151
|
Jiang HS, Zhang Y, Lu ZW, Lebrun R, Gontero B, Li W. Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900860. [PMID: 31111667 DOI: 10.1002/smll.201900860] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Widely used silver nanoparticles (AgNPs) are readily accessible to biological fluids and then surrounded by proteins. However, interactions between AgNPs and proteins are poorly understood. Two dehydrogenases, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and malate dehydrogenase (MDH), are chosen to investigate these interactions. Ag bound to thiol groups of these enzymes significantly decreases the number of free thiols available. Dose-dependent inhibition of enzyme activities is observed in both AgNPs and Ag+ treatments. Based on the concentration required to inhibit 50% activity, GAPDH and MDH are 24-30 fold more sensitive to Ag+ than to AgNPs suggesting that the measured 4.2% Ag+ containing AgNPs can be responsible for the enzymes inhibition. GAPDH, with a thiol group in its active site, is more sensitive to Ag than MDH, displaying many thiol groups but none in its active site, suggesting that thiol groups at the active site strongly determines the sensitivity of enzymes toward AgNPs. In contrast, the dramatic changes of circular dichroism spectra show that the global secondary structure of MDH under AgNPs treatment is more altered than that of GAPDH. In summary, this study shows that the thiol groups and their location on these dehydrogenases are crucial for the AgNPs effects.
Collapse
Affiliation(s)
- Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Yizhi Zhang
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Zhen Wei Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, 570228, China
| | - Régine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IMM, FR 3479, CNRS, 31 Chemin J. Aiguier, 13009, Marseille, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
152
|
Scalise M, Console L, Galluccio M, Pochini L, Tonazzi A, Giangregorio N, Indiveri C. Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs. SLAS DISCOVERY 2019; 24:867-881. [PMID: 31251685 DOI: 10.1177/2472555219856601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
153
|
Li M, Zheng K, Chen H, Liu X, Xiao S, Yan J, Tan X, Zhang N. A novel 2,5-bis(benzo[d]thiazol-2-yl)phenol scaffold-based ratiometric fluorescent probe for sensing cysteine in aqueous solution and serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:1-7. [PMID: 30925315 DOI: 10.1016/j.saa.2019.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
An efficient and novel 2,5-bis(benzo[d]thiazol-2-yl)phenol scaffold-based ratiometric fluorescent probe BTP-Cys for the sensing of cysteine has been developed. The probe BTP-Cys with acrylates moiety, as recognition site, has been successfully constructed on account of the excited state intramolecular proton transfer (ESIPT) mechanism. Upon the treatment with Cys (0-250 μM), this probe BTP-Cys exhibits a dramatic fluorescent intensity ratios enhancement (from 0.03 to 18.3) and a large emission shift (113 nm). The detection limit of this probe is as low as 3.8 × 10-7 M. Importantly, the concentration and time dependent of Cys in bovine serum albumin (BSA) has also been measured, indicating that BTP-Cys could be a biocompatible and rapid probe for Cys in vitro.
Collapse
Affiliation(s)
- Meng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China.
| | - Hui Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Shuzhang Xiao
- College of Biology and Pharmacy, China Three Gorges University, Yichang 443002, PR China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
154
|
Milanese C, Payán-Gómez C, Mastroberardino PG. Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson’s disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
155
|
Bruno G, Heusler T, Lackmann JW, von Woedtke T, Weltmann KD, Wende K. Cold physical plasma-induced oxidation of cysteine yields reactive sulfur species (RSS). CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2019.100083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
156
|
Lackmann JW, Bruno G, Jablonowski H, Kogelheide F, Offerhaus B, Held J, Schulz-von der Gathen V, Stapelmann K, von Woedtke T, Wende K. Nitrosylation vs. oxidation - How to modulate cold physical plasmas for biological applications. PLoS One 2019; 14:e0216606. [PMID: 31067274 PMCID: PMC6505927 DOI: 10.1371/journal.pone.0216606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Thiol moieties are major targets for cold plasma-derived nitrogen and oxygen species, making CAPs convenient tools to modulate redox-signaling pathways in cells and tissues. The underlying biochemical pathways are currently under investigation but especially the role of CAP derived RNS is barely understood. Their potential role in protein thiol nitrosylation would be relevant in inflammatory processes such as wound healing and improving their specific production by CAP would allow for enhanced treatment options beyond the current application. The impact of a modified kINPen 09 argon plasma jet with nitrogen shielding on cysteine as a thiol-carrying model substance was investigated by FTIR spectroscopy and high-resolution mass spectrometry. The deposition of short-lived radical species was measured by electron paramagnetic resonance spectroscopy, long-lived species were quantified by ion chromatography (NO2-, NO3-) and xylenol orange assay (H2O2). Product profiles were compared to samples treated with the so-called COST jet, being introduced by a European COST initiative as a reference device, using both reference conditions as well as conditions adjusted to kINPen gas mixtures. While thiol oxidation was dominant under all tested conditions, an Ar + N2/O2 gas compositions combined with a nitrogen curtain fostered nitric oxide deposition and the desired generation of S-nitrosocysteine. Interestingly, the COST-jet revealed significant differences in its chemical properties in comparison to the kINPen by showing a more stable production of RNS with different gas admixtures, indicating a different •NO production pathway. Taken together, results indicate various chemical properties of kINPen and COST-jet as well as highlight the potential of plasma tuning not only by gas admixtures alone but by adjusting the surrounding atmosphere as well.
Collapse
Affiliation(s)
- Jan-Wilm Lackmann
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
- * E-mail: (JWL); (KW)
| | - Giuliana Bruno
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Helena Jablonowski
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Friederike Kogelheide
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Björn Offerhaus
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Julian Held
- Experimental Physics II, Ruhr University Bochum, Bochum, Germany
| | | | - Katharina Stapelmann
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
- Plasma for Life Sciences, Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas von Woedtke
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
- * E-mail: (JWL); (KW)
| |
Collapse
|
157
|
Determination of the [ 15N]-Nitrate/[ 14N]-Nitrate Ratio in Plant Feeding Studies by GC⁻MS. Molecules 2019; 24:molecules24081531. [PMID: 31003443 PMCID: PMC6515077 DOI: 10.3390/molecules24081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Feeding experiments with stable isotopes are helpful tools for investigation of metabolic fluxes and biochemical pathways. For assessing nitrogen metabolism, the heavier nitrogen isotope, [15N], has been frequently used. In plants, it is usually applied in form of [15N]-nitrate, which is assimilated mainly in leaves. Thus, methods for quantification of the [15N]-nitrate/[14N]-nitrate ratio in leaves are useful for the planning and evaluation of feeding and pulse–chase experiments. Here we describe a simple and sensitive method for determining the [15N]-nitrate to [14N]-nitrate ratio in leaves. Leaf discs (8 mm diameter, approximately 10 mg fresh weight) were sufficient for analysis, allowing a single leaf to be sampled multiple times. Nitrate was extracted with hot water and derivatized with mesitylene in the presence of sulfuric acid to nitromesitylene. The derivatization product was analyzed by gas chromatography–mass spectrometry with electron ionization. Separation of the derivatized samples required only 6 min. The method shows excellent repeatability with intraday and interday standard deviations of less than 0.9 mol%. Using the method, we show that [15N]-nitrate declines in leaves of hydroponically grown Crassocephalum crepidioides, an African orphan crop, with a biological half-life of 4.5 days after transfer to medium containing [14N]-nitrate as the sole nitrogen source.
Collapse
|
158
|
Yano Y, Grigoryan H, Schiffman C, Edmands W, Petrick L, Hall K, Whitehead T, Metayer C, Dudoit S, Rappaport S. Untargeted adductomics of Cys34 modifications to human serum albumin in newborn dried blood spots. Anal Bioanal Chem 2019; 411:2351-2362. [PMID: 30783713 PMCID: PMC6461474 DOI: 10.1007/s00216-019-01675-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
Abstract
Metabolism of chemicals from the diet, exposures to xenobiotics, the microbiome, and lifestyle factors (e.g., smoking, alcohol intake) produce electrophiles that react with nucleophilic sites in circulating proteins, notably Cys34 of human serum albumin (HSA). To discover potential risk factors resulting from in utero exposures, we are investigating HSA-Cys34 adducts in archived newborn dried blood spots (DBS) that reflect systemic exposures during the last month of gestation. The workflow includes extraction of proteins from DBS, measurement of hemoglobin (Hb) to normalize for blood volume, addition of methanol to enrich HSA by precipitation of Hb and other interfering proteins, digestion with trypsin, and detection of HSA-Cys34 adducts via nanoflow liquid chromatography-high-resolution mass spectrometry. As proof-of-principle, we applied the method to 49 archived DBS collected from newborns whose mothers either actively smoked during pregnancy or were nonsmokers. Twenty-six HSA-Cys34 adducts were detected, including Cys34 oxidation products, mixed disulfides with low molecular weight thiols (e.g., cysteine, homocysteine, glutathione, cysteinylglycine), and other modifications. Data were normalized with a novel method ("scone") to remove unwanted technical variation arising from HSA digestion, blood volume, DBS age, mass spectrometry analysis, and batch effects. Using an ensemble of linear and nonlinear models, the Cys34 adduct of cyanide was found to consistently discriminate between newborns of smoking and nonsmoking mothers with a mean fold change (smoking/nonsmoking) of 1.31. These results indicate that DBS adductomics is suitable for investigating in utero exposures to reactive chemicals and metabolites that may influence disease risks later in life.
Collapse
Affiliation(s)
- Yukiko Yano
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Courtney Schiffman
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - William Edmands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Lauren Petrick
- The Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Katie Hall
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Todd Whitehead
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA
| | - Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Stephen Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA.
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
159
|
Dennis KK, Go YM, Jones DP. Redox Systems Biology of Nutrition and Oxidative Stress. J Nutr 2019; 149:553-565. [PMID: 30949678 PMCID: PMC6461723 DOI: 10.1093/jn/nxy306] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Diet and nutrition contribute to both beneficial and harmful aspects of oxidative processes. The harmful processes, termed oxidative stress, occur with many human diseases. Major advances in understanding oxidative stress and nutrition have occurred with broad characterization of dietary oxidants and antioxidants, and with mechanistic studies showing antioxidant efficacy. However, randomized controlled trials in humans with free-radical-scavenging antioxidants and the glutathione precursor N-acetylcysteine have provided limited or inconsistent evidence for health benefits. This, combined with emerging redox theory, indicates that holistic models are needed to understand the interplay of nutrition and oxidative stress. The purpose of this article is to highlight how recent advances in redox theory and the development of new omics tools and data-driven approaches provide a framework for future nutrition and oxidative stress research. Here we describe why a holistic approach is needed to understand the impact of nutrition on oxidative stress and how recent advances in omics and data analysis methods are viable tools for systems nutrition approaches. Based on the extensive research on glutathione and related thiol antioxidant systems, we summarize the advancing framework for diet and oxidative stress in which antioxidant systems are a component of a larger redox network that serves as a responsive interface between the environment and an individual. The feasibility for redox network analysis has been established by experimental models in which dietary factors are systematically varied and oxidative stress markers are linked through integrated omics (metabolome, transcriptome, proteome). With this framework, integrated redox network models will support optimization of diet to protect against oxidative stress and disease.
Collapse
Affiliation(s)
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
160
|
Petkowski JJ, Bains W, Seager S. An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols or Nitrogen-Sulfur Bonds, but Not Both. ASTROBIOLOGY 2019; 19:579-613. [PMID: 30431334 DOI: 10.1089/ast.2018.1831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A fundamental goal of biology is to understand the rules behind life's use of chemical space. Established work focuses on why life uses the chemistry that it does. Given the enormous scope of possible chemical space, we postulate that it is equally important to ask why life largely avoids certain areas of chemical space. The nitrogen-sulfur bond is a prime example, as it rarely appears in natural molecules, despite the very rich N-S bond chemistry applied in various branches of industry (e.g., industrial materials, agrochemicals, pharmaceuticals). We find that, out of more than 200,000 known, unique compounds made by life, only about 100 contain N-S bonds. Furthermore, the limited number of N-S bond-containing molecules that life produces appears to fall into a few very distinctive structural groups. One may think that industrial processes are unrelated to biochemistry because of a greater possibility of solvents, catalysts, and temperatures available to industry than to the cellular environment. However, the fact that life does rarely make N-S bonds, from the plentiful precursors available, and has evolved the ability to do so independently several times, suggests that the restriction on life's use of N-S chemistry is not in its synthesis. We present a hypothesis to explain life's extremely limited usage of the N-S bond: that the N-S bond chemistry is incompatible with essential segments of biochemistry, specifically with thiols. We support our hypothesis by (1) a quantitative analysis of the occurrence of N-S bond-containing natural products and (2) reactivity experiments between selected N-S compounds and key biological molecules. This work provides an example of a reason why life nearly excludes a distinct region of chemical space. Combined with future examples, this potentially new field of research may provide fresh insight into life's evolution through chemical space and its origin and early evolution.
Collapse
Affiliation(s)
- Janusz J Petkowski
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Sara Seager
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
- 3 Department of Physics, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| |
Collapse
|
161
|
Hughan KS, Wendell SG, Delmastro-Greenwood M, Helbling N, Corey C, Bellavia L, Potti G, Grimes G, Goodpaster B, Kim-Shapiro DB, Shiva S, Freeman BA, Gladwin MT. Conjugated Linoleic Acid Modulates Clinical Responses to Oral Nitrite and Nitrate. Hypertension 2019; 70:634-644. [PMID: 28739973 DOI: 10.1161/hypertensionaha.117.09016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary NO3- (nitrate) and NO2- (nitrite) support ˙NO (nitric oxide) generation and downstream vascular signaling responses. These nitrogen oxides also generate secondary nitrosating and nitrating species that react with low molecular weight thiols, heme centers, proteins, and unsaturated fatty acids. To explore the kinetics of NO3-and NO2-metabolism and the impact of dietary lipid on nitrogen oxide metabolism and cardiovascular responses, the stable isotopes Na15NO3 and Na15NO2 were orally administered in the presence or absence of conjugated linoleic acid (cLA). The reduction of 15NO2- to 15NO was indicated by electron paramagnetic resonance spectroscopy detection of hyperfine splitting patterns reflecting 15NO-deoxyhemoglobin complexes. This formation of 15NO also translated to decreased systolic and mean arterial blood pressures and inhibition of platelet function. Upon concurrent administration of cLA, there was a significant increase in plasma cLA nitration products 9- and 12-15NO2-cLA. Coadministration of cLA with 15NO2- also impacted the pharmacokinetics and physiological effects of 15NO2-, with cLA administration suppressing plasma NO3-and NO2-levels, decreasing 15NO-deoxyhemoglobin formation, NO2-inhibition of platelet activation, and the vasodilatory actions of NO2-, while enhancing the formation of 9- and 12-15NO2-cLA. These results indicate that the biochemical reactions and physiological responses to oral 15NO3-and 15NO2-are significantly impacted by dietary constituents, such as unsaturated lipids. This can explain the variable responses to NO3-and NO2-supplementation in clinical trials and reveals dietary strategies for promoting the generation of pleiotropic nitrogen oxide-derived lipid signaling mediators. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT01681836.
Collapse
Affiliation(s)
- Kara S Hughan
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Stacy Gelhaus Wendell
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Meghan Delmastro-Greenwood
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Nicole Helbling
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Catherine Corey
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Landon Bellavia
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Gopal Potti
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - George Grimes
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Bret Goodpaster
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Daniel B Kim-Shapiro
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Sruti Shiva
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Bruce A Freeman
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Mark T Gladwin
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| |
Collapse
|
162
|
Alnajjar KS, Sweasy JB. A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair (Amst) 2019; 76:60-69. [PMID: 30818170 DOI: 10.1016/j.dnarep.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are formed as byproducts of many endogenous cellular processes, in response to infections, and upon exposure to various environmental factors. An increase in RONS can saturate the antioxidation system and leads to oxidative stress. Consequently, macromolecules are targeted for oxidative modifications, including DNA and protein. The oxidation of DNA, which leads to base modification and formation of abasic sites along with single and double strand breaks, has been extensively investigated. Protein oxidation is often neglected and is only recently being recognized as an important regulatory mechanism of various DNA repair proteins. This is a review of the current state of research on the regulation of DNA repair by protein oxidation with emphasis on the correlation between inflammation and cancer.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States.
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States
| |
Collapse
|
163
|
Guerrero-Gómez D, Mora-Lorca JA, Sáenz-Narciso B, Naranjo-Galindo FJ, Muñoz-Lobato F, Parrado-Fernández C, Goikolea J, Cedazo-Minguez Á, Link CD, Neri C, Sequedo MD, Vázquez-Manrique RP, Fernández-Suárez E, Goder V, Pané R, Cabiscol E, Askjaer P, Cabello J, Miranda-Vizuete A. Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death Differ 2019; 26:1545-1565. [PMID: 30770874 DOI: 10.1038/s41418-018-0270-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 01/10/2023] Open
Abstract
In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.
Collapse
Affiliation(s)
- David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - José Antonio Mora-Lorca
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.,Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | | | - Francisco José Naranjo-Galindo
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Fernando Muñoz-Lobato
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Cristina Parrado-Fernández
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Julen Goikolea
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Ángel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Christopher D Link
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Christian Neri
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), F-75252, Paris, France
| | - María Dolores Sequedo
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Rafael P Vázquez-Manrique
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Elena Fernández-Suárez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Veit Goder
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Roser Pané
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), 26006, Logroño, Spain.
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| |
Collapse
|
164
|
Aivazidis S, Anderson CC, Roede JR. Toxicant-mediated redox control of proteostasis in neurodegeneration. CURRENT OPINION IN TOXICOLOGY 2019; 13:22-34. [PMID: 31602419 PMCID: PMC6785977 DOI: 10.1016/j.cotox.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Disruption in redox signaling and control of cellular processes has emerged as a key player in many pathologies including neurodegeneration. As protein aggregations are a common hallmark of several neuronal pathologies, a firm understanding of the interplay between redox signaling, oxidative and free radical stress, and proteinopathies is required to sort out the complex mechanisms in these diseases. Fortunately, models of toxicant-induced neurodegeneration can be utilized to evaluate and report mechanistic alterations in the proteostasis network (PN). The epidemiological links between environmental toxicants and neurological disease gives further credence into characterizing the toxicant-mediated PN disruptions observed in these conditions. Reviewed here are examples of mechanistic interaction between oxidative or free radical stress and PN alterations. Additionally, investigations into toxicant-mediated PN disruptions, specifically focusing on environmental metals and pesticides, are discussed. Finally, we emphasize the need to distinguish whether the presence of protein aggregations are contributory to phenotypes related to neurodegeneration, or if they are a byproduct of PN deficiencies.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
165
|
Sonego G, Abonnenc M, Crettaz D, Lion N, Tissot JD, Prudent M. Irreversible oxidations of platelet proteins after riboflavin-UVB pathogen inactivation. Transfus Clin Biol 2018; 27:36-42. [PMID: 30638959 DOI: 10.1016/j.tracli.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
Abstract
Pathogen inactivation technologies are known to alter in vitro phenotype and functional properties of platelets. Because pathogen inactivation generates reactive oxygen species, oxidative stress is considered as one of the plausible cause at the origin of the platelet storage lesion acceleration after treatment. To date proteomics has been used to document the protein variations to picture out the impact. Here, platelet concentrates were prepared from buffy-coats in Intersol additive solution, leukoreduced and pathogen inactivated using a riboflavin/UVB treatment. At day 2 of storage the platelet proteomes of control (untreated) and treated platelet concentrates were investigated against the site specific oxidation by liquid chromatography coupled to tandem mass spectrometry in a shotgun experiment. The shotgun approach detected 9350 peptides (and 2534 proteins) of which 1714 were oxidized. Eighteen peptides were found exclusively oxidized in treated platelets whereas 3 peptides were only found oxidized in control. The present data evidenced an interference with several proteins involved in platelet aggregation and platelet shape change (such as talin and vinculin).
Collapse
Affiliation(s)
- G Sonego
- Laboratoire de recherche sur les produits sanguins, recherche et développement produits, transfusion interrégionale CRS, Épalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland
| | - M Abonnenc
- Laboratoire de recherche sur les produits sanguins, recherche et développement produits, transfusion interrégionale CRS, Épalinges, Switzerland
| | - D Crettaz
- Laboratoire de recherche sur les produits sanguins, recherche et développement produits, transfusion interrégionale CRS, Épalinges, Switzerland
| | - N Lion
- Laboratoire de recherche sur les produits sanguins, recherche et développement produits, transfusion interrégionale CRS, Épalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland
| | - J-D Tissot
- Laboratoire de recherche sur les produits sanguins, recherche et développement produits, transfusion interrégionale CRS, Épalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland
| | - M Prudent
- Laboratoire de recherche sur les produits sanguins, recherche et développement produits, transfusion interrégionale CRS, Épalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
166
|
Nordzieke DE, Medraño-Fernandez I. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 2018; 7:antiox7110168. [PMID: 30463362 PMCID: PMC6262572 DOI: 10.3390/antiox7110168] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Membranes are of outmost importance to allow for specific signal transduction due to their ability to localize, amplify, and direct signals. However, due to the double-edged nature of reactive oxygen species (ROS)—toxic at high concentrations but essential signal molecules—subcellular localization of ROS-producing systems to the plasma membrane has been traditionally regarded as a protective strategy to defend cells from unwanted side-effects. Nevertheless, specialized regions, such as lipid rafts and caveolae, house and regulate the activated/inhibited states of important ROS-producing systems and concentrate redox targets, demonstrating that plasma membrane functions may go beyond acting as a securing lipid barrier. This is nicely evinced by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases (NOX), enzymes whose primary function is to generate ROS and which have been shown to reside in specific lipid compartments. In addition, membrane-inserted bidirectional H2O2-transporters modulate their conductance precisely during the passage of the molecules through the lipid bilayer, ensuring time-scaled delivery of the signal. This review aims to summarize current evidence supporting the role of the plasma membrane as an organizing center that serves as a platform for redox signal transmission, particularly NOX-driven, providing specificity at the same time that limits undesirable oxidative damage in case of malfunction. As an example of malfunction, we explore several pathological situations in which an inflammatory component is present, such as inflammatory bowel disease and neurodegenerative disorders, to illustrate how dysregulation of plasma-membrane-localized redox signaling impacts normal cell physiology.
Collapse
Affiliation(s)
- Daniela E Nordzieke
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Iria Medraño-Fernandez
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
167
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
168
|
Redox regulation of pyruvate kinase M2 by cysteine oxidation and S-nitrosation. Biochem J 2018; 475:3275-3291. [PMID: 30254098 PMCID: PMC6208296 DOI: 10.1042/bcj20180556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
We show here that the M2 isoform of human pyruvate kinase (M2PYK) is susceptible to nitrosation and oxidation, and that these modifications regulate enzyme activity by preventing the formation of the active tetrameric form. The biotin-switch assay carried out on M1 and M2 isoforms showed that M2PYK is sensitive to nitrosation and that Cys326 is highly susceptible to redox modification. Structural and enzymatic studies have been carried out on point mutants for three cysteine residues (Cys424, Cys358, and Cys326) to characterise their potential roles in redox regulation. Nine cysteines are conserved between M2PYK and M1PYK. Cys424 is the only cysteine unique to M2PYK. C424S, C424A, and C424L showed a moderate effect on enzyme activity with 80, 100, and 140% activity, respectively, compared with M2PYK. C358 had been previously identified from in vivo studies to be the favoured target for oxidation. Our characterised mutant showed that this mutation stabilises tetrameric M2PYK, suggesting that the in vivo resistance to oxidation for the Cys358Ser mutation is due to stabilisation of the tetrameric form of the enzyme. In contrast, the Cys326Ser mutant exists predominantly in monomeric form. A biotin-switch assay using this mutant also showed a significant reduction in biotinylation of M2PYK, confirming that this is a major target for nitrosation and probably oxidation. Our results show that the sensitivity of M2PYK to oxidation and nitrosation is regulated by its monomer–tetramer equilibrium. In the monomer state, residues (in particular C326) are exposed to oxidative modifications that prevent reformation of the active tetrameric form.
Collapse
|
169
|
Chandler JD, Margaroli C, Horati H, Kilgore MB, Veltman M, Liu HK, Taurone AJ, Peng L, Guglani L, Uppal K, Go YM, Tiddens HAWM, Scholte BJ, Tirouvanziam R, Jones DP, Janssens HM. Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur Respir J 2018; 52:13993003.01118-2018. [PMID: 30190273 DOI: 10.1183/13993003.01118-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) lung disease progressively worsens from infancy to adulthood. Disease-driven changes in early CF airway fluid metabolites may identify therapeutic targets to curb progression.CF patients aged 12-38 months (n=24; three out of 24 later denoted as CF screen positive, inconclusive diagnosis) received chest computed tomography scans, scored by the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) method to quantify total lung disease (PRAGMA-%Dis) and components such as bronchiectasis (PRAGMA-%Bx). Small molecules in bronchoalveolar lavage fluid (BALF) were measured with high-resolution accurate-mass metabolomics. Myeloperoxidase (MPO) was quantified by ELISA and activity assays.Increased PRAGMA-%Dis was driven by bronchiectasis and correlated with airway neutrophils. PRAGMA-%Dis correlated with 104 metabolomic features (p<0.05, q<0.25). The most significant annotated feature was methionine sulfoxide (MetO), a product of methionine oxidation by MPO-derived oxidants. We confirmed the identity of MetO in BALF and used reference calibration to confirm correlation with PRAGMA-%Dis (Spearman's ρ=0.582, p=0.0029), extending to bronchiectasis (PRAGMA-%Bx; ρ=0.698, p=1.5×10-4), airway neutrophils (ρ=0.569, p=0.0046) and BALF MPO (ρ=0.803, p=3.9×10-6).BALF MetO associates with structural lung damage, airway neutrophils and MPO in early CF. Further studies are needed to establish whether methionine oxidation directly contributes to early CF lung disease and explore potential therapeutic targets indicated by these findings.
Collapse
Affiliation(s)
- Joshua D Chandler
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Camilla Margaroli
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Hamed Horati
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Matthew B Kilgore
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Mieke Veltman
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - H Ken Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander J Taurone
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Limin Peng
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Harm A W M Tiddens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Bob J Scholte
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Hettie M Janssens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands.,These authors are joint senior authors
| |
Collapse
|
170
|
Wang RS, Oldham WM, Maron BA, Loscalzo J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid Redox Signal 2018; 29:953-972. [PMID: 29121773 PMCID: PMC6104248 DOI: 10.1089/ars.2017.7256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE All cellular metabolic processes are tied to the cellular redox environment. Therefore, maintaining redox homeostasis is critically important for normal cell function. Indeed, redox stress contributes to the pathobiology of many human diseases. The cellular redox response system is composed of numerous interconnected components, including free radicals, redox couples, protein thiols, enzymes, metabolites, and transcription factors. Moreover, interactions between and among these factors are regulated in time and space. Owing to their complexity, systems biology approaches to the characterization of the cellular redox response system may provide insights into novel homeostatic mechanisms and methods of therapeutic reprogramming. Recent Advances: The emergence and development of systems biology has brought forth a set of innovative technologies that provide new avenues for studying redox metabolism. This article will review these systems biology approaches and their potential application to the study of redox metabolism in stress and disease states. CRITICAL ISSUES Clarifying the scope of biological intermediaries affected by dysregulated redox metabolism requires methods that are suitable for analyzing big datasets as classical methods that do not account for multiple interactions are unlikely to portray the totality of perturbed metabolic systems. FUTURE DIRECTIONS Given the diverse redox microenvironments within cells, it will be important to improve the spatial resolution of omic approaches. Futures studies on the integration of multiple systems-based methods and heterogeneous omics data for redox metabolism are required to accelerate the development of the field of redox systems biology. Antioxid. Redox Signal. 29, 953-972.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - William M. Oldham
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bradley A. Maron
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Section of Cardiology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
171
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
172
|
Serebryany E, Yu S, Trauger SA, Budnik B, Shakhnovich EI. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J Biol Chem 2018; 293:17997-18009. [PMID: 30242128 DOI: 10.1074/jbc.ra118.004551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox "hot potato" competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Eugene I Shakhnovich
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
173
|
Mendoza RP, Brown JM. Engineered nanomaterials and oxidative stress: current understanding and future challenges. CURRENT OPINION IN TOXICOLOGY 2018; 13:74-80. [PMID: 31263794 DOI: 10.1016/j.cotox.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered nanomaterials (ENMs) are being incorporated at an unprecedented rate into consumer and biomedical products. This increased usage will ultimately lead to increased human exposure; therefore, understanding ENM safety is an important concern to the public. Although ENMs may exert toxicity through multiple mechanisms, one common mechanism of toxicity recognized across a range of ENMs with varying physicochemical properties is oxidative stress. Further, it is recognized that several key physicochemical properties of ENMs including size, material composition, surface chemistry, band gap, and level of ionic dissolution for example contribute to ENM driven oxidative stress. While it has been shown that exposure of cells to ENMs at high acute doses produce reactive oxygen species at a toxic level often leading to cytotoxicity, there is little research looking at oxidative stress caused by ENM exposure at more relevant low or non-toxic doses. Although the former can lead to apoptosis, genotoxicity, and inflammation, the latter can potentially be damaging as chronic changes to the intracellular redox state leads to cellular reprogramming, resulting in disease initiation and progression among other systemic damage. This current opinions article will review the physicochemical properties and mechanisms associated with ENM-driven oxidative stress and will discuss the need for research investigating effects on the redox proteome that may lead to cellular dysfunction at low or chronic doses of ENMs.
Collapse
Affiliation(s)
- Ryan P Mendoza
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
174
|
Cysteine functionalized bio-nanomaterial for the affinity sensing of Pb(II) as an indicator of environmental damage. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
175
|
Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018; 8:272. [PMID: 30155439 PMCID: PMC6102371 DOI: 10.3389/fonc.2018.00272] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays an essential role in redox signaling in normal and pathological cellular conditions. In particular, it is well known to react in vivo with cysteines by the so-called S-nitrosylation reaction. S-nitrosylation is a selective and reversible post-translational modification that exerts a myriad of different effects, such as the modulation of protein conformation, activity, stability, and biological interaction networks. We have appreciated, over the last years, the role of S-nitrosylation in normal and disease conditions. In this context, structural and computational studies can help to dissect the complex and multifaceted role of this redox post-translational modification. In this review article, we summarized the current state-of-the-art on the mechanism of S-nitrosylation, along with the structural and computational studies that have helped to unveil its effects and biological roles. We also discussed the need to move new steps forward especially in the direction of employing computational structural biology to address the molecular and atomistic details of S-nitrosylation. Indeed, this redox modification has been so far an underappreciated redox post-translational modification by the computational biochemistry community. In our review, we primarily focus on S-nitrosylated proteins that are attractive cancer targets due to the emerging relevance of this redox modification in a cancer setting.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marta Lucchetta
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
176
|
Dynamic redox balance directs the oocyte-to-embryo transition via developmentally controlled reactive cysteine changes. Proc Natl Acad Sci U S A 2018; 115:E7978-E7986. [PMID: 30082411 PMCID: PMC6112717 DOI: 10.1073/pnas.1807918115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The metabolic and redox state changes during the transition from an arrested oocyte to a totipotent embryo remain uncharacterized. Here, we applied state-of-the-art, integrated methodologies to dissect these changes in Drosophila We demonstrate that early embryos have a more oxidized state than mature oocytes. We identified specific alterations in reactive cysteines at a proteome-wide scale as a result of this metabolic and developmental transition. Consistent with a requirement for redox change, we demonstrate a role for the ovary-specific thioredoxin Deadhead (DHD). dhd-mutant oocytes are prematurely oxidized and exhibit meiotic defects. Epistatic analyses with redox regulators link dhd function to the distinctive redox-state balance set at the oocyte-to-embryo transition. Crucially, global thiol-redox profiling identified proteins whose cysteines became differentially modified in the absence of DHD. We validated these potential DHD substrates by recovering DHD-interaction partners using multiple approaches. One such target, NO66, is a conserved protein that genetically interacts with DHD, revealing parallel functions. As redox changes also have been observed in mammalian oocytes, we hypothesize a link between developmental control of this cell-cycle transition and regulation by metabolic cues. This link likely operates both by general redox state and by changes in the redox state of specific proteins. The redox proteome defined here is a valuable resource for future investigation of the mechanisms of redox-modulated control at the oocyte-to-embryo transition.
Collapse
|
177
|
Müller M, Ahumada-Castro U, Sanhueza M, Gonzalez-Billault C, Court FA, Cárdenas C. Mitochondria and Calcium Regulation as Basis of Neurodegeneration Associated With Aging. Front Neurosci 2018; 12:470. [PMID: 30057523 PMCID: PMC6053519 DOI: 10.3389/fnins.2018.00470] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
Age is the main risk factor for the onset of neurodegenerative diseases. A decline of mitochondrial function has been observed in several age-dependent neurodegenerative diseases and may be a major contributing factor in their progression. Recent findings have shown that mitochondrial fitness is tightly regulated by Ca2+ signals, which are altered long before the onset of measurable histopathology hallmarks or cognitive deficits in several neurodegenerative diseases including Alzheimer’s disease (AD), the most frequent cause of dementia. The transfer of Ca2+ from the endoplasmic reticulum (ER) to the mitochondria, facilitated by the presence of mitochondria-associated membranes (MAMs), is essential for several physiological mitochondrial functions such as respiration. Ca2+ transfer to mitochondria must be finely regulated because excess Ca2+ will disturb oxidative phosphorylation (OXPHOS), thereby increasing the generation of reactive oxygen species (ROS) that leads to cellular damage observed in both aging and neurodegenerative diseases. In addition, excess Ca2+ and ROS trigger the opening of the mitochondrial transition pore mPTP, leading to loss of mitochondrial function and cell death. mPTP opening probably increases with age and its activity has been associated with several neurodegenerative diseases. As Ca2+ seems to be the initiator of the mitochondrial failure that contributes to the synaptic deficit observed during aging and neurodegeneration, in this review, we aim to look at current evidence for mitochondrial dysfunction caused by Ca2+ miscommunication in neuronal models of neurodegenerative disorders related to aging, with special emphasis on AD.
Collapse
Affiliation(s)
- Marioly Müller
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Mario Sanhueza
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Christian Gonzalez-Billault
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Felipe A Court
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - César Cárdenas
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
178
|
|
179
|
Maes A, Martinez X, Druart K, Laurent B, Guégan S, Marchand CH, Lemaire SD, Baaden M. MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis. J Integr Bioinform 2018; 15:/j/jib.ahead-of-print/jib-2018-0006/jib-2018-0006.xml. [PMID: 29927748 PMCID: PMC6167043 DOI: 10.1515/jib-2018-0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022] Open
Abstract
Proteomic and transcriptomic technologies resulted in massive biological datasets, their interpretation requiring sophisticated computational strategies. Efficient and intuitive real-time analysis remains challenging. We use proteomic data on 1417 proteins of the green microalga Chlamydomonas reinhardtii to investigate physicochemical parameters governing selectivity of three cysteine-based redox post translational modifications (PTM): glutathionylation (SSG), nitrosylation (SNO) and disulphide bonds (SS) reduced by thioredoxins. We aim to understand underlying molecular mechanisms and structural determinants through integration of redox proteome data from gene- to structural level. Our interactive visual analytics approach on an 8.3 m2 display wall of 25 MPixel resolution features stereoscopic three dimensions (3D) representation performed by UnityMol WebGL. Virtual reality headsets complement the range of usage configurations for fully immersive tasks. Our experiments confirm that fast access to a rich cross-linked database is necessary for immersive analysis of structural data. We emphasize the possibility to display complex data structures and relationships in 3D, intrinsic to molecular structure visualization, but less common for omics-network analysis. Our setup is powered by MinOmics, an integrated analysis pipeline and visualization framework dedicated to multi-omics analysis. MinOmics integrates data from various sources into a materialized physical repository. We evaluate its performance, a design criterion for the framework.
Collapse
Affiliation(s)
- Alexandre Maes
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Xavier Martinez
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Karen Druart
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Benoist Laurent
- Institut de Biologie Physico-Chimique, FRC 550, CNRS, Paris, France
| | - Sean Guégan
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Christophe H Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Stéphane D Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
180
|
Abstract
SIGNIFICANCE Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. CRITICAL ISSUES The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. FUTURE DIRECTIONS The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.
Collapse
Affiliation(s)
- Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
181
|
Neumann-Schaal M, Metzendorf NG, Troitzsch D, Nuss AM, Hofmann JD, Beckstette M, Dersch P, Otto A, Sievers S. Tracking gene expression and oxidative damage of O 2-stressed Clostridioides difficile by a multi-omics approach. Anaerobe 2018; 53:94-107. [PMID: 29859941 DOI: 10.1016/j.anaerobe.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype.
Collapse
Affiliation(s)
- Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicole G Metzendorf
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Daniel Troitzsch
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Aaron Mischa Nuss
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
182
|
Oliveira CS, Nogara PA, Ardisson-Araújo DMP, Aschner M, Rocha JBT, Dórea JG. Neurodevelopmental Effects of Mercury. ADVANCES IN NEUROTOXICOLOGY 2018; 2:27-86. [PMID: 32346667 PMCID: PMC7188190 DOI: 10.1016/bs.ant.2018.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The toxicology of mercury (Hg) is of concern since this metal is ubiquitously distributed in the environment, and living organisms are routinely exposed to Hg at low to high levels. The toxic effects of Hg are well studied and it is known that they may differ depending on the Hg chemical species. In this chapter, we emphasize the neurotoxic effects of Hg during brain development. The immature brain is more susceptible to Hg exposure, since all the Hg chemical forms, not only the organic ones, can harm it. The possible consequences of Hg exposure during the early stages of development, the additive effects with other co-occurring neurotoxicants, and the known mechanisms of action and targets will be addressed in this chapter.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniel M P Ardisson-Araújo
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Virologia de Insetos, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - José G Dórea
- Professor Emeritus, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
183
|
Kramer PA, Duan J, Gaffrey MJ, Shukla AK, Wang L, Bammler TK, Qian WJ, Marcinek DJ. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 2018; 17:367-376. [PMID: 29857311 PMCID: PMC6007084 DOI: 10.1016/j.redox.2018.05.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023] Open
Abstract
Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia. A single bout of fatiguing contractions increase muscle protein S-glutathionylation. Mitochondrial proteins are sensitive to oxidative modifications following fatigue. The glutathionylated proteome includes cysteines of known functional importance.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105, United States
| | - Jicheng Duan
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Anil K Shukla
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Lu Wang
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
184
|
Zhou H, Finkemeier I, Guan W, Tossounian MA, Wei B, Young D, Huang J, Messens J, Yang X, Zhu J, Wilson MH, Shen W, Xie Y, Foyer CH. Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves. PLANT, CELL & ENVIRONMENT 2018; 41:1139-1153. [PMID: 29126343 DOI: 10.1111/pce.13100] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/19/2017] [Indexed: 05/20/2023]
Abstract
Protein lysine acylations, such as succinylation and acetylation, are important post-translational modification (PTM) mechanisms, with key roles in cellular regulation. Antibody-based affinity enrichment, high-resolution liquid chromatography mass spectrometry analysis, and integrated bioinformatics analysis were used to characterize the lysine succinylome (Ksuc ) and acetylome (Kace ) of rice leaves. In total, 2,593 succinylated and 1,024 acetylated proteins were identified, of which 723 were simultaneously acetylated and succinylated. Proteins involved in photosynthetic carbon metabolism such as the large and small subunits of RuBisCO, ribosomal functions, and other key processes were subject to both PTMs. Preliminary insights into oxidant-induced changes to the rice acetylome and succinylome were gained from treatments with hydrogen peroxide. Exposure to oxidative stress did not regulate global changes in the rice acetylome or succinylome but rather led to modifications on a specific subset of the identified sites. De-succinylation of recombinant catalase (CATA) and glutathione S-transferase (OsGSTU6) altered the activities of these enzymes showing that this PTM may have a regulatory function. These findings not only greatly extend the list of acetylated and/or succinylated proteins but they also demonstrate the close cooperation between these PTMs in leaf proteins with key metabolic functions.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, Westfaelische Wilhelms University Muenster, Muenster, 48149, Germany
| | - Wenxue Guan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maria-Armineh Tossounian
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Bo Wei
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 927, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - David Young
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Jingjing Huang
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 927, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Xibin Yang
- Jingjie PTM Biolab (Hangzhou) Co. Ltd., Hangzhou, 310018, China
| | - Jun Zhu
- Jingjie PTM Biolab (Hangzhou) Co. Ltd., Hangzhou, 310018, China
| | - Michael H Wilson
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
185
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
186
|
McConnell EW, Werth EG, Hicks LM. The phosphorylated redox proteome of Chlamydomonas reinhardtii: Revealing novel means for regulation of protein structure and function. Redox Biol 2018; 17:35-46. [PMID: 29673699 PMCID: PMC6006682 DOI: 10.1016/j.redox.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/16/2023] Open
Abstract
Post-translational modifications (PTMs) are covalent modifications to protein residues which may alter both conformation and activity, thereby modulating signaling and metabolic processes. While PTMs have been largely investigated independently, examination into how different modification interact, or crosstalk, will reveal a more complete understanding of the reciprocity of signaling cascades across numerous pathways. Combinatorial reversible thiol oxidation and phosphorylation in eukaryotes is largely recognized, but rigorous approaches for experimental discovery are underdeveloped. To begin meaningful interrogation of PTM crosstalk in systems biology research, knowledge of targeted proteins must be advanced. Herein, we demonstrate protein-level enrichment of reversibly oxidized proteoforms in Chlamydomonas reinhardtii with subsequent phosphopeptide analysis to determine the extent of phosphorylation in the redox thiol proteome. Label-free quantification was used to quantify 3353 oxidized Cys-sites on 1457 enriched proteins, where sequential phosphopeptide enrichment measured 1094 sites of phosphorylation on 720 proteins with 23% (172 proteins) also identified as reversibly oxidized. Proteins identified with both reversible oxidation and phosphorylation were involved in signaling transduction, ribosome and translation-related machinery, and metabolic pathways. Several redox-modified Calvin-Benson cycle proteins were found phosphorylated and many kinases/phosphatases involved in phosphorylation-dependent photosynthetic state transition and stress-response pathways had sites of reversible oxidation. Identification of redox proteins serves as a crucial element in understanding stress response in photosynthetic organisms and beyond, whereby knowing the ensemble of modifications co-occurring with oxidation highlights novel mechanisms for cellular control. Quantified reversible oxidation on protein cysteine residues. Sequential phosphopeptide enrichment to define the phosphorylated redox proteome. Found >3000 oxidized cysteines and >1000 phosphosites in Chlamydomonas reinhardtii. Co-modified proteins discovered across diverse metabolic and signaling pathways.
Collapse
Affiliation(s)
- Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
187
|
Rikkerink EHA. Pathogens and Disease Play Havoc on the Host Epiproteome-The "First Line of Response" Role for Proteomic Changes Influenced by Disorder. Int J Mol Sci 2018. [PMID: 29518008 PMCID: PMC5877633 DOI: 10.3390/ijms19030772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to play a critical role in orchestrating the response of organisms to the stress of a changing environment. Increasingly, protein complexes are thought of as dynamic multi-component molecular machines able to adapt through compositional, conformational and/or post-translational modifications to control their largely metabolic outputs. These metabolites then feed into cellular physiological homeostasis or the production of secondary metabolites with novel anti-microbial properties. The control of adaptations to stress operates at multiple levels including the proteome and the dynamic nature of proteomic changes suggests a parallel with the equally dynamic epigenetic changes at the level of nucleic acids. Given their properties, I propose that some disordered protein platforms specifically enable organisms to sense and react rapidly as the first line of response to change. Using examples from the highly dynamic host-pathogen and host-stress response, I illustrate by example how disordered proteins are key to fulfilling the need for multiple levels of integration of response at different time scales to create robust control points.
Collapse
Affiliation(s)
- Erik H A Rikkerink
- The New Zealand Institute for Plant & Food Research Ltd., 120 Mt. Albert Rd., Private Bag 92169, Auckland 1025, New Zealand.
| |
Collapse
|
188
|
Abstract
Changes in the intracellular thiol-disulfide balance are considered major determinants in the redox status/signaling of the cell. Cellular signaling is very sensitive to both exogenous and intracellular redox status and respond to many exogenous pro-oxidative or oxidative stresses. Redox status has dual effects on upstream signaling systems and downstream transcription factors. Redox signaling pathways use reactive oxygen species (ROS) to transfer signals from different sources to the nucleus to regulate such functions as growth, differentiation, proliferation, and apoptosis. Mitogen-activated protein kinases are activated by numerous cellular stresses and ligand-receptor bindings. An imbalance in the oxidant/antioxidant system, either resulting from excessive ROS/reactive nitrogen species production and/or antioxidant system impairment, leads to oxidative stress. Glutathione (GSH) is known to play a critical role in the cellular defense against unregulated oxidative stress in mammalian cells and involvement of large molecular antioxidants include classical antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Cadmium (Cd), a potent toxic heavy metal, is a widespread environmental contaminant. It is known to cause renal dysfunction, hepatic toxicity, genotoxicity, and apoptotic effects depending on the dose, route, and duration of exposure. This review examines the signaling pathways and mechanisms of activation of transcription factors by Cd-induced oxidative stress thus representing an important basis for understanding the mechanisms of Cd effect on the cells.
Collapse
Affiliation(s)
- Saïd Nemmiche
- LSTPA Laboratory, Department of Biology, Faculty of SNV, University of Mostaganem, Mostaganem 27000, Algeria
| |
Collapse
|
189
|
Effects of the Usage of l-Cysteine (l-Cys) on Human Health. Molecules 2018; 23:molecules23030575. [PMID: 29510494 PMCID: PMC6017824 DOI: 10.3390/molecules23030575] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
This review summarizes recent knowledge about the use of the amino acid l-Cysteine (l-Cys) through diet, nutritional supplements or drugs with the aim to improve human health or treat certain diseases. Three databases (PubMed, Scopus, and Web of Science) and different keywords have been used to create a database of documents published between 1950 and 2017 in scientific journals in English or Spanish. A total of 60,885 primary publications were ultimately selected to compile accurate information about the use of l-Cys in medicine and nutritional therapies and to identify the reported benefits of l-Cys on human health. The number of publications about the use of l-Cys for these purposes has increased significantly during the last two decades. This increase seems to be closely related to the rise of nutraceutical industries and personalized medicine. The main evidence reporting benefits of l-Cys usage is summarized. However, the lack of accurate information and studies based on clinical trials hampers consensus among authors. Thus, the debate about the role and effectiveness of supplements/drugs containing l-Cys is still open.
Collapse
|
190
|
Sievers S, Dittmann S, Jordt T, Otto A, Hochgräfe F, Riedel K. Comprehensive Redox Profiling of the Thiol Proteome of Clostridium difficile. Mol Cell Proteomics 2018; 17:1035-1046. [PMID: 29496906 DOI: 10.1074/mcp.tir118.000671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/06/2022] Open
Abstract
The strictly anaerobic bacterium C. difficile has become one of the most problematic hospital acquired pathogens and a major burden for health care systems. Although antibiotics work effectively in most C. difficile infections (CDIs), their detrimental effect on the intestinal microbiome paves the way for recurrent episodes of CDI. To develop alternative, non-antibiotics-based treatment strategies, deeper knowledge on the physiology of C. difficile, stress adaptation mechanisms and regulation of virulence factors is mandatory. The focus of this work was to tackle the thiol proteome of C. difficile and its stress-induced alterations, because recent research has reported that the amino acid cysteine plays a central role in the metabolism of this pathogen. We have developed a novel cysteine labeling approach to determine the redox state of protein thiols on a global scale. Applicability of this technique was demonstrated by inducing disulfide stress using the chemical diamide. The method can be transferred to any kind of redox challenge and was applied in this work to assess the effect of bile acids on the thiol proteome of C. difficile We present redox-quantification for more than 1,500 thiol peptides and discuss the general difficulty of redox analyses of peptides possessing more than a single cysteine residue. The presented method will be especially useful not only when determining redox status, but also for providing information on protein quantity. Additionally, our comprehensive data set reveals protein cysteine sites particularly susceptible to oxidation and builds a groundwork for redox proteomics studies in C. difficile.
Collapse
Affiliation(s)
- Susanne Sievers
- From the ‡Department of Microbial Physiology & Molecular Biology;
| | - Silvia Dittmann
- From the ‡Department of Microbial Physiology & Molecular Biology
| | - Tim Jordt
- From the ‡Department of Microbial Physiology & Molecular Biology
| | | | - Falko Hochgräfe
- ¶Junior Research Group Pathoproteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Katharina Riedel
- From the ‡Department of Microbial Physiology & Molecular Biology
| |
Collapse
|
191
|
Wani R, Murray BW. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology. Methods Mol Biol 2018; 1558:191-212. [PMID: 28150239 DOI: 10.1007/978-1-4939-6783-4_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.
Collapse
Affiliation(s)
- Revati Wani
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
192
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing a Nitrogen-Sulfur Bond. JOURNAL OF NATURAL PRODUCTS 2018; 81:423-446. [PMID: 29364663 DOI: 10.1021/acs.jnatprod.7b00921] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William Bains
- Rufus Scientific , 37 The Moor, Melbourn, Royston, Herts SG8 6ED, U.K
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
193
|
Downs CA, Johnson NM, Tsaprailis G, Helms MN. RAGE-induced changes in the proteome of alveolar epithelial cells. J Proteomics 2018; 177:11-20. [PMID: 29448054 DOI: 10.1016/j.jprot.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor and member of the immunoglobulin superfamily. RAGE is constitutively expressed in the distal lung where it co-localizes with the alveolar epithelium; RAGE expression is otherwise minimal or absent, except with disease. This suggests RAGE plays a role in lung physiology and pathology. We used proteomics to identify and characterize the effects of RAGE on rat alveolar epithelial (R3/1) cells. LC-MS/MS identified 177 differentially expressed proteins and the PANTHER Classification System further segregated proteins. Proteins involved in gene transcription (RNA and mRNA splicing, mRNA processing) and transport (protein, intracellular protein) were overrepresented; genes involved in a response to stimulus were underrepresented. Immune system processes and response to stimuli were downregulated with RAGE knockdown. Western blot confirmed RAGE-dependent changes in protein expression for NFκB and NLRP3 that was functionally supported by a reduction in IL-1β and phosphorylated p65. We also assessed RAGE's effect on redox regulation and report that RAGE knockdown attenuated oxidant production, decreased protein oxidation, and increased reduced thiol pools. Collectively the data suggest that RAGE is a critical regulator of epithelial cell response and has implications for our understanding of lung disease, specifically acute lung injury. SIGNIFICANCE STATEMENT In the present study, we undertook the first proteomic evaluation of RAGE-dependent processes in alveolar epithelial cells. The alveolar epithelium is a primary target during acute lung injury, and our data support a role for RAGE in gene transcription, protein transport, and response to stimuli. More over our data suggest that RAGE is a critical driver of redox regulation in the alveolar epithelium. The conclusions of the present work assist to unravel the molecular events that underlie the function of RAGE in alveolar epithelial cells and have implications for our understanding of RAGE signaling during lung injury. Our study was the first proteomic comparison showing the effects of RAGE activation from alveolar epithelial cells that constitutively express RAGE and these results can affect a wide field of lung biology, pulmonary therapeutics, and proteomics.
Collapse
Affiliation(s)
- Charles A Downs
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States.
| | - Nicholle M Johnson
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - George Tsaprailis
- Arizona Research Laboratories, The University of Arizona, Tucson, AZ, United States
| | - My N Helms
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
194
|
Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (-)-Epicatechin as a paradigm. Mol Aspects Med 2018; 61:31-40. [PMID: 29421170 DOI: 10.1016/j.mam.2018.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
Abstract
Polyphenols are bioactives claimed to be responsible for some of the health benefits provided by fruit and vegetables. It is currently accepted that the bioactivities of polyphenols can be mostly ascribed to their interactions with proteins and lipids. Such interactions can affect cell oxidant production and cell signaling, and explain in part the ability of polyphenols to promote health. EC can modulate redox sensitive signaling by: i) defining the extent of oxidant levels that can modify cell signaling, function, and fate, e.g. regulating enzymes that generate superoxide, hydrogen peroxide and nitric oxide; or ii) regulating the activation of transcription factors sensible to oxidants. The latter includes the regulation of the nuclear factor E2-related factor 2 (Nfr2) pathway, which in turn can promote the synthesis of antioxidant defenses, and of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway, which mediates the expression of oxidants generating enzymes, as well as proteins not involved in redox reactions. In summary, a significant amount of data vindicates the participation of EC in redox regulated signaling pathways. Progress in the understanding of the molecular mechanisms involved in EC biological actions will help to define recommendations in terms of which fruit and vegetables are healthier and the amounts necessary to provide health effects.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, USA.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
195
|
Sies H. On the history of oxidative stress: Concept and some aspects of current development. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
196
|
Topf U, Suppanz I, Samluk L, Wrobel L, Böser A, Sakowska P, Knapp B, Pietrzyk MK, Chacinska A, Warscheid B. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nat Commun 2018; 9:324. [PMID: 29358734 PMCID: PMC5778013 DOI: 10.1038/s41467-017-02694-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/19/2017] [Indexed: 11/09/2022] Open
Abstract
The generation of reactive oxygen species (ROS) is inevitably linked to life. However, the precise role of ROS in signalling and specific targets is largely unknown. We perform a global proteomic analysis to delineate the yeast redoxome to a depth of more than 4,300 unique cysteine residues in over 2,200 proteins. Mapping of redox-active thiols in proteins exposed to exogenous or endogenous mitochondria-derived oxidative stress reveals ROS-sensitive sites in several components of the translation apparatus. Mitochondria are the major source of cellular ROS. We demonstrate that increased levels of intracellular ROS caused by dysfunctional mitochondria serve as a signal to attenuate global protein synthesis. Hence, we propose a universal mechanism that controls protein synthesis by inducing reversible changes in the translation machinery upon modulating the redox status of proteins involved in translation. This crosstalk between mitochondria and protein synthesis may have an important contribution to pathologies caused by dysfunctional mitochondria.
Collapse
Affiliation(s)
- Ulrike Topf
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Ida Suppanz
- Faculty of Biology, Institute of Biology II, Biochemistry-Functional Proteomics, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Lukasz Samluk
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Lidia Wrobel
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Alexander Böser
- Faculty of Biology, Institute of Biology II, Biochemistry-Functional Proteomics, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Paulina Sakowska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Bettina Knapp
- Faculty of Biology, Institute of Biology II, Biochemistry-Functional Proteomics, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Martyna K Pietrzyk
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland. .,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland.
| | - Bettina Warscheid
- Faculty of Biology, Institute of Biology II, Biochemistry-Functional Proteomics, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany. .,ZBSA Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.
| |
Collapse
|
197
|
Abstract
Many acute and chronic lung diseases could benefit from improved regeneration therapy. In development and throughout life, genetically encoded exposure memory systems allow environmental exposures, diet, and infectious agents to direct subsequent phenotypic adaptation and responses. The impact of such memory systems on lung regeneration is currently unknown. This article provides a brief overview of advances in redox biology and medicine as a framework for elucidating exposure memory and delineating spatiotemporal responses in lung regeneration. New imaging and omics methods enable precise definition to advance knowledge of development and the cumulative changes in lung biochemistry, structure, and cell populations occurring from prior and ongoing exposures. Importantly, conditioning steps may be needed to reverse exposure memory and enable effective regeneration. Thus, to complement developmental biology and regenerative medicine, research programs are needed to gain systematic knowledge of how lifelong exposures impact lung biology and support transition of lung regeneration from hypothetical to practical medicine.
Collapse
|
198
|
Pinto G, Radulovic M, Godovac-Zimmermann J. Spatial perspectives in the redox code-Mass spectrometric proteomics studies of moonlighting proteins. MASS SPECTROMETRY REVIEWS 2018; 37:81-100. [PMID: 27186965 DOI: 10.1002/mas.21508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
The Redox Code involves specific, reversible oxidative changes in proteins that modulate protein tertiary structure, interactions, trafficking, and activity, and hence couple the proteome to the metabolic/oxidative state of cells. It is currently a major focus of study in cell biology. Recent studies of dynamic cellular spatial reorganization with MS-based subcellular-spatial-razor proteomics reveal that protein constituents of many subcellular structures, including mitochondria, the endoplasmic reticulum, the plasma membrane, and the extracellular matrix, undergo changes in their subcellular abundance/distribution in response to oxidative stress. These proteins are components of a diverse variety of functional processes spatially distributed across cells. Many of the same proteins are involved in response to suppression of DNA replication indicate that oxidative stress is strongly intertwined with DNA replication/proliferation. Both are replete with networks of moonlighting proteins that show coordinated changes in subcellular location and that include primary protein actuators of the redox code involved in the processing of NAD+ /NADH, NADP+ /NADPH, Cys/CySS, and GSH/GSSG redox couples. Small groups of key proteins such as {KPNA2, KPNB1, PCNA, PTMA, SET} constitute "spatial switches" that modulate many nuclear processes. Much of the functional response involves subcellular protein trafficking, including nuclear import/export processes, vesicle-mediated trafficking, the endoplasmic reticulum/Golgi pathway, chaperone-assisted processes, and other transport systems. This is not visible to measurements of total protein abundance by transcriptomics or proteomics. Comprehensive pictures of cellular function will require collection of data on the subcellular transport and local functions of many moonlighting proteins, especially of those with critical roles in spatial coordination across cells. The proteome-wide analysis of coordinated changes in abundance and trafficking of proteins offered by MS-based proteomics has a unique, crucial role to play in deciphering the complex adaptive systems that underlie cellular function. © 2016 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Gabriella Pinto
- Division of Medicine, Center for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London, NW3 2PF, United Kingdom
| | - Marko Radulovic
- Insitute of Oncology and Radiology, Pasterova 14, Belgrade, 11000, Serbia
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, Center for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London, NW3 2PF, United Kingdom
| |
Collapse
|
199
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|
200
|
Temoçin Z, Kim E, Li J, Panzella L, Alfieri ML, Napolitano A, Kelly DL, Bentley WE, Payne GF. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin. ACS Chem Neurosci 2017; 8:2766-2777. [PMID: 28945963 DOI: 10.1021/acschemneuro.7b00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.
Collapse
Affiliation(s)
- Zülfikar Temoçin
- Department
of Chemistry, Science and Arts Faculty, Kırıkkale University, Yahs̨ihan,71450 Kırıkkale, Turkey
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Deanna L. Kelly
- Maryland
Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, United States
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|