151
|
The Antimicrobial and Toxicity Influence of Six Carrier Oils on Essential Oil Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010030. [PMID: 36615224 PMCID: PMC9821837 DOI: 10.3390/molecules28010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Essential oil compounds have been identified as alternative antimicrobials; however, their use is limited due to their toxicity on human lymphocytes, skin, and reproduction. Carrier oils can reduce the toxicity of essential oils, which raises the question as to whether such activity would extend to the essential oil compounds. Thus, this study aimed to investigate the antimicrobial and toxicity activity of essential oil compounds in combination with carrier oils. The antimicrobial properties of the essential oil compounds, alone and in combination with carrier oils, were determined using the broth microdilution assay. The toxicity was determined using the brine shrimp lethality assay. Antimicrobial synergy (ΣFIC ≤ 0.50) occurred in 3% of the samples when tested against the ESKAPE pathogens. The compound thymoquinone in combination with the carrier oil Prunus armeniaca demonstrated broad-spectrum synergistic activity and a selectivity index above four, highlighting this combination as the most favorable. The carrier oils reduced the toxicity of several compounds, with Calendula officinalis and P. armeniaca carrier oils being responsible for the majority of the reduced toxicity observed. This study provides insight into the interactions that may occur when adding a carrier oil to essential oil compounds.
Collapse
|
152
|
Li X, Chen F, Xiong Y, Guo L, Xu J, Lin Y, Ni K, Yang F. Perilla frutescens as potential antimicrobial modifier to against forage oat silage spoilage. Front Microbiol 2022; 13:1053933. [PMID: 36605512 PMCID: PMC9807611 DOI: 10.3389/fmicb.2022.1053933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the influence of Perilla frutescens, alone or in combination with Lactobacillus plantarum a214 or citric acid, on forage oat silage quality, bacterial and fungal microbiological profile during ensiling and aerobic exposure. With the exception of Perilla frutescens, all additives could improve silage quality of forage oat based on lower ammonia-nitrogen content and higher residual of water soluble carbohydrates during anaerobic fermentation compared to control silage, especially in Perilla frutescens combined with citric acid (CAPF). Lactobacillus was the dominant bacteria in all silages, while CAPF group increased the relative abundance of Lactobacillus lindneri and Lactobacillus brevis compared to control silage. The application of Perilla frutescens suppressed the relative abundance of yeasts such as Pichia fermentans and Wickerhamomyces anomalus in response to aerobic exposure, especially in CAPF treatment, leading to high acetic acids and lower dry matter loss, as well as good aerobic stability. Therefore, Perilla frutescens, alone or in combination with citric acid, has potential to improve aerobic stability of forage oat silage by shifting bacterial and fungal community composition, and can be used as new additive to prepare high-quality silage for animal production.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Linna Guo
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jingjing Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China,Beijing Sure Academy of Biosciences, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Fuyu Yang,
| |
Collapse
|
153
|
Vukic MD, Vukovic NL, Obradovic AD, Galovičová L, Čmiková N, Kačániová M, Matic MM. Chemical Composition and Biological Activity of Tanacetum balsamita Essential Oils Obtained from Different Plant Organs. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243474. [PMID: 36559586 PMCID: PMC9783112 DOI: 10.3390/plants11243474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/25/2023]
Abstract
The aim of this study is to evaluate the chemical composition of Tanacetum balsamita L. essential oils (EOs) obtained from different plant organs, flowers (FEO), leaves (LEO), and stems (SEO), as well as to assess their biological properties. The results obtained by using GC and GC/MS analysis indicate that this plant belongs to the carvone chemotype. Moreover, we examined the oil's antimicrobial and antitumor potential. Antimicrobial effects were determined using minimum inhibitory concentrations assay and the vapor phase method. Obtained results indicate better antimicrobial activity of investigated EO samples compared to the commercially available antibiotics. On the treatment with FEO, Y. enterocolitica and H. influenzae showed high sensitivity, while treatment with LEO and SEO showed the highest effects against S. aureus. The vapor phase method, as an in situ antibacterial analysis, was performed using LEO. Obtained results showed that this EO has significant activity toward S. pneumoniae in the apple and carrot models, L. monocytogenes in the pear model, and Y. enterocolitica in the white radish model. The potential antitumor mechanisms of FEO, LEO, and SEO were determined by the means of cell viability, redox potential, and migratory capacity in the MDA-MB-231 and MDA-MB-468 cell lines. The results show that these EOs exert antiviability potential in a time- and dose-dependent manner. Moreover, treatments with these EOs decreased the levels of superoxide anion radical and increased the levels of nitric oxide in both tested cell lines. The results regarding total and reduced glutathione revealed, overall, an increase in the levels of total glutathione and a decrease in the levels of reduced glutathione, indicating strong antioxidative potential in tested cancer cells in response to the prooxidative effects of the tested EOs. The tested EOs also exerted a drop in migratory capacity, which indicates that they can be potentially used as chemotherapeutic agents.
Collapse
Affiliation(s)
- Milena D. Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ana D. Obradovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Lucia Galovičová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland
| | - Milos M. Matic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
154
|
Sateriale D, Forgione G, De Cristofaro GA, Facchiano S, Boscaino F, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Towards Green Strategies of Food Security: Antibacterial Synergy of Essential Oils from Thymus vulgaris and Syzygium aromaticum to Inhibit Escherichia coli and Staphylococcus aureus Pathogenic Food Isolates. Microorganisms 2022; 10:microorganisms10122446. [PMID: 36557699 PMCID: PMC9780947 DOI: 10.3390/microorganisms10122446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Foodborne diseases continue to represent an important public health issue. The control of food spoilage and pathogenic microorganisms is achieved mainly by synthetic chemicals, unfortunately associated to several undesirable aspects. The growing requirement for new and safe alternative strategies has resulted in the research of agents from natural sources with antimicrobial properties, such as essential oils (EOs). This study's purpose was to define the antibacterial profile of thyme (Thymus vulgaris) and cloves (Syzygium aromaticum) essential oils against both Gram-positive and Gram-negative important foodborne pathogenic bacteria. Gas chromatography mass spectrometry analysis was performed for EOs' chemical composition. Qualitative in vitro antimicrobial assays (i.e., agar well diffusion method and disk-volatilization method) allowed for verification of the efficacy of EOs, used individually and in binary combination and both in liquid and vapor phase, against Staphylococcus aureus and Escherichia coli food isolates. Minimal inhibitory concentrations and minimal bactericidal concentration values have been used to quantitatively measure the antibacterial activity of EOs, while the fractional inhibitory concentration index has been considered as a predictor of in vitro antibacterial synergistic effects. The microbiological tests suggest that thyme and cloves EOs, rich in bioactive compounds, are able to inhibit the growth of tested foodborne bacteria, especially in vapor phase, also with synergistic effects. Results provide evidence to consider the tested essential oils as promising sources for development of new, broad-spectrum, green food preservatives.
Collapse
Affiliation(s)
- Daniela Sateriale
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Giuseppina Forgione
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | | | - Serena Facchiano
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Floriana Boscaino
- Institute of Food Science, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
- Correspondence: ; Tel.: +39-0824-305141
| |
Collapse
|
155
|
Lin L, Zhang P, Li C, Hua Z, Cui H. Inhibitory effect of calcium phosphate-coated high-affinity liposomes on Staphylococcus aureus and its biofilms. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
156
|
Cao Z, Zhou D, Ge X, Luo Y, Su J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J Food Biochem 2022; 46:e14513. [PMID: 36385402 DOI: 10.1111/jfbc.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Fruits are highly susceptible to postharvest losses induced majorly by postharvest diseases. Peach are favored by consumers because of their high nutritional value and delicious taste. However, it was easy to be affected by fungal infection. The current effective method to control postharvest diseases of fruits is to use chemical fungicides, but these chemicals may cause adverse effects on human health and the residual was potentially harmful to nature and the environment. So, it is especially important to develop safe, non-toxic, and highly effective strategies for the preservation of the fruits. Essential oil, as a class of the natural bacterial inhibitor, has been proven to exhibit strong antibacterial activity, low toxicity, environmental friendliness, and induce fruit resistance to microorganism, which could be recognized as one of the alternatives to chemical fungicides. This paper reviews the research progress of essential oils (Eos) in the storage and preservation of fruits, especially the application in peach, as well as the application in active packaging such as edible coatings, microcapsules, and electrospinning loading. Electrospinning can prepare a variety of nanofibers from different viscoelastic polymer solutions, and has broad application prospects. The paper especially summarizes the application of the new Eos technology on peach. The essential oil with thymol, eugenol, and carvacrol as the main components has a better inhibitory effect on the postharvest disease of peaches, and can be further applied. PRACTICAL APPLICATIONS: As an environmentally friendly natural antibacterial agent, essential oil can be used as a substitute for chemical preservatives to keep fruits fresh. This paper summarizes the different preservation methods of essential oils for fruits, and especially summarizes the different preservation methods of essential oils for peaches after harvesting, as well as their inhibitory effects on pathogenic fungi. It could provide ideas for preservation of fruits and vegetables by essential oils.
Collapse
Affiliation(s)
- Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yali Luo
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
157
|
Incorporation of clove essential oil nanoemulsion in chitosan coating to control Burkholderia gladioli and improve postharvest quality of fresh Tremella fuciformis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
158
|
Feng X, Feng K, Zheng Q, Tan W, Zhong W, Liao C, Liu Y, Li S, Hu W. Preparation and characterization of geraniol nanoemulsions and its antibacterial activity. Front Microbiol 2022; 13:1080300. [PMID: 36523845 PMCID: PMC9745324 DOI: 10.3389/fmicb.2022.1080300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 10/14/2023] Open
Abstract
Geraniol nanoemulsions (G-NE) based on Tween 80 and medium chain triglyceride (MCT) as surfactant and co-surfactant, respectively, has been prepared by the spontaneous emulsification method. Its physical and chemical properties such as mean particle size, zeta potential, PDI, pH, viscosity, contact angle, appearance morphology, and stability (storage stability, thermal stability, centrifugal properties, acid-base stability, and freeze-thaw properties) of the droplet were analyzed. The results showed that the mean particle size of G-NE was 90.33 ± 5.23 nm, the PDI was 0.058 ± 0.0007, the zeta potential was -17.95 ± 5.85 mV and the encapsulation efficiency was >90%. The produced G-NE has been demonstrated to be fairly stable in long-term storage at 4°C, pH = 5 and high-speed centrifuges. Moreover, G-NE had a significant inhibition effect on Staphylococcus aureus, Escherichia coli, Salmonella typhimurium and Listeria monocytogenes (p < 0.05). The bacterial inhibition rates of G-NE at a concentration of 1 MIC were 48, 99, 71.73, and 99% after 12 h of action against these four foodborne pathogenic bacteria, respectively. Therefore, the results obtained indicated that nanoemulsification enhanced the stability and antibacterial activity of geraniol to some extent, which will promote the utilization of geraniol in food preservation.
Collapse
Affiliation(s)
- Xiaolin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kexin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Qinhua Zheng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Weijian Tan
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenting Zhong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Caiyu Liao
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Yuntong Liu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Shangjian Li
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
159
|
Vukovic NL, Vukic MD, Obradovic AD, Matic MM, Galovičová L, Kačániová M. GC, GC/MS Analysis, and Biological Effects of Essential Oils from Thymus mastchina and Elettaria cardamomum. PLANTS (BASEL, SWITZERLAND) 2022; 11:3213. [PMID: 36501253 PMCID: PMC9793757 DOI: 10.3390/plants11233213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Spanish marjoram (Thymus mastichina) and cardamom (Elettaria cardamomum) are traditional aromatic plants with which several pharmacological properties have been associated. In this study, the volatile composition, antioxidative and antimigratory effects on human breast cancer (MDA-MB-468 cell line), antimicrobial activity, and antibiofilm effect were evaluated. Results obtained via treatment of human breast cancer cells generally indicated an inhibitory effect of both essential oils (EOs) on cell viability (after long-term treatment) and antioxidative potential, as well as the reduction of nitric oxide levels. Antimigratory effects were revealed, suggesting that these EOs could possess significant antimetastatic properties and stop tumor progression and growth. The antimicrobial activities of both EOs were determined using the disc diffusion method and minimal inhibition concentration, while antibiofilm activity was evaluated by means of mass spectrometry. The best antimicrobial effects of T. mastichina EO were found against the yeast Candida glabrata and the G+ bacterium Listeria monocytogenes using the disc diffusion and minimal inhibitory concentration methods. E. cardamomum EO was found to be most effective against Pseudomas fluorescens biofilm using both methods. Similarly, better effects of this oil were observed on G- compared to G+ bacterial strains. Our study confirms that T. mastichina and E. cardamomum EOs act to change the protein structure of older P. fluorescens biofilms. The results underline the potential use of these EOs in manufactured products, such as foodstuffs, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milena D. Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ana D. Obradovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milos M. Matic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Lucia Galovičová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland
| |
Collapse
|
160
|
An Optimization of Oregano, Thyme, and Lemongrass Essential Oil Blend to Simultaneous Inactivation of Relevant Foodborne Pathogens by Simplex–Centroid Mixture Design. Antibiotics (Basel) 2022; 11:antibiotics11111572. [PMID: 36358227 PMCID: PMC9686886 DOI: 10.3390/antibiotics11111572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
(1) Background: This study aimed to use the simplex–centroid mixture design methodology coupled with a microdilution assay to predict optimal essential oil (EO) formulations against three potential foodborne pathogens simultaneously through the desirability (D) function. (2) Methods: Oregano (ORE; Origanum vulgare), thyme (THY; Thymus vulgaris), and lemongrass (LG; Cymbopogon citratus) and their blends were evaluated concerning minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for Salmonella enterica serotype Enteritidis, Escherichia coli and Staphylococcus aureus. (3) Results: THY combined with ORE or LG were the most promising EO formulations in inhibiting and killing each bacterium separately. Regarding the simultaneous effect, the optimal proportion for maximum inhibition was composed of 75% ORE, 15% THY, and 10% LG, while for maximum inactivation was 50% ORE, 40% THY, and 10% LG. (4) Conclusion: The multiresponse optimization allowed identifying an EO blend to simultaneously control three potential foodborne pathogens. This first report could be a helpful natural and green alternative for the industry to produce safer food products and mitigate public health risks.
Collapse
|
161
|
Li ZX, Chen JY, Wu Y, Huang ZY, Wu ST, Chen Y, Gao J, Hu Y, Huang C. Effect of downstream processing on the structure and rheological properties of xanthan gum generated by fermentation of Melaleuca alternifolia residue hydrolysate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
162
|
Proteomic analysis of antifungal mechanism of star anise essential oil against Aspergillus niger and its application potential in prolonging bread shelf life. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
163
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
164
|
Dynamic Salmonella Enteritidis biofilms development under different flow conditions and their removal using nanoencapsulated thymol. Biofilm 2022; 4:100094. [DOI: 10.1016/j.bioflm.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
|
165
|
Essential Oil Stabilisation by Response Surface Methodology (RSM): Nanoemulsion Formulation, Physicochemical, Microbiological, and Sensory Investigations. Molecules 2022; 27:molecules27217330. [DOI: 10.3390/molecules27217330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
This manuscript aimed to optimise the encapsulation of Thymus capitatus essential oil into nanoemulsion. Response Surface Methodology results were best fitted into polynomial models with regression coefficient values of more than 0.95. The optimal nanoemulsion showed nanometer-sized droplets (380 nm), a polydispersity index less than 0.5, and a suitable Zeta potential (−10.3 mV). Stability results showed that nanoemulsions stored at 4 °C were stable with the lowest d3,2, PolyDispersity Index (PDI), and pH (day 11). Significant ameliorations in the capacity to neutralise DPPH radical after the encapsulation of the antimicrobial efficacy of thyme essential oil were recorded. S. typhimurium growth inhibition generated by nanoencapsulated thyme essential oil was 17 times higher than by bulk essential oil. The sensory analysis highlighted that the encapsulation of thyme essential oil improved enriched milk’s sensory appreciation. Indeed, 20% of the total population attributed a score of 4 and 5 on the scale used for milk enriched with nanoemulsion. In comparison, only 11% attributed the same score to milk enriched with bulk essential oil. The novel nanometric delivery system presents significant interest for agroalimentary industries.
Collapse
|
166
|
Beyond the Bark: An Overview of the Chemistry and Biological Activities of Selected Bark Essential Oils. Molecules 2022; 27:molecules27217295. [PMID: 36364121 PMCID: PMC9654741 DOI: 10.3390/molecules27217295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Essential oils have been used by indigenous peoples for medicinal purposes since ancient times. Their easy availability played an important role. Even today, essential oils are used in various fields—be it as aromatic substances in the food industry, as an aid in antibiotic therapy, in aromatherapy, in various household products or in cosmetics. The benefits they bring to the body and health are proven by many sources. Due to their complex composition, they offer properties that will be used more and more in the future. Synergistic effects of various components in an essential oil are also part of the reason for their effectiveness. Infectious diseases will always recur, so it is important to find active ingredients for different therapies or new research approaches. Essential oils extracted from the bark of trees have not been researched as extensively as from other plant components. Therefore, this review will focus on bringing together previous research on selected bark oils to provide an overview of barks that are economically, medicinally, and ethnopharmaceutically relevant. The bark oils described are Cinnamomum verum, Cedrelopsis grevei, Drypetes gossweileri, Cryptocarya massoy, Vanillosmopsis arborea and Cedrus deodara. Literature from various databases, such as Scifinder, Scopus, Google Scholar, and PubMed, among others, were used.
Collapse
|
167
|
Polat Yemiş G, Sezer E, Sıçramaz H. Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil ( Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules 2022; 27:7298. [PMID: 36364124 PMCID: PMC9658201 DOI: 10.3390/molecules27217298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 03/09/2024] Open
Abstract
The present study aimed to characterize the physical properties of nanoemulsion-based sodium alginate edible coatings containing myrtle (Myrtus communis L.) essential oil and to determine its inhibitory effects on Listeria monocytogenes in fresh Kasar cheese during the 24-day storage at 4 °C. The GC-MS analysis showed that the main components of myrtle essential oil were 1,8-cineol (38.64%), α-pinene (30.19%), d-limonene (7.51%), and α-ocimene (6.57%). Myrtle essential oil showed an inhibitory effect on all tested L. monocytogenes strains and this effect significantly increased after ultrasonication. Minimum inhibitory and minimum bactericidal concentrations of myrtle essential oil nanoemulsion were found to be 4.00-4.67 mg/mL and 5.00-7.33 mg/mL, respectively. The antibacterial activity of myrtle essential oil nanoemulsion against L. monocytogenes was confirmed by the membrane integrity and FESEM analyses. Nanoemulsion coatings containing myrtle essential oil showed antibacterial activity against L. monocytogenes with no adverse effects on the physicochemical properties of cheese samples. Nanoemulsion coatings containing 1.0% and 2.0% myrtle essential oil reduced the L. monocytogenes population in cheese during the storage by 0.42 and 0.88 log cfu/g, respectively. These results revealed that nanoemulsion-based alginate edible coatings containing myrtle essential oil have the potential to be used as a natural food preservative.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
- Sakarya University Research, Development, and Application Center (SARGEM), Serdivan 54187, Turkey
| | - Elif Sezer
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| | - Hatice Sıçramaz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| |
Collapse
|
168
|
Berdejo D, Gayán E, Pagán E, Merino N, Campillo R, Pagán R, García-Gonzalo D. Carvacrol Selective Pressure Allows the Occurrence of Genetic Resistant Variants of Listeria monocytogenes EGD-e. Foods 2022; 11:3282. [PMID: 37431028 PMCID: PMC9602272 DOI: 10.3390/foods11203282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 09/07/2024] Open
Abstract
Essential oils and their constituents, such as carvacrol, are potential food preservatives because of their great antimicrobial properties. However, the long-term effects of these compounds are unknown and raise the question of whether resistance to these antimicrobials could emerge. This work aims to evaluate the occurrence of genetic resistant variants (RVs) in Listeria monocytogenes EGD-e by exposure to carvacrol. Two protocols were performed for the RVs selection: (a) by continuous exposure to sublethal doses, where LmSCar was isolated, and (b) by reiterative exposure to short lethal treatments of carvacrol, where LmLCar was isolated. Both RVs showed an increase in carvacrol resistance. Moreover, LmLCar revealed an increased cross-resistance to heat treatments at acid conditions and to ampicillin. Whole-genome sequencing identified two single nucleotide variations in LmSCar and three non-silent mutations in LmLCar. Among them, those located in the genes encoding the transcriptional regulators RsbT (in LmSCar) and ManR (in LmLCar) could contribute to their increased carvacrol resistance. These results provide information regarding the mode of action of this antimicrobial and support the importance of knowing how RVs appear. Further studies are required to determine the emergence of RVs in food matrices and their impact on food safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
169
|
In Vitro Antibacterial Activity and in Silico Analysis of the Bioactivity of Major Compounds Obtained from the Essential Oil of Virola surinamensis Warb (Myristicaceae). J FOOD QUALITY 2022. [DOI: 10.1155/2022/5275805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Essential oils are well known for their antimicrobial activity and they are used as an effective food preservative. Virola is one of the five genera of Myristicaceae and this genus is native to the American continent, especially in neotropical regions. The largest number of species of this genus is found in the Amazon region and the most important species include Virola surinamensis Warb. and Virola sebifera Aubl. In the present study, we describe the chemical composition of the essential oil of the V. surinamensis obtained at two different periods of the day in two seasons (rainy and dry), as well as their antimicrobial activity against pathogenic bacterial strains of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. In addition, we investigated, using in silico tools, the antimicrobial activity of the major chemical compounds present in the essential oil of V. surinamensis. The samples collected at different seasons and times showed a similar chemical profile, characterized by the major constituents α-pinene (>33%) and β-pinene (>13%). The essential oil of V. surinamensis showed an interesting antibacterial activity, exhibiting low inhibitory concentrations against the tested bacterial species. The computational investigation indicated that limonene, myrcene, and β-pinene could be related to the antibacterial activity against the tested pathogenic bacterial strains. Our results shed light on the possible constituents of essential oil that could be related to its activity against bacterial species and might be useful for further experimental tests that aim to discover new potential antibacterial agents for food preservation.
Collapse
|
170
|
Saqib S, Ullah F, Naeem M, Younas M, Ayaz A, Ali S, Zaman W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022; 27:molecules27196728. [PMID: 36235263 PMCID: PMC9572119 DOI: 10.3390/molecules27196728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
A poor diet, resulting in malnutrition, is a critical challenge that leads to a variety of metabolic disorders, including obesity, diabetes, and cardiovascular diseases. Mentha species are famous as therapeutic herbs and have long served as herbal medicine. Recently, the demand for its products, such as herbal drugs, medicines, and natural herbal formulations, has increased significantly. However, the available literature lacks a thorough overview of Mentha phytochemicals' effects for reducing malnutritional risks against cardiovascular diseases. In this context, we aimed to review the recent advances of Mentha phytochemicals and future challenges for reducing malnutritional risks in cardiovascular patients. Current studies indicated that Mentha species phytochemicals possess unique antimicrobial, antidiabetic, cytotoxic, and antioxidant potential, which can be used as herbal medicine directly or indirectly (such as food ingredients) and are effective in controlling and curing cardiovascular diseases. The presence of aromatic and flavor compounds of Mentha species greatly enhance the nutritional values of the food. Further interdisciplinary investigations are pivotal to explore main volatile compounds, synergistic actions of phytochemicals, organoleptic effects, and stability of Mentha sp. phytochemicals.
Collapse
Affiliation(s)
- Saddam Saqib
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muhammad Naeem
- China Sinovita Bioengineering Group, Jinan 250000, China
| | - Muhammad Younas
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| |
Collapse
|
171
|
Luo X, Zeng L, Li Q, Wang Z, Kong F, Bi Y. β-cyclodextrin inclusion complex containing essential oil from wampee [Clausena lansium (Lour.) Skeels] fruit pericarp: Synthesis, characterization, and evaluation of antioxidant activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
172
|
Characterization of carvacrol incorporated antimicrobial film based on agar/konjac glucomannan and its application in chicken preservation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
173
|
Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
174
|
El-Zemity SR, Badawy ME, Esmaiel KE, Badr MM. Synthesis, antioxidant, antimicrobial, and molecular docking studies of some N-cinnamyl phenylacetamide and N-(3,7-dimethylocta-2,6-dien-1-yl) phenylacetamide derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
175
|
Salanță LC, Cropotova J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. PLANTS 2022; 11:plants11192488. [PMID: 36235353 PMCID: PMC9570595 DOI: 10.3390/plants11192488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Consumer awareness and demands for quality eco-friendly food products have made scientists determined to concentrate their attention on sustainable advancements in the utilization of bioactive compounds for increasing safety and food quality. Essential oils (EOs) are extracted from plants and exhibit antimicrobial (antibacterial and antifungal) activity; thus, they are used in food products to prolong the shelf-life of foods by limiting the growth or survival of microorganisms. In vitro studies have shown that EOs are effective against foodborne bacteria, such as Escherichia coli, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. The growing interest in essential oils and their constituents as alternatives to synthetic preservatives has been extensively exploited in recent years, along with techniques to facilitate the implementation of their application in the food industry. This paper’s aim is to evaluate the current knowledge on the applicability of EOs in food preservation, and how this method generally affects technological properties and consumers’ perceptions. Moreover, essential aspects concerning the limitation of the available alternatives are highlighted, followed by a presentation of the most promising trends to streamline the EOs’ usability. Incorporating EOs in packaging materials is the next step for green and sustainable foodstuff production and a biodegradable method for food preservation.
Collapse
Affiliation(s)
- Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025 Ålesund, Norway
- Correspondence:
| |
Collapse
|
176
|
Vukic MD, Obradovic AD, Vukovic NL, Kačániová M, Djurdjevic PM, Djelic GT, Matic MM. Chemical Composition, Antitumor Potential, and Impact on Redox Homeostasis of the Essential Oils of Orlaya grandiflora from Two Climate Localities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185908. [PMID: 36144644 PMCID: PMC9504480 DOI: 10.3390/molecules27185908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
It is well known that abiotic components can affect biosynthetic pathways in the production of certain volatile compounds. The aim of this study was to compare the chemical composition of essential oils obtained from Orlaya grandiflora (L.) Hoffm. collected from two localities in Serbia (continental climate, OG1) and Montenegro (Mediterranean climate, OG2) and to assess their antitumor potential on the human colon cancer HCT-116 and breast cancer MDA-MB-231 cell lines. EOs obtained by hydrodistillation were analyzed using GC-MS and GC-FID methods. The results indicate considerable differences in the chemical compositions of the two samples. Although in both samples the main class of volatiles observed was sesquiterpenes (47.5% for OG1 and 70.1% for OG2), the OG1 sample was characterized by a high amount of monoterpene hydrocarbons (29.3%), and sesquiterpene germacrene D (29.5%) as the most abundant compound. On the other hand, the OG2 sample contained a high quantity of oxygenated sesquiterpenes (20.6%), and β-elemene (22.7%) was the major constituent. The possible antitumor mechanisms of these EOs in the HCT-116 and MDA-MB-231 cell lines were examined by means of cell viability, apoptosis, redox potential, and migratory capacity. The antiviability potential appeared to be dose dependent, since the results showed that both EOs decreased the viability of the tested cells. Stronger antitumor effects were shown in MDA-MB-231 cells after short-term treatment, especially at the highest applied concentration, where the percentage of viability was reduced by over 40%. All tested concentrations of EOs exhibited proapoptotic activity and elevated activity of caspase-3 in a dose- and time-dependent manner. The results also showed decreased concentrations of superoxide anion radical in the treated cells, which indicates their significant antioxidative role. Long-term treatments showed mild recovery effects on cell viability in both cell lines, probably caused by the balancing of redox homeostasis. Elevated levels of nitrites indicate high levels of nitric oxide (NO) production and suggest its higher bioavailability due to the antioxidative environment. The tested EOs also induced a drop in migratory capacity, especially after short-time treatments. Taken together, these results suggest considerable antitumor activity of both EOs, which could have potential therapeutic applications.
Collapse
Affiliation(s)
- Milena D. Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ana D. Obradovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
- Correspondence:
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St, 35601 Rzeszow, Poland
| | - Predrag M. Djurdjevic
- Department of Internal Medicine, Clinic for Hematology Clinical Center Kragujevac, Faculty of Medical Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gorica T. Djelic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milos M. Matic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
177
|
Balasubramanian B, Shah T, Allen J, Rankin K, Xue J, Luo Y, Mancini R, Upadhyay A. Eugenol nanoemulsion inactivates Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7 on cantaloupes without affecting rind color. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.984391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7 are the major foodborne pathogens that have been implicated in outbreaks related to consumption of contaminated cantaloupes. Current chlorine-based decontamination strategies are not completely effective for inactivating the aforementioned pathogens on cantaloupes, especially in the presence of organic matter. This study investigated the efficacy of eugenol nanoemulsion (EGNE) wash treatments in inactivating L. monocytogenes, Salmonella spp., and E. coli O157:H7 on the surface of cantaloupes. In addition, the efficacy of EGNE in inhibiting the growth of the three pathogens on cantaloupes during refrigerated and room temperature storage of 5 days was investigated. Moreover, the effect of EGNE wash treatment on cantaloupe color was assessed using a Miniscan® XE Plus. The EGNE was prepared with either Tween 80 (TW) or a combination of Gum arabic and Lecithin (GA) as emulsifiers. The cantaloupe rind was washed with EGNE (0.3, 0.6, and 1.25%), in presence or absence of 5% organic load, for 1, 5, or 10 min at 25°C. Enumeration of surviving pathogens on cantaloupe was performed by serial dilution and plating on Oxford, XLD or SMA agar followed by incubation at 37°C for 24–48 h. EGNE-GA and EGNE-TW wash significantly reduced all three pathogens by at least 3.5 log CFU/cm2 as early as 5 min after treatment. EGNE-GA at 1.25% inactivated L. monocytogenes, E. coli O157:H7 and S. Enteritidis on cantaloupes to below the detectable limit within 5 and 10 min of treatment, respectively (~4 log CFU/cm2, P < 0.05). EGNE treatments significantly reduced the survival of L. monocytogenes, S. Enteritidis, and E. coli O157:H7 on cantaloupe by at least 6 log CFU/cm2 at day 5 of storage at 25 and 4°C (P < 0.05). Presence of organic matter did not modulate the antimicrobial efficacy of nanoemulsion treatments (P > 0.05). EGNE treatments did not affect the rind color of cantaloupes (P > 0.05). In conclusion, eugenol nanoemulsions could potentially be used as a natural sanitizer to inactivate foodborne pathogens on cantaloupes. Further investigations in an industry setting are warranted.
Collapse
|
178
|
Li X, Chen F, Wang X, Xiong Y, Liu Z, Lin Y, Ni K, Yang F. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. BIORESOURCE TECHNOLOGY 2022; 360:127429. [PMID: 35667532 DOI: 10.1016/j.biortech.2022.127429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In order to increase the utilization of herbal residues, realize efficient utilization of resources, the bacterial community and anaerobic fermentation characteristics of alfalfa ensiling treated with 36 kinds of herbal residues were studied. All the herbal residues improved the anaerobic fermentation quality in different degrees, indicated by lower pH, NH3-N and butyric acid concentrations. However, the contents of lactic and acetic acids varied widely in silage with different herbal residues. Pearson's correlation analysis showed that the improved fermentation quality was closely associated with the variation of lactic acid bacteria community. Consequently, the herbal residues could improve anaerobic fermentation quality by stimulating desirable Lactobacillus species and inhibiting undesirable microbes. This study provides new insights for efficient utilization of herbal residues.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xuekai Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Liu
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
179
|
Effect of Gaseous Citral on Table Grapes Contaminated by Rhizopus oryzae ITEM 18876. Foods 2022; 11:foods11162478. [PMID: 36010478 PMCID: PMC9407198 DOI: 10.3390/foods11162478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizopus oryzae is responsible for rapidly producing a deliquescent appearance in grape berries, generally favoured by cold chain interruptions. To counteract fruit spoilage and to meet consumer acceptance, innovative strategies based on the application of natural compounds are ongoing. Due to their biological activities, including antimicrobial ones, natural flavour compounds extend the shelf life and improve the nutritional value as well as the organoleptic properties of foods. Thus, in this work, the application of the antimicrobial citral, a flavor component of monoterpenes identified in plant and fruit essential oils, was developed and validated against one spoiler of R. oryzae. Citral, as pure compound, was first investigated in vitro against R. oryzae ITEM 18876; then, concentrations equal to the minimal inhibitory concentration (MIC) and 4-fold MIC (4MIC) value were applied on the table grape cv Italia infected with this strain and stored. The MIC value was equal to 0.0125 μL/cm3; both citral concentrations (0.0125 and 0.05 µL/cm3) were effective in counteracting the microbial decay of infected table grapes over the storage period. The HS-SPME/GC-MS method showed citral persistence in the head space of plastic trays with the infected samples; as expected, a higher content of citral isomers was found in the sample treated with 4MIC value. In conclusion, citral revealed its efficacy to counteract the onset of soft rot by R. oryzae ITEM 18876 under storage conditions. Thus, it could be successfully exploited to develop an active packaging or natural preservatives to extend table grape shelf life without affecting its quality and sensory characteristics, whilst also satisfying the consumer demand for natural preservative agents.
Collapse
|
180
|
Meng FB, Lei YT, Zhang Q, Li YC, Chen WJ, Liu DY. Encapsulation of Zanthoxylum bungeanum essential oil to enhance flavor stability and inhibit lipid oxidation of Chinese-style sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4035-4045. [PMID: 34997590 DOI: 10.1002/jsfa.11752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zanthoxylum bungeanum essential oil (ZBEO) is a popular seasoning, commonly used in the food industry. It contains many easily degraded and highly volatile bioactive substances. Control of the stability of the bioactive substances in ZBEO is therefore very important in the food industry. RESULTS In this study, microencapsulation was applied to improve ZBEO stability. The key parameters for microcapsule preparation were optimized by the Box-Behnken design method, and the optimum conditions were as follows: ratio of core to wall, 1:8; ratio of hydroxypropyl-α-cyclodextrin (HPCD) to soy protein isolate (SPI), 4; total solids content, 12%; and homogenization speed, 12 000 rpm. Antioxidant experiments have indicated that tea polyphenols (TPPs) effectively inhibited hydroxy-α-sanshool degradation in ZBEO microcapsules. Application of ZBEO microcapsules in Chinese-style sausage effectively inhibited lipid oxidation in sausages and protected hydroxy-α-sanshool and typical volatiles from volatilization and degradation during sausage storage. CONCLUSION The results suggested that ZBEO microencapsulation is an effective strategy for improving the stability of its bioactive components and flavor ingredients during food processing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, PR China
| | - Yu-Ting Lei
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Qian Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, PR China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| |
Collapse
|
181
|
Napiórkowska A, Kurek M. Coacervation as a Novel Method of Microencapsulation of Essential Oils-A Review. Molecules 2022; 27:molecules27165142. [PMID: 36014386 PMCID: PMC9416238 DOI: 10.3390/molecules27165142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
These days, consumers are increasingly "nutritionally aware". The trend of "clean label" is gaining momentum. Synthetic additives and preservatives, as well as natural ones, bearing the E symbol are more often perceived negatively. For this reason, substances of natural origin are sought tfor replacing them. Essential oils can be such substances. However, the wider use of essential oils in the food industry is severely limited. This is because these substances are highly sensitive to light, oxygen, and temperature. This creates problems with their processing and storage. In addition, they have a strong smell and taste, which makes them unacceptable when added to the product. The solution to this situation seems to be microencapsulation through complex coacervation. To reduce the loss of essential oils and the undesirable chemical changes that may occur during their spray drying-the most commonly used method-complex coacervation seems to be an interesting alternative. This article collects information on the limitations of the use of essential oils in food and proposes a solution through complex coacervation with plant proteins and chia mucilage.
Collapse
|
182
|
Tavares L, Zapata Noreña CP, Barros HL, Smaoui S, Lima PS, Marques de Oliveira M. Rheological and structural trends on encapsulation of bioactive compounds of essential oils: A global systematic review of recent research. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
183
|
Guo S, Li T, Chen M, Wu C, Ge X, Fan G, Li X, Zhou D, Mi L, Zhao X, Yang T. Sustainable and effective Chitosan-based edible films incorporated with OEO nanoemulsion against apricots’ black spot. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
184
|
Emami S, Ahmadi M, Nasiraie LR, Shahidi SA, Jafarizadeh-Malmiri H. Cinnamon extract and its essential oil nanoliposomes – preparation, characterization and bactericidal activity assessment. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
185
|
Cai Y, Zhang Y, Qu Q, Xiong R, Tang H, Huang C. Encapsulated Microstructures of Beneficial Functional Lipids and Their Applications in Foods and Biomedicines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8165-8187. [PMID: 35767840 DOI: 10.1021/acs.jafc.2c02248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beneficial functional lipids are essential nutrients for the growth and development of humans and animals, which nevertheless possess poor chemical stability because of heat/light-sensitivity. Various encapsulation technologies have been developed to protect these nutrients against adverse factors. Different microstructures are exhibited through different encapsulation methods, which influence the encapsulation efficiency and release behavior at the same time. This review summarizes the effects of preparation methods and process parameters on the microstructures of capsules at first. The mechanisms of the different microstructures on encapsulation efficiency and controlled release behavior of core materials are analyzed. Next, a comprehensive overview on the beneficial functional lipids capsules in the latest food and biomedicine applications are provided as well as the matching relationship between the microstructures of the capsules and applications are discussed. Finally, the remaining challenges and future possible directions that have potential interest are outlined. The purpose of this review is to convey the construction of beneficial functional lipids capsules and the function mechanism, a critical analysis on its current status and challenges, and opinions on its future development. This review is believed to promote communication among the food, pharmacy, agronomy, engineering, and nutrition industries.
Collapse
Affiliation(s)
- Yixin Cai
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
186
|
Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications. Int J Biol Macromol 2022; 216:927-939. [DOI: 10.1016/j.ijbiomac.2022.07.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
|
187
|
Antimicrobial activity of oregano essential oil and resveratrol emulsions co-encapsulated by sodium caseinate with polysaccharides. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
188
|
Singh S, Chaurasia PK, Bharati SL. Functional roles of Essential oils as an effective alternative of synthetic food preservatives: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya University of Lucknow Lucknow, Uttar Pradesh India
| | - Pankaj Kumar Chaurasia
- P.G. Department of Chemistry, L.S. College B.R.A. Bihar University Muzaffarpur, Bihar India
| | - Shashi Lata Bharati
- Department of Chemistry North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh India
| |
Collapse
|
189
|
Assessing the Health Risk and the Metal Content of Thirty-Four Plant Essential Oils Using the ICP-MS Technique. Nutrients 2022; 14:nu14122363. [PMID: 35745094 PMCID: PMC9229550 DOI: 10.3390/nu14122363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
Natural ecosystems are polluted with various contaminants, and among these heavy metals raise concerns due to their side effects on both environment and human health. An investigation was conducted on essential oil samples, comparing similar products between seven producers, and the results indicated a wide variation of metal content. The recommended limits imposed by European Union regulations for medicinal plants are exceeded only in Mentha × pipperita (Adams, 0.61 mg/kg). Except for Thymus vulgaris, the multivariate analysis showed a strong correlation between toxic and microelements (p < 0.001). We verified plant species−specific bioaccumulation patterns with non-metric multidimensional scaling analysis. The model showed that Adams, Doterra, Hypericum, and Steaua Divina essential oils originated from plants containing high micro and macroelement (Cu, Mn, Mg, Na) levels. We noted that the cancer risk values for Ni were the highest (2.02 × 10−9−7.89 × 10−7). Based on the target hazard quotient, three groups of elements were associated with a possible risk to human health, including As, Hg, and Cd in the first group, Cr, Mn, Ni, and Co in the second, and Zn and Al in the third. Additionally, the challenge of coupling inter-element relationships through a network plot analysis shows a considerable probability of associating toxic metals with micronutrients, which can address cumulative risks for human consumers.
Collapse
|
190
|
Boukoufi C, Boudier A, Maincent P, Vigneron J, Clarot I. Food-inspired innovations to improve the stability of active pharmaceutical ingredients. Int J Pharm 2022; 623:121881. [PMID: 35680111 DOI: 10.1016/j.ijpharm.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Food-processing and pharmaceutical industries share a lot of stability issues against the same physical, chemical, and microbiological phenomena. They also share some solutions to improve the stability as the use of preservatives and packaging. Ecological concerns lead to the development of tremendous innovations in food. Some of these innovations could also be beneficial in the pharmaceutical domain. The objective of this review is to evaluate the potential application of these findings in the pharmaceutical field and the main limits in terms of toxicity, environmental, economic and regulatory issues. The principal factors influencing the shelf-life were highlighted through the description of the stability studies usually performed in the pharmaceutical industry (according to European guidelines). To counter those factors, different solutions are currently available as preservatives and specific packaging. They were described and debated with an overview of recent food innovations in each field. The limits of the current solutions in the pharmaceutical field and the innovation in the food field have inspired a critical pharmaceutical outlook. The active and intelligent packaging for active pharmaceutical ingredients of the future is imagined.
Collapse
Affiliation(s)
- Célia Boukoufi
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | | | | | - Jean Vigneron
- Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| |
Collapse
|
191
|
Soto ER, Rus F, Ostroff GR. Yeast Particles Hyper-Loaded with Terpenes for Biocide Applications. Molecules 2022; 27:molecules27113580. [PMID: 35684516 PMCID: PMC9182042 DOI: 10.3390/molecules27113580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Yeast particles (YPs) are 3−5 µm hollow and porous microspheres, a byproduct of some food grade yeast (Saccharomyces cerevisiae) extract manufacturing processes. Terpenes can be efficiently encapsulated inside YPs by passive diffusion through the porous cell walls. As previously published, this YP terpene encapsulation approach has been successfully implemented (1) to develop and commercialize fungicide and nematicide products for agricultural applications, (2) to co-load high potency agrochemical actives dissolved in terpenes or suitable solvents, and (3) to identify YP terpenes with broad-acting anthelmintic activity for potential pharmaceutical applications. These first-generation YP terpene materials were developed with a <2:1 terpene: YP weight ratio. Here we report methods to increase the terpene loading capacity in YPs up to 5:1 terpene: YP weight ratio. Hyper-loaded YP terpenes extend the kinetics of payload release up to three-fold compared to the commercialized YP terpene formulations. Hyper-loaded YP-terpene compositions were further optimized to achieve high terpene storage encapsulation stability from −20 °C to 54 °C. The development of hyper-loaded YP terpenes has a wide range of potential agricultural and pharmaceutical applications with terpenes and other compatible active substances that could benefit from a delivery system with a high payload loading capacity combined with increased payload stability and sustained release properties.
Collapse
|
192
|
The impact of lemon seeds oil microcapsules based on a bilayer macromolecule carrier on the storage of the beef jerky. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
193
|
Haghighi TM, Saharkhiz MJ, Khalesi M, Mousavi SS, Ramezanian A. Eco-friendly 'ochratoxin A' control in stored licorice roots - quality assurance perspective. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1321-1336. [PMID: 35594289 DOI: 10.1080/19440049.2022.2077460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
According to toxicity data, ochratoxin A (OTA) is the second most important mycotoxin and is produced by Aspergillus and Penicillium. As a natural antifungal agent, clove essential oil (CEO) is a substance generally recognised as safe (GRAS) and shows strong activity against fungal pathogens. Here, we aimed to investigate the control efficacy of CEO in nano-emulsions (CEN) against OTA production in licorice roots and rhizomes during storage. The experiments were performed under simulated conditions of all four seasons (i.e. Spring, Summer, Autumn and Winter). Relative humidity (RH) and temperature were simulated in desiccators along with various salt solutions in incubators. Fresh licorice roots were immersed in CEN at various concentrations (150, 300, 600, 1200 and 2400 µl/l). Before utilising the nano-emulsions, we measured their polydispersity index and mean droplet size by the dynamic light scattering (DLS) technique. Also, the chemical composition of the CEO was determined using GC and GC-MS analyses. Sampling was carried out to monitor OTA once every five days. The samples were dried immediately and analysed by high-performance liquid chromatography (HPLC). Results showed that various concentrations of CEN inhibited the growth of fungi and OTA production. The most effective CEN concentrations were 1200 and 2400 µl/l, which reduced OTA production to 19 and 20 ppb under Winter and Autumn conditions, respectively. These results suggest an effective eco-friendly method for the storage of licorice to reduce postharvest fungal decay.
Collapse
Affiliation(s)
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.,Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Khalesi
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
194
|
Almeida-Couto JMFDE, Ressutte JB, Cardozo-Filho L, Cabral VF. Current extraction methods and potential use of essential oils for quality and safety assurance of foods. AN ACAD BRAS CIENC 2022; 94:e20191270. [PMID: 35544845 DOI: 10.1590/0001-3765202220191270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Essential oils (EOs) or vegetable oils have become the focus of several studies because of their interesting bioactive properties. Their application has been successfully explored in active packaging, edible coatings, and as natural flavoring to extend the shelf life of various types of food products. In addition, alternative methods of extraction of EOs (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction and supercritical fluid extraction) have been shown to be more attractive than traditional methods since they present better efficiency, shorter extraction times and do not use toxic solvents. This review paper provides a concise and critical view of extraction methods of EOs and their application in food products. The researchers involved in the studies approached in this review were motivated mainly by concern about food quality. Here, we recognize and discuss the major advances and technologies recently used to enable shelf life extension of food products.
Collapse
Affiliation(s)
- Jéssica M F DE Almeida-Couto
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Jéssica B Ressutte
- Universidade Estadual de Londrina/UEL, Departamento de Ciência e Tecnologia de Alimentos/UEL, Rodovia Celso Garcia Cid, 86057970 Londrina, PR, Brazil
| | - Lúcio Cardozo-Filho
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Vladimir F Cabral
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia de Alimentos, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
195
|
Insights into the Composition and Antibacterial Activity of Amomum tsao-ko Essential Oils from Different Regions Based on GC-MS and GC-IMS. Foods 2022; 11:foods11101402. [PMID: 35626972 PMCID: PMC9141665 DOI: 10.3390/foods11101402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chemical components are one of the most significant traits and attributes of plant tissues, and lead to their different functions. In this study, the composition of Amomun tsao-ko essential oils (AEOs) from different regions was first determined by a combination of gas chromatography–mass spectrometry (GC-MS) and gas chromatography–ion mobility spectrometry (GC-IMS). In total, 141 compounds were identified, of which terpenes and aldehydes were the main groups. Orthogonal partial least square discriminant analysis (OPLS-DA) distinguished the samples from different regions clearly, and the main differences were terpenes, aldehydes, and esters. Meanwhile, AEOs showed strong antibacterial activity against Staphylococcus aureus (S. aureus), and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) reached 0.20 mg/mL and 0.39–0.78 mg/mL, respectively. From correlation analysis, 1,8-cineole, (E)-dec-2-enal, citral, α-pinene, and α-terpineol were determined to be the potential antibacterial compounds. This study provides the basis for the variety optimization of A. tsao-ko and its application as a natural food preservative.
Collapse
|
196
|
Zhen N, Wang X, Li X, Xue J, Zhao Y, Wu M, Zhou D, Liu J, Guo J, Zhang H. Protein-based natural antibacterial materials and their applications in food preservation. Microb Biotechnol 2022; 15:1324-1338. [PMID: 34592061 PMCID: PMC9049624 DOI: 10.1111/1751-7915.13918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022] Open
Abstract
Plastics materials used for food packaging are recalcitrant, leading to a growing global environmental problem, which arouses the attention of environmental protection departments in many countries. Therefore, to meet the increasing demand for sustainable and environment-friendly consumer products, it is necessary for the food industry to develop natural antibacterial materials for food preservation. This review summarizes the common biodegradable natural antimicrobial agents and their applications in food preservation; as well as an overview of five commonly used biodegradable protein-based polymers, such as zein, soy protein isolate, gelatin and whey protein, with special emphasis on the advantages of protein-based biopolymers and their applications in food packaging industry.
Collapse
Affiliation(s)
- Nuo Zhen
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xinya Wang
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Xiang Li
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Jin Xue
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Yitao Zhao
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
| | - Min Wu
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
| | - Dongfang Zhou
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jingsheng Liu
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Jinshan Guo
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
| | - Hao Zhang
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| |
Collapse
|
197
|
Weisany W, Yousefi S, Tahir NAR, Golestanehzadeh N, McClements DJ, Adhikari B, Ghasemlou M. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Adv Colloid Interface Sci 2022; 303:102655. [PMID: 35364434 DOI: 10.1016/j.cis.2022.102655] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Essential oils (EOs) contain a complex mixture of volatile and non-volatile molecules with diverse biological activities, including flavoring, antioxidant, antimicrobial, and nutraceutical properties. As a result, EOs have numerous potential applications in the agriculture, food, and pharmaceutical industries. However, their hydrophobicity, chemical instability, and volatility pose a challenge for many of their applications. These challenges can often be overcome by encapsulation EOs in colloidal delivery systems. Over the last decade or so, nanoencapsulation and microencapsulation technologies have been widely explored for their potential to improve the handling, dispersibility, and stability of hydrophobic substances, as well as to control their release profiles (e.g., targeted, triggered, sustained, or burst release). These technologies include emulsification, coacervation, precipitation, spray-drying, spray-cooling, freeze-drying, fluidized bed coating, and extrusion. This article reviews some of the most important developments in EOs encapsulation, the physicochemical mechanisms underlying the behavior of encapsulated EOs, current challenges, and potential applications in the food and biomedical sciences. This review has found that nanoencapsulation has countless of potential advantages for the utilization of EOs in the food industry and can improve their water-dispersibility, food matrix compatibility, chemical stability, volatility, and bioactivity.
Collapse
|
198
|
Cai Q, Zhang Y, Fang X, Lin S, He Z, Peng S, Liu W. Improving Anti-listeria Activity of Thymol Emulsions by Adding Lauric Acid. Front Nutr 2022; 9:859293. [PMID: 35464037 PMCID: PMC9024332 DOI: 10.3389/fnut.2022.859293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel emulsion, thymol (Thy) and lauric acid (LA) emulsion (Thy/LA-Emulsion) was prepared by homogenizing eutectic solvent (Thy/LA mixture) and caseinate solution. The effects of different thymol and lauric acid mass ratio on the formation, stability, and antibacterial activity of emulsions were studied. Compared with thymol alone, adding lauric acid (25, 50, and 75%) could enhance the antibacterial efficacy of the emulsions. Among them, Thy/LA25%-Emulsion could be stored at room temperature for a month without the increase of particle size, indicating that the addition of LA had not impacted the stability of emulsions. Meanwhile, Thy/LA25%-Emulsion exhibited a greater inhibition zone (3.06 ± 0.12 cm) and required a lower concentration (0.125 mg/mL) to completely inhibit the growth of Listeria monocytogenes. Consequently, Thy/LA25%-Emulsion demonstrated the best antibacterial activity and physicochemical stability due to its long-term storage stability. Our results suggest that Thy/LA25%-Emulsion may become a more functional natural antibacterial agent with greater commercial potential owing to its cheaper raw materials, simpler production processes, and better antibacterial effect in the food industry.
Collapse
Affiliation(s)
- Qizhen Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yun Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaofeng Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Suyun Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Suyun Lin,
| | - Zhirong He
- Jiangxi Danxia Biol Technol Co., Ltd., Yingtan, China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
- Wei Liu,
| |
Collapse
|
199
|
Faheem F, Liu ZW, Rabail R, Haq IU, Gul M, Bryła M, Roszko M, Kieliszek M, Din A, Aadil RM. Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants (Basel) 2022; 11:720. [PMID: 35453405 PMCID: PMC9031912 DOI: 10.3390/antiox11040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
The food industry is growing vastly, with an increasing number of food products and the demand of consumers to have safe and pathogen-free food with an extended shelf life for consumption. It is critical to have food safe from pathogenic bacteria, fungi, and unpleasant odors or tastes so that the food may not cause any health risks to consumers. Currently, the direction of food industry has been shifting from synthetically produced preservatives to natural preservatives to lower the unnecessary chemical burden on health. Many new technologies are working on natural prevention tools against food degradation. Lemongrass is one such natural preservative that possesses significant antimicrobial and antioxidant activity. The essential oil of lemongrass contains a series of terpenes that are responsible for these activities. These properties make lemongrass acceptable in the food industry and may fulfill consumer demands. This article provides detailed information about the role of lemongrass and its essential oil in food preservation. The outcomes of the research on lemongrass offer room for its new technological applications in food preservation.
Collapse
Affiliation(s)
- Fatima Faheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Zhi Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Iahtisham-Ul Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan;
| | - Maryam Gul
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| |
Collapse
|
200
|
Oliveira AS, Rolo J, Gaspar C, Cavaleiro C, Salgueiro L, Palmeira-de-Oliveira R, Ferraz C, Coelho S, Pastorinho MR, Sousa AC, Teixeira JP, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Chemical characterization and bioactive potential of Thymus×citriodorus (Pers.) Schreb. preparations for anti-acne applications: Antimicrobial, anti-biofilm, anti-inflammatory and safety profiles. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114935. [PMID: 34954264 DOI: 10.1016/j.jep.2021.114935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus × citriodorus (Pers.) Schreb. is an interspecific hybrid between Thymus pulegioides and Thymus vulgaris, known for its pharmacological activities as diaphoretic, deodorant, antiseptic and disinfectant, the last mostly related with its antimicrobial activity. The folk use of other extracts, as hydrolates, have also been disseminated, as regulators of oily skin with anti-acne effect. AIM OF THE STUDY We aimed to evaluate the anti-acne potential of two Thymus x citriodorus (TC) preparations, the essential oil (EO) and the hydrolate, to be used as active ingredients for skin applications. Specifically, we intend to validate their anti-acne potential by describing their activity on acne related bacteria, bacterial virulence, anti-oxidant and anti-inflammatory potential, and biocompatibility on inflammatory cells. Additionally, we aimed to report their ecotoxicity under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), thus focusing not only on the consumer, but also on environmental safety assessment. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) against C. acnes, S. aureus and S. epidermidis was evaluated. Minimum lethal concentration (MLC) was also determined. The effect on C. acnes biofilm formation and disruption was evaluated with crystal violet staining. Anti-inflammatory activity was investigated on LPS-stimulated mouse macrophages (RAW 264.7), by studying nitric oxide (NO) production (Griess reagent) and cellular biocompatibility through MTT assay. In-vitro NO and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging potential were also evaluated. The ecotoxicity was evaluated using Daphnia magna acute toxicity assays. RESULTS EO presented direct antimicrobial activity, with visual MICs ranging from 0.06% for S. epidermidis and C. acnes to 0.125% for S. aureus. MLCs were higher than the obtained MICs. Hydrolate revealed visual MIC only for C. acnes. TC essential oil was effective in preventing biofilm formation and disrupting preformed biofilms even at sub-inhibitory concentrations. Hydrolate showed a more modest anti-biofilm effect. Regarding anti-inflammatory activity, TC hydrolate has a higher cellular biocompatibility. Still, both plant preparations were able to inhibit at least 50% of NO production at non-cytotoxic concentrations. Both EO and hydrolate have poor anti-oxidant activities. Regarding the ecotoxicity, TC essential oil was classified under acute 3 category, while the hydrolate has proved to be nontoxic, in accordance to the GHS. CONCLUSIONS These results support the anti-acne value of different TC preparations for different applications. TC hydrolate by presenting higher biocompatibility, anti-inflammatory potential and the ability to modulate C. acnes virulence, can be advantageous in a product for everyday application. On the other hand, EO by presenting a marked antimicrobial, anti-biofilm and anti-inflammatory activities, still with some cytotoxicity, may be better suited for application in acute flare-ups, for short treatment periods.
Collapse
Affiliation(s)
- Ana S Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Joana Rolo
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal; CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504, Coimbra, Portugal.
| | - Celso Ferraz
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Susana Coelho
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - M Ramiro Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Department of Medical and Health Sciences, University of Évora, Évora, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Ana Catarina Sousa
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal; Department of Biology, University of Évora, Évora, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal.
| | - José Martinez-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| |
Collapse
|