151
|
Proteomic analysis identifies an NADPH oxidase 1 (Nox1)-mediated role for actin-related protein 2/3 complex subunit 2 (ARPC2) in promoting smooth muscle cell migration. Int J Mol Sci 2013; 14:20220-35. [PMID: 24152438 PMCID: PMC3821612 DOI: 10.3390/ijms141020220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 11/20/2022] Open
Abstract
A variety of vascular pathologies, including hypertension, restenosis and atherosclerosis, are characterized by vascular smooth muscle cell (VSMC) hypertrophy and migration. NADPH oxidase 1 (Nox1) plays a pivotal role in these phenotypes via distinct downstream signaling. However, the mediators differentiating these distinct phenotypes and their precise role in vascular disease are still not clear. The present study was designed to identify novel targets of VSMC Nox1 signaling using 2D Differential In-Gel Electrophoresis and Mass Spectrometry (2D-DIGE/MS). VSMC treatment with scrambled (Scrmb) or Nox1 siRNA and incubation with the oxidant hydrogen peroxide (H2O2; 50 μM, 3 h) followed by 2D-DIGE/MS on cell lysates identified 10 target proteins. Among these proteins, actin-related protein 2/3 complex subunit 2 (ARPC2) with no previous link to Nox isozymes, H2O2, or other reactive oxygen species (ROS), was identified and postulated to play an intermediary role in VSMC migration. Western blot confirmed that Nox1 mediates H2O2-induced ARPC2 expression in VSMC. Treatment with a p38 MAPK inhibitor (SB203580) resulted in reduced ARPC2 expression in H2O2-treated VSMC. Additionally, wound-healing “scratch” assay confirmed that H2O2 stimulates VSMC migration via Nox1. Importantly, gene silencing of ARPC2 suppressed H2O2-stimulated VSMC migration. These results demonstrate for the first time that Nox1-mediated VSMC migration involves ARPC2 as a downstream signaling target.
Collapse
|
152
|
Ahmadi R, Pishghadam S, Mollaamine F, Zand Monfared MR. Comparing the effects of ginger and glibenclamide on dihydroxybenzoic metabolites produced in stz-induced diabetic rats. Int J Endocrinol Metab 2013; 11:e10266. [PMID: 24719624 PMCID: PMC3968999 DOI: 10.5812/ijem.10266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/30/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The aim of the present study was to investigate the effect of ginger and glibenclamide on oxidative stress markers. Oxidative stress is caused by an unbalance between a relative overload of oxidants and depletion of antioxidants, as implicated in the pathogenesis of several chronic diseases, including atherosclerosis and diabetes mellitus. Regarding the role of oxidative stress in the pathogenesis of diabetes mellitus, we investigated the effect of ginger and glibenclamide in diabetic rats induced bystreptozocin (STZ). OBJECTIVES This study assessed the effects of ginger and glibenclamide on dihydroxybenzoic acid metabolites in diabetic rats. MATERIALS AND METHODS In this study 30 Wistar strain male rats were divided into five groups: Group 1: Normal control receiving normal saline (0.9 0/0), Group 2: control DMSO (Dimethyl sulfoxide) (as solvent of glibenclamide), Group 3: Diabetic control receiving Streptozocin (STZ ) (50 mg/kg) ,Group 4: diabetic+ Ginger Extract: this group received ginger ethanolic extract (200 mg/kg) via IP (Intraperitoneally) injection for 30 days, and Group 5 diabetic rats received glibenclamide (0.5 m/kg). Production of hydroxyl radicals was examined in the diabetic rats induced by streptozocin. Hydroxyl radicals were generated in plasma of the hyperglycemic rats, and were quantitatively assayed by trapping hydroxyl radicals with salicylic acid so as to produce 2,3-and 2,5-dihydroxybenzoic acid. RESULTS Production of hydroxyl radicals increased; therefore, by using salicylic acid, hydroxyl radicals were trapped and 2,3dihydroxybenzoic acid and 2,5dihydroxybenzoic acid metabolites were formed then measured by HPLC and spectrophotometer. Rats receiving ginger extract and glibenclamide showed decreased level of metabolites compared to the diabetic controls (P <0/001). This means that antioxidants act as scavenger of free radicals. CONCLUSIONS Comparative effect of ginger and glibenclamide also showed that glibenclamide has antioxidant effect as a scavenger of free radical, but ginger is more capable of eliminating them.
Collapse
Affiliation(s)
- Ramesh Ahmadi
- Department of Physiology, Islamic Azad University, Qom, IR Iran
- Corresponding author: Ramesh Ahmadi, Islamic Azad university of Qom, 15 Khordad St, Qom, IR Iran. Tel:+98-2537780001, Fax:+98-2137770001, E-mail:
| | | | | | | |
Collapse
|
153
|
Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 2013; 19:1110-20. [PMID: 22530599 PMCID: PMC3771549 DOI: 10.1089/ars.2012.4641] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Angiotensin II (Ang II) influences the function of many cell types and regulates many organ systems, in large part through redox-sensitive processes. In the vascular system, Ang II is a potent vasoconstrictor and also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular damage and remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via Ang II type 1 and Ang II type 2 receptors, which couple to various signaling molecules, including NADPH oxidase (Nox), which generates reactive oxygen species (ROS). ROS are now recognized as signaling molecules, critically placed in pathways activated by Ang II. Mechanisms linking Nox and Ang II are complex and not fully understood. RECENT ADVANCES Ang II regulates vascular cell production of ROS through various recently characterized Noxs, including Nox1, Nox2, Nox4, and Nox5. Activation of these Noxs leads to ROS generation, which in turn influences many downstream signaling targets of Ang II, including MAP kinases, RhoA/Rho kinase, transcription factors, protein tyrosine phosphatases, and tyrosine kinases. Activation of these redox-sensitive pathways regulates vascular cell growth, inflammation, contraction, and senescence. CRITICAL ISSUES Although there is much evidence indicating a role for Nox/ROS in Ang II function, there is still a paucity of information on how Ang II exerts cell-specific effects through ROS and how Nox isoforms are differentially regulated by Ang II. Moreover, exact mechanisms whereby ROS induce oxidative modifications of signaling molecules mediating Ang II actions remain elusive. FUTURE DIRECTIONS Future research should elucidate these issues to better understand the significance of Ang II and ROS in vascular (patho) biology.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Augusto C. Montezano
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Rhian M. Touyz
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
154
|
Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F, Levêque J, Jézéquel P, Campion L, Campone M, Ducret T, MacGrogan G, Debure L, Collette Y, Vacher P, Legembre P. CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer. Cancer Res 2013; 73:6711-21. [PMID: 24072745 DOI: 10.1158/0008-5472.can-13-1794] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancers (TNBC) lacking estrogen and progesterone receptors and HER2 amplification have a relatively high risk of metastatic dissemination, but the mechanistic basis for this risk is not understood. Here, we report that serum levels of CD95 ligand (CD95L) are higher in patients with TNBC than in other patients with breast cancer. Metalloprotease-mediated cleavage of CD95L expressed by endothelial cells surrounding tumors generates a gradient that promotes cell motility due to the formation of an unconventional CD95-containing receptosome called the motility-inducing signaling complex. The formation of this complex was instrumental for Nox3-driven reactive oxygen species generation. Mechanistic investigations revealed a Yes-Orai1-EGFR-PI3K pathway that triggered migration of TNBC cells exposed to CD95L. Our findings establish a prometastatic function for metalloprotease-cleaved CD95L in TNBCs, revisiting its role in carcinogenesis.
Collapse
Affiliation(s)
- Marine Malleter
- Authors' Affiliations: Inserm U1085-IRSET, Equipe Labellisée Ligue Contre Le Cancer; Université de Rennes-1; Centre Eugène Marquis, rue bataille Flandres Dunkerque, Rennes; ImmuSmol, 15 Rue Amiral Prouhet, Pessac; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, CNRS, UMR 7258, Marseille; ICO-René Gauducheau, Bd J. Monod, Saint-Herblain; Université de Bordeaux; Inserm U1045, Université Bordeaux Segalen; and Inserm U916, Institut Bergonié, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|
156
|
Ngo DH, Ryu B, Kim SK. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chem 2013; 143:246-55. [PMID: 24054237 DOI: 10.1016/j.foodchem.2013.07.067] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/27/2013] [Accepted: 07/16/2013] [Indexed: 11/29/2022]
Abstract
Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits.
Collapse
Affiliation(s)
- Dai-Hung Ngo
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | |
Collapse
|
157
|
Zhou B, Li B, Yi W, Bu X, Ma L. Synthesis, antioxidant, and antimicrobial evaluation of some 2-arylbenzimidazole derivatives. Bioorg Med Chem Lett 2013; 23:3759-63. [DOI: 10.1016/j.bmcl.2013.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 02/05/2023]
|
158
|
Cifuentes-Pagano E, Saha J, Csányi G, Ghouleh IA, Sahoo S, Rodríguez A, Wipf P, Pagano PJ, Skoda EM. Bridged tetrahydroisoquinolines as selective NADPH oxidase 2 (Nox2) inhibitors. MEDCHEMCOMM 2013; 4:1085-1092. [PMID: 24466406 PMCID: PMC3897123 DOI: 10.1039/c3md00061c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
(1SR,4RS)-3,3-Dimethyl-1,2,3,4-tetrahydro-1,4-(epiminomethano)naphthalenes were synthesized in 2-3 steps from commercially available materials and assessed for specificity and effectiveness across a range of Nox isoforms. The N-pentyl and N-methylenethiophene substituted analogs 11g and 11h emerged as selective Nox2 inhibitors with cellular IC50 values of 20 and 32 μM, respectively.
Collapse
Affiliation(s)
- Eugenia Cifuentes-Pagano
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jaideep Saha
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Imad Al Ghouleh
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sanghamitra Sahoo
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrés Rodríguez
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA ; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patrick J Pagano
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA ;
| | - Erin M Skoda
- Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA ;
| |
Collapse
|
159
|
Affiliation(s)
- Augusto C. Montezano
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rhian M. Touyz
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
160
|
Juni RP, Duckers HJ, Vanhoutte PM, Virmani R, Moens AL. Oxidative stress and pathological changes after coronary artery interventions. J Am Coll Cardiol 2013; 61:1471-81. [PMID: 23500310 DOI: 10.1016/j.jacc.2012.11.068] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022]
Abstract
Oxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions, including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alterations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery. Therefore, the understanding of the pathophysiological role of reactive oxygen species (ROS) generated during or after coronary interventions, or both, is essential to improve the success rate of these procedures. Superoxide O2(·-) anions, whether derived from uncoupled endothelial nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, or mitochondria, are among the most harmful ROS. O2(·-) can scavenge nitric oxide, modify proteins and nucleotides, and induce proinflammatory signaling, which may lead to greater ROS production. Current innovations in stent technologies, including biodegradable stents, nitric oxide donor-coated stents, and a new generation of drug-eluting stents, therefore address persistent oxidative stress and reduced nitric oxide bioavailability after percutaneous coronary interventions. This review discusses the molecular mechanisms of ROS generation after coronary interventions, the related pathological events-including restenosis, endothelial dysfunction, and stent thrombosis-and possible therapeutic ways forward.
Collapse
Affiliation(s)
- Rio P Juni
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
161
|
Yen FL, Tsai MH, Yang CM, Liang CJ, Lin CC, Chiang YC, Lee HC, Ko HH, Lee CW. Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox) and MAPKs/AP-1 pathways. PLoS One 2013; 8:e63845. [PMID: 23671702 PMCID: PMC3650060 DOI: 10.1371/journal.pone.0063845] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 04/09/2013] [Indexed: 12/31/2022] Open
Abstract
Upregulation of intercellular adhesion molecule-1 (ICAM-1) involves adhesions between both circulating and resident leukocytes and the human lung epithelial cells during lung inflammatory reactions. We have previously demonstrated that curcumin-loaded polyvinylpyrrolidone nanoparticles (CURN) improve the anti-inflammatory and anti-oxidative properties of curcumin in hepatocytes. In this study, we focused on the effects of CURN on the expression of ICAM-1 in TNF-α-treated lung epithelial cells and compared these to the effects of curcumin water preparation (CURH). TNF-αinduced ICAM-1 expression, ROS production, and cell-cell adhesion were significantly attenuated by the pretreatment with antioxidants (DPI, APO, or NAC) and CURN, but not by CURH, as revealed by western blot analysis, RT-PCR, promoter assay, and ROS detection and adhesion assay. In addition, treatment of TNF-α-treated cells with CURN and antioxidants also resulted in an inhibition of activation of p47 (phox) and phosphorylation of MAPKs, as compared to that using CURH. Our findings also suggest that phosphorylation of MAPKs may eventually lead to the activation of transcription factors. We also observed that the effects of TNF-α treatment for 30 min, which includes a significant increase in the binding activity of AP-1 and phosphorylation of c-jun and c-fos genes, were reduced by CURN treatment. In vivo studies have revealed that CURN improved the anti-inflammation activities of CURH in the lung epithelial cells of TNF-α-treated mice. Our results indicate that curcumin-loaded polyvinylpyrrolidone nanoparticles may potentially serve as an anti-inflammatory drug for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Horng Tsai
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chan-Jung Liang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Ching Lin
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Chang Chiang
- Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan
- China Medical University, Taichung, Taiwan
| | - Hui-Chun Lee
- Division of Basic Medical Sciences, Department of Nursing, and Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan
| | - Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiang-Wen Lee
- Division of Basic Medical Sciences, Department of Nursing, and Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan
| |
Collapse
|
162
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
163
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
164
|
Ahmarani L, Avedanian L, Al-Khoury J, Perreault C, Jacques D, Bkaily G. Whole-cell and nuclear NADPH oxidases levels and distribution in human endocardial endothelial, vascular smooth muscle, and vascular endothelial cells. Can J Physiol Pharmacol 2013; 91:71-9. [DOI: 10.1139/cjpp-2012-0265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The results of our study show that whole-cell and nuclear levels of NADPH oxidase-1 (NOX1) are similar in human vascular endothelial cells (hVECs) and smooth muscle cells (hVSMCs), but lower in human endocardial endothelial cells (hEECs). NOX2 levels were higher in hVECs and lower in hVSMCs. NOX3 levels were the same in hVECs and hVSMCs, but lower in hEECs. NOX4 levels were similar in all of the cell types. NOX4 levels were higher in hVECs than in hVSMCs. NOX5 was also present throughout the 3 cell types, including their nuclei, in the following order: hEECs > hVSMCs > hVECs. The level of basal reactive oxygen species (ROS) was highest in hVECs and lowest in hVSMCs. However, the Ca2+ level was highest in hVSMCs and lowest in hVECs. These findings suggest that all types of NOXs exist in hEECs, hVECs, and hVSMCs, although their density and distribution are cell-type dependent. The density of the different NOXs correlated with the ROS level, but not with the Ca2+ level. In conclusion, NOXs, including NOX3, exist in cardiovascular cells and their nuclei. The nucleus is a major source of ROS generation. The nuclear NOXs may contribute to ROS and Ca2+ homeostasis, which may affect cell remodeling, including the formation of nuclear T-tubules in vascular diseases and aging.
Collapse
Affiliation(s)
- Lena Ahmarani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Levon Avedanian
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Claudine Perreault
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
165
|
Liu XH, Pan LL, Deng HY, Xiong QH, Wu D, Huang GY, Gong QH, Zhu YZ. Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4. Free Radic Biol Med 2013; 54:93-104. [PMID: 23127783 DOI: 10.1016/j.freeradbiomed.2012.10.555] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/18/2012] [Accepted: 10/26/2012] [Indexed: 02/02/2023]
Abstract
In our previous studies, we have reported that leonurine, a plant phenolic alkaloid in Herba leonuri, exerted cardioprotective properties in a number of preclinical experiments. Herein, we investigated the roles and the possible mechanisms of leonurine for reducing fibrotic responses in angiotensin II (Ang II)-stimulated primary neonatal rat cardiac fibroblasts and post-myocardial infarction (MI) rats. In in vitro experiments performed in neonatal rat cardiac fibroblasts, leonurine (10-20 μM) pretreatment attenuated Ang II-induced activation of extracellular signal-regulated kinase 1/2, production of intracellular reactive oxygen species (ROS), expression and activity of matrix metalloproteinase (MMP)-2/9, and expression of α-smooth muscle actin and types I and III collagen. A small interfering RNA-mediated knockdown strategy for NADPH oxidase 4 (Nox4) revealed that Nox4 was required for Ang II-induced activation of cardiac fibroblasts. In vivo studies using a post-MI model in rats indicated that administration of leonurine inhibited myocardial fibrosis while reducing cardiac Nox4 expression, ROS production, NF-κB activation, and plasma MMP-2 activity. In conclusion, our results provide the first evidence that leonurine could prevent cardiac fibrosis and the activation of cardiac fibroblasts partly through modulation of a Nox4-ROS pathway.
Collapse
Affiliation(s)
- Xin-Hua Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Ranayhossaini D, Pagano PJ. TrACEing angiotensin II type 1 to right ventricular hypertrophy: are the "sartans" a viable course to treating pulmonary arterial hypertension? Am J Respir Crit Care Med 2012; 186:705-7. [PMID: 23071186 DOI: 10.1164/rccm.201208-1480ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
167
|
Nodularin exposure induces SOD1 phosphorylation and disrupts SOD1 co-localization with actin filaments. Toxins (Basel) 2012; 4:1482-99. [PMID: 23242317 PMCID: PMC3528258 DOI: 10.3390/toxins4121482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/27/2023] Open
Abstract
Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS), which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1), without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized.
Collapse
|
168
|
Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol 2012; 75:23-47. [PMID: 23216413 PMCID: PMC3762248 DOI: 10.1146/annurev-physiol-030212-183802] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.
Collapse
Affiliation(s)
- Kurt R. Stenmark
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Michael E. Yeager
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Karim C. El Kasmi
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Eva Nozik-Grayck
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | | | - Min Li
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Suzette R. Riddle
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Maria G. Frid
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| |
Collapse
|
169
|
Kar S, Bhandar B, Kavdia M. Impact of SOD in eNOS uncoupling: a two-edged sword between hydrogen peroxide and peroxynitrite. Free Radic Res 2012; 46:1496-513. [PMID: 22998079 DOI: 10.3109/10715762.2012.731052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O(2)(•-)) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO(-)) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O(2)(•-) and ONOO(-) during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O(2)(•-) production and downstream reactions involving NO, O(2)(•-), ONOO(-), H(2)O(2) and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O(2)(•-), ONOO(-) and H(2)O(2) in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O(2)(•-) production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O(2)(•-) concentration by 90% at all [BH(4)]/[TBP] ratios, (iv) SOD reduces ONOO(-) concentration and increases H(2)O(2) concentration during eNOS uncoupling, (v) Catalase can reduce H(2)O(2) concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| | | | | |
Collapse
|
170
|
Chmielowska-Bąk J, Deckert J. A common response to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing. J Cell Commun Signal 2012; 6:191-204. [PMID: 22865263 PMCID: PMC3497896 DOI: 10.1007/s12079-012-0173-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/20/2012] [Indexed: 01/14/2023] Open
Abstract
Exposure to cadmium results in disturbances in cell homeostasis in all living organisms. The first response to stress factors, including cadmium, is activation of signal transduction pathways that mobilize cell defense mechanisms. The aim of this review is a comparison between the signaling network triggered by Cd in plants and animals. Despite differences in the structure and physiology of plant and animal cells, their cadmium signal transduction pathways share many common elements. These elements include signaling molecules such as ROS, Ca(2+) and NO, the involvement of phospholipase C, mitogen-activated protein kinase cascades, and activation of transcription factors. Undoubtedly, both animals and plants also possess specific signaling pathways. In case of animals, Wnt/β-catenin, sonic hedgehog and oestorgen signaling are engaged in the transduction of cadmium signal. Plant specific signal transduction pathways include signaling mediated by plant hormones. The role of ethylene and jasmonic, salicylic and abscisic acid in plant response to cadmium is also discussed.
Collapse
Affiliation(s)
- Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul.Umultowska 89, 61-614, Poznań, Poland,
| | | |
Collapse
|
171
|
de Lima FM, Albertini R, Dantas Y, Maia-Filho AL, Santana CDL, Castro-Faria-Neto HC, França C, Villaverde AB, Aimbire F. Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 2012; 89:179-88. [PMID: 22882462 DOI: 10.1111/j.1751-1097.2012.01214.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/13/2012] [Indexed: 11/30/2022]
Abstract
It remains unknown if the oxidative stress can be regulated by low-level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i-I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and bronchoalveolar lavage fluid neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression intercellular adhesion molecule 1 (ICAM-1) and peroxisome proliferator-activated receptor-y (PPARy) were measured by RT-PCR. The lung immunohistochemical localization of ICAM-1 was visualized as a brown stain. Both lung HSP70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM-1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i-I/R groups. Both HSP70 and PPARy expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro- and antioxidants mediators rising of PPARy expression and consequently the HSP70 production.
Collapse
Affiliation(s)
- Flávia Mafra de Lima
- Department of Rehabilitation Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Litterio MC, Jaggers G, Sagdicoglu Celep G, Adamo AM, Costa MA, Oteiza PI, Fraga CG, Galleano M. Blood pressure-lowering effect of dietary (-)-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radic Biol Med 2012; 53:1894-902. [PMID: 22985936 DOI: 10.1016/j.freeradbiomed.2012.08.585] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022]
Abstract
Epidemiological and intervention studies have shown that the intake of certain chocolates or cocoa products decreases blood pressure (BP) in humans. (-)-Epicatechin is the most abundant flavanol present in cocoa seeds and its derived foods. This work investigates the effects of dietary (-)-epicatechin on BP in rats that received N(ω)-nitro-l-arginine methyl ester (L-NAME) for 4 days. (-)-Epicatechin administration prevented the 42mm Hg increase in BP associated with the inhibition of NO production in a dose-dependent manner (0.2-4.0g/kg diet). This BP effect was associated with a reduction in L-NAME-mediated increase in the indexes of oxidative stress (plasma TBARS and GSSG/GSH(2) ratio) and with a restoration of the NO concentration. At the vascular level, none of the treatments modified NOS expression, but (-)-epicatechin administration avoided the L-NAME-mediated decrease in eNOS activity and increase in both superoxide anion production and NOX subunit p47(phox) expression. In summary, (-)-epicatechin was able to prevent the increase in BP and in oxidative stress and restored NO bioavailability. The fact that (-)-epicatechin is present in several plants usually consumed by humans gives the possibility of developing diets rich in those plants or pharmacological strategies using that flavonoid to diminish BP in hypertensive subjects.
Collapse
Affiliation(s)
- Maria C Litterio
- Physical Chemistry-IBIMOL, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Csányi G, Yao M, Rodríguez AI, Al Ghouleh I, Sharifi-Sanjani M, Frazziano G, Huang X, Kelley EE, Isenberg JS, Pagano PJ. Thrombospondin-1 regulates blood flow via CD47 receptor-mediated activation of NADPH oxidase 1. Arterioscler Thromb Vasc Biol 2012; 32:2966-73. [PMID: 23087362 DOI: 10.1161/atvbaha.112.300031] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Although the matricellular protein thrombospondin-1 (TSP1) is highly expressed in the vessel wall in response to injury, its pathophysiological role in the development of vascular disease is poorly understood. This study was designed to test the hypothesis that TSP1 stimulates reactive oxygen species production in vascular smooth muscle cells and induces vascular dysfunction by promoting oxidative stress. METHODS AND RESULTS Nanomolar concentrations of TSP1 found in human vascular disease robustly stimulated superoxide (O(2)(•-)) levels in vascular smooth muscle cells at both cellular and tissue level as measured by cytochrome c and electron paramagnetic resonance. A peptide mimicking the C terminus of TSP1 known to specifically bind CD47 recapitulated this response. Transcriptional knockdown of CD47 and a monoclonal inhibitory CD47 antibody abrogated TSP1-triggered O(2)(•-) in vitro and ex vivo. TSP1 treatment of vascular smooth muscle cells activated phospholipase C and protein kinase C, resulting in phosphorylation of the NADPH oxidase organizer subunit p47(phox) and subsequent Nox1 activation, leading to impairment of arterial vasodilatation ex vivo. Further, we observed that blockade of CD47 and NADPH oxidase 1 gene silencing in vivo in rats improves TSP1-induced impairment of tissue blood flow after ischemia reperfusion. CONCLUSIONS Our data suggest a highly regulated process of reactive oxygen species stimulation and blood flow regulation promoted through a direct TSP1/CD47-mediated activation of Nox1. This is the first report, to our knowledge, of a matricellular protein acting as a ligand for NADPH oxidase activation and through specific engagement of integrin-associated protein CD47.
Collapse
Affiliation(s)
- Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci (Lond) 2012; 124:191-202. [DOI: 10.1042/cs20120330] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nox (NADPH oxidase)-derived ROS (reactive oxygen species) have been implicated in the development of diabetic nephropathy. Of the Nox isoforms in the kidney, Nox4 is important because of its renal abundance. In the present study, we tested the hypothesis that GKT136901, a Nox1/4 inhibitor, prevents the development of nephropathy in db/db (diabetic) mice. Six groups of male mice (8-week-old) were studied: (i) untreated control db/m, (ii) low-dose GKT136901-treated db/m (30 mg/kg of body weight per day), (iii) high-dose GKT136901-treated db/m (90 mg/kg of body weight per day), (iv) untreated db/db; (v) low dose GKT136901-treated db/db; and (vi) high-dose GKT136901-treated db/db. GKT136901, in chow, was administered for 16 weeks. db/db mice developed diabetes and nephropathy as evidenced by hyperglycaemia, albuminuria and renal injury (mesangial expansion, tubular dystrophy and glomerulosclerosis). GKT136901 treatment had no effect on plasma glucose or BP (blood pressure) in any of the groups. Plasma and urine TBARSs (thiobarbituric acid-reacting substances) levels, markers of systemic and renal oxidative stress, respectively, were increased in diabetic mice. Renal mRNA expression of Nox4, but not of Nox2, increased, Nox1 was barely detectable in db/db. Expression of the antioxidant enzyme SOD-1 (superoxide dismutase 1) decreased in db/db mice. Renal content of fibronectin, pro-collagen, TGFβ (transforming growth factor β) and VCAM-1 (vascular cell adhesion molecule 1) and phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) were augmented in db/db kidneys, with no change in p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase). Treatment reduced albuminuria, TBARS and renal ERK1/2 phosphorylation and preserved renal structure in diabetic mice. Our findings suggest a renoprotective effect of the Nox1/4 inhibitor, possibly through reduced oxidative damage and decreased ERK1/2 activation. These phenomena occur independently of improved glucose control, suggesting GKT136901-sensitive targets are involved in complications of diabetes rather than in the disease process.
Collapse
|
175
|
Al Ghouleh I, Frazziano G, Rodriguez AI, Csányi G, Maniar S, St Croix CM, Kelley EE, Egaña LA, Song GJ, Bisello A, Lee YJ, Pagano PJ. Aquaporin 1, Nox1, and Ask1 mediate oxidant-induced smooth muscle cell hypertrophy. Cardiovasc Res 2012; 97:134-42. [PMID: 22997161 DOI: 10.1093/cvr/cvs295] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Reactive oxygen species (ROS)-mediated intracellular signalling is well described in the vasculature, yet the precise roles of ROS in paracrine signalling are not known. Studies implicate interstitial ROS hydrogen peroxide (H(2)O(2)) in vascular disease, and plasma H(2)O(2) levels in the micromolar range are detectable in animal models and humans with hypertension. Recently, H(2)O(2) was shown to cross biological membranes of non-vascular cells via aquaporin (Aqp) water channels. Previous findings suggest that H(2)O(2) activates NADPH oxidase (Nox) enzymes in vascular cells and apoptosis signal-regulating kinase 1 (Ask1) in non-vascular cells. We hypothesized that extracellular H(2)O(2) induces smooth muscle cell (SMC) hypertrophy by a mechanism involving Aqp1, Nox1, and Ask1. METHODS AND RESULTS Treatment of rat aortic SMCs (rASMC) with exogenous H(2)O(2) resulted in a concentration-dependent increase in Nox-derived superoxide (O(2)(•-)), determined by L-012 chemiluminescence, cytochrome c and electron paramagnetic resonance. Nox1 was verified as the source of O(2)(·-) by siRNA. Aqp1 siRNA attenuated H(2)O(2) cellular entry and H(2)O(2)-induced O(2)(•-) production. H(2)O(2) treatment increased Ask1 activation and induced rASMC hypertrophy in a Nox1-dependent mechanism. Adenoviral-dominant-negative Ask1 attenuated H(2)O(2)-induced rASMC hypertrophy and adenoviral overexpression of Ask1 augmented it. CONCLUSION Our results demonstrate for the first time that extracellular H(2)O(2), at pathophysiological concentrations, stimulates rASMC Nox1-derived O(2)(•-), subsequent Ask1 activation and SMC hypertrophy. The data demonstrate a novel pathway by which H(2)O(2) enters vascular cells via aquaporins and activates Nox, leading to hypertrophy, and provide multiple novel targets for combinatorial therapeutics development targeting hypertrophy and vascular disease.
Collapse
Affiliation(s)
- Imad Al Ghouleh
- Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Himaya SWA, Ryu B, Ngo DH, Kim SK. Peptide isolated from Japanese flounder skin gelatin protects against cellular oxidative damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9112-9119. [PMID: 22900747 DOI: 10.1021/jf302161m] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gelatin was extracted from the skin of Japanese flounder ( Palatichtys olivaceus ) and was subjected to enzymatic hydrolysis. The peptic hydrolysate resulted in a potent antioxidative peptide Gly-Gly-Phe-Asp-Met-Gly (582 Da), which bears +12.61 kcal/mol hydrophobicity. The antioxidative potential of the peptide was characterized by analyzing the protective effect of the peptide on reactive oxygen species (ROS)-mediated intracellular macromolecule damage. It was found that the peptide is a potent scavenger of intracellular ROS, thereby protecting the radical-mediated damage of membrane lipids, proteins, and DNA. Moreover, the peptide is capable of upregulating the expression of inherent antioxidative enzymes, superoxide dismutase-1, glutathione, and catalase. Collectively, it can be concluded that Japanese flounder skin, a processing byproduct of filleting, can be effectively used to produce a bioactive peptide with potent antioxidant capacity.
Collapse
Affiliation(s)
- S W A Himaya
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University , Busan 608-737, South Korea
| | | | | | | |
Collapse
|
177
|
Ostrakhovitch EA, Semenikhin OA. The role of redox environment in neurogenic development. Arch Biochem Biophys 2012; 534:44-54. [PMID: 22910298 DOI: 10.1016/j.abb.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
The dynamic changes of cellular redox elements during neurogenesis allow the control of specific programs for selective lineage progression. There are many redox couples that influence the cellular redox state. The shift from a reduced to an oxidized state and vice versa may act as a cellular switch mechanism of stem cell mode of action from proliferation to differentiation. The redox homeostasis ensures proper functioning of redox-sensitive signaling pathways through oxidation/reduction of critical cysteine residues on proteins involved in signal transduction. This review presents the current knowledge on the relation between changes in the cellular redox environment and stem cell programming in the course of commitment to a restricted neural lineage, focusing on in vivo neurogenesis and in vitro neuronal differentiation. The first two sections outline the main systems that control the intracellular redox environment and make it more oxidative or reductive. The last section provides the background on redox-sensitive signaling pathways that regulate neurogenesis.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | |
Collapse
|
178
|
Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. Toxicol Appl Pharmacol 2012; 263:287-95. [PMID: 22789837 DOI: 10.1016/j.taap.2012.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023]
Abstract
Platelet dysfunction is a major risk factor of cardiovascular diseases such as atherosclerosis, stroke and myocardial infarction. Many antiplatelet agents are used for prevention and treatment of these diseases. In this study, phloroglucinol (2.5-25 μM) suppressed AA-induced platelet aggregation and thromboxane B(2) (TXB(2)) production, but not U46619-induced platelet aggregation. Phloroglucinol (100-250 μM) showed little cytotoxicity to platelets. Phloroglucinol inhibited the COX-1 and COX-2 activities by 45-74% and 49-72% respectively at concentrations of 10-50 μM. At concentrations of 1 and 5 μM, phloroglucinol attenuated the AA-induced ROS production in platelets by 30% and 53%, with an IC(50) of 13.8 μM. Phloroglucinol also inhibited the PMA-stimulated ROS production in PMN. Preincubation of platelets by phloroglucinol (10-25 μM) markedly attenuated the AA-induced ERK and p38 phosphorylation. Intravenous administration of phloroglucinol (2.5 and 5 μmol/mouse) suppressed the ex vivo AA-induced platelet aggregation by 57-71%. Phloroglucinol administration also elevated the mice tail bleeding time. Moreover, phloroglucinol inhibited the IL-1β-induced PGE(2) production in pulp fibroblasts. These results indicate that antiplatelet and anti-inflammatory effects of phloroglucinol are related to inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation in platelets. Phloroglucinol further suppress PMA-induced ROS production in PMN. The antiplatelet effect of phloroglucinol was confirmed by ex vivo study. Clinically, the consumption of phloroglucinol-containing food/natural products as nutritional supplement may be helpful to cardiovascular health. Phloroglucinol has potential pharmacological use.
Collapse
|
179
|
Kalwa H, Sartoretto JL, Sartoretto SM, Michel T. Angiotensin-II and MARCKS: a hydrogen peroxide- and RAC1-dependent signaling pathway in vascular endothelium. J Biol Chem 2012; 287:29147-58. [PMID: 22773836 DOI: 10.1074/jbc.m112.381517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARCKS is an actin-binding protein that modulates vascular endothelial cell migration and cytoskeleton signaling (Kalwa, H., and Michel, T. (2011) J. Biol. Chem. 286, 2320-2330). Angiotensin-II is a vasoactive peptide implicated in vascular physiology as well as pathophysiology; the pathways connecting angiotensin-II and cytoskeletal remodeling are incompletely understood. Here we show that MARCKS is expressed in intact arterial preparations, with prominent staining of the endothelium. In endothelial cells, angiotensin-II-promoted MARCKS phosphorylation is abrogated by PEG-catalase, implicating endogenous H(2)O(2) in the angiotensin-II response. Studies using the H(2)O(2) biosensor HyPer2 reveal that angiotensin-II promotes increases in intracellular H(2)O(2). We used a Rac1 FRET biosensor to show that angiotensin-II promotes Rac1 activation that is attenuated by PEG-catalase. siRNA-mediated Rac1 knockdown blocks angiotensin-II-stimulated MARCKS phosphorylation. Cell imaging studies using a phosphoinositide 4,5-bisphosphate (PIP(2)) biosensor revealed that angiotensin-II PIP(2) regulation depends on MARCKS and H(2)O(2). siRNA-mediated knockdown of MARCKS or Rac1 attenuates receptor-mediated activation of the tyrosine kinase c-Abl and disrupts actin fiber formation. These studies establish a critical role for H(2)O(2) in angiotensin-II signaling to the endothelial cytoskeleton in a novel pathway that is critically dependent on MARCKS, Rac1, and c-Abl.
Collapse
Affiliation(s)
- Hermann Kalwa
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
180
|
Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies. J Cardiovasc Transl Res 2012; 5:509-18. [DOI: 10.1007/s12265-012-9387-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 01/02/2023]
|
181
|
Abstract
The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the ‘covalent advantage’. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway.
Collapse
|
182
|
Moflehi D, Kok LY, Tengku-Kamalden TF, Amri S. Effect of single-session aerobic exercise with varying intensities on lipid peroxidation and muscle-damage markers in sedentary males. Glob J Health Sci 2012; 4:48-54. [PMID: 22980341 PMCID: PMC4776913 DOI: 10.5539/gjhs.v4n4p48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/01/2012] [Indexed: 02/05/2023] Open
Abstract
Objectives: This study was conducted to evaluate the effect of the different intensity levels of single-session aerobic exercise on serum levels of lipid peroxidation and muscle damage markers in sedentary males. Method: Fifty one sedentary healthy males aged 21.76±1.89 years were randomly divided into four groups, with one control (n=10) and three treatment groups that attended single-session aerobic exercise with low (n=14), moderate (n=14), and high (n=13) intensities. The serum levels of malondialdehyde (MDA) and creatine kinase (CK) were measured. Results: Data analysis revealed a significant effect by the intensity levels of aerobic exercise on MDA (P=0.001) and CK (P=0.003) post-test when the participants in the treatment groups were compared with the control. When the intensity of aerobic exercise was increased, the amount of MDA and CK was also found to be increased. Conclusion: Single-session aerobic exercise can increase the amount of MDA and CK, suggesting that low intensity level of aerobic exercise should be utilized for more adaptation, and to prevent lipid peroxidation and muscle damage in sedentary males.
Collapse
Affiliation(s)
- Daruosh Moflehi
- Department of Sport Studies, Faculty of Education, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
183
|
Mitochondria: redox metabolism and dysfunction. Biochem Res Int 2012; 2012:896751. [PMID: 22593827 PMCID: PMC3347708 DOI: 10.1155/2012/896751] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/05/2012] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the main intracellular location for fuel generation; however, they are not just power plants but involved in a range of other intracellular functions including regulation of redox homeostasis and cell fate. Dysfunction of mitochondria will result in oxidative stress which is one of the underlying causal factors for a variety of diseases including neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. In this paper, generation of reactive oxygen/nitrogen species (ROS/RNS) in the mitochondria, redox regulatory roles of certain mitochondrial proteins, and the impact on cell fate will be discussed. The current state of our understanding in mitochondrial dysfunction in pathological states and how we could target them for therapeutic purpose will also be briefly reviewed.
Collapse
|
184
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
185
|
Montezano AC, Touyz RM. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 2012; 28:288-95. [PMID: 22445098 DOI: 10.1016/j.cjca.2012.01.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 02/07/2023] Open
Abstract
Many factors have been implicated in the pathophysiology of hypertension such as upregulation of the renin-angiotensin-aldosterone system, activation of the sympathetic nervous system, perturbed G protein-coupled receptor signalling, inflammation, and altered T-cell function. Common to these processes is increased bioavailability of reactive oxygen species (ROS) (termed oxidative stress) due to excess ROS generation, decreased nitric oxide (NO) levels, and reduced antioxidant capacity in the cardiovascular, renal, and nervous systems. Although oxidative stress may not be the sole etiology of hypertension, it amplifies blood pressure elevation in the presence of other prohypertensive factors. In the cardiovascular system ROS play a physiological role in controlling endothelial function, vascular tone, and cardiac function, and a pathophysiological role in inflammation, hypertrophy, proliferation, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, all of which are important processes contributing to endothelial dysfunction and cardiovascular remodelling in hypertension. A major source for cardiovascular ROS is a family of nonphagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox1, Nox2, Nox4, and Nox5). Other sources include mitochondrial enzymes, xanthine oxidase, and uncoupled NO synthase (NOS). Although convincing data from animal studies support a causative role for oxidative stress in the pathogenesis of hypertension, there is still no solid evidence that oxidative stress causes hypertension in humans. However, biomarkers of excess ROS are increased in patients with hypertension and oxidative damage is important in the molecular mechanisms associated with cardiovascular and renal injury in hypertension. Although clinical trials failed to show beneficial antihypertensive effects of antioxidants, strategies that combat oxidative stress by targeting Noxs in an isoform-specific manner may have therapeutic potential.
Collapse
Affiliation(s)
- Augusto C Montezano
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
186
|
Frazziano G, Champion HC, Pagano PJ. NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone. Am J Physiol Heart Circ Physiol 2012; 302:H2166-77. [PMID: 22427511 DOI: 10.1152/ajpheart.00780.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary vessel constriction results from an imbalance between vasodilator and vasoconstrictor factors released by the endothelium including nitric oxide, endothelin, prostanoids, and reactive oxygen species (ROS). ROS, generated by a variety of enzymatic sources (such as mitochondria and NADPH oxidases, a.k.a. Nox), appear to play a pivotal role in vascular homeostasis, whereas elevated levels effect vascular disease. The pulmonary circulation is very sensitive to changes in the partial pressure of oxygen and differs from the systemic circulation in its response to this change. In fact, the pulmonary vessels contract in response to low oxygen tension, whereas systemic vessels dilate. Growing evidence suggests that ROS production and ROS-related pathways may be key factors that underlie this differential response to oxygen tension. A major emphasis of our laboratory is the role of Nox isozymes in cardiovascular disease. In this review, we will focus our attention on the role of Nox-derived ROS in the control of pulmonary vascular tone.
Collapse
Affiliation(s)
- G Frazziano
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
187
|
Schramm A, Matusik P, Osmenda G, Guzik TJ. Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol 2012; 56:216-31. [PMID: 22405985 DOI: 10.1016/j.vph.2012.02.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/21/2012] [Accepted: 02/25/2012] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a molecular dysregulation in reactive oxygen species (ROS) metabolism, which plays a key role in the pathogenesis of atherosclerosis, vascular inflammation and endothelial dysfunction. It is characterized by a loss of nitric oxide (NO) bioavailability. Large clinical trials such as HOPE and HPS have not shown a clinical benefit of antioxidant vitamin C or vitamin E treatment, putting into question the role of oxidative stress in cardiovascular disease. A change in the understanding of the molecular nature of oxidative stress has been driven by the results of these trials. Oxidative stress is no longer perceived as a simple imbalance between the production and scavenging of ROS, but as a dysfunction of enzymes involved in ROS production. NADPH oxidases are at the center of these events, underlying the dysfunction of other oxidases including eNOS uncoupling, xanthine oxidase and mitochondrial dysfunction. Thus NADPH oxidases are important therapeutic targets. Indeed, HMG-CoA reductase inhibitors (statins) as well as drugs interfering with the renin-angiotensin-aldosterone system inhibit NADPH oxidase activation and expression. Angiotensin-converting enzyme (ACE) inhibitors, AT1 receptor antagonists (sartans) and aliskiren, as well as spironolactone or eplerenone, have been discussed. Molecular aspects of NADPH oxidase regulation must be considered, while thinking about novel pharmacological targeting of this family of enzymes consisting of several homologs Nox1, Nox2, Nox3, Nox4 and Nox5 in humans. In order to properly design trials of antioxidant therapies, we must develop reliable techniques for the assessment of local and systemic oxidative stress. Classical antioxidants could be combined with novel oxidase inhibitors. In this review, we discuss NADPH oxidase inhibitors such as VAS2870, VAS3947, GK-136901, S17834 or plumbagin. Therefore, our efforts must focus on generating small molecular weight inhibitors of NADPH oxidases, allowing the selective inhibition of dysfunctional NADPH oxidase homologs. This appears to be the most reasonable approach, potentially much more efficient than non-selective scavenging of all ROS by the administration of antioxidants.
Collapse
Affiliation(s)
- Agata Schramm
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | | | | | | |
Collapse
|
188
|
Wilcox CS. Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables. Hypertension 2012; 59:375-81. [PMID: 22215715 DOI: 10.1161/hypertensionaha.111.187310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma levels of asymmetric dimethylarginine or markers of reactive oxygen species are increased in subjects with risk factors for cardiovascular disease or chronic kidney disease. We tested the hypothesis that reactive oxygen species generate cellular asymmetric dimethylarginine that together cause endothelial dysfunction that underlies the risk of subsequent disease. Rat preglomerular vascular smooth muscle cells transfected with p22(phox) had increased NADPH oxidase activity, enhanced activity and expression of protein arginine methyltransferase, and reduced activity and protein expression of dimethylarginine dimethylaminotransferase and of cationic amino acid transferase 1 resulting in increased cellular levels of asymmetric dimethylarginine. Rats infused with angiotensin II had oxidative stress. The endothelial function of their mesenteric arterioles was changed from vasodilatation to vasoconstriction, accompanied by increased vascular asymmetric dimethylarginine. All of these changes were prevented by Tempol. In vivo silencing of dimethylarginine dimethylaminotransferase 1 increased plasma levels of asymmetric dimethylarginine, whereas silencing of dimethylarginine dimethylaminotransferase 2 impaired endothelial function. We suggest that initiation factors, such as angiotensin II, expressed in blood vessels or tissues of subjects with cardiovascular and kidney disease risk factors generate reactive oxygen species from NADPH oxidase that enhances cellular asymmetric dimethylarginine in an amplification loop. This leads to adverse changes in vascular and organ functions, as a consequence of reduced tissue levels of NO and increased reactive oxygen species. Thus, we conclude that reactive oxygen species and asymmetric dimethylarginine form a tightly coupled amplification system that translates cardiovascular/kidney risk into overt disease.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Center, 3800 Reservoir Rd, NW, 6 PHC Building, F6003, Washington, DC 20007, USA.
| |
Collapse
|
189
|
Menazza S, Canton M, Sorato E, Boengler K, Schulz R, Di Lisa F. Old and new biomarkers of oxidative stress in heart failure. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.ddstr.2013.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
190
|
Kozel BA, Knutsen RH, Ye L, Ciliberto CH, Broekelmann TJ, Mecham RP. Genetic modifiers of cardiovascular phenotype caused by elastin haploinsufficiency act by extrinsic noncomplementation. J Biol Chem 2011; 286:44926-36. [PMID: 22049077 PMCID: PMC3248007 DOI: 10.1074/jbc.m111.274779] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/15/2011] [Indexed: 12/21/2022] Open
Abstract
Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln(+/-) mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln(+/-), two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln(+/-)x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln(+/-) animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln(+/-)x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln(+/-), including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln(+/-) aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation.
Collapse
Affiliation(s)
| | - Russell H. Knutsen
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Li Ye
- From the Departments of Pediatrics and
| | - Christopher H. Ciliberto
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Thomas J. Broekelmann
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert P. Mecham
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
191
|
Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, Scuto M, Rizza S, Zanoli L, Neri S, Castellino P. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:729-36. [PMID: 22186191 DOI: 10.1016/j.bbadis.2011.12.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 01/08/2023]
Abstract
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- V Calabrese
- Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Estevez AY, Erlichman JS. Cerium Oxide Nanoparticles for the Treatment of Neurological Oxidative Stress Diseases. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1083.ch009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- A. Y. Estevez
- Biology Department, St. Lawrence University, Canton, New York 13617
- Psychology Department, St. Lawrence University, Canton, New York 13617
| | - J. S. Erlichman
- Biology Department, St. Lawrence University, Canton, New York 13617
- Psychology Department, St. Lawrence University, Canton, New York 13617
| |
Collapse
|