NAFLD mice were treated orally with water as the HFD group or with 50 or 150 mg/kg CLP daily for 10 weeks. The impact of CLP treatment on lipid and glucose metabolism and the PPARα signaling was examined by histology, Western blotting and biochemistry. RESULTS CLP mainly contained arabinogalactan sulfate. Compared with the control, HFD feeding increased body weights, lipid droplet liver deposition and induced hyperlipidemia, liver functional impairment and glucose intolerance in mice. Treatment with CLP, particularly with a higher dose of CLP, limited the HFD-increased body weights and liver lipid droplet deposition, mitigated the HFD-induced hyperlipidemia and improved liver function and glucose tolerance in mice. Mechanistically, feeding with HFD dramatically decreased the expression of liver PPARα, CPT-1, and MCAD, but treatment with CLP enhanced their expression in a trend of dose-dependent in mice. CONCLUSIONS These findings indicated that CLP treatment alleviated the gain in body weights, NAFLD, and glucose intolerance in mice after HFD feeding by enhancing the PPARα/CPT-1/MCAD signaling.
Collapse
Affiliation(s)
- Xueru Chu
- grid.415468.a0000 0004 1761 4893School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, 5 Yushan Road, Qingdao, 266003, 266011 Shandong Province China
| | - Yu Zhou
- grid.415468.a0000 0004 1761 4893School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, 5 Yushan Road, Qingdao, 266003, 266011 Shandong Province China
| | - Shuimi Zhang
- grid.415468.a0000 0004 1761 4893School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, 5 Yushan Road, Qingdao, 266003, 266011 Shandong Province China
| | - Shousheng Liu
- grid.415468.a0000 0004 1761 4893Clinical Research Center, Qingdao Municipal Hospital, Qingdao, 266071 Shandong Province China
| | - Guoyun Li
- grid.415468.a0000 0004 1761 4893School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, 5 Yushan Road, Qingdao, 266003, 266011 Shandong Province China
| | - Yongning Xin
- grid.415468.a0000 0004 1761 4893School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, 5 Yushan Road, Qingdao, 266003, 266011 Shandong Province China ,grid.415468.a0000 0004 1761 4893Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011 Shandong Province China
| |
Collapse
|
167
|
Shi CY, Xu JJ, Li C, Yu JL, Wu YT, Huang HF. A PPARG Splice Variant in Granulosa Cells Is Associated with Polycystic Ovary Syndrome. J Clin Med 2022; 11:jcm11247285. [PMID: 36555903 PMCID: PMC9786670 DOI: 10.3390/jcm11247285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We explored whether there are splice variants (SVs) of peroxisome proliferator-activated receptor-gamma (PPARG) in polycystic ovary syndrome (PCOS) patients and its relationship with clinical features and KGN cell functions. METHODS We performed a study involving 153 women with PCOS and 153 age-matched controls. One type of PPARG SV was detected by SMARTer RACE. The correlations between PPARG SV expression levels, clinical features, and KGN cell functions were analyzed. The effect of the PPARG SV on the expression of important genes in metabolism-related pathways was explored by PCR array. RESULTS The expression of the PPARG SV in PCOS patients was significantly higher than that in the controls. Clinical features were more significant in the PCOS group with the SV. Compared with overexpression of PPARG, the overexpression of the PPARG SV inhibited the proliferation, migration, and apoptosis of KGN cells in vitro. The genes related to the PPARG SV were mainly involved in lipid metabolism. CONCLUSION While granulosa cells contribute greatly to the development of follicles, our results suggest that the identified PPARG SV may regulate cell proliferation, migration, and apoptosis in granulosa cells, which could partially explain the mechanisms of ovulation dysfunction in PCOS. Further investigation of the utility of this PPARG SV as a biomarker for PCOS is warranted.
Collapse
Affiliation(s)
- Chao-Yi Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Ningbo Women and Children’s Hospital, Ningbo 315012, China
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Jia-Le Yu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Correspondence: (Y.-T.W.); (H.-F.H.)
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Correspondence: (Y.-T.W.); (H.-F.H.)
| |
Collapse
|
168
|
Yao Q, Chen J, Li X, Yang W, Ning J, Liang Q, Li Q. Site-selective covalent immobilization of PPARγ using a label-free strategy for chromatographic study. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
169
|
Ke J, Pan J, Lin H, Gu J. Diabetic cardiomyopathy: a brief summary on lipid toxicity. ESC Heart Fail 2022; 10:776-790. [PMID: 36369594 PMCID: PMC10053269 DOI: 10.1002/ehf2.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) is a serious epidemic around the globe, and cardiovascular diseases account for the majority of deaths in patients with DM. Diabetic cardiomyopathy (DCM) is defined as a cardiac dysfunction derived from DM without the presence of coronary artery diseases and hypertension. Patients with either type 1 or type 2 DM are at high risk of developing DCM and even heart failure. Metabolic disorders of obesity and insulin resistance in type 2 diabetic environments result in dyslipidaemia and subsequent lipid-induced toxicity (lipotoxicity) in organs including the heart. Although various mechanisms have been proposed underlying DCM, it remains incompletely understood how lipotoxicity alters cardiac function and how DM induces clinical heart syndrome. With recent progress, we here summarize the latest discoveries on lipid-induced cardiac toxicity in diabetic hearts and discuss the underlying therapies and controversies in clinical DCM.
Collapse
Affiliation(s)
- Jiahan Ke
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jianan Pan
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Hao Lin
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jun Gu
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
170
|
Lai YH, Wu TC, Tsai BY, Hung YP, Lin HJ, Tsai YS, Ko WC, Tsai PJ. Peroxisome proliferator-activated receptor-γ as the gatekeeper of tight junction in Clostridioides difficile infection. Front Microbiol 2022; 13:986457. [PMID: 36439832 PMCID: PMC9691888 DOI: 10.3389/fmicb.2022.986457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
Clostridioides difficile is a major causative pathogen of nosocomial antibiotic-associated diarrhea and severe colitis. Despite the use of vancomycin and fidaxomicin as standard drugs for the treatment of C. difficile infection (CDI), clinical relapse rates remain high. Therefore, new alternative therapeutics to treat CDI are urgently required. The nuclear receptor, peroxisome proliferator-activated receptor-γ (PPAR-γ), is mainly expressed in the adipose tissue and modulates lipid metabolism and insulin sensitization. Previous studies have shown that PPAR-γ is highly expressed in colonic tissues and regulates tight junction function in epithelial cells. However, the role of PPAR-γ in CDI pathogenesis remains unclear. In this study, we used a mouse model of CDI and found that both expression levels of PPAR-γ and the tight junction protein, occludin, were decreased in colonic tissues. Furthermore, to investigate the role of PPAR-γ in CDI, we used PPAR-γ defective mice and found that intestinal permeability and bacterial dissemination in these mice were significantly higher than those in wild-type mice during CDI. Administration of the PPAR-γ agonist, pioglitazone, to activate PPAR-γ activity improved the phenotypes of CDI, including bodyweight loss, inflammation, and intestinal integrity. Taken together, these results demonstrate that PPAR-γ is a potential therapeutic target in CDI, as it modulates colonic inflammation and integrity.
Collapse
Affiliation(s)
- Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tai-Chieh Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Yang Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Departments of Internal Medicine, Tainan Hospital, Ministry of Health & Welfare, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Ju Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
171
|
Luan C, Jin S, Hu Y, Zhou X, Liu L, Li R, Ju M, Huang D, Chen K. Whole-genome identification and construction of the lncRNA-mRNA co-expression network in patients with actinic keratosis. Transl Cancer Res 2022; 11:4070-4078. [PMID: 36523309 PMCID: PMC9745357 DOI: 10.21037/tcr-22-842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/17/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND Actinic keratosis (AK) is a common premalignant lesion induced by chronic exposure to ultraviolet radiation and may develop into invasive cutaneous squamous carcinoma (cSCC). The identification of specific biomarkers in AK are still unclear. Long non-coding RNAs (lncRNAs), as transcripts of more than 200 nucleotides, significantly involving in multiple biologic processes, especially in the development of tumors. METHODS In our study, we obtained data from RNA-sequencing analysis using two AK lesion tissues and three normal cutaneous tissues to comparatively analyze the differentially expressed (DE) lncRNAs and messenger RNAs (mRNAs). Firstly, we used microarray analyses to identify DE lncRNAs and DE mRNAs. Secondly, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to analyze the primary function and find out significant pathways of these DE mRNA and lncRNAs. Finally, we used the top ten DE lncRNAs to construct a lncRNA-mRNA co-expression network. RESULTS Our results showed that there were a total of 2,097 DE lncRNAs and 2,043 DE mRNAs identified. GO and KEGG analysis and the lncRNA-mRNA co-expression network (using the top 10 DE lncRNAs comprises 130 specific co-expressed mRNAs to construct) indicated that lncRNA uc011fnr.2 may negatively regulate SCIMP and Toll-like receptor 4 (TLR4) and play an important role in Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway of AK. CONCLUSIONS lncRNA uc011fnr.2 may play an important role in JAK-STAT3 signaling pathway of AK by modulating SCIMP, TLR4 and IL-6. Further research is required to validate the value of lncRNA uc011fnr.2 in the progression of AK.
Collapse
Affiliation(s)
- Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Shuang Jin
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Xuyue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Lingxi Liu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Rong Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| |
Collapse
|
172
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is often caused by obesity. Currently, moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) are two effective treatments for reducing fat mass in patients with obesity and NAFLD. However, the comparative fat-reducing effects and underlying molecular mechanisms of MICT and HIIT remain unclear. This comprehensive study was performed on male Wistar rats treated with standard diet, high-fat diet, MICT, and HIIT to explore their comparative fat-reducing effects and corresponding molecular mechanisms. HIIT had a greater effect on hepatic vacuolation density and lipid content reduction than MICT, and triglyceride and total cholesterol levels in the serum and the liver demonstrated different sensitivities to different exercise training programs. At the molecular level, both MICT and HIIT altered the processes of fatty acid synthesis, fatty acid transport, fatty acid β-oxidation, and cholesterol synthesis, wherein the transcriptional and translational levels of signaling molecules peroxisome proliferator-activated receptors (PPARs) regulating fatty acid and cholesterol synthesis were strongly changed. Moreover, the metabolic pathways of amino acids, bile acids, and carbohydrates were also affected according to transcriptome analysis, and the changes in the above-mentioned processes in the HIIT group were greater than those in the MICT group. In combination with the search tool for the retrieval of interacting genes/proteins (STRING) analysis and the role of PPARs in lipid metabolism, as well as the expression pattern of PPARs in the MICT and HIIT groups, the MICT-and HIIT-induced fat loss was mediated by the PPAR pathway, causing feedback responses in fatty acid, steroid, amino acid, bile acid, and carbohydrate metabolism, and HIIT had a better fat-reducing effect, which may be initiated by PPAR-α. This study provides a theoretical basis for targeted therapy of patients with obesity and NAFLD.
Collapse
Affiliation(s)
- Xueyan Gu
- Department of Sports and Nutrition, Kunsan National University, Gunsan, Korea; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaocui Ma
- Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Limin Mo
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| | - Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| |
Collapse
|
173
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
174
|
High RAS-related protein Rab-7a (RAB7A) expression is a poor prognostic factor in pancreatic adenocarcinoma. Sci Rep 2022; 12:17492. [PMID: 36261459 PMCID: PMC9582019 DOI: 10.1038/s41598-022-22355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a frequent type of cancer in adults worldwide, and the search for better biomarkers is one of the current challenges. Although RAB7A is associated with tumour progression in multiple tumour types, there are only a few reports in PAAD. Therefore, in this paper, RNA sequencing data were obtained from TCGA(The Cancer Genome Atlas) and GTEx to analyse RAB7A expression and differentially expressed genes (DEGs) in PAAD. The functional enrichment of RAB7A-associated DEGs was analysed by protein‒protein interaction (PPI) networks, immune cell infiltration analysis and GO/KEGG analyses. Additionally, Kaplan‒Meier and Cox regression analyses were used to determine the clinical significance of RAB7A in PAAD. High RAB7A expression was associated with poor prognosis in 182 PAAD specimens, including subgroups of patients aged ≤ 65 years, with male sex, not receiving radiotherapy, and with a history of previous alcohol consumption (P < 0.05). Cox regression analysis showed that elevated RAB7A was an independent prognostic factor, and the prognostic nomogram model included radiotherapy status, presence of postoperative tumour residual and histologic grade. Overall, RAB7A overexpression may serve as a biomarker for poor outcome in pancreatic cancer. The DEGs and pathways revealed in this work provide a tentative molecular mechanism for the pathogenesis and progression of PAAD.
Collapse
|
175
|
Lin H, Han Q, Wang J, Zhong Z, Luo H, Hao Y, Jiang Y. Methylation-Mediated Silencing of RBP7 Promotes Breast Cancer Progression through PPAR and PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2022; 2022:9039110. [PMID: 36276273 PMCID: PMC9584705 DOI: 10.1155/2022/9039110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Retinoid-binding protein7 (RBP7) is a member of the cellular retinol-binding protein (CRBP) family, which is involved in the pathogenesis of breast cancer. The study aims to illustrate the prognostic value and the potential regulatory mechanisms of RBP7 expression in breast cancer. Bioinformatics analysis with the TCGA and CPTAC databases revealed that the mRNA and protein expression levels of RBP7 in normal were higher compared to breast cancer tissues. Survival analysis displayed that the lower expression of RBP7, the worse the prognosis in ER-positive (ER+) breast cancer patients. Genomic analysis showed that low expression of RBP7 correlates with its promoter hypermethylation in breast cancer. Functional enrichment analysis demonstrated that downregulation of RBP7 expression may exert its biological influence on breast cancer through the PPAR pathway and the PI3K/AKT pathway. In summary, we identified RBP7 as a novel biomarker that is helpful for the prognosis of ER+ breast cancer patients. Promoter methylation of RBP7 is involved in its gene silencing in breast cancer, thus regulating the occurrence and development of ER+ breast cancer through the PPAR and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Hong Lin
- The fifth Clinical Medical College of Henan University of Chinese Medicine, Henan University of Chinese Medicine, No. 33 Huanghe Road, Zhengzhou, 410105 Henan, China
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Qizheng Han
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Junhao Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Zhaoqian Zhong
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Yibin Hao
- The fifth Clinical Medical College of Henan University of Chinese Medicine, Henan University of Chinese Medicine, No. 33 Huanghe Road, Zhengzhou, 410105 Henan, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| |
Collapse
|
176
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
177
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
178
|
Kumar A, Wahan SK, Virendra SA, Chawla PA. Recent Advances on the Role of Nitrogen‐Based Heterocyclic Scaffolds in Targeting HIV through Reverse Transcriptase Inhibition. ChemistrySelect 2022. [DOI: 10.1002/slct.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ankur Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Simranpreet K. Wahan
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| |
Collapse
|
179
|
Jayaprakash S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Lee EHC, Yap KCH, Sethi G, Kumar AP, Kunnumakkara AB. Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer. Int J Mol Sci 2022; 23:ijms231810952. [PMID: 36142861 PMCID: PMC9501100 DOI: 10.3390/ijms231810952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal cancer (EC), an aggressive and poorly understood disease, is one of the top causes of cancer-related fatalities. GLOBOCAN 2020 reports that there are 544,076 deaths and 604,100 new cases expected worldwide. Even though there are various advancements in treatment procedures, this cancer has been reported as one of the most difficult cancers to cure, and to increase patient survival; treatment targets still need to be established. Nuclear receptors (NRs) are a type of transcription factor, which has a key role in several biological processes such as reproduction, development, cellular differentiation, stress response, immunity, metabolism, lipids, and drugs, and are essential regulators of several diseases, including cancer. Numerous studies have demonstrated the importance of NRs in tumor immunology and proved the well-known roles of multiple NRs in modulating proliferation, differentiation, and apoptosis. There are surplus of studies conducted on NRs and their implications in EC, but only a few studies have demonstrated the diagnostic and prognostic potential of NRs. Therefore, there is still a paucity of the role of NRs and different ways to target them in EC cells to stop them from spreading malignancy. This review emphasizes the significance of NRs in EC by discussing their diverse agonists as well as antagonists and their response to tumor progression. Additionally, we emphasize NRs’ potential to serve as a novel therapeutic target and their capacity to treat and prevent EC.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - E. Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (A.P.K.); (A.B.K.)
| |
Collapse
|
180
|
Activating PPARβ/δ Protects against Endoplasmic Reticulum Stress-Induced Astrocytic Apoptosis via UCP2-Dependent Mitophagy in Depressive Model. Int J Mol Sci 2022; 23:ijms231810822. [PMID: 36142731 PMCID: PMC9500741 DOI: 10.3390/ijms231810822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As energy metabolism regulation factor, peroxisome proliferator-activated receptor (PPAR) is thought to be a potential target for the treatment of depression. The present study was performed to evaluate the effects of activating PPARβ/δ, the most highly expressed subtype in the brain, in depressive in vivo and in vitro models. We observed that PPARβ/δ agonist GW0742 significantly alleviated depressive behaviors in mice and promoted the formation of autophagosomes around the damaged mitochondria in hippocampal astrocytes. Our in vitro experiments showed that GW0742 could reduce mitochondrial oxidative stress, and thereby attenuate endoplasmic reticulum (ER) stress-mediated apoptosis pathway via inhibiting IRE1α phosphorylation, subsequently protect against astrocytic apoptosis and loss. Furthermore, we found that PPARβ/δ agonist induces astrocytic mitophagy companied with the upregulated UCP2 expressions. Knocking down UCP2 in astrocytes could block the anti-apoptosis and pro-mitophagy effects of GW0742. In conclusion, our findings reveal PPARβ/δ activation protects against ER stress-induced astrocytic apoptosis via enhancing UCP2-mediated mitophagy, which contribute to the anti-depressive action. The present study provides a new insight for depression therapy.
Collapse
|
181
|
Pioglitazone Mediates Cardiac Progenitor Formation through Increasing ROS Levels. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1480345. [PMID: 36124070 PMCID: PMC9482506 DOI: 10.1155/2022/1480345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
In order to achieve a sufficient population of cardiac-committed progenitor cells, it is crucial to know the mechanisms of cardiac progenitor formation. Previous studies suggested ROS effect on cardiac commitment events to play a key role in the cell signaling and activate cardiac differentiation of pluripotent stem cells. We previously reported that PPARγ activity is essential for cardiac progenitor cell commitment. Although several studies have conducted the involvement of PPARγ-related signaling pathways in cardiac differentiation, so far, the regulatory mechanisms of these signaling pathways have not been discussed and cleared. In this study, we focus on the role of PPARγ agonist in ROS generation and its further effects on the differentiation of cardiac cells from mESCs. The results of this study show that the presence of ROS is necessary for heart differentiation in the precursor stage of cardiac cells, and the coenzyme Q10 antioxidant precludes proper cardiac differentiation. In addition, this antioxidant prevents the action of pioglitazone in increasing oxygen radicals as well as beating cardiomyocyte differentiation properties. In this case, it can be concluded that PPARγ is required to modulate ROS levels during cardiac differentiation.
Collapse
|
182
|
Jiao Y, Wu G. Optimizing the Time Window of Minimally Invasive Stereotactic Surgery for Intracerebral Hemorrhage Evacuation Combined with Rosiglitazone Infusion Therapy in Rabbits. World Neurosurg 2022; 165:e265-e275. [PMID: 35697232 DOI: 10.1016/j.wneu.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to explore the effects of minimally invasive surgery (MIS) in combination with rosiglitazone (RSG) on intracerebral hemorrhage (ICH) and determine the optimal time window. METHODS An ICH rabbit model was constructed using the injection of autologous arterial blood and then treated with RSG, MIS, and MIS combined with RSG at 6, 12, 18, and 24 hours. Thereafter, rabbits that underwent different treatments were used to measure the neurological deficit score, brain water content, and glutamate content. Expression of peroxisome proliferator-activated receptor γ (PPARγ) and CD36 in the different groups was detected using real-time quantitative polymerase chain reaction and Western blotting. In addition, oxidative stress-related and inflammation-related genes were examined. RESULTS Brain computed tomography indicated that an ICH rabbit model was successfully established. Compared to those in the control rabbits, the neurological deficit scores, brain water content, and glutamate content in the ICH rabbits were significantly increased at each time window (P < 0.05), while they were decreased at each time window after MIS combined with RSG treatment and declined to the lowest at 6 hours. Additionally, ICH significantly upregulated PPARγ and CD36 expression (P < 0.05). Moreover, superoxide dismutase content decreased after ICH, and nitric oxide synthase 2, tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta mRNA expression was upregulated, whereas MIS combined with RSG treatment reversed the levels caused by ICH. CONCLUSIONS Evacuation of MIS hematoma combined with RSG infusion at an early stage (6 hours) may attenuate secondary brain damage caused by ICH by regulating the PPARγ/CD36 pathway.
Collapse
Affiliation(s)
- Yu Jiao
- Department of Emergency Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Guofeng Wu
- Department of Emergency Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China.
| |
Collapse
|
183
|
Ma X, Yang B, Yang Y, Wu G, Ma X, Yu X, Li Y, Wang Y, Guo Q. Identification of N7-methylguanosine-related IncRNA signature as a potential predictive biomarker for colon adenocarcinoma. Front Genet 2022; 13:946845. [PMID: 36105111 PMCID: PMC9465161 DOI: 10.3389/fgene.2022.946845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
N7-Methylguanosine (m7G) is an RNA modification serving as a key part of colon cancer development. Thus, a comprehensive analysis was executed to explore prognostic roles and associations with the immune status of the m7G-related lncRNA (m7G-RNAs) in colon adenocarcinoma (COAD). Identification of m7G-RNAs was achieved via Pearson’s correlation analysis of lncRNAs in the TCGA-COAD dataset and m7G regulators. A prognostic signature was developed via LASSO analyses. ESTIMATE, CIBERSORT, and ssGSEA algorithms were utilized to assess immune infiltration between different risk groups. Survival analysis suggested the high-risk group possesses poor outcomes compared with the low-risk group. According to the ROC curves, the m7G-RNAs signature exhibited a reliable capability of prediction (AUCs at 1, 3, and 5 years were 0.770, 0.766, and 0.849, respectively). Multivariate hazard analysis proved that the signature was an independent predictive indicator for OS. Moreover, the risk score was related to infiltration levels of naïve B cells, CD4+ memory T cells, and resting NK cells. The result revealed the prognostic value of m7G modification in COAD and provided a novel perspective on personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Xiaomei Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Baoshun Yang
- General Surgery Ward 5, First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Qinghong Guo, ; Baoshun Yang,
| | - Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoli Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao Yu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yingwen Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Qinghong Guo, ; Baoshun Yang,
| |
Collapse
|
184
|
Aidhen IS, Srikanth S, Lal H. The Emerging Promise with O/C‐Glycosides of Important Dietary Phenolic Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Indrapal Singh Aidhen
- Indian Institute of Technology Madras Department of Chemistry Adyar 600036 Chennai INDIA
| | | | - Heera Lal
- Indian Institute of Technology Madras Chemistry 600036 Chennai INDIA
| |
Collapse
|
185
|
Phenolic Acids from Fructus Chebulae Immaturus Alleviate Intestinal Ischemia-Reperfusion Injury in Mice through the PPARα/NF-κB Pathway. Molecules 2022; 27:molecules27165227. [PMID: 36014464 PMCID: PMC9415796 DOI: 10.3390/molecules27165227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a common life-threatening complication with high morbidity and mortality. Chebulae Fructus Immaturus, the unripe fruit of Terminalia chebula Retz., also known as “Xiqingguo” or “Tibet Olive” in China, has been widely used in traditional Tibetan medicine throughout history. The phenolic acids’ extract of Chebulae Fructus Immaturus (XQG for short) has exhibited strong antioxidative, anti-inflammation, anti-apoptosis, and antibacterial activities. However, whether XQG can effectively ameliorate II/R injuries remains to be clarified. Our results showed that XQG could effectively alleviate II/R-induced intestinal morphological damage and intestinal barrier injury by decreasing the oxidative stress, inflammatory response, and cell death. Transcriptomic analysis further revealed that the main action mechanism of XQG protecting against II/R injury was involved in activating PPARα and inhibiting the NF-κB-signaling pathway. Our study suggests the potential usage of XQG as a new candidate to alleviate II/R injury.
Collapse
|
186
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
187
|
Avagliano C, De Caro C, Cuozzo M, Liguori FM, La Rana G, Micheli L, Di Cesare Mannelli L, Ghelardini C, Paciello O, Russo R. Phaseolus vulgaris extract ameliorates high-fat diet-induced colonic barrier dysfunction and inflammation in mice by regulating peroxisome proliferator-activated receptor expression and butyrate levels. Front Pharmacol 2022; 13:930832. [PMID: 36034787 PMCID: PMC9403263 DOI: 10.3389/fphar.2022.930832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a health concern worldwide, and its onset is multifactorial. In addition to metabolic syndrome, a high-fat diet induces many deleterious downstream effects, such as chronic systemic inflammation, a loss of gut barrier integrity, and gut microbial dysbiosis, with a reduction of many butyrate-producing bacteria. These conditions can be ameliorated by increasing legumes in the daily diet. White and kidney beans (Phaseolus vulgaris L.) and their non-nutritive bioactive component phaseolamin were demonstrated to mitigate several pathological features related to a metabolic syndrome-like condition. The aim of the present study was to investigate the molecular pathways involved in the protective effects on the intestinal and liver environment of a chronic oral treatment with P. vulgaris extract (PHAS) on a murine model of the high-fat diet. Results show that PHAS treatment has an anti-inflammatory effect on the liver, colon, and cecum. This protective effect was mediated by peroxisome proliferator-activated receptor (PPAR)-α and γ. Moreover, we also observed that repeated PHAS treatment was able to restore tight junctions’ expression and protective factors of colon and cecum integrity disrupted in HFD mice. This improvement was correlated with a significant increase of butyrate levels in serum and fecal samples compared to the HFD group. These data underline that prolonged treatment with PHAS significantly reduces some pathological features related to the metabolic syndrome-like condition, such as inflammation and intestinal barrier disruption; therefore, PHAS could be a valid tool to be associated with the therapeutic strategy.
Collapse
Affiliation(s)
- Carmen Avagliano
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Carmen De Caro
- Department of Health Sciences, School of Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | | | | | - Giovanna La Rana
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health–Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health–Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health–Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Roberto Russo,
| |
Collapse
|
188
|
Mínguez-Alarcón L, Frueh L, Williams PL, James-Todd T, Souter I, Ford JB, Rexrode KM, Calafat AM, Hauser R, Chavarro JE. Pregnancy urinary concentrations of bisphenol A, parabens and other phenols in relation to serum levels of lipid biomarkers: Results from the EARTH study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155191. [PMID: 35421480 PMCID: PMC9662174 DOI: 10.1016/j.scitotenv.2022.155191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The epidemiologic literature on associations between urinary phenol concentrations and lipid profiles during pregnancy is limited. We examined whether urinary concentrations of phenol and phenol replacement biomarkers were associated with serum lipid levels among pregnant women. This cross-sectional study included 175 women attending the Massachusetts General Hospital Fertility Center who enrolled in the Environment and Reproductive Health (EARTH) Study between 2005 and 2017 and had data available on urinary phenol biomarkers and serum lipids during pregnancy. We used linear regression models to assess the relationship between groups of urinary phenol and phenol replacement biomarkers and serum lipid levels [total cholesterol, high density lipoprotein (HDL), non-HDL, low-density lipoprotein (LDL) cholesterol, and triglycerides], while adjusting for age at sample collection, pre-pregnancy BMI, education, race, infertility diagnosis, cycle type, number of fetuses, trimester and specific gravity. In adjusted models, pregnant women with urinary propylparaben concentrations in the highest tertile had 10% [22 (95% CI = 5, 40) mg/dL], 12% [19 (95% CI = 2, 36) mg/dL] and 16% [19 (95% CI = 3, 35) mg/dL] higher mean total, non-HDL and LDL cholesterol, respectively, compared to women with concentrations in the lowest tertile. Similar elevations were observed for urinary bisphenol A concentrations. Urinary bisphenol S, benzophenone-3, triclosan, methylparaben, ethylparaben, and butylparaben were unrelated to serum lipids. Among pregnant women, urinary concentrations of bisphenol A and propylparaben were associated with higher serum levels of total, non-HDL and LDL cholesterol.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, USA; Department of Environmental Health Epidemiology, Boston, USA.
| | - Lisa Frueh
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, USA; Department of Environmental Health Epidemiology, Boston, USA
| | - Paige L Williams
- Department of Biostatistics, Boston, USA; Departments of Nutrition, Boston, USA
| | - Tamarra James-Todd
- Department of Environmental Health Epidemiology, Boston, USA; Department of Biostatistics, Boston, USA
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health Epidemiology, Boston, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Department of Environmental Health Epidemiology, Boston, USA; Department of Biostatistics, Boston, USA; Department of Obstetrics, Gynaecology and Reproductive Biology, Harvard Medical School, Boston, USA
| | - Jorge E Chavarro
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, USA; Department of Biostatistics, Boston, USA; Departments of Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
189
|
Eghtedari AR, Vaezi MA, Safizadeh B, Ghasempour G, Babaheidarian P, Salimi V, Tavakoli-Yaraki M. Evaluation of the expression pattern and diagnostic value of PPARγ in malignant and benign primary bone tumors. BMC Musculoskelet Disord 2022; 23:746. [PMID: 35922782 PMCID: PMC9347110 DOI: 10.1186/s12891-022-05681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The quantifiable description of PPARγ expression pattern beside mechanistic in-vitro evidence will provide insights into the involvement of this mediator in tumor pathogenesis. This study is focused on illuminating the PPARγ gene and protein expression pattern, its association with tumor deterioration and its diagnostic value in different types of primary bone tumors. METHODS The expression pattern of PPARγ was investigated in the 180 bone tissues including 90 bone tumor tissues and 90 non-cancerous bone tissues. The local PPARγ expression level was assessed using real-time qRT-PCR and the PPARγ protein expression pattern was measured using immunohistochemistry. The correlation of PPARγ expression level with patients' clinic-pathological features, also the value of the variables in predicting PPARγ expression level in tumors and the value of PPARγ to discriminate tumor subtypes were assessed. RESULTS The mean PPARγ mRNA expression was significantly higher in bone tumors compared to healthy bone tissues, also the malignant tumors including osteosarcoma and Ewing sarcoma had the elevated level of PPARγ mRNA compared to GCT tumors. Consistently, the protein expression of PPARγ in the tumor site was significantly higher in the bone tumors and malignant tumors compared to non-cancerous and benign tumors, respectively. The PPARγ protein could predict malignant tumor features including tumor grade, metastasis and recurrence significantly. Moreover, PPARγ could potentially discriminate the patients from the controls also malignant tumors from benign tumors with significant sensitivity and specificity. CONCLUSIONS PPARγ might be involved in primary bone tumor pathogenesis and determining its molecular mechanism regarding bone cancer pathogenesis is of grave importance.
Collapse
Affiliation(s)
- Amir Reza Eghtedari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
190
|
Liu Y, Liang S, Wang K, Zi X, Zhang R, Wang G, Kang J, Li Z, Dou T, Ge C. Physicochemical, Nutritional Properties and Metabolomics Analysis Fat Deposition Mechanism of Chahua Chicken No. 2 and Yao Chicken. Genes (Basel) 2022; 13:1358. [PMID: 36011269 PMCID: PMC9407069 DOI: 10.3390/genes13081358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Poultry is an important dietary source of animal protein, accounting for approximately 30% of global meat consumption. Because of its low price, low fat and cholesterol content, and no religious restrictions, chicken is considered a widely available healthy meat. Chahua chicken No. 2 is a synthetic breed of Chahua chicken derived from five generations of specialized strain breeding. In this study, Chahua chicken No. 2 (CH) and Yao chicken (Y) were used as the research objects to compare the differences in physicochemical and nutritional indicators of meat quality between the two chicken breeds, and metabolomics was used to analyze the differences in metabolites and lipid metabolism pathways and to explore the expression of genes involved in adipogenesis. The physical index and nutritional value of CH are better than that of Y, and the chemical index of Y is better than that of CH. However, the chemical index results of CH are also within the normal theoretical value range. Comprehensive comparison shows that the meat quality of CH is relatively good. Metabolomics analysis showed that CH and Y had 85 different metabolites, and the differential metabolites were mainly classified into eight categories. KEGG pathway enrichment analysis revealed 13 different metabolic pathways. The screened PPARG, FABP3, ACSL5, FASN, UCP3 and SC5D were negatively correlated with muscle fat deposition, while PPARα, ACACA and ACOX1 were positively correlated with muscle fat deposition. The meat quality of CH was better than Y. The metabolites and metabolic pathways obtained by metabonomics analysis mainly involved the metabolism of amino acids and fatty acids, which were consistent with the differences in meat quality between the two breeds and the contents of precursors affecting flavor. The screened genes were associated with fatty deposition in poultry.
Collapse
Affiliation(s)
- Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Shuangmin Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Ru Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Guangzheng Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| |
Collapse
|
191
|
Katoch S, Sharma V, Patial V. Peroxisome proliferator-activated receptor gamma as a therapeutic target for hepatocellular carcinoma: Experimental and clinical scenarios. World J Gastroenterol 2022; 28:3535-3554. [PMID: 36161051 PMCID: PMC9372809 DOI: 10.3748/wjg.v28.i28.3535] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Viral hepatitis is a significant risk factor for HCC, although metabolic syndrome and diabetes are more frequently associated with the HCC. With increasing prevalence, there is expected to be > 1 million cases annually by 2025. Therefore, there is an urgent need to establish potential therapeutic targets to cure this disease. Peroxisome-proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that plays a crucial role in the patho-physiology of HCC. Many synthetic agonists of PPARγ suppress HCC in experimental studies and clinical trials. These synthetic agonists have shown promising results by inducing cell cycle arrest and apoptosis in HCC cells and preventing the invasion and metastasis of HCC. However, some synthetic agonists also pose severe side effects in addition to their therapeutic efficacy. Thus natural PPARγ agonists can be an alternative to exploit this potential target for HCC treatment. In this review, the regulatory role of PPARγ in the pathogenesis of HCC is elucidated. Furthermore, the experimental and clinical scenario of both synthetic and natural PPARγ agonists against HCC is discussed. Most of the available literature advocates PPARγ as a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Swati Katoch
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| | - Vinesh Sharma
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| | - Vikram Patial
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
192
|
Tong Y, Zhu W, Wen T, Mukhamejanova Z, Xu F, Xiang Q, Pang J. Xyloketal B Reverses Nutritional Hepatic Steatosis, Steatohepatitis, and Liver Fibrosis through Activation of the PPARα/PGC1α Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:1738-1750. [PMID: 35749236 DOI: 10.1021/acs.jnatprod.2c00259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a class of disorders including hepatic steatosis, steatohepatitis, and liver fibrosis. Previous research suggested that xyloketal B (Xyl-B), a marine-derived natural product, could attenuate the NAFLD-related lipid accumulation. Herein, we investigated the protective mechanism of Xyl-B in a high-fat diet (HFD) mice fatty liver model by combining a quantitative proteomic approach with experimental methods. The results showed that the administration of Xyl-B (20 and 40 mg·kg-1·day-1, ip) ameliorated the hepatic steatosis in HFD mice. Proteomic profiling together with bioinformatics analysis highlighted the upregulation of a cluster of peroxisome proliferator-activated receptor-α (PPARα) downstream enzymes mainly related to fatty acid oxidation (FAO) as key changes after the treatment. These changes were subsequently confirmed by bioassays. Moreover, further results showed that the expression levels of PPARα and PPARγ coactivator-1α (PGC1α) were increased after the treatment. The related mode-of-action was confirmed by PPARα inhibition. Furthermore, we evaluated the PPARα-mediated anti-inflammatory and antifibrosis effect of Xyl-B in methionine-choline-deficient (MCD) mice hepatitis and liver fibrosis models. According to the results, the histological features were improved, and the levels of inflammatory factors, adhesion molecules, as well as fibrosis markers were decreased after the treatment. Collectively, these results indicated that Xyl-B ameliorated different phases of NAFLD through activation of the PPARα/PGC1α signaling pathway. Our findings revealed the possible metabolism-regulating mechanism of Xyl-B, broadened the application of xyloketal family compounds, and may provide a new strategy to curb the development of NAFLD.
Collapse
Affiliation(s)
- Yichen Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianzhi Wen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | | | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) & Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine & Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
193
|
Wei W, Zhou YJ, Shen JL, Lu L, Lv XR, Lu TT, Xu PT, Xue XH. The Compatibility of Alisma and Atractylodes Affects the Biological Behaviours of VSMCs by Inhibiting the miR-128-5p/p21 Gene. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7617258. [PMID: 35845581 PMCID: PMC9283034 DOI: 10.1155/2022/7617258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Objective The compatibility of Alisma and Atractylodes (AA) has been estimated to exhibit antiatherosclerotic effects, but the mechanism remains unclear. This study aimed to identify the role of AA in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cell (VSMC) behaviours and to explore the effects of microRNAs (miRNAs). Methods A scratch wound-healing assay was used to detect the migration of VSMCs, and immunocytochemistry and western blotting for SM22ɑ were used to evaluate phenotypic transformation. Bromodeoxyuridine (BrdU) immunocytochemistry and flow cytometry were applied to detect the proliferation of VSMCs. miRNA microarray profiling was performed using Lianchuan biological small RNA sequencing analysis. VSMCs were transfected with the miR-128-5p mimic and inhibitor, and the migration, phenotypic modulation, and proliferation of VSMCs were investigated. The 3'UTR-binding sequence site of miR-128-5p on the p21 gene was predicted and assessed by luciferase assays. Result AA and the extracellular regulated protein kinase 1/2 (ERK1/2) blocker U0126 markedly inhibited migration, elevated smooth muscle 22α (SM22α) expression, repressed VSMC proliferation, elevated miR-466f-3p and miR-425-3p expression, and suppressed miR-27a-5p and miR-128-5p expression in ox-LDL-induced VSMCs. miR-128-5p targets the tissue inhibitor of metalloproteinases (TIMPs), silent information regulator 2 (SIRT2), peroxisome proliferator-activated receptor (PPAR), and p21 genes, which are linked to the behaviours of VSMCs. The miR-128-5p mimic promoted the migration and proliferation of VSMCs and suppressed p21, p27, and SM22ɑ expression. The inhibitor increased p21, p27, and SM22ɑ expression and repressed the migration, phenotypic transformation, and proliferation of VSMCs. miR-128-5p directly targeted the 3'UTR-binding sequences of the p21 gene, negatively regulated p21 expression, and supported the proliferation of VSMCs. Conclusion Our research showed that the migration, phenotypic transformation, and proliferation of ox-LDL-induced VSMCs were repressed by AA through inhibiting miR-128-5p by targeting the p21 gene, which may provide an effective option for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yang Jie Zhou
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ju Lian Shen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lu Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Ru Lv
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tao Tao Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pei Tao Xu
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xie Hua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Provincial Rehabilitation Industrial Institution, Fujian Provincial Key Laboratory of Rehabilitation Technology, Fujian Provincial Key Laboratory of Cognitive Rehabilitation, Fuzhou, China
| |
Collapse
|
194
|
Yaseen Y, Kubba A, Shihab W, Tahtamouni L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new series of niflumic acid (NF) derivatives were synthesized by esterification of (NF) to give ester compound 1, which was treated with hydrazine hydrate to produce (NF) hydrazide 2. Hydrazine-1-carboxamide compounds (3A–C), and hydrazine-1-carbothioamide derivatives (4A–D) were synthesized by treatment of (NF) hydrazide with phenyl isocyanate, and phenyl isothiocyanate derivatives, respectively. The cyclization of (4B–D) and (3B) was achieved using NaOH solution to produce 1,2,4-triazole derivatives (5A–C) and 6, respectively. The prepared compounds were characterized using IR, 1HNMR, 13CNMR, and MS (ESI) spectroscopy. A molecular docking study was performed to evaluate the binding affinity of the synthesized compounds against EGFR and VEGFR kinase domains which revealed that compounds 3B, and 4A had the best binding energy (-7.87, and -7.33 kcal/mol, respectively) against VEGFR, while compound 5A had the best binding energy (-7.95 kcal/mol) against EGFR. The biological investigation results indicated that all the tested compounds caused cell killing in the two cancer cell lines (Hep G2 and A549) studied, with compound 4C being the most cytotoxic, as well as being cancer selective. Additionally, compound 4C-treated Hep G2 cells were arrested at the S and G2/M cell cycle phases. Cytotoxicity of compound 4C was attributed to apoptosis as determined by flow cytometry and qRT-PCR results of the apoptosis markers p53, BAX, and caspase-3. Finally, compound 4C inhibited VEGFR kinase activity, while compound 5B inhibited EGFR kinase activity. In conclusion, the novel (NF) derivatives are potent anticancer agents, inhibiting cell proliferation by inhibiting EGFR and VEGFR tyrosine kinase enzymes.
Collapse
|
195
|
Kpemissi M, Veerapur VP, Suhas DS, Puneeth TA, Nandeesh R, Vijayakumar S, Eklu-Gadegbeku K. Combretum micranthum G. Don protects hypertension induced by L-NAME by cardiovascular and renal remodelling through reversing inflammation and oxidative stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
196
|
Man B, Hu C, Yang G, Xiang J, Yang S, Ma C. Berberine attenuates diabetic atherosclerosis via enhancing the interplay between KLF16 and PPARα in ApoE−/− mice. Biochem Biophys Res Commun 2022; 624:59-67. [DOI: 10.1016/j.bbrc.2022.07.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
|
197
|
De Vita S, Finamore C, Chini MG, Saviano G, De Felice V, De Marino S, Lauro G, Casapullo A, Fantasma F, Trombetta F, Bifulco G, Iorizzi M. Phytochemical Analysis of the Methanolic Extract and Essential Oil from Leaves of Industrial Hemp Futura 75 Cultivar: Isolation of a New Cannabinoid Derivative and Biological Profile Using Computational Approaches. PLANTS 2022; 11:plants11131671. [PMID: 35807623 PMCID: PMC9269227 DOI: 10.3390/plants11131671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Cannabis sativa L. is a plant belonging to the Cannabaceae family, cultivated for its psychoactive cannabinoid (Δ9-THC) concentration or for its fiber and nutrient content in industrial use. Industrial hemp shows a low Δ9-THC level and is a valuable source of phytochemicals, mainly represented by cannabinoids, flavones, terpenes, and alkaloids, with health-promoting effects. In the present study, we investigated the phytochemical composition of leaves of the industrial hemp cultivar Futura 75, a monoecious cultivar commercially used for food preparations or cosmetic purposes. Leaves are generally discarded, and represent waste products. We analyzed the methanol extract of Futura 75 leaves by HPLC and NMR spectroscopy and the essential oil by GC-MS. In addition, in order to compare the chemical constituents, we prepared the water infusion. One new cannabinoid derivative (1) and seven known components, namely, cannabidiol (2), cannabidiolic acid (3), β-cannabispirol (4), β-cannabispirol (5), canniprene (6), cannabiripsol (7), and cannflavin B (8) were identified. The content of CBD was highest in all preparations. In addition, we present the outcomes of a computational study focused on elucidating the role of 2α-hydroxy-Δ3,7-cannabitriol (1), CBD (2), and CBDA (3) in inflammation and thrombogenesis.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Claudia Finamore
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Federico Trombetta
- Societa Cooperativa Agricola MarcheSana, Localita San Biagio 40, 61032 Fano, Italy;
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| |
Collapse
|
198
|
Wang K, Wang G, Zhou B. TSPO knockdown attenuates OGD/R-induced neuroinflammation and neural apoptosis by decreasing NLRP3 inflammasome activity through PPARγ pathway. Brain Res Bull 2022; 187:1-10. [PMID: 35738501 DOI: 10.1016/j.brainresbull.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Ischemic stroke is a cerebrovascular disease which is related to brain function loss induced by cerebral ischemia. Translocator protein (TSPO) is an important regulator in inflammatory diseases, while its role in ischemic stroke remains largely unknown. This research aimed to explore the role and action mechanism of TSPO in oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuron cell damage. The differentially expressed genes in ischemic stroke were predicted using GSE140275 dataset, DisGeNet, and GeneCards databases. Differentiated SH-SY5Y cells and primary neurons were subjected to transfection, and stimulated with OGD/R or MCC950 (NLRP3 inhibitor). Proteins were detected by western blotting and ELISA. Cell apoptosis was evaluated through CCK-8, caspase-3 activity and TUNEL assays. TSPO was upregulated in ischemic stroke and in SH-SY5Y cells and primary neurons after OGD/R treatment. TSPO silencing attenuated OGD/R-induced inflammation and apoptosis by decreasing NLRP3 inflammasome activity. TSPO downregulation increased PPARγ expression and decreased HMGB1 expression in OGD/R-treated cells, which was reversed by silencing PPARγ. PPARγ knockdown abolished the effect of TSPO silence on NLRP3 inflammasome activity, inflammation, and cell apoptosis in OGD/R-treated cells, while PPARγ overexpression alleviated OGD/R-induced injury in SH-SY5Y cells. In conclusion, TSPO knockdown attenuates neuroinflammation and neural apoptosis by decreasing NLRP3 inflammasome activity through PPARγ pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, Jiangsu, China.
| | - Gang Wang
- Department of Neurology, Nanshi Hospital of Nanyang, Nanyang 473065, Henan, China.
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, China.
| |
Collapse
|
199
|
Cendrowska-Pinkosz M, Ostrowska-Lesko M, Ognik K, Krauze M, Juskiewicz J, Dabrowska A, Szponar J, Mandziuk S. Dietary Copper Deficiency Leads to Changes in Gene Expression Indicating an Increased Demand for NADH in the Prefrontal Cortex of the Rat's Brain. Int J Mol Sci 2022; 23:6706. [PMID: 35743150 PMCID: PMC9224161 DOI: 10.3390/ijms23126706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Copper is an essential element to brain cells as it is a cofactor and a structural component of various enzymes involved in energy metabolism pathways. Accumulating evidence points to the pivotal role of copper deficiency in neurodegeneration resulting from impaired copper homeostasis. Despite the indisputable role of copper in mitochondrial respiration, its homeostasis regulation in the brain tissue remains unclear. The assessment of changes in the expression of genes encoding key pathways of energy metabolism can greatly benefit further studies exploring copper's role in neurodegeneration. Using a rat model, we investigate whether the replacement of the inorganic form of copper with metallic nanoparticles containing copper or complete deprivation of copper from the diet have an impact on the expression of genes involved in energy metabolism in the prefrontal cortex of the rats' brain. Herein, we indicate that removing inorganic copper from the normal standard diet or the replacement with copper nanoparticles can lead to programmed energy metabolism changes. It can be recognized that some of these changes indicate an increased demand for NADH in the prefrontal cortex of the rat's brain, probably as a result of adaptation effect.
Collapse
Affiliation(s)
- Monika Cendrowska-Pinkosz
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewski Street, 20-090 Lublin, Poland;
| | - Marta Ostrowska-Lesko
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland;
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland; (K.O.); (M.K.)
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland; (K.O.); (M.K.)
| | - Jerzy Juskiewicz
- Division of Food Science, Institute of Animal, Reproduction and Food Research, Polish Academy of Sciences, 10 Tuwim Street, 10-748 Olsztyn, Poland;
| | - Anna Dabrowska
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland;
| | - Jaroslaw Szponar
- Toxicology Clinic, Faculty of Medicine, Medical University of Lublin, 100 Krasnik Avenue, 20-718 Lublin, Poland;
| | - Slawomir Mandziuk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland;
| |
Collapse
|
200
|
Structural and functional characterization of turbot pparγ: Activation during high temperature and regulation of lipid metabolism. J Therm Biol 2022; 108:103279. [DOI: 10.1016/j.jtherbio.2022.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
|