151
|
Lin X, Chi D, Meng Q, Gong Q, Tong Z. Single-Cell Sequencing Unveils the Heterogeneity of Nonimmune Cells in Chronic Apical Periodontitis. Front Cell Dev Biol 2022; 9:820274. [PMID: 35237614 PMCID: PMC8883837 DOI: 10.3389/fcell.2021.820274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic apical periodontitis (CAP) is a unique dynamic interaction between microbial invasions and host defense mechanisms, resulting in infiltration of immune cells, bone absorption, and periapical granuloma formation. To help to understand periapical tissue pathophysiology, we constituted a single-cell atlas for 26,737 high-quality cells from inflammatory periapical tissue and uncovered the complex cellular landscape. The eight types of cells, including nonimmune cells and immune cells, were identified in the periapical tissue of CAP. Considering the key roles of nonimmune cells in CAP, we emphasized osteo-like cells, basal/stromal cells, endothelial cells, and epithelial cells, and discovered their diversity and heterogeneity. The temporal profiling of genomic alterations from common CAP to typical periapical granuloma provided predictions for transcription factors and biological processes. Our study presented potential clues that the shift of inflammatory cytokines, chemokines, proteases, and growth factors initiated polymorphic cell differentiation, lymphangiogenesis, and angiogenesis during CAP.
Collapse
Affiliation(s)
- Xinwei Lin
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Danlu Chi
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qingzhen Meng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qimei Gong, ; Zhongchun Tong,
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qimei Gong, ; Zhongchun Tong,
| |
Collapse
|
152
|
Huang W, Wu Y, Qiao M, Xie Z, Cen X, Huang X, Zhao Z. CircRNA-miRNA networks in regulating bone disease. J Cell Physiol 2022; 237:1225-1244. [PMID: 34796958 DOI: 10.1002/jcp.30625] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Circular RNA (circRNA) is a class of endogenous noncoding RNA (ncRNA), presenting as a special covalent closed loop without a 5' cap or 3' tail, maintaining resistance to RNA exonuclease and keeping high stability. Although lowly expressed in most situations, circRNA makes an active difference in regulating physiological or pathological processes by modulating gene expression by regulation of transcription, protein, and miRNA functions through various mechanisms in particular tissues. Recent studies have demonstrated the roles of the miRNA-circRNA network in the development of several bone diseases such as osteoporosis, a multiple-mechanism disease resulting from defective bone quality and low bone mass, osteoarthritis, whose main pathomechanism is inflammation and articular cartilage degradation, as well as osteosarcoma, known as one of the most common bone cancers. However, the specific mechanism of how circRNA along with miRNA influences those diseases is not well documented, showing potential for the development of new therapies for those bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - MingXin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
153
|
Assar ME, Angulo J, García-Rojo E, Sevilleja-Ortiz A, García-Gómez B, Fernández A, Sánchez-Ferrer A, La Fuente JM, Romero-Otero J, Rodríguez-Mañas L. Early manifestation of aging-related vascular dysfunction in human penile vasculature-A potential explanation for the role of erectile dysfunction as a harbinger of systemic vascular disease. GeroScience 2022; 44:485-501. [PMID: 34962617 PMCID: PMC8811115 DOI: 10.1007/s11357-021-00507-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
Advanced age is related to functional alterations of human vasculature, but erectile dysfunction precedes systemic manifestations of vascular disease. The current study aimed to simultaneously evaluate the influence of aging on vascular function (relaxation and contraction responses) in systemic human vascular territories: aorta (HA) and resistance mesenteric arteries (HMA) and human corpus cavernosum (HCC) and penile resistance arteries (HPRA). Associations of oxidative stress and inflammation circulating biomarkers with age and functional responses were also determined. Vascular specimens were obtained from 76 organ donors (age range 18-87). Four age-groups were established: < 40, 40-55, 56-65 and > 65 years old. Increasing age was associated with a decline in endothelium-dependent relaxation induced by BK in HMA (r = -0.597, p = 0.0001), or by ACh in HCC (r = -0.505, p = 0.0022), and HPRA (r = -0.601, p = 0.0012). Significant impairment was detected at > 65 years old in HMA but earlier in penile vasculature (> 55 years old). Age-related reduction to H2O2-vasodilatory response started before in HCC (56-65 years old) than in HA (> 65 years old). In contrast to relaxation responses, aging-related hypercontractility to adrenergic stimulation was homogeneous: contractions significantly increased in subjects > 55 years old in all tested vessels. Although not significantly age related, circulating levels of ADMA (r = -0.681, p = 0.0052) and TNF-α (r = -0.537, p = 0.0385) were negatively correlated with endothelial vasodilation in HMA but not in HCC or HPRA. Penile vasculature exhibits an early impairment of endothelium-dependent and H2O2-induced vasodilations when compared to mesenteric microcirculation and aorta. Therefore, functional susceptibility of penile vasculature to the aging process may account for anticipation of erectile dysfunction to systemic manifestations of vascular disease.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación de Investigación Biomédica, del Hospital Universitario de Getafe, Getafe, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón Y Cajal, Madrid, Spain
| | - Esther García-Rojo
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - Alejandro Sevilleja-Ortiz
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón Y Cajal, Madrid, Spain
| | - Borja García-Gómez
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón Y Cajal, Madrid, Spain
| | - Alberto Sánchez-Ferrer
- Fundación de Investigación Biomédica, del Hospital Universitario de Getafe, Getafe, Spain
| | - José M La Fuente
- Serviço de Urologia, Hospital Geral Santo Antonio, Porto, Portugal
| | - Javier Romero-Otero
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación de Investigación Biomédica, del Hospital Universitario de Getafe, Getafe, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
- Division of Geriatric Medicine, Servicio de Geriatría, Hospital Universitario de Getafe, Ctra de Toledo km 12, 500, 8905, Getafe, Spain.
| |
Collapse
|
154
|
Giacon TA, Bosco G, Vezzoli A, Dellanoce C, Cialoni D, Paganini M, Mrakic-Sposta S. Oxidative stress and motion sickness in one crew during competitive offshore sailing. Sci Rep 2022; 12:1142. [PMID: 35064225 PMCID: PMC8782845 DOI: 10.1038/s41598-022-05219-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Competitive Offshore Ocean Sailing is a highly demanding activity in which subjects are exposed to psychophysical stressors for a long time. To better define the physiological adaptations, we investigated the stress response of subjects exposed to 3-days long ocean navigation with disruption of circadian rhythms. 6 male subjects were involved in the study and provided urine and saliva samples before setting sail, during a single day of inshore sailing, during 3-days long ocean navigation, and at the arrival, to measure oxidative stress, cortisol, nitric oxide metabolites (NOx) and metabolic response. Motion Sickness questionnaires were also administered during the navigation. The crew suffered a mean weight loss of 1.58 kg. After the long navigation, a significant increase in ROS production and decrease in total antioxidant capacity and uric acid levels were observed. Lipid peroxidation, NO metabolites, ketones, creatinine, and neopterin levels were also increased. Furthermore, a significant increase in cortisol levels was measured. Finally, we found a correlation between motion sickness questionnaires with the increase of NOx, and no correlation with cortisol levels. Physical and psychological stress response derived from offshore sailing resulted in increased oxidative stress, nitric oxide metabolites, and cortisol levels, unbalanced redox status, transient renal function impairment, and ketosis. A direct correlation between motion sickness symptoms evaluated through questionnaires and NOx levels was also found.
Collapse
Affiliation(s)
- Tommaso Antonio Giacon
- Department of Biomedical Sciences, Environmental and Respiratory Physiology, University of Padova, Via Marzolo 3, 35131, Padua, Italy.
| | - Gerardo Bosco
- Department of Biomedical Sciences, Environmental and Respiratory Physiology, University of Padova, Via Marzolo 3, 35131, Padua, Italy.
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Danilo Cialoni
- Department of Biomedical Sciences, Environmental and Respiratory Physiology, University of Padova, Via Marzolo 3, 35131, Padua, Italy
| | - Matteo Paganini
- Department of Biomedical Sciences, Environmental and Respiratory Physiology, University of Padova, Via Marzolo 3, 35131, Padua, Italy
| | | |
Collapse
|
155
|
Xu Y, Hu T, Shen Y, Wang Y, Ma X, Bao Y. Association of High Muscle Mass with Carotid Atherosclerosis: A Community-Based Population Cohort Study. J Nutr Health Aging 2022; 26:1087-1093. [PMID: 36519772 DOI: 10.1007/s12603-022-1871-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Although low muscle mass may make an under-appreciated contribution to increasing the risk of cardiovascular diseases, no prospective studies have explored the association between low muscle mass and carotid atherosclerosis. We investigated whether muscle mass was related to a higher carotid intima-media thickness (C-IMT) and carotid artery plaque in a community-based population. METHODS The study included 1,253 asymptomatic participants without known cardiovascular disease, who underwent carotid ultrasonography at baseline in 2013-2014 and received a re-examination in 2015-2016. The skeletal muscle mass index was estimated using a bioelectrical impedance analyzer. We assessed the relationship between the skeletal muscle mass index and the development of C-IMT and carotid plaque, both, using multivariate-adjusted logistic regression models. RESULTS During the follow up, 400 (51.0%) subjects with normal C-IMT at baseline developed elevated C-IMT and 215 (17.2%) subjects developed carotid plaque. The risk of elevated C-IMT occurrence linearly decreased with an increase in skeletal muscle mass index quintiles or its continuous data, after multivariate-adjustment in men and women, respectively (both P for trend < 0.05; both P < 0.05). Subgroup analyses showed that this association was BMI-dependent. Besides, there was an inverse association between a high skeletal muscle mass index and carotid artery plaque in women, but the association disappeared after multivariate adjustment. In men, the skeletal muscle mass index was not associated with the incidence of carotid plaque. CONCLUSIONS Skeletal muscle mass was inversely associated with the incidence of carotid atherosclerosis, suggesting muscle mass maintenance may play a role in modifying atherosclerosis.
Collapse
Affiliation(s)
- Y Xu
- Xiaojing Ma and Yuqian Bao (http://orcid.org/0000-0002-4754-3470), Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China, Tel: 86-21-64369181; Fax: 86-21-64368031, ;
| | | | | | | | | | | |
Collapse
|
156
|
Dieffenbach PB, Aravamudhan A, Fredenburgh LE, Tschumperlin DJ. The Mechanobiology of Vascular Remodeling in the Aging Lung. Physiology (Bethesda) 2022; 37:28-38. [PMID: 34514871 PMCID: PMC8742727 DOI: 10.1152/physiol.00019.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is accompanied by declining lung function and increasing susceptibility to lung diseases. The role of endothelial dysfunction and vascular remodeling in these changes is supported by growing evidence, but underlying mechanisms remain elusive. In this review we summarize functional, structural, and molecular changes in the aging pulmonary vasculature and explore how interacting aging and mechanobiological cues may drive progressive vascular remodeling in the lungs.
Collapse
Affiliation(s)
- Paul B. Dieffenbach
- 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Aja Aravamudhan
- 2Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Laura E. Fredenburgh
- 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Daniel J. Tschumperlin
- 2Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
157
|
Zhu D, Zhang X, Wang F, Ye Q, Yang C, Liu D. Irisin rescues diabetic cardiac microvascular injury via ERK1/2/Nrf2/HO-1 mediated inhibition of oxidative stress. Diabetes Res Clin Pract 2022; 183:109170. [PMID: 34863716 DOI: 10.1016/j.diabres.2021.109170] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023]
Abstract
AIMS Cardiac microvascular dysfunction is a common feature across cardiovascular complications in diabetes, while effective therapy remains elusive. This study was designed to evaluate the effect of irisin on cardiac microvascular injury in type 2 diabetes mellitus (T2DM). METHODS T2DM was induced in C57BL/6J mice. A cohort diabetic mice received a 12-week treatment of irisin. Cardiac function and microvessel density were evaluated. Whether irisin directly regulates cardiac microvascular endothelial cells (CMECs) function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms. RESULTS Irisin improved cardiac function in diabetic mice, and increased microvessel density. In vitro study revealed that irisin promoted CMECs proliferation and reduced high glucose and high lipid (HGHL)-induced apoptosis. Mechanistically, irisin increased mRNA and protein levels of heme oxygenase 1 (HO-1), superoxide dismutase 1 and superoxide dismutase 2, among which HO-1 ranked top. Irisin stimulated the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 and nuclear factor erythroid-derived 2-like 2 (Nrf2) nuclear translocation, while U0126 (the inhibitor of ERK1/2) inhibited irisin-induced Nrf2 nuclear translocation and HO-1 expression. Nrf2 siRNA inhibited irisin's antioxidative effects. CONCLUSION Irisin could rescue cardiac microvessels against oxidative stress and apoptosis in diabetes via ERK1/2/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Di Zhu
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Xiaotian Zhang
- Hospital of Troop 75600, 3002 Fuqiang Road, Shenzhen 518048, China
| | - Fenglin Wang
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Qiao Ye
- Clinical Medicine Laboratory, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Caizhe Yang
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China.
| | - Demin Liu
- Department of Cardiology, Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050010, China.
| |
Collapse
|
158
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
159
|
ROS- and Radiation Source-Dependent Modulation of Leukocyte Adhesion to Primary Microvascular Endothelial Cells. Cells 2021; 11:cells11010072. [PMID: 35011634 PMCID: PMC8750044 DOI: 10.3390/cells11010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-inflammatory effects of low-dose irradiation often follow a non-linear dose–effect relationship. These characteristics were also described for the modulation of leukocyte adhesion to endothelial cells. Previous results further revealed a contribution of reactive oxygen species (ROS) and anti-oxidative factors to a reduced leukocyte adhesion. Here, we evaluated the expression of anti-oxidative enzymes and the transcription factor Nrf2 (Nuclear factor-erythroid-2-related factor 2), intracellular ROS content, and leukocyte adhesion in primary human microvascular endothelial cells (HMVEC) upon low-dose irradiation under physiological laminar shear stress or static conditions after irradiation with X-ray or Carbon (C)-ions (0–2 Gy). Laminar conditions contributed to increased mRNA expression of anti-oxidative factors and reduced ROS in HMVEC following a 0.1 Gy X-ray and 0.5 Gy C-ion exposure, corresponding to reduced leukocyte adhesion and expression of adhesion molecules. By contrast, mRNA expression of anti-oxidative markers and adhesion molecules, ROS, and leukocyte adhesion were not altered by irradiation under static conditions. In conclusion, irradiation of endothelial cells with low doses under physiological laminar conditions modulates the mRNA expression of key factors of the anti-oxidative system, the intracellular ROS contents of which contribute at least in part to leucocyte adhesion, dependent on the radiation source.
Collapse
|
160
|
Peng X, Wang K, Zhang C, Bao JP, Vlf C, Gao JW, Zhou ZM, Wu XT. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics. Free Radic Res 2021; 55:1080-1093. [PMID: 34903138 DOI: 10.1080/10715762.2021.2018426] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evidence has shown that effects from inflammation and mitochondrial dysfunction lead to pyroptosis and apoptosis of nucleus pulposus (NP) cells. Damaged mitochondria release dangerous molecules such as reactive oxygen species (ROS), activating the NLRP3 inflammasome. SS-31 is a mitochondria-targeting peptide that has been used in the treatment of many diseases by scavenging ROS and ameliorating mitochondrial function. This study found that SS-31 ameliorated lipopolysaccharide (LPS)-induced loss of cell viability, ROS production, and apoptosis in NP cells. Moreover, mitochondrial dynamics and ATP synthesis were restored on pretreatment with SS-31 compared with the LPS group. For the molecular mechanism research, SS-31 stabilized mitochondrial morphology and inhibited the activation of the NF-κB pathway and the activation of the NLRP3 inflammasome. To evaluate whether the inhibition of NLRP3 inflammasome activation by SS-31 is dependent on the clearance of mitochondrial ROS, we comparatively analyzed the activation of NLRP3 inflammasome in NP cells pretreated with SS-31 and the ROS scavenger N-acetyl-L-cysteine (NAC). The results indicate that SS-31 could inhibit NLRP3 inflammasome activation by limiting the production of mitochondrial ROS. To sum up, our results revealed that SS-31 inhibits LPS-induced apoptosis, pyroptosis, and inflammation in NP cells via scavenging ROS and maintaining the stability of mitochondrial dynamics, which could be considered a promising therapeutic intervention for disk degeneration.
Collapse
Affiliation(s)
- Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Cong Zhang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun-Ping Bao
- Medical School of Southeast University, Nanjing, China
| | - Cabral Vlf
- Medical School of Southeast University, Nanjing, China
| | - Jia-Wei Gao
- Medical School of Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Medical School of Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Medical School of Southeast University, Nanjing, China.,Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
161
|
Quercetin Improves Mitochondrial Function and Inflammation in H 2O 2-Induced Oxidative Stress Damage in the Gastric Mucosal Epithelial Cell by Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1386078. [PMID: 34873406 PMCID: PMC8643250 DOI: 10.1155/2021/1386078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 01/04/2023]
Abstract
Functional dyspepsia (FD) is one of the most common functional gastrointestinal disorders, the therapeutic strategy of which it is limited due to its complex pathogenesis. Oxidative stress-induced damage in gastric mucosal epithelial cells is related to the pathogenesis and development of FD. Quercetin (Que) is one of the active ingredients of Zhishi that showed antioxidant, antiapoptotic, and anti-inflammatory effects. The aim of this study is to investigate the effect of Que on oxidative stress-induced gastric mucosal epithelial cells damage and its underlying molecular mechanism. The gastric mucosal epithelial cell line GES-1 was treated with 200 μM of H2O2 to construct an oxidative stress-induced damage model. The H2O2 cells were then administrated with different concentrations of Que. The results indicated that high concentration of Que (100 μM) showed cytotoxicity in H2O2-induced GES-1 cells. However, appropriate concentration of Que (25 and 50 μM) alleviated the oxidative stress damage induced by H2O2, as demonstrated by the increase of proliferation, decrease of ROS generation, apoptosis, inflammation, and alleviation of mitochondrial function and cell barrier. In addition, Que increased the activation of phosphorylation of PI3K and AKT decreased by H2O2. To investigate whether Que alleviated the oxidative stress damage in GES-1 cells by the PI3K/AKT signaling pathway, the GES-1 cells were treated with Que (25 μM) combined with and without LY294002, the PI3K inhibitor. The results showed that LY294002 suppressed the alleviation effect on Que in H2O2-induced GES-1 cells. In conclusion, the current study demonstrates that Que alleviates oxidative stress damage in GES-1 cells by improving mitochondrial function and mucosal barrier and suppressing inflammation through regulating the PI3K/AKT signaling pathway, indicating the potential therapeutic effects of Que on FD.
Collapse
|
162
|
Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. CURRENT STEM CELL REPORTS 2021; 7:194-203. [PMID: 34868826 PMCID: PMC8639543 DOI: 10.1007/s40778-021-00198-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/26/2022]
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) sit at the top of the hierarchy that meets the daily burden of blood production. HSC maintenance relies on extrinsic cues from the bone marrow (BM) microenvironment to balance stem cell self-renewal and cell fate decisions. In this brief review, we will highlight the studies and model systems that define the centralized role of BM vascular endothelium in modulating HSC activity in health and stress. Recent Findings The BM microenvironment is composed of a diverse array of intimately associated vascular and perivascular cell types. Recent dynamic imaging studies, coupled with single-cell RNA sequencing (scRNA-seq) and functional readouts, have advanced our understanding of the HSC-supportive cell types and their cooperative mechanisms that govern stem cell fate during homeostasis, regeneration, and aging. These findings have established complex and discrete vascular microenvironments within the BM that express overlapping and unique paracrine signals that modulate HSC fate. Summary Understanding the spatial and reciprocal HSC-niche interactions and the molecular mechanisms that govern HSC activity in the BM vascular microenvironment will be integral in developing therapies aimed at ameliorating hematological disease and supporting healthy hematopoietic output.
Collapse
|
163
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
164
|
He Y, Duan L, Wu H, Chen S, Lu T, Li T, He Y. Integrated Transcriptome Analysis Reveals the Impact of Photodynamic Therapy on Cerebrovascular Endothelial Cells. Front Oncol 2021; 11:731414. [PMID: 34881175 PMCID: PMC8645902 DOI: 10.3389/fonc.2021.731414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023] Open
Abstract
Blood vessels in the brain tissue form a compact vessel structure and play an essential role in maintaining the homeostasis of the neurovascular system. The low dosage of photodynamic intervention (PDT) significantly affects the expression of cellular biomarkers. To understand the impact of photodynamic interventions on cerebrovascular endothelial cells, we evaluated the dosage-dependent impact of porfimer sodium-mediated PDT on B.END3 cells using flow cytometer, comet assay, RNA sequencing, and bioinformatics analysis. To examine whether PDT can induce disorder of intracellular organelles, we did not observe any significance damage of DNA and cellular skeleton. Moreover, expression levels of cellular transporters-related genes were significantly altered, implying the drawbacks of PDT on cerebrovascular functions. To address the potential molecular mechanisms of these phenotypes, RNA sequencing and bioinformatics analysis were employed to identify critical genes and pathways among these processes. The gene ontology (GO) analysis and protein-protein interaction (PPI) identified 15 hub genes, highly associated with cellular mitosis process (CDK1, CDC20, MCM5, MCM7, MCM4, CCNA2, AURKB, KIF2C, ESPL1, BUB1B) and DNA replication (POLE2, PLOE, CDC45, CDC6). Gene set enrichment analysis (GSEA) reveals that TNF-α/NF-κB and KRAS pathways may play a critical role in regulating expression levels of transporter-related genes. To further perform qRT-PCR assays, we find that TNF-α/NF-κB and KRAS pathways were substantially up-regulated, consistent with GSEA analysis. The current findings suggested that a low dosage of PDT intervention may be detrimental to the homeostasis of blood-brain barrier (BBB) by inducing the inflammatory response and affecting the expression of surface biomarkers.
Collapse
Affiliation(s)
- Yanyan He
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Lin Duan
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People’s Hospital, Zhengzhou University, Academy of Medical Science, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Yingkun He
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| |
Collapse
|
165
|
Wakita M, Asai K, Kubota Y, Koen M, Shimizu W. Effect of Topiroxostat on Brain Natriuretic Peptide Level in Patients with Heart Failure with Preserved Ejection Fraction: A Pilot Study. J NIPPON MED SCH 2021; 88:423-431. [PMID: 33455978 DOI: 10.1272/jnms.jnms.2021_88-518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Various optimal medical therapies have been established to treat heart failure (HF) with reduced ejection fraction (HFrEF). Both HFrEF and HF with preserved ejection fraction (HFpEF) are associated with poor outcomes. We investigated the effect of topiroxostat, an oral xanthine oxidoreductase inhibitor, for HFpEF patients with hyperuricemia or gout. METHODS In this nonrandomized, open-label, single-arm trial, we administered topiroxostat 40-160 mg/day to HFpEF patients with hyperuricemia or gout to achieve a target uric acid level of 6.0 mg/dL. The primary outcome was rate of change in log-transformed brain natriuretic peptide (BNP) level from baseline to 24 weeks after topiroxostat treatment. The secondary outcomes included amount of change in BNP level, uric acid evaluation values, and oxidative stress marker levels after 24 weeks of topiroxostat treatment. Thirty-six patients were enrolled; three were excluded before study initiation. RESULTS Change in log-transformed BNP level was -3.4 ± 8.9% (p = 0.043) after 24 weeks of topiroxostat treatment. The rate of change for the decrease in BNP level was -18.0 (-57.7, 4.0 pg/mL; p = 0.041). Levels of uric acid and 8-hydroxy-2'-deoxyguanosine/creatinine, an oxidative stress marker, also significantly decreased (-2.8 ± 1.6 mg/dL, p < 0.001, and -2.3 ± 3.7 ng/mgCr, p = 0.009, respectively). CONCLUSIONS BNP level was significantly lower in HFpEF patients with hyperuricemia or gout after topiroxostat administration; however, the rate of decrease was low. Further trials are needed to confirm our findings.
Collapse
Affiliation(s)
- Masaki Wakita
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Kuniya Asai
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Yoshiaki Kubota
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Masahiro Koen
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| |
Collapse
|
166
|
Lefferts EC, Hibner BA, Lefferts WK, Lima NS, Baynard T, Haus JM, Lane‐Cordova AD, Phillips SA, Fernhall B. Oral vitamin C restores endothelial function during acute inflammation in young and older adults. Physiol Rep 2021; 9:e15104. [PMID: 34762777 PMCID: PMC8582295 DOI: 10.14814/phy2.15104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress has been linked to reductions in vascular function during acute inflammation in young adults; however, the effect of acute inflammation on vascular function with aging is inconclusive. The aim of this study was to determine if oral antioxidant administration eliminates vascular dysfunction during acute inflammation in young and older adults. Brachial flow-mediated dilation (FMD) and carotid-femoral pulse wave velocity (PWV) were measured in nine young (3 male, 24 ± 4 yrs, 26.2 ± 4.9 kg/m2 ) and 16 older (13 male, 64 ± 5 yrs, 25.8 ± 3.2 kg/m2 ) adults before and 2-h after oral consumption of 2 g of vitamin C. The vitamin C protocol was completed at rest and 24 h after acute inflammation was induced via the typhoid vaccine. Venous blood samples were taken to measure markers of inflammation and vitamin C. Both interleukin-6 (Δ+0.7 ± 1.8 pg/ml) and C-reactive protein (Δ+1.9 ± 3.1 mg/L) were increased at 24 h following the vaccine (p < 0.01). There was no change in FMD or PWV following vitamin C administration at rest (p > 0.05). FMD was lower in all groups during acute inflammation (Δ-1.4 ± 1.9%, p < 0.01), with no changes in PWV (Δ-0.0 ± 0.9 m/s, p > 0.05). Vitamin C restored FMD back to initial values in young and older adults during acute inflammation (Δ+1.0 ± 1.8%, p < 0.01) with no change in inflammatory markers or PWV (p > 0.05). In conclusion, oral vitamin C restored endothelial function during acute inflammation in young and older adults, with no effect on aortic stiffness. The effect of vitamin C on endothelial function did not appear to be due to reductions in inflammatory markers. The exact mechanisms should be further investigated.
Collapse
Affiliation(s)
- Elizabeth C. Lefferts
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of KinesiologyIowa State UniversityAmesIowaUSA
| | - Brooks A. Hibner
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Wesley K. Lefferts
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of KinesiologyIowa State UniversityAmesIowaUSA
| | - Natalia S. Lima
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Tracy Baynard
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jacob M. Haus
- School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Abbi D. Lane‐Cordova
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Shane A. Phillips
- Department of Physical TherapyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Bo Fernhall
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
167
|
Sevilleja-Ortiz A, El Assar M, García-Rojo E, García-Gómez B, Fernández A, Sánchez-Ferrer A, La Fuente JM, Romero-Otero J, Rodríguez-Mañas L, Angulo J. Ageing-induced hypercontractility is related to functional enhancement of STIM/Orai and upregulation of Orai 3 in rat and human penile tissue. Mech Ageing Dev 2021; 200:111590. [PMID: 34699858 DOI: 10.1016/j.mad.2021.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
The role of STIM/Orai calcium entry system on vascular ageing has not been elucidated. We aimed to evaluate the influence of ageing on STIM/Orai signalling and its role on ageing-induced alterations of contractile function in rat corpus cavernosum (RCC) and human penile resistance arteries (HPRA) and corpus cavernosum (HCC). RCC was obtained from 3 months-old and 20 months-old animals. HPRA and HCC were obtained from organ donors of varied ages without history of erectile dysfunction. Aging was associated with enhanced norepinephrine (NE)- and thromboxane analogue (U46619)-induced contractions in RCC which were significantly inhibited by the STIM/Orai inhibitor, YM-58483 (20 μM). Other STIM/Orai inhibitor, 2-aminoethyldiphenylborate also reduced NE-induced contractions in RCC from aged rats. YM-58483 significantly reduced neurogenic contractions and potentiated neurogenic relaxations in RCC from aged rats. In HCC and HPRA, NE-induced contractions were significantly enhanced in older subjects (>65 years-old) but YM-58483 completely reversed ageing-related hypercontractility. Ageing did not modify STIM-1 and Orai1 protein expressions but Orai3 was significantly overexpressed in cavernosal tissue from old rats and older subjects. Contribution of STIM/Orai to cavernosal contraction increases with ageing together with increased expression of Orai3. Orai inhibition could be a potential therapeutic strategy to reduce ageing-related impact on vascular/erectile function.
Collapse
Affiliation(s)
- Alejandro Sevilleja-Ortiz
- Department of Histology-Research, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain
| | - Esther García-Rojo
- Department of Urology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Borja García-Gómez
- Department of Urology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain; Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Argentina Fernández
- Department of Histology-Research, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alberto Sánchez-Ferrer
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain
| | - José M La Fuente
- Department of Urology, Hospital Geral Santo Antonio, Porto, Portugal
| | - Javier Romero-Otero
- Department of Urology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain; Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Javier Angulo
- Department of Histology-Research, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
168
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
169
|
Ranadive SM, Dillon GA, Mascone SE, Alexander LM. Vascular Health Triad in Humans With Hypertension-Not the Usual Suspects. Front Physiol 2021; 12:746278. [PMID: 34658930 PMCID: PMC8517241 DOI: 10.3389/fphys.2021.746278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertension (HTN) affects more than one-third of the US population and remains the top risk factor for the development of cardiovascular disease (CVD). Identifying the underlying mechanisms for developing HTN are of critical importance because the risk of developing CVD doubles with ∼20 mmHg increase in systolic blood pressure (BP). Endothelial dysfunction, especially in the resistance arteries, is the primary site for initiation of sub-clinical HTN. Furthermore, inflammation and reactive oxygen and nitrogen species (ROS/RNS) not only influence the endothelium independently, but also have a synergistic influence on each other. Together, the interplay between inflammation, ROS and vascular dysfunction is referred to as the vascular health triad, and affects BP regulation in humans. While the interplay of the vascular health triad is well established, new underlying mechanistic targets are under investigation, including: Inducible nitric oxide synthase, hydrogen peroxide, hydrogen sulfide, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor activated T cells. This review outlines the role of these unusual suspects in vascular health and function in humans. This review connects the dots using these unusual suspects underlying inflammation, ROS and vascular dysfunction especially in individuals at risk of or with diagnosed HTN based on novel studies performed in humans.
Collapse
Affiliation(s)
- Sushant M Ranadive
- Department of Kinesiology, University of Maryland, College Park, College Park, MD, United States
| | - Gabrielle A Dillon
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States.,Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States
| | - Sara E Mascone
- Department of Kinesiology, University of Maryland, College Park, College Park, MD, United States
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States.,Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
170
|
Lu Y, Nanayakkara G, Sun Y, Liu L, Xu K, Drummer C, Shao Y, Saaoud F, Choi ET, Jiang X, Wang H, Yang X. Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation. Redox Biol 2021; 47:102142. [PMID: 34598017 PMCID: PMC8487079 DOI: 10.1016/j.redox.2021.102142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
To determine the roles of nuclear localization of pro-caspase-1 in human aortic endothelial cells (HAECs) activated by proatherogenic lipid lysophosphatidylcholine (LPC), we examined cytosolic and nuclear localization of pro-caspase-1, identified nuclear export signal (NES) in pro-caspase-1 and sequenced RNAs. We made the following findings: 1) LPC increases nuclear localization of procaspase-1 in HAECs. 2) Nuclear pro-caspase-1 exports back to the cytosol, which is facilitated by a leptomycin B-inhibited mechanism. 3) Increased nuclear localization of pro-caspase-1 by a new NES peptide inhibitor upregulates inflammatory genes in oxidative stress and Th17 pathways; and SUMO activator N106 enhances nuclear localization of pro-caspase-1 and caspase-1 activation (p20) in the nucleus. 4) LPC plus caspase-1 enzymatic inhibitor upregulates inflammatory genes with hypercytokinemia/hyperchemokinemia and interferon pathways, suggesting a novel capsase-1 enzyme-independent inflammatory mechanism. 5) LPC in combination with NES inhibitor and caspase-1 inhibitor upregulate inflammatory gene expression that regulate Th17 activation, endotheli-1 signaling, p38-, and ERK- MAPK pathways. To examine two hallmarks of endothelial activation such as secretomes and membrane protein signaling, LPC plus NES inhibitor upregulate 57 canonical secretomic genes and 76 exosome secretomic genes, respectively, promoting four pathways including Th17, IL-17 promoted cytokines, interferon signaling and cholesterol biosynthesis. LPC with NES inhibitor also promote inflammation via upregulating ROS promoter CYP1B1 and 11 clusters of differentiation (CD) membrane protein pathways. Mechanistically, all the LPC plus NES inhibitor-induced genes are significantly downregulated in CYP1B1-deficient microarray, suggesting that nuclear caspase-1-induced CYP1B1 promotes strong inflammation. These transcriptomic results provide novel insights on the roles of nuclear caspase-1 in sensing DAMPs, inducing ROS promoter CYP1B1 and in regulating a large number of genes that mediate HAEC activation and inflammation. These findings will lead to future development of novel therapeutics for cardiovascular diseases (CVD), inflammations, infections, transplantation, autoimmune disease and cancers. (total words: 284).
Collapse
Affiliation(s)
- Yifan Lu
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | | | - Yu Sun
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Lu Liu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation Lung Research, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation Lung Research, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA.
| |
Collapse
|
171
|
Mediterranean Diet and Physical Activity for Successful Aging: An Update for Nutritionists and Endocrinologists. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The constant advancement in the medical field has allowed for the diagnosis and treatment of several health conditions. It has also contributed to increasing the average human lifespan, which is considered an outstanding achievement in history. Nevertheless, the impact of this in an ever-increasing aged population with chronic diseases and, most of the time, with limited and poor quality of life was not considered. Thus, it is imperative to establish strategies to age successfully. In order to do have a better understanding of this crucial issue, this review will analyze the endocrine changes in the elderly. It will present common conditions found in this population, chronic inflammation, and oxidative stress. Additionally, we will explain aging-related metabolic and physical performance decline related to hormone changes and lifestyle modifications. We will propose the Mediterranean diet and some specific guidelines about physical activity as part of the plan to have an active and successful aging process.
Collapse
|
172
|
Li W, Che X, Chen X, Zhou M, Luo X, Liu T. Study of calcitriol anti-aging effects on human natural killer cells in vitro. Bioengineered 2021; 12:6844-6854. [PMID: 34546851 PMCID: PMC8806577 DOI: 10.1080/21655979.2021.1972076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vitamin D is widely considered to have a regulatory effect on the immune system. Some clinical investigations have shown that the demand for vitamin D increases with age. Calcitriol is the biologically active form of vitamin D. However, its effect on human natural killer (NK) cells remains unclear. Therefore, in this study, we investigated the anti-aging and immunomodulatory effects of calcitriol on NK cells using a series of immunological methods to explore its important role in innate immunity. We found that calcitriol reversed the expression of aging-related biomarkers in NK cells and inhibited their expansion by maintaining these cells in the G1 phase, without any apoptosis and exhaustion. Calcitriol repressed the release of inflammation-related cytokines, such as interleukin-5 (IL-5), interleukin-13 (IL-13), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α). The degranulation of NK cells was downregulated by calcitriol when these cells were co-cultured with K562 tumor cells. We also found that calcitriol upregulated the aging-related sirtuin 1- protein/kinase R-like endoplasmic reticulum kinase (SIRT1/pERK) pathway and SIRT1-deltaExon8 (SIRT1-∆Exon8) expression by activating the vitamin D receptor (VDR). Moreover, calcitriol could be a potential negative regulator of NK cell apoptosis and mitochondrial inactivation which caused by oxidative stress. Thus, calcitriol exhibits anti-aging effects on human NK cells in vitro by activating the SIRT1-PERK axis and resisting oxidative senescence.
Collapse
Affiliation(s)
- Weiran Li
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, the 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China.,Medical Laboratory of Shenzhen LuoHu People's Hospital, Shenzhen, China
| | - Xu Che
- Department of Hepatobiliary & Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, China.,Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemei Chen
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, the 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China.,Medical Laboratory of Shenzhen LuoHu People's Hospital, Shenzhen, China
| | - Meiling Zhou
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, the 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoping Luo
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, the 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China.,Medical Laboratory of Shenzhen LuoHu People's Hospital, Shenzhen, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, the 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China.,Medical Laboratory of Shenzhen LuoHu People's Hospital, Shenzhen, China
| |
Collapse
|
173
|
Koutsaliaris IK, Moschonas IC, Pechlivani LM, Tsouka AN, Tselepis AD. Inflammation, Oxidative Stress, Vascular Aging And Atherosclerotic Ischemic Stroke. Curr Med Chem 2021; 29:5496-5509. [PMID: 34547993 DOI: 10.2174/0929867328666210921161711] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Vascular aging is a crucial risk factor for atherosclerotic ischemic stroke. Vascular aging is characterized by oxidative stress, endothelial dysfunction, inflammation, intimal and media thickening, as well as the gradual development of arterial stiffness, among other pathophysiological features. Regarding oxidative stress, increased concentration of reactive oxygen and nitrogen species is linked to atherosclerotic ischemic stroke in vascular aging. Additionally, oxidative stress is associated with an inflammatory response. Inflammation is related to aging through the "inflammaging" theory, which is characterized by decreased ability to cope with a variety of stressors, in combination with an increased pro-inflammatory state. Vascular aging is correlated with changes in cerebral arteries that are considered predictors of the risk for atherosclerotic ischemic stroke. The aim of the present review is to present the role of oxidative stress and inflammation in vascular aging, as well as their involvement in atherosclerotic ischemic stroke.
Collapse
Affiliation(s)
- Ioannis K Koutsaliaris
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Iraklis C Moschonas
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Louisa M Pechlivani
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Aikaterini N Tsouka
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| |
Collapse
|
174
|
Zhou X, Du HH, Jiang M, Zhou C, Deng Y, Long X, Zhao X. Antioxidant Effect of Lactobacillus fermentum CQPC04-Fermented Soy Milk on D-Galactose-Induced Oxidative Aging Mice. Front Nutr 2021; 8:727467. [PMID: 34513906 PMCID: PMC8429822 DOI: 10.3389/fnut.2021.727467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is to evaluate the changes in soy isoflavones and peptides in soy milk after lactic acid bacterial fermentation, and explore the positive effects of fermented soy milk on an oxidative aging mouse model induced with D-galactose. We found that free soybean isoflavones and peptides increased after soy milk was fermented by Lactobacillus fermentum CQPC04. The in vivo results indicated that L. fermentum CQPC04-fermented soy milk enhanced the organ index of the liver and spleen, and improved the pathological morphology of the liver, spleen, and skin. L. fermentum CQPC04-fermented soy milk increased the enzymatic activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT), increased glutathione (GSH), but decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in serum, liver, and brain tissues of oxidative aging mice. The above mentioned fermented soy milk also increased the levels of collagen I (Col I), hyaluronic acid (HA), and collagen III (Col III), and decreased the levels of advanced glycation End products (AGEs) and hydrogen peroxide (H2O2). The RT-qPCR results showed that L. fermentum CQPC04-fermented soy milk upregulated the mRNA expression of nuclear factor erythroid 2?related factor (Nrf2), heme oxygenase-1 (HMOX1), quinone oxido-reductase 1 (Nqo1), neuronal nitric oxide synthase (NOS1), endothelial nitric oxide synthase (NOS3), Cu/Zn–superoxide dismutase (Cu/Zn-SOD), Mn–superoxide dismutase (Mn-SOD), and CAT, but downregulated the expression of inducible nitric oxide synthase (NOS2) and glutamate cysteine ligase modifier subunit (Gclm) in liver and spleen tissues. Lastly, the fermented soy milk also increased the gene expression of Cu/Zn-SOD, Mn-SOD, CAT, GSH-Px, matrix metalloproteinases 1 (TIMP1), and matrix metalloproteinases 2 (TIMP2), and decreased the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) in skin tissue. In conclusion, L. fermentum CQPC04-fermented soy milk was able to satisfactorily delay oxidative aging effects, and its mechanism may be related to the increase in free soy isoflavones and peptides.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| | - Meiqing Jiang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Chaolekang Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yuhan Deng
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
175
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
176
|
Han X, Ding C, Sang X, Peng M, Yang Q, Ning Y, Lv Q, Shan Q, Hao M, Wang K, Wu X, Zhang H, Cao G. Targeting Sirtuin1 to treat aging-related tissue fibrosis: From prevention to therapy. Pharmacol Ther 2021; 229:107983. [PMID: 34480962 DOI: 10.1016/j.pharmthera.2021.107983] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Fibrosis, which is characterized by excessive extracellular matrix (ECM) deposition, is a wound-healing response to organ injury and may promote cancer and failure in various organs, such as the heart, liver, lung, and kidney. Aging associated with oxidative stress and inflammation exacerbates cellular dysfunction, tissue failure, and body function disorders, all of which are closely related to fibrosis. Sirtuin-1 (SIRT1) is a class III histone deacetylase that regulates growth, transcription, aging, and metabolism in various organs. This protein is downregulated in organ injury and fibrosis associated with aging. Its expression and distribution change with age in different organs and play critical roles in tissue oxidative stress and inflammation. This review first described the background on fibrosis and regulatory functions of SIRT1. Second, we summarized the relationships of SIRT1 with other proteins and its protective action during fibrosis in the heart, liver, lung and kidney. Third, the activation of SIRT1 in therapies of tissue fibrosis, especially in liver fibrosis and aging-related tissue injury, was analyzed. In conclusion, SIRT1 targeting may be a new therapeutic strategy in fibrosis.
Collapse
Affiliation(s)
- Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - XiaNan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - MengYun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - QiYuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - KuiLong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
177
|
Shimizu Y, Kawashiri SY, Arima K, Noguchi Y, Yamanashi H, Nobusue K, Nonaka F, Nakamichi S, Nagata Y, Maeda T. Association between height-related polymorphism rs17081935 and reduced handgrip strength in relation to status of atherosclerosis: a cross-sectional study. Environ Health Prev Med 2021; 26:83. [PMID: 34445960 PMCID: PMC8393436 DOI: 10.1186/s12199-021-01000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022] Open
Abstract
Background Aging is a process that increases oxidative stress. Increased oxidative stress leads to the development of atherosclerosis and mitochondrial dysfunction. Mitochondria contribute to energy production that might have a beneficial influence on maintaining muscle strength. Therefore, the height-related single nucleotide polymorphism (SNP) rs17081935, which is also reported to be associated with mitochondrial metabolism, might be associated with reduced muscle strength and this association might be affected by atherosclerosis status. To clarify those associations, a cross-sectional study of 1374 elderly Japanese individuals aged 60–89 years was conducted. Methods Logistic regression was used to clarify the association between rs17081935 and reduced handgrip strength. Since atherosclerosis might affect handgrip strength, participants were stratified by atherosclerosis status. Reduced handgrip strength was defined as being in the lowest quintile of handgrip strength (< 25.6 kg for men and < 16.1 kg for women). Results No significant associations were found between a minor allele of rs17081935 and reduced handgrip strength among elderly participants without atherosclerosis. A significant inverse association was observed among elderly participants with atherosclerosis. After adjusting for known cardiovascular risk factors and height, the adjusted odd ratio (OR) and 95% confidence interval (CI) for reduced handgrip strength and a minor allele of rs17081935 were 1.13 (0.86, 1.43) for elderly participants without atherosclerosis and 0.55 (0.36, 0.86) for those with atherosclerosis, respectively. Conclusion A minor allele of the height-related SNP rs17081935 was significantly inversely associated with reduced handgrip strength among older individuals with atherosclerosis, but not among those without atherosclerosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-021-01000-9.
Collapse
Affiliation(s)
- Yuji Shimizu
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan. .,Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Diseases Prevention, Osaka, Japan.
| | - Shin-Ya Kawashiri
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiko Arima
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuko Noguchi
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hirotomo Yamanashi
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Kenichi Nobusue
- Department of Islands and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumiaki Nonaka
- Department of Islands and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Seiko Nakamichi
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Yasuhiro Nagata
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,Department of Islands and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
178
|
Fang W, Chen Q, Cui K, Chen Q, Li X, Xu N, Mai K, Ai Q. Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radic Biol Med 2021; 172:213-225. [PMID: 34116177 DOI: 10.1016/j.freeradbiomed.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023]
Abstract
Lipid overload-induced hepatic steatosis is a major public health problem worldwide. However, the potential molecular mechanism is not completely understood. Herein, we found that high-fat diet (HFD) or oleic acid (OA) treatment induced oxidative stress which prevented the entry of hepatocyte nuclear factor 4 alpha (HNF4α) into the nucleus by activating protein kinase C delta (PKCδ) in vivo and in vitro in large yellow croaker (Larimichthys crocea). This reduced the level of microsomal triglyceride transfer protein (MTP) transcription, resulting in the impaired secretion of very-low-density lipoprotein (VLDL) and the abnormal accumulation of triglyceride (TG) in hepatocytes. Meanwhile, the detrimental effects induced by lipid overload could be partly alleviated by pretreating hepatocytes with Go6983 (PKCδ inhibitor) or N-acetylcysteine (NAC, reactive oxygen species (ROS) scavenger). In conclusion, for the first time, we revealed that lipid overload impaired hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in fish. This study may provide critical insights into potential intervention strategies against lipid overload-induced hepatic steatosis of fish and human beings.
Collapse
Affiliation(s)
- Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
179
|
Asenjo-Bueno A, Alcalde-Estévez E, El Assar M, Olmos G, Plaza P, Sosa P, Martínez-Miguel P, Ruiz-Torres MP, López-Ongil S. Hyperphosphatemia-Induced Oxidant/Antioxidant Imbalance Impairs Vascular Relaxation and Induces Inflammation and Fibrosis in Old Mice. Antioxidants (Basel) 2021; 10:antiox10081308. [PMID: 34439556 PMCID: PMC8389342 DOI: 10.3390/antiox10081308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas, compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells (SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4 expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxidant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular function in old mice.
Collapse
Affiliation(s)
- Ana Asenjo-Bueno
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Elena Alcalde-Estévez
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, 28905 Madrid, Spain;
| | - Gemma Olmos
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
| | - Patricia Plaza
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
| | - Patricia Sosa
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Patricia Martínez-Miguel
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| | - María Piedad Ruiz-Torres
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
- Correspondence: ; Tel.: +34-91-887-8100 (ext. 2604); Fax: +34-91-882-2674
| |
Collapse
|
180
|
Qi Z, Yang C, Liao X, Song Y, Zhao L, Liang X, Su Y, Chen ZF, Li R, Dong C, Cai Z. Taurine reduction associated with heart dysfunction after real-world PM 2.5 exposure in aged mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146866. [PMID: 33848856 DOI: 10.1016/j.scitotenv.2021.146866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/20/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Ambient PM2.5 has been proved to be an independent risk factor for cardiovascular diseases; however, little information is available on the age-dependent effects of PM2.5 on the cardiovascular system and the underlying mechanisms following chronic exposure. In this study, multi-aged mice were exposed to PM2.5 via the newly developed real-ambient PM2.5 exposure system to investigate age-related effects on the heart after long-term exposure. First, the chemical and physical properties of PM2.5 used in the exposure system were analyzed. The heart rate of conscious mice was recorded, and results showed that exposure of aged mice to PM2.5 for 26 weeks significantly increased heart rate. Histological analysis and ELISA assays indicated that aged mice were more sensitive to PM2.5 exposure in terms of inducing cardiac oxidative stress and inflammation. Furthermore, untargeted metabolomics revealed that taurine was involved with the PM2.5-induced cardiac dysfunction. The reduced taurine concentration in the heart was examined by LC-MS and imaging mass spectrometry; it may be due to the increased p53 expression level, ROS and inflammatory cytokines. These results emphasize the age-dependent effects of PM2.5 on the cardiovascular system and suggest that taurine may be the novel cardiac effect target for PM2.5-induced heart dysfunction in the aged.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Chun Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Xiaoliang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yuping Su
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, University of Technology, Guangzhou 510006, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
181
|
Otsubo A, Miyazato M, Oshiro T, Kimura R, Matsuo T, Miyata Y, Sakai H. Age-associated bladder and urethral coordination impairment and changes in urethral oxidative stress in rats. Life Sci 2021; 279:119690. [PMID: 34111460 DOI: 10.1016/j.lfs.2021.119690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 10/24/2022]
Abstract
AIMS We examined age-associated changes in bladder and urethral coordination involving the nitric oxide (NO)/soluble guanylyl cyclase (sGC) system, which induces urethral smooth muscle relaxation, and urethral ischemic/oxidative stress changes in rats. MAIN METHODS Sixteen female Sprague-Dawley rats were divided into young (3 months old) and middle-aged (12-15 months old) groups. Urethral activity was evaluated by simultaneously recording intravesical pressure under isovolumetric conditions and urethral perfusion pressure (UPP) under urethane anesthesia. Sodium nitroprusside (SNP, 0.1 mg/kg), an NO donor, and BAY 41-2272, a novel NO-independent stimulator of sGC (0.1 mg/kg), were administered intravenously to both groups. N-nitro-l-arginine methyl ester hydrochloride (l-NAME, 100 mg/kg) was also injected intravenously, to inhibit NO synthase activity in both groups. Staining for the ischemic marker, hypoxia-inducible factor-1α (HIF-1α), and the oxidative stress markers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA), was performed on tissue sections of the urethra, in both groups. KEY FINDINGS Baseline UPP and UPP changes were significantly lower in middle-aged rats than in young rats. After administration of SNP and BAY 41-2272, baseline UPP and UPP nadir were significantly decreased in both groups. After administration of l-NAME, UPP change/bladder contraction amplitude in young rats was still lower than at baseline but was completely restored to control levels in middle-aged rats. Immunoreactivity of HIF-1α, 8-OHdG, and MDA was higher in middle-aged rats than in young rats. SIGNIFICANCE Age-associated ischemic and oxidative stress in the urethra might be correlated with impairment of the NO/sGC system and with coordination of the bladder and urethra.
Collapse
Affiliation(s)
- Asato Otsubo
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Minoru Miyazato
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takuma Oshiro
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ryu Kimura
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomohiro Matsuo
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
182
|
Lemoine GG, Scott-Boyer MP, Ambroise B, Périn O, Droit A. GWENA: gene co-expression networks analysis and extended modules characterization in a single Bioconductor package. BMC Bioinformatics 2021; 22:267. [PMID: 34034647 PMCID: PMC8152313 DOI: 10.1186/s12859-021-04179-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Network-based analysis of gene expression through co-expression networks can be used to investigate modular relationships occurring between genes performing different biological functions. An extended description of each of the network modules is therefore a critical step to understand the underlying processes contributing to a disease or a phenotype. Biological integration, topology study and conditions comparison (e.g. wild vs mutant) are the main methods to do so, but to date no tool combines them all into a single pipeline. RESULTS Here we present GWENA, a new R package that integrates gene co-expression network construction and whole characterization of the detected modules through gene set enrichment, phenotypic association, hub genes detection, topological metric computation, and differential co-expression. To demonstrate its performance, we applied GWENA on two skeletal muscle datasets from young and old patients of GTEx study. Remarkably, we prioritized a gene whose involvement was unknown in the muscle development and growth. Moreover, new insights on the variations in patterns of co-expression were identified. The known phenomena of connectivity loss associated with aging was found coupled to a global reorganization of the relationships leading to expression of known aging related functions. CONCLUSION GWENA is an R package available through Bioconductor ( https://bioconductor.org/packages/release/bioc/html/GWENA.html ) that has been developed to perform extended analysis of gene co-expression networks. Thanks to biological and topological information as well as differential co-expression, the package helps to dissect the role of genes relationships in diseases conditions or targeted phenotypes. GWENA goes beyond existing packages that perform co-expression analysis by including new tools to fully characterize modules, such as differential co-expression, additional enrichment databases, and network visualization.
Collapse
Affiliation(s)
- Gwenaëlle G. Lemoine
- Département de médecine moléculaire, Faculté de médecine, Université Laval, 2325 rue de l’Université, Québec, G1V 0A6 Canada
| | - Marie-Pier Scott-Boyer
- Centre de recherche du Chu de Quebec-Université Laval, 2705 boulevard Laurier Québec, Québec, G1V 4G2 Canada
| | - Bathilde Ambroise
- L’Oréal Research and Innovation, 15 rue Pierre Dreyfus, 92110 Clichy, France
| | - Olivier Périn
- L’Oréal Research and Innovation, 15 rue Pierre Dreyfus, 92110 Clichy, France
| | - Arnaud Droit
- Département de médecine moléculaire, Faculté de médecine, Université Laval, 2325 rue de l’Université, Québec, G1V 0A6 Canada
- Centre de recherche du Chu de Quebec-Université Laval, 2705 boulevard Laurier Québec, Québec, G1V 4G2 Canada
| |
Collapse
|
183
|
Kang MK, Park JG. Low Skeletal Muscle Mass Is a Risk Factor for Subclinical Atherosclerosis in Patients with Nonalcoholic Fatty Liver Disease. Diagnostics (Basel) 2021; 11:diagnostics11050854. [PMID: 34068776 PMCID: PMC8150334 DOI: 10.3390/diagnostics11050854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia and nonalcoholic fatty liver disease (NAFLD) are associated with subclinical atherosclerosis. We aimed to investigate the association between low skeletal muscle mass (LSMM) and subclinical atherosclerosis in patients with NAFLD. A total of 683 patients with ultrasound-confirmed NAFLD who underwent carotid ultrasonography were enrolled retrospectively. The appendicular skeletal muscle mass divided by the body mass index was used to define LSMM. Using carotid ultrasound, increased carotid intima–media thickness (cIMT, >1 mm) and the presence of carotid plaques were measured. Of the 683 patients, 75 (11.0%) had LSMM. In multivariate analyses, LSMM was associated with increased cIMT (odds ratios (ORs) = 2.26 to 2.95, all p < 0.05) and carotid plaques (ORs = 2.05 to 2.90, all p < 0.05). The proportion of increased cIMT and carotid plaques was significantly higher in obese NAFLD patients with LSMM than in those without LSMM (33.3% vs. 17.6% for cIMT and 12.7% vs. 5.7% for carotid plaques, respectively; p < 0.001). Furthermore, LSMM was independently associated with increased cIMT (ORs = 2.44 to 3.30, all p < 0.05) and carotid plaques (ORs = 2.56 to 3.54, all p < 0.05) in obese NAFLD patients. LSMM is associated with subclinical atherosclerosis in patients with NAFLD.
Collapse
Affiliation(s)
- Min-Kyu Kang
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jung-Gil Park
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea;
- Correspondence: ; Tel.: +82-53-620-3835 or +82-10-2957-1798; Fax: +82-53-654-8386
| |
Collapse
|
184
|
Xue S, Tang H, Zhao G, Fang C, Shen Y, Yan D, Yuan Y, Fu W, Shi Z, Tang X, Guo D. C-C motif ligand 8 promotes atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial permeability increase. Free Radic Biol Med 2021; 167:181-192. [PMID: 33741452 DOI: 10.1016/j.freeradbiomed.2021.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Chemokines have been reported to play important roles in atherosclerotic development. Recently, we found C-C motif ligand 8 (CCL8), a rarely studied chemokine in atherosclerosis, was highly expressed in the endothelium of advanced human carotid plaques. We hypothesized whether CCL8 promotes atherosclerosis through endothelial dysfunction. Apolipoprotein E-deficient mice under the Western diet were used to construct atherosclerosis models. Adeno-associated viruses (AAV) with CCL8 and the CCL8-antibody were injected into mice respectively to conduct CCL8 overexpression and suppression. The results showed that atherosclerotic lesions were significantly increased in the AAV-CCL8 group, while, lesions in the aortic sinus were reduced in the CCL8-antibody group. With CCL8 treatment (200 ng/ml, 24 h) in vitro, the permeability of human aortic endothelial cells (HAECs) increased and the expression of junctional proteins Zonula occluden-1, and Vascular endothelial cadherin were decreased. This effect was dependent on reactive oxygen species (ROS) generation, which could be blocked by l-Ascorbic acid and Apocynin. Results showed that NADPH oxidase 2 (NOX2) expression also increased with CCL8 stimulation and the ROS, and permeability increase of HAECs could be inhibited when NOX2 interfered with the specific siRNA. Additionally, we further found ERK1/2, PI3K-AKT, and NF-κB pathways were involved in the activation of CCL8. Our results indicated that CCL8 might also play important roles in atherosclerosis and this effect, at least in part, was caused by NOX2/ROS-induced endothelial permeability increase. This study might contribute to a deeper understanding of the connection between chemokines and atherosclerosis.
Collapse
Affiliation(s)
- Song Xue
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gefei Zhao
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiansu, China
| | - Chao Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
185
|
Zhu HY, Hong FF, Yang SL. The Roles of Nitric Oxide Synthase/Nitric Oxide Pathway in the Pathology of Vascular Dementia and Related Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094540. [PMID: 33926146 PMCID: PMC8123648 DOI: 10.3390/ijms22094540] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia worldwide. It is caused by cerebrovascular disease, and patients often show severe impairments of advanced cognitive abilities. Nitric oxide synthase (NOS) and nitric oxide (NO) play vital roles in the pathogenesis of VaD. The functions of NO are determined by its concentration and bioavailability, which are regulated by NOS activity. The activities of different NOS subtypes in the brain are partitioned. Pathologically, endothelial NOS is inactivated, which causes insufficient NO production and aggravates oxidative stress before inducing cerebrovascular endothelial dysfunction, while neuronal NOS is overactive and can produce excessive NO to cause neurotoxicity. Meanwhile, inflammation stimulates the massive expression of inducible NOS, which also produces excessive NO and then induces neuroinflammation. The vicious circle of these kinds of damage having impacts on each other finally leads to VaD. This review summarizes the roles of the NOS/NO pathway in the pathology of VaD and also proposes some potential therapeutic methods that target this pathway in the hope of inspiring novel ideas for VaD therapeutic approaches.
Collapse
Affiliation(s)
- Han-Yan Zhu
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Queen Marry College, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
| | - Fen-Fang Hong
- Teaching Center, Department of Experimental, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
- Correspondence: (F.-F.H.); (S.-L.Y.)
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Correspondence: (F.-F.H.); (S.-L.Y.)
| |
Collapse
|
186
|
Althubiti M, Elzubier M, Alotaibi GS, Althubaiti MA, Alsadi HH, Alhazmi ZA, Alghamdi F, El-Readi MZ, Almaimani R, Babakr A. Beta 2 microglobulin correlates with oxidative stress in elderly. Exp Gerontol 2021; 150:111359. [PMID: 33905876 DOI: 10.1016/j.exger.2021.111359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022]
Abstract
Beta 2 microglobulin (Β2M) is expressed in all nucleated cells, it interplays with mediators to regulate and modulate cellular functions. Its role in aging associated disorders has been documented recently. Oxidative stress has been known to play a direct implication on these disorders. Therefore, there is a rationality to explore the function of Β2M in oxidative stress in elderly people. The aim of the study was to assess the Β2M levels in different group of age, and to study the correlation between Β2M and oxidative stress. Actually, the serum levels of Β2M increased significantly in old people comparing to youngers. In addition, there was a positive correlation between Β2M levels and the age of participants (p < 0.001). In addition, there was a positive correlation between Β2M levels and Malondialdehyde (MDA) (p < 0.001), which underscored the possible role of Β2M in oxidative stress. To confirm the previous result, the correlation between total antioxidant capacity (TAC) and Β2M was assessed. There was a negative correlation between them (p < 0.001). These results suggested a possible role of Β2M in oxidative stress status in elderly people; in addition, it suggested the ability of using Β2M as a novel biomarker for oxidative stress. However, further work should be conducted to explore the exact role of Β2M in oxidative stress, and to include large sample size to confirm the results before translating the findings to clinic.
Collapse
Affiliation(s)
- Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia.
| | - Mohamed Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | | | | | - Hazim Hamed Alsadi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | | | | | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Abdullatif Babakr
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| |
Collapse
|
187
|
Zhang J, Chen Z, Yu H, Lu Y, Yu W, Miao M, Shi H. Anti-aging effects of a functional food via the action of gut microbiota and metabolites in aging mice. Aging (Albany NY) 2021; 13:17880-17900. [PMID: 33878733 PMCID: PMC8312451 DOI: 10.18632/aging.202873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
Wushen (WS) is a mixed food containing 55 natural products that is beneficial to human health. This study aimed to reveal the preventive effect of WS on aging via a combined analysis of gut microbiome and metabolome. Senescence-accelerated mouse prone 8 (SAMP8) mice were used as aging model and senescence-accelerated mouse resistant 1 (SAMR1) mice as control. The mice were fed four diet types; control diet (for SAMR1 mice), standard diet (for SAMP8 mice, as SD group), WS diet, and fecal microbiota transplantation (FMT; transplanted from aging-WS mice). Our results showed that the weight, food intake, neurological function, and general physical conditions significantly improved in WS-fed mice compared to those fed with SD. The CA1 hippocampal region in WS-fed aged mice showed fewer shriveled neurons and increased neuronal layers compared to that of the SD group. WS-fed mice showed a decrease in malondialdehyde and an increase in superoxide dismutase levels in the brain; additionally, IL-6 and TNF-α levels significantly decreased, whereas IL-2 levels and the proportion of lymphocytes, CD3+CD8+ T, and CD4+IFNγ+T cells increased in WS-fed mice. After fed with WS, the abundance of Ruminococcus and Butyrivibrio markedly increased, whereas Lachnoclostridium and Ruminiclostridium significantly decreased in the aging mice. In addition, 887 differentially expressed metabolites were identified in fecal samples, among these, Butyrivibrio was positively correlated with D-glucuronic acid and Ruminococcus was positively associated with 5-acetamidovalerate. These findings provide mechanistic insight into the impact of WS on aging, and WS may be a valuable diet for preventing aging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrinology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Zhewen Chen
- Department of Nutrition, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Huaixi Yu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Yanwen Lu
- Department of Endocrinology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Weinan Yu
- Department of Endocrinology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Mingyong Miao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, Shandong, China.,Department of Biochemistry and Molecular Biology, The Naval Medical University, Shanghai 200433, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
188
|
Dos Santos TM, Ramires Júnior OV, Alves VS, Coutinho-Silva R, Savio LEB, Wyse ATS. Hyperhomocysteinemia alters cytokine gene expression, cytochrome c oxidase activity and oxidative stress in striatum and cerebellum of rodents. Life Sci 2021; 277:119386. [PMID: 33774024 DOI: 10.1016/j.lfs.2021.119386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
AIMS Homocysteine has been linked to neurodegeneration and motor function impairments. In the present study, we evaluate the effect of chronic mild hyperhomocysteinemia on the motor behavior (motor coordination, functional performance, and muscular force) and biochemical parameters (oxidative stress, energy metabolism, gene expression and/or protein abundance of cytokine related to the inflammatory pathways and acetylcholinesterase) in the striatum and cerebellum of Wistar male rats. MAIN METHODS Rodents were submitted to one injection of homocysteine (0.03 μmol Hcy/g of body weight) between 30th and 60th postnatal days twice a day. After hyperhomocysteinemia induction, rats were submitted to horizontal ladder walking, beam balance, suspension, and vertical pole tests and/or euthanized to brain dissection for biochemical and molecular assays. KEY FINDINGS Chronic mild hyperhomocysteinemia did not alter motor function, but induced oxidative stress and impaired mitochondrial complex IV activity in both structures. In the striatum, hyperhomocysteinemia decreased TNF-α gene expression and increased IL-1β gene expression and acetylcholinesterase activity. In the cerebellum, hyperhomocysteinemia increased gene expression of TNF-α, IL-1β, IL-10, and TGF-β, while the acetylcholinesterase activity was decreased. In both structures, hyperhomocysteinemia decreased acetylcholinesterase protein abundance without altering total p-NF-κB, NF-κB, Nrf-2, and cleaved caspase-3. SIGNIFICANCE Chronic mild hyperhomocysteinemia compromises several biochemical/molecular parameters, signaling pathways, oxidative stress, and chronic inflammation in the striatum and cerebellum of rats without impairing motor function. These alterations may be related to the mechanisms in which hyperhomocysteinemia has been linked to movement disorders later in life and neurodegeneration.
Collapse
Affiliation(s)
- Tiago Marcon Dos Santos
- Wyse's Lab, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Osmar Vieira Ramires Júnior
- Wyse's Lab, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, CCS, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, CCS, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, CCS, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Angela T S Wyse
- Wyse's Lab, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
189
|
Changes in Gene Expression Profiling and Phenotype in Aged Multidrug Resistance Protein 4-Deficient Mouse Retinas. Antioxidants (Basel) 2021; 10:antiox10030455. [PMID: 33804096 PMCID: PMC7999859 DOI: 10.3390/antiox10030455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4) is an energy-dependent membrane transporter responsible for cellular efflux of a broad range of xenobiotics and physiological substrates. In this trial, we aimed to investigate the coeffects of aging and MRP4 deficiency using gene expression microarray and morphological and electrophysiological analyses of mouse retinas. Mrp4-knockout (null) mice and wild-type (WT) mice were reared in the same conditions to 8–12 weeks (young) or 45–55 weeks (aged). Microarray analysis identified 186 differently expressed genes from the retinas of aged Mrp4-null mice as compared to aged WT mice, and subsequent gene ontology and KEGG pathway analyses showed that differently expressed genes were related to lens, eye development, vision and transcellular barrier functions that are involved in metabolic pathways or viral infection pathways. No significant change in thickness was observed for each retinal layer among young/aged WT mice and young/aged Mrp4-null mice. Moreover, immunohistochemical analyses of retinal cell type did not exhibit an overt change in the cellular morphology or distribution among the four age/genotype groups, and the electroretinogram responses showed no significant differences in the amplitude or the latency between aged WT mice and aged Mrp4-null mice. Aging would be an insufficient stress to cause some damage to the retina in the presence of MRP4 deficiency.
Collapse
|
190
|
Żychowska M, Grzybkowska A, Zasada M, Piotrowska A, Dworakowska D, Czerwińska-Ledwig O, Pilch W, Antosiewicz J. Effect of six weeks 1000 mg/day vitamin C supplementation and healthy training in elderly women on genes expression associated with the immune response - a randomized controlled trial. J Int Soc Sports Nutr 2021; 18:19. [PMID: 33653365 PMCID: PMC7923494 DOI: 10.1186/s12970-021-00416-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background In this study, we investigated the effects of supplementation and exercise on the expression of genes associated with inflammation like CCL2, CRP, IL1, IL6, IL10 mRNA in elderly women. Methods Twenty four participants divided randomly into two groups were subjected to 6 weeks of the same health training program (three times per week). SUP group (supplemented, n = 12, mean age 72.8 ± 5.26 years and mean body mass 68.1 ± 8.3 kg) received 1000 mg of Vitamin C/day during the training period, while CON group (control, n = 12, mean age 72.4 ± 5.5 years and body mass 67.7 ± 7.5 kg) received placebo. Results No significant changes in IL-1, IL-6, IL-10 and CRP mRNA were observed within and between groups. However, there was a clear tendency of a decrease in IL-6 (two-way ANOVA, significant between investigated time points) and an increase in IL-10 mRNA noted in the supplemented group. A significant decrease in CCL2 mRNA was observed only in the CON group (from 2^0.2 to 2^0.1, p = 0.01). Conclusions It can be concluded, that 6 weeks of supplementation and exercise was too short to obtain significant changes in gene expression in leukocytes, but supplementation of 1000 mg vitamin C positively affected IL-6 and IL-10 expression – which are key changes in the adaptation to training. However, changes in body mass, IL1 and CCL2 were positive in CON group. It is possible that Vitamin C during 6 weeks of supplementation could have different effects on the expression of individual genes involved in the immune response. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Małgorzata Żychowska
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland. .,Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland.
| | - Agata Grzybkowska
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland
| | - Mariusz Zasada
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Anna Piotrowska
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Danuta Dworakowska
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Olga Czerwińska-Ledwig
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Wanda Pilch
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
191
|
Houben AJ, Stehouwer CD. Microvascular dysfunction: Determinants and treatment, with a focus on hyperglycemia. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2020.100073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
192
|
Tian H, Wen H, Yang X, Li S, Li J. Exploring the effects of anthocyanins on volatile organic metabolites of alzheimer’s disease model mice based on HS-GC-IMS and HS-SPME-GC–MS. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
193
|
Hahad O, Frenis K, Kuntic M, Daiber A, Münzel T. Accelerated Aging and Age-Related Diseases (CVD and Neurological) Due to Air Pollution and Traffic Noise Exposure. Int J Mol Sci 2021; 22:2419. [PMID: 33670865 PMCID: PMC7957813 DOI: 10.3390/ijms22052419] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that only approximately 25% of diversity in longevity is explained by genetic factors, while the other 75% is largely determined by interactions with the physical and social environments. Indeed, aging is a multifactorial process that is influenced by a range of environmental, sociodemographic, and biopsychosocial factors, all of which might act in concert to determine the process of aging. The global average life expectancy increased fundamentally over the past century, toward an aging population, correlating with the development and onset of age-related diseases, mainly from cardiovascular and neurological nature. Therefore, the identification of determinants of healthy and unhealthy aging is a major goal to lower the burden and socioeconomic costs of age-related diseases. The role of environmental factors (such as air pollution and noise exposure) as crucial determinants of the aging process are being increasingly recognized. Here, we critically review recent findings concerning the pathomechanisms underlying the aging process and their correlates in cardiovascular and neurological disease, centered on oxidative stress and inflammation, as well as the influence of prominent environmental pollutants, namely air pollution and traffic noise exposure, which is suggested to accelerate the aging process. Insight into these types of relationships and appropriate preventive strategies are urgently needed to promote healthy aging.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
194
|
Pap R, Pandur E, Jánosa G, Sipos K, Agócs A, Deli J. Lutein Exerts Antioxidant and Anti-Inflammatory Effects and Influences Iron Utilization of BV-2 Microglia. Antioxidants (Basel) 2021; 10:antiox10030363. [PMID: 33673707 PMCID: PMC7997267 DOI: 10.3390/antiox10030363] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lutein is a tetraterpene carotenoid, which has been reported as an important antioxidant and it is widely used as a supplement. Oxidative stress participates in many human diseases, including different types of neurodegenerative disorders. Microglia, the primary immune effector cells in the central nervous system, are implicated in these disorders by producing harmful substances such as reactive oxygen species (ROS). The protective mechanisms which scavenge ROS include enzymes and antioxidant substances. The protective effects of different carotenoids against oxidative stress have been described previously. Our study focuses on the effects of lutein on antioxidant enzymes, cytokines and iron metabolism under stress conditions in BV-2 microglia. We performed cell culture experiments: BV-2 cells were treated with lutein and/or with H2O2; the latter was used for inducing oxidative stress in microglial cells. Real-time PCR was performed for gene expression analyses of antioxidant enzymes, and ELISA was used for the detection of pro- and anti-inflammatory cytokines. Our results show that the application of lutein suppressed the H2O2-induced ROS (10′: 7.5 ng + 10 µM H2O2, p = 0.0002; 10 ng/µL + 10 µM H2O2, p = 0.0007), influenced iron utilization and changed the anti-inflammatory and pro-inflammatory cytokine secretions in BV-2 cells. Lutein increased the IL-10 secretions compared to control (24 h: 7.5 ng/µL p = 0.0274; 10 ng/µL p = 0.0008) and to 10 µM H2O2-treated cells (24 h: 7.5 ng/µL + H2O2, p = 0.0003; 10 ng/µL + H2O2, p = 0.0003), while it decreased the TNFα secretions compared to H2O2 treated cells (24 h: 7.5 ng/µL + H2O2, p < 0.0001; 10 ng/µL + H2O2, p < 0.0001). These results contribute to understanding the effects of lutein, which may help in preventing or suppressing ROS-mediated microglia activation, which is related to neuronal degeneration in oxidative stress scenario.
Collapse
Affiliation(s)
- Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Attila Agócs
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
| | - József Deli
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
195
|
Madeddu P. Cell therapy for the treatment of heart disease: Renovation work on the broken heart is still in progress. Free Radic Biol Med 2021; 164:206-222. [PMID: 33421587 DOI: 10.1016/j.freeradbiomed.2020.12.444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) continues to be the number one killer in the aging population. Heart failure (HF) is also an important cause of morbidity and mortality in patients with congenital heart disease (CHD). Novel therapeutic approaches that could restore stable heart function are much needed in both paediatric and adult patients. Regenerative medicine holds promises to provide definitive solutions for correction of congenital and acquired cardiac defects. In this review article, we recap some important aspects of cardiovascular cell therapy. First, we report quantifiable data regarding the scientific advancements in the field and how this has been translated into tangible outcomes according clinical studies and related meta-analyses. We then comment on emerging trends and technologies, such as the use of second-generation cell products, including pericyte-like vascular progenitors, and reprogramming of cells by different approaches including modulation of oxidative stress. The more affordable and feasible strategy of repurposing clinically available drugs to awaken the intrinsic healing potential of the heart will be discussed in the light of current social, financial, and ethical context. Cell therapy remains a work in progress field. Uncertainty in the ability of the experts and policy makers to solve urgent medical problems is growing in a world that is significantly influenced by them. This is particularly true in the field of regenerative medicine, due to great public expectations, polarization of leadership and funding, and insufficient translational vision. Cardiovascular regenerative medicine should be contextualized in a holistic program with defined priorities to allow a complete realization. Reshaping the notion of medical expertise is fundamental to fill the current gap in translation.
Collapse
Affiliation(s)
- Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, BS28HW, Bristol, United Kingdom.
| |
Collapse
|
196
|
Health disparities: Intracellular consequences of social determinants of health. Toxicol Appl Pharmacol 2021; 416:115444. [PMID: 33549591 DOI: 10.1016/j.taap.2021.115444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Health disparities exist dependent on socioeconomic status, living conditions, race/ethnicity, diet, and exposures to environmental pollutants. Herein, the various exposures contributing to a person's exposome are collectively considered social determinants of health (SDOH), and the SDOH-exposome impacts health more than health care. This review discusses the extent of evidence of the physiologic consequences of these exposures at the intracellular level. We consider how the SDOH-exposome, which captures how individuals live, work and age, induces cell processes that modulate a conceptual "redox rheostat." Like an electrical resistor, the SDOH-exposome, along with genetic predisposition and age, regulate reductive and oxidative (redox) stress circuits and thereby stimulate inflammation. Regardless of the source of the SDOH-exposome that induces chronic inflammation and immunosenescence, the outcome influences cardiometabolic diseases, cancers, infections, sepsis, neurodegeneration and autoimmune diseases. The endogenous redox rheostat is connected with regulatory molecules such as NAD+/NADH and SIRT1 that drive redox pathways. In addition to these intracellular and mitochondrial processes, we discuss how the SDOH-exposome can influence the balance between metabolism and regulation of immune responsiveness involving the two main molecular drivers of inflammation, the NLRP3 inflammasome and NF-κB induction. Mitochondrial and inflammasome activities play key roles in mediating defenses against pathogens and controlling inflammation before diverse cell death pathways are induced. Specifically, pyroptosis, cell death by inflammation, is intimately associated with common disease outcomes that are influenced by the SDOH-exposome. Redox influences on immunometabolism including protein cysteines and ion fluxes are discussed regarding health outcomes. In summary, this review presents a translational research perspective, with evidence from in vitro and in vivo models as well as clinical and epidemiological studies, to outline the intracellular consequences of the SDOH-exposome that drive health disparities in patients and populations. The relevance of this conceptual and theoretical model considering the SARS-CoV-2 pandemic are highlighted. Finally, the case of asthma is presented as a chronic condition that is modified by adverse SDOH exposures and is manifested through the dysregulation of immune cell redox regulatory processes we highlight in this review.
Collapse
|
197
|
Pagano PJ, Cifuentes-Pagano E. The Enigmatic Vascular NOX: From Artifact to Double Agent of Change: Arthur C. Corcoran Memorial Lecture - 2019. Hypertension 2021; 77:275-283. [PMID: 33390049 DOI: 10.1161/hypertensionaha.120.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NOXs (NADPH oxidases) comprise a family of proteins whose primary function is the production of reactive oxygen species, namely, superoxide anion and hydrogen peroxide. The prototype first being discovered and characterized in neutrophils, multiple NOXs are now known to be broadly expressed in cell and organ systems and whose phylogeny spans countless life forms beginning with prokaryotes. This long-enduring evolutionary conservation underscores the importance of fundamental NOX functions. This review chronicles a personal perspective of the field beginning with the discovery of NOXs in the vasculature and the advances achieved through the years as to our understanding of their mechanisms of action and role in oxidative stress and disease. Furthermore, applications of isoform-selective inhibitors to dissect the role of NOX isozymes in vascular biology, focusing on inflammation, pulmonary hypertension, and aging are described.
Collapse
Affiliation(s)
- Patrick J Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
198
|
Li Q, Cheng JC, Jiang Q, Lee WY. Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Aging Cell 2021; 20:e13301. [PMID: 33393735 PMCID: PMC7884050 DOI: 10.1111/acel.13301] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The decline in bone mass and bone strength and musculoskeletal problems associated with aging constitute a major challenge for affected individuals and the healthcare system globally. Sirtuins 1-7 (SIRT1-SIRT7) are a family of nicotinamide adenine dinucleotide-dependent deacetylases with remarkable abilities to promote longevity and counteract age-related diseases. Sirtuin knockout and transgenic models have provided novel insights into the function and signaling of these proteins in bone homeostasis. Studies have revealed that sirtuins play a critical role in normal skeletal development and homeostasis through their direct action on bone cells and that their dysregulation might contribute to different bone diseases. Preclinical studies have demonstrated that mice treated with sirtuin agonists show protection against age-related, postmenopausal, and immobilization-induced osteoporosis. These findings suggest that sirtuins could be potential targets for the modulation of the imbalance in bone remodeling and treatment of osteoporosis and other bone disorders. The aim of this review was to provide a comprehensive updated review of the current knowledge on sirtuin biology, focusing specifically on their roles in bone homeostasis and osteoporosis, and potential pharmacological interventions targeting sirtuins for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qiangqiang Li
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jack Chun‐yiu Cheng
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive SurgeryDrum Tower Hospital affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Wayne Yuk‐wai Lee
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
199
|
Land Lail H, Feresin RG, Hicks D, Stone B, Price E, Wanders D. Berries as a Treatment for Obesity-Induced Inflammation: Evidence from Preclinical Models. Nutrients 2021; 13:nu13020334. [PMID: 33498671 PMCID: PMC7912458 DOI: 10.3390/nu13020334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation that accompanies obesity is associated with the infiltration of metabolically active tissues by inflammatory immune cells. This propagates a chronic low-grade inflammation associated with increased signaling of common inflammatory pathways such as NF-κB and Toll-like receptor 4 (TLR4). Obesity-associated inflammation is linked to an increased risk of chronic diseases, including type 2 diabetes, cardiovascular disease, and cancer. Preclinical rodent and cell culture studies provide robust evidence that berries and their bioactive components have beneficial effects not only on inflammation, but also on biomarkers of many of these chronic diseases. Berries contain an abundance of bioactive compounds that have been shown to inhibit inflammation and to reduce reactive oxygen species. Therefore, berries represent an intriguing possibility for the treatment of obesity-induced inflammation and associated comorbidities. This review summarizes the anti-inflammatory properties of blackberries, blueberries, strawberries, and raspberries. This review highlights the anti-inflammatory mechanisms of berries and their bioactive components that have been elucidated through the use of preclinical models. The primary mechanisms mediating the anti-inflammatory effects of berries include a reduction in NF-κB signaling that may be secondary to reduced oxidative stress, a down-regulation of TLR4 signaling, and an increase in Nrf2.
Collapse
|
200
|
Bajpai A, Li R, Chen W. The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 2020; 1491:3-24. [PMID: 33231326 DOI: 10.1111/nyas.14529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.
Collapse
Affiliation(s)
- Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|