151
|
Mardo E, Avidan G, Hadad BS. Adults’ Markers of Face Processing Are Present at Age 6 and Are Interconnected Along Development. Perception 2018; 47:1002-1028. [DOI: 10.1177/0301006618794943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies on the development of face processing argue for a late, quantitative, domain-specific development of face processing, and face memory in particular. Most previous findings were based on separately tracking the developmental course of face perception skills, comparing performance across different age groups. Here, we adopted a different approach studying the mechanisms underlying the development of face processing by focusing on how different face skills are interrelated over the years (age 6 to adulthood). Specifically, we examined correlations within and between different categories of tasks: face domain-specific skills involving face recognition based on long-term representations (famous face), and short-term memory retention (Cambridge Face Memory Test), perceptual face-specific marker (inversion effect), global effects in scene perception (global–local task), and the perception of facial expressions. Factor analysis revealed that face identity skills have a similar pattern of interrelations throughout development, identifying two factors: a face domain-specific factor comprising adultlike markers of face processing and a general factor incorporating related, but nonspecific perceptual skills. Domain-specific age-related changes in face recognition entailing short- and long-term retention of face representations were observed, along with mature perceptual face-specific markers and more general perceptual effects predicting face perception skills already at age 6. The results suggest that the domain-specific changes in face processing are unlikely to result from developmental changes in perceptual skills driving face recognition. Instead, development may either involve improvement in the ability to retain face representations in memory or changes in the interactions between the perceptual representations of faces and their representations in long-term memory.
Collapse
Affiliation(s)
- Elite Mardo
- Department of Psychology, University of Haifa, Israel
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Bat-Sheva Hadad
- Department of Special Education, Edmond J. Safra Brain Research Center, University of Haifa, Israel
| |
Collapse
|
152
|
Pratt M, Goldstein A, Feldman R. Child brain exhibits a multi-rhythmic response to attachment cues. Soc Cogn Affect Neurosci 2018; 13:957-966. [PMID: 30085308 PMCID: PMC6137312 DOI: 10.1093/scan/nsy062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/22/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Research on the human parental brain implicated brain networks involved in simulation, mentalization and emotion processing and indicated that stimuli of own parent-child interaction elicit greater integration among networks supporting attachment. Here, we examined children's neural activation while viewing own parent-child interactions and asked whether similar networks activate when children are exposed to attachment stimuli. Sixty-five 11-year-old children underwent magnetoencephalography (MEG) while observing own vs unfamiliar mother-child interaction. Own mother-child interactions elicited a greater neural response across distributed brain areas including alpha suppression in posterior regions, theta enhancement in the fusiform gyrus and beta- and gamma-band oscillations across a wide cluster in the right temporal cortex, comprising the superior temporal sulcus/superior temporal gyrus and insula. Theta and gamma activations were associated with the degree of mother-child social synchrony in the home ecology. Findings from this exploratory study are the first to show activations in children that are similar to previous findings in parents and comparable associations between social synchrony and gamma oscillations in temporal regions. Results indicate that attachment stimuli elicit a strong neural response in children that spreads across a wide range of oscillations, underscoring the considerable neural resources allocated to this fundamental, survival-related cue.
Collapse
Affiliation(s)
- Maayan Pratt
- Department of Psychology , Bar-Ilan University, Ramat-Gan, Israel
| | - Abraham Goldstein
- Department of Psychology , Bar-Ilan University, Ramat-Gan, Israel
- The Gonda Brain Sciences Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ruth Feldman
- Intradisciplinary Center, Herzliya, Israel
- Child Study Center, Yale University
| |
Collapse
|
153
|
Powell LJ, Kosakowski HL, Saxe R. Social Origins of Cortical Face Areas. Trends Cogn Sci 2018; 22:752-763. [PMID: 30041864 PMCID: PMC6098735 DOI: 10.1016/j.tics.2018.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023]
Abstract
Recently acquired fMRI data from human and macaque infants provide novel insights into the origins of cortical networks specialized for perceiving faces. Data from both species converge: cortical regions responding preferentially to faces are present and spatially organized early in infancy, although fully selective face areas emerge much later. What explains the earliest cortical responses to faces? We review two proposed mechanisms: proto-organization for simple shapes in visual cortex, and an innate subcortical schematic face template. In addition, we propose a third mechanism: infants choose to look at faces to engage in positively valenced, contingent social interactions. Activity in medial prefrontal cortex during social interactions may, directly or indirectly, guide the organization of cortical face areas.
Collapse
Affiliation(s)
- Lindsey J Powell
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather L Kosakowski
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
154
|
Kim N, Choi US, Ha S, Lee SB, Song SH, Song DH, Cheon KA. Aberrant Neural Activation Underlying Idiom Comprehension in Korean Children with High Functioning Autism Spectrum Disorder. Yonsei Med J 2018; 59:897-903. [PMID: 30091324 PMCID: PMC6082980 DOI: 10.3349/ymj.2018.59.7.897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication impairments and repetitive behaviors or restricted interests. Impaired pragmatic language comprehension is a universal feature in individuals with ASD. However, the underlying neural basis of pragmatic language is poorly understood. In the present study, we examined neural activation patterns associated with impaired pragmatic language comprehension in ASD, compared to typically developing children (TDC). MATERIALS AND METHODS Functional magnetic resonance imaging (fMRI) was applied to 15 children with ASD and 18 TDC using the Korean pragmatic language task. RESULTS Children with ASD were less accurate than TDC at comprehending idioms, particularly when they were required to interpret idioms with mismatched images (mismatched condition). Children with ASD also showed different patterns of neural activity than TDC in all three conditions (neutral, matched, and mismatched). Specifically, children with ASD showed decreased activation in the right inferior frontal gyrus (IFG) (Brodmann area 47) in the mismatched condition, compared with TDC (IFG; t(31)=3.17, p<0.001). CONCLUSION These results suggest that children with ASD face difficulties in comprehending pragmatic expressions and apply different pragmatic language processes at the neural level.
Collapse
Affiliation(s)
- Namwook Kim
- Department of Psychiatry, PURME Foundation NEXON Children's Rehabilitation Hospital, Seoul, Korea
- Graduate School of Medicine, Yonsei University, Seoul, Korea, Korea
| | - Uk Su Choi
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | - Seung Ha Song
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Children's Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ho Song
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Children's Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Keun Ah Cheon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Children's Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
155
|
Jia H, Li Y, Yu D. Attenuation of long-range temporal correlations of neuronal oscillations in young children with autism spectrum disorder. NEUROIMAGE-CLINICAL 2018; 20:424-432. [PMID: 30128281 PMCID: PMC6095951 DOI: 10.1016/j.nicl.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/12/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
Abstract
Although autism spectrum disorder (ASD) was previously found to be associated with aberrant brain structure, neuronal amplitudes and spatial neuronal interactions, surprisingly little is known about the temporal dynamics of neuronal oscillations in this disease. Here, the hemoglobin concentration signals (i.e., oxy-Hb and deoxy-Hb) of young children with ASD and typically developing (TD) children were recorded via functional near infrared spectroscopy (fNIRS) when they were watching a cartoon. The long-range temporal correlations (LRTCs) of hemoglobin concentration signals were quantified using detrended fluctuation analysis (DFA). Compared with TD group, the DFA exponents of young children with ASD were significantly smaller over left temporal region for oxy-Hb signal, and over bilateral temporo-occipital regions for deoxy-Hb signals, indicating a shift-to-randomness of brain oscillations in the children with ASD. Testing the relationship between age and DFA exponents revealed that this association could be modulated by autism. The correlation coefficients between age and DFA exponents were significantly more positive in TD group, compared to those in ASD group over several brain regions. Furthermore, the DFA exponents of oxy-Hb in left temporal region were negatively correlated with autistic symptom severity. These results suggest that the decreased DFA exponent of hemoglobin concentration signals may be one of the pathologic changes in ASD, and studying the temporal structure of brain activity via fNIRS technique may provide physiological indicators for autism. The LRTCs of fNIRS signals are attenuated in young children with ASD. Opposite relationships between age and LRTCs of fNIRS signals are revealed in young children with ASD and TD. The LRTCs of oxy-Hb in left temporal region are negatively correlated with autistic symptom severity.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yanwei Li
- College of Preschool Education, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
156
|
Fitzpatrick P, Frazier JA, Cochran D, Mitchell T, Coleman C, Schmidt RC. Relationship Between Theory of Mind, Emotion Recognition, and Social Synchrony in Adolescents With and Without Autism. Front Psychol 2018; 9:1337. [PMID: 30108541 PMCID: PMC6079204 DOI: 10.3389/fpsyg.2018.01337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
Difficulty in social communication and interaction is a primary diagnostic feature of ASD. Research has found that adolescents with ASD display various impairments in social behavior such as theory of mind (ToM), emotion recognition, and social synchrony. However, not much is known about the relationships among these dimensions of social behavior. Adolescents with and without ASD participated in the study. ToM ability was measured by viewing social animations of geometric shapes, recognition of facial emotions was measured by viewing pictures of faces, and synchrony ability was measured with a spontaneously arising interpersonal movement task completed with a caregiver and an intentional interpersonal task. Attention and social responsiveness were measured using parent reports. We then examined the relationship between ToM, emotion recognition, clinical measures of attention and social responsiveness, and social synchronization that arises either spontaneously or intentionally. Results indicate that spontaneous synchrony was related to ToM and intentional synchrony was related to clinical measures of attention and social responsiveness. Facial emotion recognition was not related to either ToM or social synchrony. Our findings highlight the importance of biological motion perception and production and attention for more fully understanding the social behavior characteristic of ASD. The findings suggest that the processes underlying difficulties in spontaneous synchrony in ASD are different than the processes underlying difficulties in intentional synchronization.
Collapse
Affiliation(s)
- Paula Fitzpatrick
- Department of Psychology, Assumption College, Worcester, MA, United States
| | - Jean A. Frazier
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
| | - David Cochran
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
| | - Teresa Mitchell
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Psychology, Brandeis University, Boston, MA, United States
| | - Caitlin Coleman
- Department of Psychology, Assumption College, Worcester, MA, United States
| | - R. C. Schmidt
- Department of Psychology, College of the Holy Cross, Worcester, MA, United States
| |
Collapse
|
157
|
Adamson K, Troiani V. Distinct and overlapping fusiform activation to faces and food. Neuroimage 2018; 174:393-406. [DOI: 10.1016/j.neuroimage.2018.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/29/2022] Open
|
158
|
Hennessey T, Andari E, Rainnie DG. RDoC-based categorization of amygdala functions and its implications in autism. Neurosci Biobehav Rev 2018; 90:115-129. [PMID: 29660417 PMCID: PMC6250055 DOI: 10.1016/j.neubiorev.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Confusion endures as to the exact role of the amygdala in relation to autism. To help resolve this we turned to the NIMH's Research Domain Criteria (RDoC) which provides a classification schema that identifies different categories of behaviors that can turn pathologic in mental health disorders, e.g. autism. While RDoC incorporates all the known neurobiological substrates for each domain, this review will focus primarily on the amygdala. We first consider the amygdala from an anatomical, historical, and developmental perspective. Next, we examine the different domains and constructs of RDoC that the amygdala is involved in: Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Social Processes, and Arousal and Regulatory Systems. Then the evidence for a dysfunctional amygdala in autism is presented with a focus on alterations in development, prenatal valproic acid exposure as a model for ASD, and changes in the oxytocin system therein. Finally, a synthesis of RDoC, the amygdala, and autism is offered, emphasizing the task of disambiguation and suggestions for future research.
Collapse
Affiliation(s)
- Thomas Hennessey
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Elissar Andari
- Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, United States
| | - Donald G Rainnie
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States.
| |
Collapse
|
159
|
Imai K, Kotani T, Tsuda H, Nakano T, Ushida T, Iwase A, Nagai T, Toyokuni S, Suzumura A, Kikkawa F. Administration of molecular hydrogen during pregnancy improves behavioral abnormalities of offspring in a maternal immune activation model. Sci Rep 2018; 8:9221. [PMID: 29907804 PMCID: PMC6003913 DOI: 10.1038/s41598-018-27626-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate long-term outcomes of the offspring in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) model and the effect of maternal molecular hydrogen (H2) administration. We have previously demonstrated in the MIA mouse model that maternal administration of H2 attenuates oxidative damage and neuroinflammation, including induced pro-inflammatory cytokines and microglial activation, in the fetal brain. Short-term memory, sociability and social novelty, and sensorimotor gating were evaluated using the Y-maze, three-chamber, and prepulse inhibition (PPI) tests, respectively, at postnatal 3 or 4 weeks. The number of neurons and oligodendrocytes was also analyzed at postnatal 5 weeks by immunohistochemical analysis. Offspring of the LPS-exposed dams showed deficits in short-term memory and social interaction, following neuronal and oligodendrocytic loss in the amygdala and cortex. Maternal H2 administration markedly attenuated these LPS-induced abnormalities. Moreover, we evaluated the effect of H2 on LPS-induced astrocytic activation, both in vivo and in vitro. The number of activated astrocytes with hypertrophic morphology was increased in LPS-exposed offspring, but decreased in the offspring of H2-administered dams. In primary cultured astrocytes, LPS-induced pro-inflammatory cytokines were attenuated by H2 administration. Overall, these findings indicate that maternal H2 administration exerts neuroprotective effects and ameliorates MIA-induced neurodevelopmental deficits of offspring later in life.
Collapse
Affiliation(s)
- Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, 3-35, Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan
| | - Tomoko Nakano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
160
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
161
|
Specific problems in visual cognition of dyslexic readers: Face discrimination deficits predict dyslexia over and above discrimination of scrambled faces and novel objects. Cognition 2018; 175:157-168. [DOI: 10.1016/j.cognition.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 02/01/2023]
|
162
|
Stilling RM, Moloney GM, Ryan FJ, Hoban AE, Bastiaanssen TF, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF. Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice. eLife 2018; 7:33070. [PMID: 29809134 PMCID: PMC5995540 DOI: 10.7554/elife.33070] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs). In our bodies, there are at least as many microbial cells as human cells. These microbes, known collectively as the microbiome, influence the activity of our brain and also our behaviour. Studies in species from insects to primates have shown that the microbiome affects social behaviour in particular. For example, germ-free mice, which grow up in a sterile environment and thus have no bacteria in or on their bodies, are less sociable than normal mice. For animals to show behaviours such as social interaction, cells in specific regions of the brain must change the activity of their genes. These brain regions include the amygdala, which is part of the brain’s emotion processing network, and also contributes to fear and anxiety responses. Stilling et al. set out to determine whether gene activity in the amygdala during social interaction differs between germ-free mice and those with a normal microbiome. Stilling et al. placed each mouse into a box with three chambers. One chamber contained an unfamiliar mouse while another contained an inanimate object. Germ-free mice were less sociable and spent less time than control animals interacting with the unfamiliar mouse. Before entering either test chamber, the germ-free animals showed signs of excessive activity in the amygdala. During social interaction, they displayed a strikingly different pattern of gene activity in this brain region compared to controls. In particular, they had increased levels of a process called alternative splicing. This process enables cells to produce many different proteins from a single gene. These results reveal one of the steps leading from absence of bacteria during brain development to reduced sociability in adulthood in mice. Increases in gene activity in the amygdala may provide clues to the processes underlying reduced sociability in people with autism spectrum disorders. This new study thus deepens our understanding of the link between the microbiome and brain health.
Collapse
Affiliation(s)
- Roman M Stilling
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Feargal J Ryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Alan E Hoban
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Thomaz Fs Bastiaanssen
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
163
|
Liang J, Wilkinson K. Gaze Toward Naturalistic Social Scenes by Individuals With Intellectual and Developmental Disabilities: Implications for Augmentative and Alternative Communication Designs. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2018; 61:1157-1170. [PMID: 29710313 DOI: 10.1044/2018_jslhr-l-17-0331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
PURPOSE A striking characteristic of the social communication deficits in individuals with autism is atypical patterns of eye contact during social interactions. We used eye-tracking technology to evaluate how the number of human figures depicted and the presence of sharing activity between the human figures in still photographs influenced visual attention by individuals with autism, typical development, or Down syndrome. We sought to examine visual attention to the contents of visual scene displays, a growing form of augmentative and alternative communication support. METHOD Eye-tracking technology recorded point-of-gaze while participants viewed 32 photographs in which either 2 or 3 human figures were depicted. Sharing activities between these human figures are either present or absent. The sampling rate was 60 Hz; that is, the technology gathered 60 samples of gaze behavior per second, per participant. Gaze behaviors, including latency to fixate and time spent fixating, were quantified. RESULTS The overall gaze behaviors were quite similar across groups, regardless of the social content depicted. However, individuals with autism were significantly slower than the other groups in latency to first view the human figures, especially when there were 3 people depicted in the photographs (as compared with 2 people). When participants' own viewing pace was considered, individuals with autism resembled those with Down syndrome. CONCLUSION The current study supports the inclusion of social content with various numbers of human figures and sharing activities between human figures into visual scene displays, regardless of the population served. Study design and reporting practices in eye-tracking literature as it relates to autism and Down syndrome are discussed. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.6066545.
Collapse
Affiliation(s)
- Jiali Liang
- Department of Communication Sciences and Disorders, The Pennsylvania State University, University Park
| | - Krista Wilkinson
- Department of Communication Sciences and Disorders, The Pennsylvania State University, University Park
- E. K. Shriver Center of the University of Massachusetts Medical School, Worcester
| |
Collapse
|
164
|
Wojtalik JA, Eack SM, Smith MJ, Keshavan MS. Using Cognitive Neuroscience to Improve Mental Health Treatment: A Comprehensive Review. JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH 2018; 9:223-260. [PMID: 30505392 PMCID: PMC6258037 DOI: 10.1086/697566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mental health interventions do not yet offer complete, client-defined functional recovery, and novel directions in treatment research are needed to improve the efficacy of available interventions. One promising direction is the integration of social work and cognitive neuroscience methods, which provides new opportunities for clinical intervention research that will guide development of more effective mental health treatments that holistically attend to the biological, social, and environmental contributors to disability and recovery. This article reviews emerging trends in cognitive neuroscience and provides examples of how these advances can be used by social workers and allied professions to improve mental health treatment. We discuss neuroplasticity, which is the dynamic and malleable nature of the brain. We also review the use of risk and resiliency biomarkers and novel treatment targets based on neuroimaging findings to prevent disability, personalize treatment, and make interventions more targeted and effective. The potential of treatment research to contribute to neuroscience discoveries regarding brain change is considered from the experimental-medicine approach adopted by the National Institute of Mental Health. Finally, we provide resources and recommendations to facilitate the integration of cognitive neuroscience into mental health research in social work.
Collapse
Affiliation(s)
- Jessica A Wojtalik
- Doctoral candidate at the University of Pittsburgh School of Social Work
| | - Shaun M Eack
- Professor at the University of Pittsburgh School of Social Work and Department of Psychiatry
| | - Matthew J Smith
- Associate professor at the University of Michigan School of Social Work
| | | |
Collapse
|
165
|
Anderson BA, Kim H. Relating Attentional Biases for Stimuli Associated with Social Reward and Punishment to Autistic Traits. COLLABRA: PSYCHOLOGY 2018. [DOI: 10.1525/collabra.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evidence for impaired attention to social stimuli in autism has been mixed. The role of social feedback in shaping attention to other, non-social stimuli that are predictive of such feedback has not been examined in the context of autism. In the present study, participants searched for a color-defined target during a training phase, with the color of the target predicting the emotional reaction of a face that appeared after each trial. Then, participants performed visual search for a shape-defined target while trying to ignore the color of stimuli. On a subset of trials, one of the non-targets was rendered in the color of a former target from training. Autistic traits were measured for each participant using the Autism Quotient (AQ). Our findings replicate robust attentional capture by stimuli learned to predict valenced social feedback. There was no evidence that autistic traits are associated with blunted attention to predictors of social outcomes. Consistent with an emerging body of literature, our findings cast doubt on strong versions of the claim that autistic traits can be explained by a blunted influence of social information on the attention system. We extend these findings to non-social stimuli that predict socially relevant information.
Collapse
Affiliation(s)
| | - Haena Kim
- Texas A&M University, College Station, Texas, US
| |
Collapse
|
166
|
Król ME. Auditory noise increases the allocation of attention to the mouth, and the eyes pay the price: An eye-tracking study. PLoS One 2018; 13:e0194491. [PMID: 29558514 PMCID: PMC5860771 DOI: 10.1371/journal.pone.0194491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/17/2023] Open
Abstract
We investigated the effect of auditory noise added to speech on patterns of looking at faces in 40 toddlers. We hypothesised that noise would increase the difficulty of processing speech, making children allocate more attention to the mouth of the speaker to gain visual speech cues from mouth movements. We also hypothesised that this shift would cause a decrease in fixation time to the eyes, potentially decreasing the ability to monitor gaze. We found that adding noise increased the number of fixations to the mouth area, at the price of a decreased number of fixations to the eyes. Thus, to our knowledge, this is the first study demonstrating a mouth-eyes trade-off between attention allocated to social cues coming from the eyes and linguistic cues coming from the mouth. We also found that children with higher word recognition proficiency and higher average pupil response had an increased likelihood of fixating the mouth, compared to the eyes and the rest of the screen, indicating stronger motivation to decode the speech.
Collapse
Affiliation(s)
- Magdalena Ewa Król
- SWPS University of Social Sciences and Humanities, Faculty in Wrocław, Wrocław, Poland
| |
Collapse
|
167
|
Sheppard DP, Bruineberg JP, Kretschmer-Trendowicz A, Altgassen M. Prospective memory in autism: theory and literature review. Clin Neuropsychol 2018. [DOI: 10.1080/13854046.2018.1435823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Daniel P. Sheppard
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jelle P. Bruineberg
- Department of Philosophy, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Mareike Altgassen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
168
|
Lloyd‐Fox S, Blasi A, Pasco G, Gliga T, Jones EJH, Murphy DGM, Elwell CE, Charman T, Johnson MH, Baron‐Cohen S, Bedford R, Bolton P, Cheung HMC, Davies K, Elsabbagh M, Fernandes J, Gammer I, Guiraud J, Liew M, Maris H, O'Hara L, Pickles A, Ribeiro H, Salomone E, Tucker L, Yemane F. Cortical responses before 6 months of life associate with later autism. Eur J Neurosci 2018; 47:736-749. [PMID: 29057543 PMCID: PMC5900943 DOI: 10.1111/ejn.13757] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023]
Abstract
Autism spectrum disorder (ASD) is a common, highly heritable, developmental disorder and later-born siblings of diagnosed children are at higher risk of developing ASD than the general population. Although the emergence of behavioural symptoms of ASD in toddlerhood is well characterized, far less is known about development during the first months of life of infants at familial risk. In a prospective longitudinal study of infants at familial risk followed to 36 months, we measured functional near-infrared spectroscopy (fNIRS) brain responses to social videos of people (i.e. peek-a-boo) compared to non-social images (vehicles) and human vocalizations compared to non-vocal sounds. At 4-6 months, infants who went on to develop ASD at 3 years (N = 5) evidenced-reduced activation to visual social stimuli relative to low-risk infants (N = 16) across inferior frontal (IFG) and posterior temporal (pSTS-TPJ) regions of the cortex. Furthermore, these infants also showed reduced activation to vocal sounds and enhanced activation to non-vocal sounds within left lateralized temporal (aMTG-STG/pSTS-TPJ) regions compared with low-risk infants and high-risk infants who did not develop ASD (N = 15). The degree of activation to both the visual and auditory stimuli correlated with parent-reported ASD symptomology in toddlerhood. These preliminary findings are consistent with later atypical social brain responses seen in children and adults with ASD, and highlight the need for further work interrogating atypical processing in early infancy and how it may relate to later social interaction and communication difficulties characteristic of ASD.
Collapse
Affiliation(s)
- S. Lloyd‐Fox
- Centre for Brain and Cognitive DevelopmentBirkbeck, University of LondonMalet St.WC1E 7HXLondonUK
| | - A. Blasi
- Centre for Brain and Cognitive DevelopmentBirkbeck, University of LondonMalet St.WC1E 7HXLondonUK
| | - G. Pasco
- Department of PsychologyInstitute of Psychiatry, Psychology, & NeuroscienceKing's College LondonLondonUK
| | - T. Gliga
- Centre for Brain and Cognitive DevelopmentBirkbeck, University of LondonMalet St.WC1E 7HXLondonUK
| | - E. J. H. Jones
- Centre for Brain and Cognitive DevelopmentBirkbeck, University of LondonMalet St.WC1E 7HXLondonUK
| | - D. G. M. Murphy
- Department of Forensic and Neurodevelopmental ScienceThe Sackler Institute for Translational NeurodevelopmentInstitute of Psychiatry, Psychology, & NeuroscienceKing's College LondonLondonUK
| | - C. E. Elwell
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - T. Charman
- Department of PsychologyInstitute of Psychiatry, Psychology, & NeuroscienceKing's College LondonLondonUK
| | - M. H. Johnson
- Centre for Brain and Cognitive DevelopmentBirkbeck, University of LondonMalet St.WC1E 7HXLondonUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Mastrovito D, Hanson C, Hanson SJ. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia. Neuroimage Clin 2018; 18:367-376. [PMID: 29487793 PMCID: PMC5814383 DOI: 10.1016/j.nicl.2018.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/19/2022]
Abstract
Autism and schizophrenia share overlapping genetic etiology, common changes in brain structure and common cognitive deficits. A number of studies using resting state fMRI have shown that machine learning algorithms can distinguish between healthy controls and individuals diagnosed with either autism spectrum disorder or schizophrenia. However, it has not yet been determined whether machine learning algorithms can be used to distinguish between the two disorders. Using a linear support vector machine, we identify features that are most diagnostic for each disorder and successfully use them to classify an independent cohort of subjects. We find both common and divergent connectivity differences largely in the default mode network as well as in salience, and motor networks. Using divergent connectivity differences, we are able to distinguish autistic subjects from those with schizophrenia. Understanding the common and divergent connectivity changes associated with these disorders may provide a framework for understanding their shared cognitive deficits.
Collapse
Affiliation(s)
- Dana Mastrovito
- Rutgers University, 195 University Ave, Newark, NJ 07102, United States.
| | - Catherine Hanson
- Rutgers University, 195 University Ave, Newark, NJ 07102, United States.
| | | |
Collapse
|
170
|
Fitzpatrick P, Romero V, Amaral JL, Duncan A, Barnard H, Richardson MJ, Schmidt RC. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism. J Autism Dev Disord 2018; 47:2092-2107. [PMID: 28425022 DOI: 10.1007/s10803-017-3124-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.
Collapse
Affiliation(s)
- Paula Fitzpatrick
- Department of Psychology, Assumption College, 500 Salisbury Street, Worcester, MA, 01609, USA.
| | - Veronica Romero
- Center for Cognition, Action and Perception, University of Cincinnati, Cincinnati, OH, USA
| | - Joseph L Amaral
- Center for Cognition, Action and Perception, University of Cincinnati, Cincinnati, OH, USA.,Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.,Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amie Duncan
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Holly Barnard
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.,, Mason, OH, USA
| | - Michael J Richardson
- Center for Cognition, Action and Perception, University of Cincinnati, Cincinnati, OH, USA
| | - R C Schmidt
- Department of Psychology, College of the Holy Cross, Worcester, MA, USA
| |
Collapse
|
171
|
Stavropoulos KKM, Carver LJ. Oscillatory rhythm of reward: anticipation and processing of rewards in children with and without autism. Mol Autism 2018; 9:4. [PMID: 29423131 PMCID: PMC5789641 DOI: 10.1186/s13229-018-0189-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, and multiple theories have emerged concerning core social deficits. While the social motivation hypothesis proposes that deficits in the social reward system cause individuals with ASD to engage less in social interaction, the overly intense world hypothesis (sensory over-responsivity) proposes that individuals with ASD find stimuli to be too intense and may have hypersensitivity to social interaction, leading them to avoid these interactions. Methods EEG was recorded during reward anticipation and reward processing. Reward anticipation was measured using alpha asymmetry, and post-feedback theta was utilized to measure reward processing. Additionally, we calculated post-feedback alpha suppression to measure attention and salience. Participants were 6- to 8-year-olds with (N = 20) and without (N = 23) ASD. Results Children with ASD showed more left-dominant alpha suppression when anticipating rewards accompanied by nonsocial stimuli compared to social stimuli. During reward processing, children with ASD had less theta activity than typically developing (TD) children. Alpha activity after feedback showed the opposite pattern: children with ASD had greater alpha suppression than TD children. Significant correlations were observed between behavioral measures of autism severity and EEG activity in both the reward anticipation and reward processing time periods. Conclusions The findings provide evidence that children with ASD have greater approach motivation prior to nonsocial (compared to social) stimuli. Results after feedback suggest that children with ASD evidence less robust activity thought to reflect evaluation and processing of rewards (e.g., theta) compared to TD children. However, children with ASD evidence greater alpha suppression after feedback compared to TD children. We hypothesize that post-feedback alpha suppression reflects general cognitive engagement-which suggests that children with ASD may experience feedback as overly intense. Taken together, these results suggest that aspects of both the social motivation hypothesis and the overly intense world hypothesis may be occurring simultaneously.
Collapse
|
172
|
Kohls G, Antezana L, Mosner MG, Schultz RT, Yerys BE. Altered reward system reactivity for personalized circumscribed interests in autism. Mol Autism 2018; 9:9. [PMID: 29423135 PMCID: PMC5791309 DOI: 10.1186/s13229-018-0195-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
Background Neurobiological research in autism spectrum disorders (ASD) has paid little attention on brain mechanisms that cause and maintain restricted and repetitive behaviors and interests (RRBIs). Evidence indicates an imbalance in the brain’s reward system responsiveness to social and non-social stimuli may contribute to both social deficits and RRBIs. Thus, this study’s central aim was to compare brain responsiveness to individual RRBI (i.e., circumscribed interests), with social rewards (i.e., social approval), in youth with ASD relative to typically developing controls (TDCs). Methods We conducted a 3T functional magnetic resonance imaging (fMRI) study to investigate the blood-oxygenation-level-dependent effect of personalized circumscribed interest rewards versus social rewards in 39 youth with ASD relative to 22 TDC. To probe the reward system, we employed short video clips as reinforcement in an instrumental incentive delay task. This optimization increased the task’s ecological validity compared to still pictures that are often used in this line of research. Results Compared to TDCs, youth with ASD had stronger reward system responses for CIs mostly within the non-social realm (e.g., video games) than social rewards (e.g., approval). Additionally, this imbalance within the caudate nucleus’ responsiveness was related to greater social impairment. Conclusions The current data support the idea of reward system dysfunction that may contribute to enhanced motivation for RRBIs in ASD, accompanied by diminished motivation for social engagement. If a dysregulated reward system indeed supports the emergence and maintenance of social and non-social symptoms of ASD, then strategically targeting the reward system in future treatment endeavors may allow for more efficacious treatment practices that help improve outcomes for individuals with ASD and their families. Electronic supplementary material The online version of this article (10.1186/s13229-018-0195-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregor Kohls
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Ligia Antezana
- 2Department of Psychology, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Maya G Mosner
- 3Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Robert T Schultz
- 4Center for Autism Research, The Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,5Pediatrics Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.,6Psychiatry Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Benjamin E Yerys
- 4Center for Autism Research, The Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,6Psychiatry Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
173
|
Patriquin MA, DeRamus T, Libero LE, Laird A, Kana RK. Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder. Hum Brain Mapp 2018; 37:3957-3978. [PMID: 27329401 DOI: 10.1002/hbm.23288] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
Social impairments in autism spectrum disorder (ASD), a hallmark feature of its diagnosis, may underlie specific neural signatures that can aid in differentiating between those with and without ASD. To assess common and consistent patterns of differences in brain responses underlying social cognition in ASD, this study applied an activation likelihood estimation (ALE) meta-analysis to results from 50 neuroimaging studies of social cognition in children and adults with ASD. In addition, the group ALE clusters of activation obtained from this was used as a social brain mask to perform surface-based cortical morphometry (SBM) in an empirical structural MRI dataset collected from 55 ASD and 60 typically developing (TD) control participants. Overall, the ALE meta-analysis revealed consistent differences in activation in the posterior superior temporal sulcus at the temporoparietal junction, middle frontal gyrus, fusiform face area (FFA), inferior frontal gyrus (IFG), amygdala, insula, and cingulate cortex between ASD and TD individuals. SBM analysis showed alterations in the thickness, volume, and surface area in individuals with ASD in STS, insula, and FFA. Increased cortical thickness was found in individuals with ASD, the IFG. The results of this study provide functional and anatomical bases of social cognition abnormalities in ASD by identifying common signatures from a large pool of neuroimaging studies. These findings provide new insights into the quest for a neuroimaging-based marker for ASD. Hum Brain Mapp 37:3957-3978, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michelle A Patriquin
- The Menninger Clinic, Houston, Texas.,Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Birmingham, Alabama
| | - Thomas DeRamus
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lauren E Libero
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Angela Laird
- Department of Physics, Florida International University, Birmingham, Florida
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
174
|
Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH, Braga MFM. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors. Neuroscience 2018; 373:145-158. [PMID: 29339324 DOI: 10.1016/j.neuroscience.2018.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/18/2022]
Abstract
Synchronous, rhythmic firing of GABAergic interneurons is a fundamental mechanism underlying the generation of brain oscillations, and evidence suggests that NMDA receptors (NMDARs) play a key role in oscillatory activity by regulating the activity of interneurons. Consistent with this, derangement of brain rhythms in certain neuropsychiatric disorders, notably schizophrenia and autism, is associated with NMDAR hypofunction and loss of inhibitory interneurons. In the basolateral amygdala (BLA)-dysfunction of which is involved in a host of neuropsychiatric diseases-, principal neurons display spontaneous, rhythmic "bursts" of inhibitory activity, which could potentially be involved in the orchestration of oscillations in the BLA network; here, we investigated the role of NMDARs in these inhibitory oscillations. Rhythmic bursts of spontaneous IPSCs (0.5 Hz average burst frequency) recorded from rat BLA principal cells were blocked or significantly suppressed by D-AP5, and could be driven by NMDAR activation alone. BLA interneurons generated spontaneous bursts of suprathreshold EPSCs at a similar frequency, which were also blocked or reduced by D-AP5. PEAQX (GluN2A-NMDAR antagonist; 0.4 μM) or Ro-25-6981 (GluN2B-NMDAR antagonist; 5 μM) suppressed the IPSC and EPSC bursts; suppression by PEAQX was significantly greater than that by Ro-25-6981. Immunohistochemical labeling revealed the presence of both GluN2A- and GluN2B-NMDARs on GABAergic BLA interneurons, while, functionally, GluN2A-NMDARs have the dominant role, as suggested by a greater reduction of NMDA-evoked currents by PEAQX versus Ro-25-6981. Entrainment of BLA principal neurons in an oscillatory generation of inhibitory activity depends primarily on activation of GluN2A-NMDARs, and interneuronal GluN2A-NMDARs may play a significant role.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Maria F M Braga
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
175
|
Tatsukawa T, Ogiwara I, Mazaki E, Shimohata A, Yamakawa K. Impairments in social novelty recognition and spatial memory in mice with conditional deletion of Scn1a in parvalbumin-expressing cells. Neurobiol Dis 2018; 112:24-34. [PMID: 29337050 DOI: 10.1016/j.nbd.2018.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Abstract
Loss of function mutations in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1, have been described in the majority of Dravet syndrome patients presenting with epileptic seizures, hyperactivity, autistic traits, and cognitive decline. We previously reported predominant Nav1.1 expression in parvalbumin-expressing (PV+) inhibitory neurons in juvenile mouse brain and observed epileptic seizures in mice with selective deletion of Scn1a in PV+ cells mediated by PV-Cre transgene expression (Scn1afl/+/PV-Cre-TG). Here we investigate the behavior of Scn1afl/+/PV-Cre-TG mice using a comprehensive battery of behavioral tests. We observed that Scn1afl/+/PV-Cre-TG mice display hyperactive behavior, impaired social novelty recognition, and altered spatial memory. We also generated Scn1afl/+/SST-Cre-KI mice with a selective Scn1a deletion in somatostatin-expressing (SST+) inhibitory neurons using an SST-IRES-Cre knock-in driver line. We observed that Scn1afl/+/SST-Cre-KI mice display no spontaneous convulsive seizures and that Scn1afl/+/SST-Cre-KI mice have a lowered threshold temperature for hyperthermia-induced seizures, although their threshold values are much higher than those of Scn1afl/+/PV-Cre-TG mice. We finally show that Scn1afl/+/SST-Cre-KI mice exhibited no noticeable behavioral abnormalities. These observations suggest that impaired Nav1.1 function in PV+ interneurons is critically involved in the pathogenesis of hyperactivity, autistic traits, and cognitive decline, as well as epileptic seizures, in Dravet syndrome.
Collapse
Affiliation(s)
- Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Ikuo Ogiwara
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Emi Mazaki
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
176
|
Fakhoury M. Imaging genetics in autism spectrum disorders: Linking genetics and brain imaging in the pursuit of the underlying neurobiological mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:101-114. [PMID: 28322981 DOI: 10.1016/j.pnpbp.2017.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASD) include a wide range of heterogeneous neurodevelopmental conditions that affect an individual in several aspects of social communication and behavior. Recent advances in molecular genetic technologies have dramatically increased our understanding of ASD etiology through the identification of several autism risk genes, most of which serve important functions in synaptic plasticity and protein synthesis. However, despite significant progress in this field of research, the characterization of the neurobiological mechanisms by which common genetic risk variants might operate to give rise to ASD symptomatology has proven to be far more difficult than expected. The imaging genetics approach holds great promise for advancing our understanding of ASD etiology by bridging the gap between genetic variations and their resultant biological effects on the brain. This paper provides a conceptual overview of the contribution of genetics in ASD and discusses key findings from the emerging field of imaging genetics.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
177
|
Wakusawa K, Nara C, Kubota Y, Tomizawa Y, Taki Y, Sassa Y, Kobayashi S, Suzuki-Muromoto S, Hirose M, Yokoyama H, Nara T, Kure S, Mori N, Takei N, Kawashima R. Intra-individual cognitive imbalance in ASD between perceptual reasoning and ambiguity-solving related to tool use: Comparison among children exhibiting ASD, AD/HD, and typical development. Brain Dev 2018; 40:16-25. [PMID: 28750723 DOI: 10.1016/j.braindev.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/28/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Several studies have suggested that objective deficits in the processing of abstract information in conjunction with an enhanced ability to process concrete information is a definitive characteristic of autism spectrum disorder (ASD). However, this cognitive imbalance is not necessarily clear in high-functioning autistic individuals who do not display absolute differences relative to typically developing (TD) populations. Thus, the purpose of this study was to identify this cognitive tendency in high-functioning autistic individuals using intra-individual cognitive comparisons. METHODS The reaction times (RTs) of TD children, children with ASD, and children with attention deficit hyperactivity disorder (AD/HD) (n=17 in each group, mean age=11.9years, age range=9.8-15.8years) were compared using the Which/How-to-Apply Tools (W/HAT) test, which consists of tasks requiring the adaptive use of novel tools and familiar tools in atypical and typical situations. Differences in RTs between the atypical and typical trials ([A-T]) were used to assess intra-individual cognitive imbalances. RESULTS As predicted, the [A-T] scores of the ASD group were significantly higher than those of the TD group even though the RTs in the atypical and typical trials did not differ. Additionally, the [A-T] values were significantly higher in the ASD group than in the AD/HD group, which indicates that the cognitive imbalance was specific to ASD individuals. No significant interaction was detected between the trial and subject group. CONCLUSIONS The findings of this study demonstrate that a cognitive imbalance in ASD individuals may enhance the current understanding of the pathophysiology of this disorder, which is found in a range of individuals, including those with obvious cortical dysfunction to those with only intra-individual imbalances.
Collapse
Affiliation(s)
- Keisuke Wakusawa
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Japan; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan; Department of Developmental Neuropsychiatry, Miyagi Children's Hospital, Japan.
| | - Chieko Nara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Japan
| | - Yuki Kubota
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Japan
| | - Yayoi Tomizawa
- Department of Health Science, Tohoku Fukushi University, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Yuko Sassa
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Satoru Kobayashi
- Department of Pediatrics, Nagoya City West Medical Center, Japan
| | | | - Mieko Hirose
- Department of Pediatrics, Hakodate Goryokaku Hospital, Japan
| | - Hiroyuki Yokoyama
- Fukushima Medical Center for Children and Women, Fukushima Medical University, Japan
| | - Takahiro Nara
- Department of Developmental Neuropsychiatry, Miyagi Children's Hospital, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Japan
| | - Norio Mori
- Department of Developmental Neuropsychiatry, Miyagi Children's Hospital, Japan
| | - Noriyoshi Takei
- Department of Developmental Neuropsychiatry, Miyagi Children's Hospital, Japan
| | - Ryuta Kawashima
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Japan
| |
Collapse
|
178
|
Jeremić M, Grujičić R, Pejović-Milovančević M. Adaptive capabilities of children with autism and their connection with neurophysiological correlates. MEDICINSKI PODMLADAK 2018. [DOI: 10.5937/mp69-17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
179
|
How do adults and teens with self-declared Autism Spectrum Disorder experience eye contact? A qualitative analysis of first-hand accounts. PLoS One 2017; 12:e0188446. [PMID: 29182643 PMCID: PMC5705114 DOI: 10.1371/journal.pone.0188446] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
A tendency to avoid eye contact is an early indicator of Autism Spectrum Disorder (ASD), and difficulties with eye contact often persist throughout the lifespan. Eye contact difficulties may underlie social cognitive deficits in ASD, and can create significant social and occupational barriers. Thus, this topic has received substantial research and clinical attention. In this study, we used qualitative methods to analyze self-reported experiences with eye contact as described by teens and adults with self-declared ASD. Results suggest people with a self- declared ASD diagnosis experience adverse emotional and physiological reactions, feelings of being invaded, and sensory overload while making eye contact, in addition to difficulties understanding social nuances, and difficulties receiving and sending nonverbal information. Some data support existing mindblindness frameworks, and hyperarousal or hypoarousal theories of eye contact, but we also present novel findings unaccounted for by existing frameworks. Additionally, we highlight innovative strategies people with self-declared ASD have devised to overcome or cope with their eye contact difficulties.
Collapse
|
180
|
Cardon GJ, Hepburn S, Rojas DC. Structural Covariance of Sensory Networks, the Cerebellum, and Amygdala in Autism Spectrum Disorder. Front Neurol 2017; 8:615. [PMID: 29230189 PMCID: PMC5712069 DOI: 10.3389/fneur.2017.00615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Sensory dysfunction is a core symptom of autism spectrum disorder (ASD), and abnormalities with sensory responsivity and processing can be extremely debilitating to ASD patients and their families. However, relatively little is known about the underlying neuroanatomical and neurophysiological factors that lead to sensory abnormalities in ASD. Investigation into these aspects of ASD could lead to significant advancements in our general knowledge about ASD, as well as provide targets for treatment and inform diagnostic procedures. Thus, the current study aimed to measure the covariation of volumes of brain structures (i.e., structural magnetic resonance imaging) that may be involved in abnormal sensory processing, in order to infer connectivity of these brain regions. Specifically, we quantified the structural covariation of sensory-related cerebral cortical structures, in addition to the cerebellum and amygdala by computing partial correlations between the structural volumes of these structures. These analyses were performed in participants with ASD (n = 36), as well as typically developing peers (n = 32). Results showed decreased structural covariation between sensory-related cortical structures, especially between the left and right cerebral hemispheres, in participants with ASD. In contrast, these same participants presented with increased structural covariation of structures in the right cerebral hemisphere. Additionally, sensory-related cerebral structures exhibited decreased structural covariation with functionally identified cerebellar networks. Also, the left amygdala showed significantly increased structural covariation with cerebral structures related to visual processing. Taken together, these results may suggest several patterns of altered connectivity both within and between cerebral cortices and other brain structures that may be related to sensory processing.
Collapse
Affiliation(s)
- Garrett J Cardon
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Susan Hepburn
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, United States
| | - Donald C Rojas
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
181
|
Tam FI, King JA, Geisler D, Korb FM, Sareng J, Ritschel F, Steding J, Albertowski KU, Roessner V, Ehrlich S. Altered behavioral and amygdala habituation in high-functioning adults with autism spectrum disorder: an fMRI study. Sci Rep 2017; 7:13611. [PMID: 29051601 PMCID: PMC5648793 DOI: 10.1038/s41598-017-14097-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/25/2017] [Indexed: 12/05/2022] Open
Abstract
Habituation to repeatedly presented stimuli is an important adaptive property of the nervous system. Autism spectrum disorder (ASD) has been associated with reduced neural habituation, for example in the amygdala, which may be related to social impairments. The main focus of this study was to investigate habituation effects on the level of behavioral responses as well as amygdala responses in adults with ASD during a working memory task flanked by task-irrelevant face stimuli. Twenty-two patients with high-functioning autism and 24 healthy controls (HC) were included in this functional magnetic resonance imaging (fMRI) study. We employed an established habituation index to investigate habituation effects. Suggestive of altered habituation, the habituation index showed a decrement of reaction time over the course of the experiment in the HC but not in the ASD group. Similarly, an expected pattern of habituation was evident in amygdala activation in HC but absent in ASD participants. These results provide evidence that habituation may be altered not only on a neural, but also on a behavioral level in ASD. While more research is needed to develop a better understanding of the underlying mechanisms, the current findings support the possibility that deficient habituation may be a biomarker of ASD.
Collapse
Affiliation(s)
- Friederike I Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Joseph A King
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Franziska M Korb
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069, Dresden, Germany
| | - Juliane Sareng
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Franziska Ritschel
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Translational Developmental Neuroscience Section, Eating Disorder Research and Treatment Center at the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Julius Steding
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Katja U Albertowski
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany. .,Translational Developmental Neuroscience Section, Eating Disorder Research and Treatment Center at the Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
182
|
Høyland AL, Nærland T, Engstrøm M, Lydersen S, Andreassen OA. The relation between face-emotion recognition and social function in adolescents with autism spectrum disorders: A case control study. PLoS One 2017; 12:e0186124. [PMID: 29020059 PMCID: PMC5636137 DOI: 10.1371/journal.pone.0186124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
An altered processing of emotions may contribute to a reduced ability for social interaction and communication in autism spectrum disorder, ASD. We investigated how face-emotion recognition in ASD is different from typically developing across adolescent age groups. Fifty adolescents diagnosed with ASD and 49 typically developing (age 12–21 years) were included. The ASD diagnosis was underpinned by parent-rated Social Communication Questionnaire. We used a cued GO/ NOGO task with pictures of facial expressions and recorded reaction time, intra-individual variability of reaction time and omissions/commissions. The Social Responsiveness Scale was used as a measure of social function. Analyses were conducted for the whole group and for young (< 16 years) and old (≥ 16 years) age groups. We found no significant differences in any task measures between the whole group of typically developing and ASD and no significant correlations with the Social Responsiveness Scale. However, there was a non-significant tendency for longer reaction time in the young group with ASD (p = 0.099). The Social Responsiveness Scale correlated positively with reaction time (r = 0.30, p = 0.032) and intra-individual variability in reaction time (r = 0.29, p = 0.037) in the young group and in contrast, negatively in the old group (r = -0.23, p = 0.13; r = -0.38, p = 0.011, respectively) giving significant age group interactions for both reaction time (p = 0.008) and intra-individual variability in reaction time (p = 0.001). Our findings suggest an age-dependent association between emotion recognition and severity of social problems indicating a delayed development of emotional understanding in ASD. It also points towards alterations in top-down attention control in the ASD group. This suggests novel disease-related features that should be investigated in more details in experimental settings.
Collapse
Affiliation(s)
- Anne Lise Høyland
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Norway
- * E-mail:
| | - Terje Nærland
- NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
| | - Morten Engstrøm
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Andreas Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
183
|
Martella G, Meringolo M, Trobiani L, De Jaco A, Pisani A, Bonsi P. The neurobiological bases of autism spectrum disorders: the R451C-neuroligin 3 mutation hampers the expression of long-term synaptic depression in the dorsal striatum. Eur J Neurosci 2017; 47:701-708. [PMID: 28921757 DOI: 10.1111/ejn.13705] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 02/03/2023]
Abstract
Autism spectrum disorders (ASDs) comprise a heterogeneous group of disorders with a complex genetic etiology. Current theories on the pathogenesis of ASDs suggest that they might arise from an aberrant synaptic transmission affecting specific brain circuits and synapses. The striatum, which is part of the basal ganglia circuit, is one of the brain regions involved in ASDs. Mouse models of ASDs have provided evidence for an imbalance between excitatory and inhibitory neurotransmission. Here, we investigated the expression of long-term synaptic plasticity at corticostriatal glutamatergic synapses in the dorsal striatum of the R451C-NL3 phenotypic mouse model of autism. This mouse model carries the human R451C mutation in the neuroligin 3 (NL3) gene that has been associated with highly penetrant autism in a Swedish family. The R451C-NL3 mouse has been shown to exhibit autistic-like behaviors and alterations of synaptic transmission in different brain areas. However, excitatory glutamatergic transmission and its long-term plasticity have not been investigated in the dorsal striatum so far. Our results indicate that the expression of long-term synaptic depression (LTD) at corticostriatal glutamatergic synapses in the dorsal striatum is impaired by the R451C-NL3 mutation. A partial rescue of LTD was obtained by exogenous activation of cannabinoid CB1 receptors or enhancement of the endocannabinoid tone, suggesting that an altered cannabinoid drive might underlie the deficit of synaptic plasticity in the dorsal striatum of R451C-NL3 mice.
Collapse
Affiliation(s)
- Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Laura Trobiani
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
184
|
Zhang C, Yao L, Song S, Wen X, Zhao X, Long Z. Euler Elastica Regularized Logistic Regression for Whole-Brain Decoding of fMRI Data. IEEE Trans Biomed Eng 2017; 65:1639-1653. [PMID: 28952931 DOI: 10.1109/tbme.2017.2756665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Multivariate pattern analysis methods have been widely applied to functional magnetic resonance imaging (fMRI) data to decode brain states. Due to the "high features, low samples" in fMRI data, machine learning methods have been widely regularized using various regularizations to avoid overfitting. Both total variation (TV) using the gradients of images and Euler's elastica (EE) using the gradient and the curvature of images are the two popular regulations with spatial structures. In contrast to TV, EE regulation is able to overcome the disadvantage of TV regulation that favored piecewise constant images over piecewise smooth images. In this study, we introduced EE to fMRI-based decoding for the first time and proposed the EE regularized multinomial logistic regression (EELR) algorithm for multi-class classification. METHODS We performed experimental tests on both simulated and real fMRI data to investigate the feasibility and robustness of EELR. The performance of EELR was compared with sparse logistic regression (SLR) and TV regularized LR (TVLR). RESULTS The results showed that EELR was more robustness to noises and showed significantly higher classification performance than TVLR and SLR. Moreover, the forward models and weights patterns revealed that EELR detected larger brain regions that were discriminative to each task and activated by each task than TVLR. CONCLUSION The results suggest that EELR not only performs well in brain decoding but also reveals meaningful discriminative and activation patterns. SIGNIFICANCE This study demonstrated that EELR showed promising potential in brain decoding and discriminative/activation pattern detection.
Collapse
|
185
|
Why Do the Children (Pretend) Play? Trends Cogn Sci 2017; 21:826-834. [PMID: 28864312 DOI: 10.1016/j.tics.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
Pretend play appears to be an evolved behavior because it is universal and appears on a set schedule. However, no specific functions have been determined for pretend play and empirical tests for its functions in humans are elusive. Yet animal play fighting can serve as an analog, as both activities involve as-if, metacommunicative signaling and symbolism. In the rat and some other animals, adaptive functions of play fighting include assisting social behavior and emotion regulation. Research is presented suggesting that pretend play might serve similar functions for humans.
Collapse
|
186
|
Lewis JD, Evans AC, Pruett JR, Botteron KN, McKinstry RC, Zwaigenbaum L, Estes AM, Collins DL, Kostopoulos P, Gerig G, Dager SR, Paterson S, Schultz RT, Styner MA, Hazlett HC, Piven J. The Emergence of Network Inefficiencies in Infants With Autism Spectrum Disorder. Biol Psychiatry 2017; 82:176-185. [PMID: 28460842 PMCID: PMC5524449 DOI: 10.1016/j.biopsych.2017.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a developmental disorder defined by behavioral features that emerge during the first years of life. Research indicates that abnormalities in brain connectivity are associated with these behavioral features. However, the inclusion of individuals past the age of onset of the defining behaviors complicates interpretation of the observed abnormalities: they may be cascade effects of earlier neuropathology and behavioral abnormalities. Our recent study of network efficiency in a cohort of 24-month-olds at high and low familial risk for ASD reduced this confound; we reported reduced network efficiencies in toddlers classified with ASD. The current study maps the emergence of these inefficiencies in the first year of life. METHODS This study uses data from 260 infants at 6 and 12 months of age, including 116 infants with longitudinal data. As in our earlier study, we use diffusion data to obtain measures of the length and strength of connections between brain regions to compute network efficiency. We assess group differences in efficiency within linear mixed-effects models determined by the Akaike information criterion. RESULTS Inefficiencies in high-risk infants later classified with ASD were detected from 6 months onward in regions involved in low-level sensory processing. In addition, within the high-risk infants, these inefficiencies predicted 24-month symptom severity. CONCLUSIONS These results suggest that infants with ASD, even before 6 months of age, have deficits in connectivity related to low-level processing, which contribute to a developmental cascade affecting brain organization and eventually higher-level cognitive processes and social behavior.
Collapse
Affiliation(s)
- John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri; Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri; Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Robert C McKinstry
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Guido Gerig
- Tandon School of Engineering, New York University, Brooklyn, New York
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, Washington
| | - Sarah Paterson
- Center for Autism Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T Schultz
- Center for Autism Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin A Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
187
|
Barrett CE, Hennessey TM, Gordon KM, Ryan SJ, McNair ML, Ressler KJ, Rainnie DG. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally. Mol Autism 2017; 8:42. [PMID: 28775827 PMCID: PMC5539636 DOI: 10.1186/s13229-017-0160-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Background The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Methods Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Results Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. Conclusions As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine E Barrett
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Thomas M Hennessey
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Katelyn M Gordon
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Steve J Ryan
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Morgan L McNair
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Donald G Rainnie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| |
Collapse
|
188
|
DiCriscio AS, Troiani V. Pupil adaptation corresponds to quantitative measures of autism traits in children. Sci Rep 2017; 7:6476. [PMID: 28743966 PMCID: PMC5526922 DOI: 10.1038/s41598-017-06829-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022] Open
Abstract
The pupil is known to reflect a range of psychological and physiological variables, including cognitive effort, arousal, attention, and even learning. Within autism spectrum disorder (ASD), some work has used pupil physiology to successfully classify patients with or without autism. As we have come to understand the heterogeneity of ASD and other neurodevelopmental disorders, the relationship between quantitative traits and physiological markers has become increasingly more important, as this may lead us closer to the underlying biological basis for atypical responses and behaviors. We implemented a novel paradigm designed to capture patterns of pupil adaptation during sustained periods of dark and light conditions in a pediatric sample that varied in intellectual ability and clinical features. We also investigate the relationship between pupil metrics derived from this novel task and quantitative behavioral traits associated with the autism phenotype. We show that pupil metrics of constriction and dilation are distinct from baseline metrics. Pupil dilation metrics correlate with individual differences measured by the Social Responsiveness Scale (SRS), a quantitative measure of autism traits. These results suggest that using a novel, yet simple, paradigm can result in meaningful pupil metrics that correlate with individual differences in autism traits, as measured by the SRS.
Collapse
Affiliation(s)
| | - Vanessa Troiani
- Geisinger Health System, Geisinger Autism and Developmental Medicine Institute (ADMI), Lewisburg, PA, USA
| |
Collapse
|
189
|
Rhodes G, Burton N, Jeffery L, Read A, Taylor L, Ewing L. Facial expression coding in children and adolescents with autism: Reduced adaptability but intact norm-based coding. Br J Psychol 2017; 109:204-218. [DOI: 10.1111/bjop.12257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/06/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Gillian Rhodes
- ARC Centre of Excellence in Cognition and its Disorders; School of Psychology; University of Western Australia; Crawley Western Australia Australia
| | - Nichola Burton
- ARC Centre of Excellence in Cognition and its Disorders; School of Psychology; University of Western Australia; Crawley Western Australia Australia
| | - Linda Jeffery
- ARC Centre of Excellence in Cognition and its Disorders; School of Psychology; University of Western Australia; Crawley Western Australia Australia
| | - Ainsley Read
- ARC Centre of Excellence in Cognition and its Disorders; School of Psychology; University of Western Australia; Crawley Western Australia Australia
| | - Libby Taylor
- ARC Centre of Excellence in Cognition and its Disorders; School of Psychology; University of Western Australia; Crawley Western Australia Australia
| | - Louise Ewing
- ARC Centre of Excellence in Cognition and its Disorders; School of Psychology; University of Western Australia; Crawley Western Australia Australia
- School of Psychology; University of East Anglia; Norwich Norfolk UK
| |
Collapse
|
190
|
Wu Q, Zhang X, Dong D, Wang X, Yao S. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis. Eur Child Adolesc Psychiatry 2017; 26:827-837. [PMID: 28185093 DOI: 10.1007/s00787-017-0953-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/28/2017] [Indexed: 01/26/2023]
Abstract
Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.
Collapse
Affiliation(s)
- Qiong Wu
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiaocui Zhang
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Daifeng Dong
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiang Wang
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Shuqiao Yao
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China. .,National Technology Institute of Psychiatry, Central South University, Changsha, Hunan, People's Republic of China. .,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
191
|
Sartorato F, Przybylowski L, Sarko DK. Improving therapeutic outcomes in autism spectrum disorders: Enhancing social communication and sensory processing through the use of interactive robots. J Psychiatr Res 2017; 90:1-11. [PMID: 28213292 DOI: 10.1016/j.jpsychires.2017.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022]
Abstract
For children with autism spectrum disorders (ASDs), social robots are increasingly utilized as therapeutic tools in order to enhance social skills and communication. Robots have been shown to generate a number of social and behavioral benefits in children with ASD including heightened engagement, increased attention, and decreased social anxiety. Although social robots appear to be effective social reinforcement tools in assistive therapies, the perceptual mechanism underlying these benefits remains unknown. To date, social robot studies have primarily relied on expertise in fields such as engineering and clinical psychology, with measures of social robot efficacy principally limited to qualitative observational assessments of children's interactions with robots. In this review, we examine a range of socially interactive robots that currently have the most widespread use as well as the utility of these robots and their therapeutic effects. In addition, given that social interactions rely on audiovisual communication, we discuss how enhanced sensory processing and integration of robotic social cues may underlie the perceptual and behavioral benefits that social robots confer. Although overall multisensory processing (including audiovisual integration) is impaired in individuals with ASD, social robot interactions may provide therapeutic benefits by allowing audiovisual social cues to be experienced through a simplified version of a human interaction. By applying systems neuroscience tools to identify, analyze, and extend the multisensory perceptual substrates that may underlie the therapeutic benefits of social robots, future studies have the potential to strengthen the clinical utility of social robots for individuals with ASD.
Collapse
Affiliation(s)
- Felippe Sartorato
- Osteopathic Medical Student (OMS-IV), Edward Via College of Osteopathic Medicine (VCOM), Spartanburg, SC, USA
| | - Leon Przybylowski
- Osteopathic Medical Student (OMS-IV), Edward Via College of Osteopathic Medicine (VCOM), Spartanburg, SC, USA
| | - Diana K Sarko
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA; Department of Psychology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
192
|
Ruta L, Famà FI, Bernava GM, Leonardi E, Tartarisco G, Falzone A, Pioggia G, Chakrabarti B. Reduced preference for social rewards in a novel tablet based task in young children with Autism Spectrum Disorders. Sci Rep 2017; 7:3329. [PMID: 28607376 PMCID: PMC5468258 DOI: 10.1038/s41598-017-03615-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/03/2017] [Indexed: 01/03/2023] Open
Abstract
Atypical responsivity to social rewards has been observed in young children with or at risk of Autism Spectrum Disorders (ASD). These observations contributed to the hypothesis of reduced social motivation in ASD. In the current study we develop a novel task to test social reward preference using a tablet computer (iPad), where two differently coloured buttons were associated with a social and a nonsocial rewarding image respectively. 63 young children, aged 14–68 months, with and without a diagnosis of ASD took part in the study. The experimental sessions were also recorded on video, using an in-built webcam on the tablet as well as an external camera. Children with ASD were found to show a reduced relative preference for social rewards, indexed by a lower proportion of touches for the button associated with the social reward image. Greater social preference as measured using the tablet-based task was associated with increased use of social communicative behaviour such as eye contact with the experimenter and social smile in response to the social reward image. These results are consistent with earlier findings from eye-tracking studies, and provide novel empirical insights into atypical social reward responsivity in ASD.
Collapse
Affiliation(s)
- Liliana Ruta
- Institute of Applied Sciences and Intelligent Systems, "Eduardo Caianiello" (ScienceApp) - National Research Council of Italy (CNR), via Torre Bianca, SNC, Istituto Marino, Pad. 4, 98164, Messina, Italy.,Department of Developmental Neuroscience, Stella Maris Scientific Institute, V.le del Tirreno 341, 56018, Calambrone, Pisa, Italy
| | - Francesca Isabella Famà
- Institute of Applied Sciences and Intelligent Systems, "Eduardo Caianiello" (ScienceApp) - National Research Council of Italy (CNR), via Torre Bianca, SNC, Istituto Marino, Pad. 4, 98164, Messina, Italy.,Department of Cognitive Sciences, Psychology, Education and Cultural Studies (COSPECS), University of Messina, Via Concezione 6, 98122, Messina, Italy
| | - Giuseppe Massimo Bernava
- Institute of Applied Sciences and Intelligent Systems, "Eduardo Caianiello" (ScienceApp) - National Research Council of Italy (CNR), via Torre Bianca, SNC, Istituto Marino, Pad. 4, 98164, Messina, Italy
| | - Elisa Leonardi
- Institute of Applied Sciences and Intelligent Systems, "Eduardo Caianiello" (ScienceApp) - National Research Council of Italy (CNR), via Torre Bianca, SNC, Istituto Marino, Pad. 4, 98164, Messina, Italy.,Department of Cognitive Sciences, Psychology, Education and Cultural Studies (COSPECS), University of Messina, Via Concezione 6, 98122, Messina, Italy
| | - Gennaro Tartarisco
- Institute of Applied Sciences and Intelligent Systems, "Eduardo Caianiello" (ScienceApp) - National Research Council of Italy (CNR), via Torre Bianca, SNC, Istituto Marino, Pad. 4, 98164, Messina, Italy
| | - Alessandra Falzone
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies (COSPECS), University of Messina, Via Concezione 6, 98122, Messina, Italy
| | - Giovanni Pioggia
- Institute of Applied Sciences and Intelligent Systems, "Eduardo Caianiello" (ScienceApp) - National Research Council of Italy (CNR), via Torre Bianca, SNC, Istituto Marino, Pad. 4, 98164, Messina, Italy
| | - Bhismadev Chakrabarti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL, UK.
| |
Collapse
|
193
|
Okamoto Y, Kosaka H, Kitada R, Seki A, Tanabe HC, Hayashi MJ, Kochiyama T, Saito DN, Yanaka HT, Munesue T, Ishitobi M, Omori M, Wada Y, Okazawa H, Koeda T, Sadato N. Age-dependent atypicalities in body- and face-sensitive activation of the EBA and FFA in individuals with ASD. Neurosci Res 2017; 119:38-52. [DOI: 10.1016/j.neures.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/28/2017] [Accepted: 02/02/2017] [Indexed: 01/21/2023]
|
194
|
Pavlova MA, Guerreschi M, Tagliavento L, Gitti F, Sokolov AN, Fallgatter AJ, Fazzi E. Social cognition in autism: Face tuning. Sci Rep 2017; 7:2734. [PMID: 28578379 PMCID: PMC5457440 DOI: 10.1038/s41598-017-02790-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
Faces convey valuable information for social cognition, effective interpersonal interaction, and non-verbal communication. Face perception is believed to be atypical in autism, but the origin of this deficit is controversial. Dominant featural face encoding is suggested to be responsible for face tuning scarcity. Here we used a recently developed Face-n-Food paradigm for studying face tuning in individuals with autistic spectrum disorders (ASD). The key benefit of these images is that single components do not explicitly trigger face processing. In a spontaneous recognition task, adolescents with autism and typically developing matched controls were presented with a set of Face-n-Food images in different degree resembling a face (slightly bordering on the Giuseppe Arcimboldo style). The set of images was shown in a predetermined order from the least to most resembling a face. Thresholds for recognition of the Face-n-Food images as a face in ASD individuals were substantially higher than in typically developing controls: they did not report seeing a face on the images, which controls easily recognized as a face, and gave overall fewer face responses. This outcome not only lends support to atypical face tuning, but provides novel insights into the origin of face encoding deficits in autism.
Collapse
Affiliation(s)
- Marina A Pavlova
- Department of Biomedical Magnetic Resonance, Medical School, Eberhard Karls University of Tübingen, Tübingen, Germany. .,Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Michele Guerreschi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lucia Tagliavento
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Filippo Gitti
- Unit of Child and Adolescent Neurology and Psychiatry, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Alexander N Sokolov
- Women's Health Research Institute, Department of Women's Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Unit of Child and Adolescent Neurology and Psychiatry, Asst Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
195
|
Haigh SM. Variable sensory perception in autism. Eur J Neurosci 2017; 47:602-609. [DOI: 10.1111/ejn.13601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah M. Haigh
- Clinical Neurophysiology Research Laboratory; Western Psychiatric Institute and Clinic; Department of Psychiatry; University of Pittsburgh School of Medicine; 3501 Forbes Avenue Suite 420 Pittsburgh PA 15213 USA
| |
Collapse
|
196
|
Khundrakpam BS, Lewis JD, Kostopoulos P, Carbonell F, Evans AC. Cortical Thickness Abnormalities in Autism Spectrum Disorders Through Late Childhood, Adolescence, and Adulthood: A Large-Scale MRI Study. Cereb Cortex 2017; 27:1721-1731. [PMID: 28334080 DOI: 10.1093/cercor/bhx038] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/05/2023] Open
Abstract
Neuroimaging studies in autism spectrum disorders (ASDs) have provided inconsistent evidence of cortical abnormality. This is probably due to the small sample sizes used in most studies, and important differences in sample characteristics, particularly age, as well as to the heterogeneity of the disorder. To address these issues, we assessed abnormalities in ASD within the Autism Brain Imaging Data Exchange data set, which comprises data from approximately 1100 individuals (~6-55 years). A subset of these data that met stringent quality control and inclusion criteria (560 male subjects; 266 ASD; age = 6-35 years) were used to compute age-specific differences in cortical thickness in ASD and the relationship of any such differences to symptom severity of ASD. Our results show widespread increased cortical thickness in ASD, primarily left lateralized, from 6 years onwards, with differences diminishing during adulthood. The severity of symptoms related to social affect and communication correlated with these cortical abnormalities. These results are consistent with the conjecture that developmental patterns of cortical thickness abnormalities reflect delayed cortical maturation and highlight the dynamic nature of morphological abnormalities in ASD.
Collapse
Affiliation(s)
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, QC, CanadaH3H2P1
| | | | - Felix Carbonell
- Montreal Neurological Institute, McGill University, Montreal, QC, CanadaH3H2P1
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, CanadaH3H2P1
| |
Collapse
|
197
|
Parsons OE, Bayliss AP, Remington A. A few of my favorite things: circumscribed interests in autism are not accompanied by increased attentional salience on a personalized selective attention task. Mol Autism 2017; 8:20. [PMID: 28413601 PMCID: PMC5389148 DOI: 10.1186/s13229-017-0132-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autistic individuals commonly show circumscribed or “special” interests: areas of obsessive interest in a specific category. The present study investigated what impact these interests have on attention, an aspect of autistic cognition often reported as altered. In neurotypical individuals, interest and expertise have been shown to result in an automatic attentional priority for related items. Here, we examine whether this change in salience is also seen in autism. Methods Adolescents and young adults with and without autism performed a personalized selective attention task assessing the level of attentional priority afforded to images related to the participant’s specific interests. In addition, participants performed a similar task with generic images in order to isolate any effects of interest and expertise. Crucially, all autistic and non-autistic individuals recruited for this study held a strong passion or interest. As such, any differences in attention could not be solely attributed to differing prevalence of interests in the two groups. In both tasks, participants were asked to perform a central target-detection task while ignoring irrelevant distractors (related or unrelated to their interests). The level of distractor interference under various task conditions was taken as an indication of attentional priority. Results Neurotypical individuals showed the predicted attentional priority for the circumscribed interest images but not generic items, reflecting the impact of their interest and expertise. Contrary to predictions, autistic individuals did not show this priority: processing the interest-related stimuli only when task demands were low. Attention to images unrelated to circumscribed interests was equivalent in the two groups. Conclusions These results suggest that despite autistic individuals holding an intense interest in a particular class of stimuli, there may be a reduced impact of this prior experience and expertise on attentional processing. The implications of this absence of automatic priority are discussed in terms of the behaviors associated with the condition. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Owen E Parsons
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
| | | | - Anna Remington
- Centre for Research in Autism and Education, UCL Institute of Education, University College London, 55-59 Gordon Square, London, WC1H 0NU UK
| |
Collapse
|
198
|
Restoring effects of oxytocin on the attentional preference for faces in autism. Transl Psychiatry 2017; 7:e1097. [PMID: 28418399 PMCID: PMC5416705 DOI: 10.1038/tp.2017.67] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Reduced attentional preference for faces and symptoms of social anxiety are common in autism spectrum disorders (ASDs). The neuropeptide oxytocin triggers anxiolytic functions and enhances eye gaze, facial emotion recognition and neural correlates of face processing in ASD. Here we investigated whether a single dose of oxytocin increases attention to faces in ASD. As a secondary question, we explored the influence of social anxiety on these effects. We tested for oxytocin's effects on attention to neutral faces as compared to houses in a sample of 29 autistic individuals and 30 control participants using a dot-probe paradigm with two different presentation times (100 or 500 ms). A single dose of 24 IU oxytocin was administered in a randomized, double-blind placebo-controlled, cross-over design. Under placebo, ASD individuals paid less attention to faces presented for 500 ms than did controls. Oxytocin administration increased the allocation of attention toward faces in ASD to a level observed in controls. Secondary analyses revealed that these oxytocin effects primarily occurred in ASD individuals with high levels of social anxiety who were characterized by attentional avoidance of faces under placebo. Our results confirm a positive influence of intranasal oxytocin on social attention processes in ASD. Further, they suggest that oxytocin may in particular restore the attentional preference for facial information in ASD individuals with high social anxiety. We conclude that oxytocin's anxiolytic properties may partially account for its positive effects on socio-cognitive functioning in ASD, such as enhanced eye gaze and facial emotion recognition.
Collapse
|
199
|
Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory. J Neurosci 2017; 37:4103-4116. [PMID: 28292834 DOI: 10.1523/jneurosci.3451-16.2017] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory.SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We found that social recognition memory is consolidated through CREB-meditated gene expression in the hippocampus, medial prefrontal cortex, anterior cingulate cortex (ACC), and amygdala. Importantly, network analyses based on c-fos expression suggest that functional connectivity of these four brain regions with other brain regions is increased with time spent in social investigation toward the generation of brain networks to consolidate social recognition memory. Furthermore, our findings suggest that hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions.
Collapse
|
200
|
de Gaulmyn A, Miljkovitch R, Montreuil M. [Exploring joint attention processes in young children with autism spectrum disorder]. Encephale 2017; 44:224-231. [PMID: 28285719 DOI: 10.1016/j.encep.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Symptoms in autism, a neurodevelopmental disorder, appear at an early age. Research consensus shows impairments in communication and especially joint attention, defined as the capacity to intentionally share attention between two persons or a person and an object. Recent studies in autism spectrum disorder (ASD) focus on infants' processes associated to joint attention, such as visual and auditive regulation, attentional engagement and social motivation. The present research's objective is to examine the role of these factors in joint attention. METHODS A group of 50 children with ASD, aged 21 to 50 months, were selected. They went through a clinical assessment which included evaluations of development and symptoms, a scale measuring auditive and visual regulation; a grid elaborated to quantify motivation behavior towards a person and an object in two different engagement states: alone or with an adult and finally a measure of the child's capacity to disengage from an object. A joint attention score was obtained with the Early Communication Scale for Children (ECSC). Results show: (1) an effect of visual regulation on joint attention, (2) a relation between visual regulation and joint attention partially mediated by motivation. Our results clarify the nature of the relationship between visual regulation and joint attention, with motivation modulating visual regulation in its relation to joint attention, (3) a relation between attentional disengagement and joint attention. Visual regulation, social and non-social motivation and attentional disengagement are all associated to joint attention. A clinical measure of motivation behaviors for children with ASD has been created and can be applied in clinical settings, as it is adapted to young children with ASD symptomatology and enriches diagnosis. CONCLUSIONS Statistical analyses of our clinical observations suggest a mediation model highlighting the influence of motivation in the mechanisms underlying joint attention. The measurement of processes and mechanisms associated with social communicative skills at a very early age, here motivation and attentional disengagement processes associated with joint attention, help include these factors in early intervention programs.
Collapse
Affiliation(s)
- A de Gaulmyn
- CREDAT (centre de recherche et de diagnostic pour l'autisme et les troubles apparentés), centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France; Laboratoire de psychopathologie et neuropsychologie (LPN), EA 2027, université Paris 8, 2, rue de la Liberté, 93526 Saint-Denis cedex, France.
| | - R Miljkovitch
- Laboratoire paragraphe, équipe compréhension, raisonnement et acquisition des connaissances (CRAC), EA 349, université Paris 8, 2, rue de la Liberté, 93526 Saint-Denis cedex, France
| | - M Montreuil
- Laboratoire de psychopathologie et neuropsychologie (LPN), EA 2027, université Paris 8, 2, rue de la Liberté, 93526 Saint-Denis cedex, France
| |
Collapse
|