151
|
Ronchetti S, Nocentini G, Petrillo MG, Bianchini R, Sportoletti P, Bastianelli A, Ayroldi EM, Riccardi C. Glucocorticoid-Induced TNFR family Related gene (GITR) enhances dendritic cell activity. Immunol Lett 2010; 135:24-33. [PMID: 20883723 DOI: 10.1016/j.imlet.2010.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 11/25/2022]
Abstract
Glucocorticoid-Induced TNFR family Related gene (GITR), a Tumor Necrosis Factor Receptor Superfamily (TNFRSF) member involved in immune/inflammatory processes, has been previously shown to regulate T cell activation. To study GITR role in antigen presenting cells, we evaluated the capability of bone marrow derived dendritic cells (BMDC) from GITR(-/-) mice to stimulate the activation of CD4(+)CD25(-) T lymphocytes. We found that GITR(-/-) BMDC are weaker stimulators of T cell proliferation than GITR(+/+) BMDC, either in syngenic or allogenic BMDC/T cell co-cultures. Expression of GITR in GITR(-/-) BMDC restored their ability to activate T cells while GITR silencing in GITR(+/+) BMDC inhibited the capability to stimulate T cells. GITR(-/-) BMDC showed a reduced production of the pro-inflammatory cytokine IL-6 and an increased production of the anti-inflammatory cytokine IL-10. Notably, co-culture of CD4(+)CD25(-) cells with GITR(-/-) BMDC originated FoxP3(+) cells, secreting IL-10 and TGF-β. Finally, in vivo injection of GITR(-/-) OVA-loaded BMDC led to a lower cell number and a lower activated cell number in draining lymph nodes than in GITR(+/+) OVA-loaded BMDC injected mice. Together, these results indicate that GITR plays a role in regulating BMDC activity.
Collapse
Affiliation(s)
- Simona Ronchetti
- Pharmacology, Toxicology and Chemotherapy Section, Department of Clinical and Experimental Medicine, University of Perugia, Via del Giochetto, 06122, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Jales A, Falahati R, Mari E, Stemmy EJ, Shen W, Southammakosane C, Herzog D, Ladisch S, Leitenberg D. Ganglioside-exposed dendritic cells inhibit T-cell effector function by promoting regulatory cell activity. Immunology 2010; 132:134-43. [PMID: 20875076 DOI: 10.1111/j.1365-2567.2010.03348.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tumour pathogenesis is characterized by an immunosuppressive microenvironment that limits the development of effective tumour-specific immune responses. This is in part the result of tumour-dependent recruitment and activation of regulatory cells, such as myeloid-derived suppressor cells and regulatory T cells in the tumour microenvironment and draining lymph nodes. Shedding of gangliosides by tumour cells has immunomodulatory properties, suggesting that gangliosides may be a critical factor in initiating an immunosuppressive microenvironment. To better define the immunomodulatory properties of gangliosides on antigen-specific T-cell activation and development we have developed an in vitro system using ganglioside-treated murine bone-marrow-derived dendritic cells to prime and activate antigen-specific CD4(+) T cells from AND T-cell receptor transgenic mice. Using this system, ganglioside treatment promotes the development of a dendritic cell population characterized by decreased CD86 (B7-2) expression, and decreased interleukin-12 and interleukin-6 production. When these cells are used as antigen-presenting cells, CD4 T cells are primed to proliferate normally, but have a defect in T helper (Th) effector cell development. This defect in Th effector cell responses is associated with the development of regulatory T-cell activity that can suppress the activation of previously primed Th effector cells in a contact-dependent manner. In total, these data suggest that ganglioside-exposed dendritic cells promote regulatory T-cell activity that may have long-lasting effects on the development of tumour-specific immune responses.
Collapse
Affiliation(s)
- Alessandra Jales
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine, Washington DC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Brandtzaeg P. Homeostatic impact of indigenous microbiota and secretory immunity. Benef Microbes 2010; 1:211-27. [DOI: 10.3920/bm2010.0009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the process of evolution, the mucosal immune system has generated two layers of anti-inflammatory defence: (1) immune exclusion performed by secretory IgA (and secretory IgM) antibodies to modulate or inhibit surface colonisation of microorganisms and dampen penetration of potentially dangerous antigens; and (2) suppressive mechanisms to avoid local and peripheral hypersensitivity to innocuous antigens, particularly food proteins and components of commensal bacteria. When induced via the gut, the latter phenomenon is called 'oral tolerance', which mainly depends on the development of regulatory T (Treg) cells in mesenteric lymph nodes to which mucosal dendritic cells (DCs) carry exogenous antigens and become conditioned for induction of Treg cells. Mucosally induced tolerance appears to be a rather robust adaptive immune function in view of the fact that large amounts of food proteins pass through the gut, while overt and persistent food allergy is not so common. DCs are 'decision makers' in the immune system when they perform their antigen-presenting function, thus linking innate and adaptive immunity by sensing the exogenous mucosal impact (e.g. conserved microbial molecular patterns). A balanced indigenous microbiota is required to drive the normal development of both mucosa-associated lymphoid tissue, the epithelial barrier with its secretory IgA (and IgM) system, and mucosally induced tolerance mechanisms including the generation of Treg cells. Notably, polymeric Ig receptor (pIgR/SC) knock-out mice that lack secretory IgA and IgM antibodies show reduced epithelial barrier function and increased uptake of antigens from food and commensal bacteria. They therefore have a hyper-reactive immune system and show predisposition for systemic anaphylaxis after sensitisation; but this development is counteracted by enhanced oral tolerance induction as a homeostatic back-up mechanism.
Collapse
Affiliation(s)
- P. Brandtzaeg
- Department and Institute of Pathology, Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
154
|
Murai M, Krause P, Cheroutre H, Kronenberg M. Regulatory T-cell stability and plasticity in mucosal and systemic immune systems. Mucosal Immunol 2010; 3:443-9. [PMID: 20505662 PMCID: PMC2924438 DOI: 10.1038/mi.2010.27] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulatory T cells (Treg) express the forkhead box p3 (Foxp3) transcription factor and suppress pathological immune responses against self and foreign antigens, including commensal microorganisms. Foxp3 has been proposed as a master key regulator for Treg, required for their differentiation, maintenance, and suppressive functions. Two types of Treg have been defined. Natural Treg (nTreg) are usually considered to be a separate sublineage arising during thymus differentiation. Induced Treg (iTreg) originate upon T cell receptor (TCR) stimulation in the presence of tumor growth factor beta. Although under homeostatic conditions most Treg in the periphery are nTreg, special immune challenges in the intestine promote more frequently the generation of iTreg. Furthermore, recent observations have challenged the notion that Treg are a stable sublineage, and they suggest that, particularly under lymphopenic and/or inflammatory conditions, Treg may lose Foxp3 and/or acquire diverse effector functions, especially in the intestine, which may contribute to uncontrolled inflammation.
Collapse
Affiliation(s)
- M Murai
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - P Krause
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - H Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - M Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
155
|
Guilliams M, Henri S, Tamoutounour S, Ardouin L, Schwartz-Cornil I, Dalod M, Malissen B. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur J Immunol 2010; 40:2089-94. [DOI: 10.1002/eji.201040498] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
156
|
Abstract
Systemic lupus erythematosus (SLE) persists as a chronic inflammatory autoimmune disease and is characterized by the production of autoantibodies and immune complexes that affect multiple organs. The underlying mechanism that triggers and sustains disease are complex and involve certain susceptibility genes and environmental factors. There have been several immune mediators linked to SLE including cytokines and chemokines that have been reviewed elsewhere [ 1-3 ]. A number of articles have reviewed the role of B cells and T cells in SLE [ 4-10 ]. Here, we focus on the role of dendritic cells (DC) and innate immune factors that may regulate autoreactive B cells.
Collapse
Affiliation(s)
- Heather M Seitz
- Johnson County Community College, Science Division, Overland Park, Kansas, USA
| | | |
Collapse
|
157
|
Rosales-Corral S, Reiter RJ, Tan DX, Ortiz GG, Lopez-Armas G. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal 2010; 13:193-247. [PMID: 19951033 DOI: 10.1089/ars.2009.2629] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is a CNS reaction to injury in which some severe pathologies, regardless of their origin, converge. The phenomenon emphasizes crosstalk between neurons and glia and reveals a complex interaction with oxidizing agents through redox sensors localized in enzymes, receptors, and transcription factors. When oxidizing pressures cause reversible molecular changes, such as minimal or transitory proinflammatory cytokine overproduction, redox couples provide a means of translating the presence of reactive oxygen or nitrogen species into useful signals in the cell. Additionally, thiol-based redox sensors convey information about localized changes in redox potential induced by physiologic or pathologic situations. They are susceptible to oxidative changes and become key events during neuroinflammation, altering the course of a signaling response or the behavior of specific transcription factors. When oxidative stress augments the pressure on the intracellular environment, the effective reduction potential of redox pairs diminishes, and cell signaling shifts toward proinflammatory and proapoptotic signals, creating a vicious cycle between oxidative stress and neuroinflammation. In addition, electrophilic compounds derived from the oxidative cascade react with key protein thiols and interfere with redox signaling. This article reviews the relevant functional aspects of redox control during the neuroinflammatory process.
Collapse
Affiliation(s)
- Sergio Rosales-Corral
- Lab. Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO) del Instituto Mexicano del Seguro Social (IMSS) , Guadalajara, Jalisco. Mexico.
| | | | | | | | | |
Collapse
|
158
|
Abstract
Numerous genes are involved in innate and adaptive immunity and these have been modified over millions of years. During this evolution, the mucosal immune system has developed two anti-inflammatory strategies: immune exclusion by the use of secretory antibodies to control epithelial colonization of microorganisms and to inhibit the penetration of potentially harmful agents; and immunosuppression to counteract local and peripheral hypersensitivity against innocuous antigens, such as food proteins. The latter strategy is called oral tolerance when induced via the gut. Homeostatic mechanisms also dampen immune responses to commensal bacteria. The mucosal epithelial barrier and immunoregulatory network are poorly developed in newborns. The perinatal period is, therefore, critical with regard to the induction of food allergy. The development of immune homeostasis depends on windows of opportunity during which innate and adaptive immunity are coordinated by antigen-presenting cells. The function of these cells is not only orchestrated by microbial products but also by dietary constituents, including vitamin A and lipids, such as polyunsaturated omega-3 fatty acids. These factors may in various ways exert beneficial effects on the immunophenotype of the infant. The same is true for breast milk, which provides immune-inducing factors and secretory immunoglobulin A, which reinforces the gut epithelial barrier. It is not easy to dissect the immunoregulatory network and identify variables that lead to food allergy. This Review discusses efforts to this end and outlines the scientific basis for future food allergy prevention.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo and Department and Institute of Pathology, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway.
| |
Collapse
|
159
|
Son YM, Ahn SM, Kim GR, Moon YS, Kim SH, Park YM, Lee WK, Min TS, Han SH, Yun CH. Resistin enhances the expansion of regulatory T cells through modulation of dendritic cells. BMC Immunol 2010; 11:33. [PMID: 20591185 PMCID: PMC2914082 DOI: 10.1186/1471-2172-11-33] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 06/30/2010] [Indexed: 12/25/2022] Open
Abstract
Background Resistin, a member of adipokine family, is known to be involved in the modulation of immune responses including inflammatory activity. Interestingly, resistin is secreted by adipocytes in mice and rats whereas it is secreted by leukocytes in humans. However, the mechanism behind the effect of resistin on the expansion of regulatory T cells (Tregs) remains poorly understood. Therefore, we examined regulatory effect of resistin on the induction and cellular modification of Tregs. Results Both protein and mRNA expression of FoxP3, a representative marker of Tregs, increased in a dose-dependent manner when peripheral blood mononuclear cells were treated with resistin. At the same time, resistin had no direct effect on the induction of FoxP3 in CD4+ T cells, suggesting an indirect role through other cells type(s). Since DCs are an important player in the differentiation of T cells, we focused on the role of DCs in the modulation of Tregs by resistin. Resistin suppressed the expression of interferon regulatory factor (IRF)-1 and its target cytokines, IL-6, IL-23p19 and IL-12p40, in DCs. Furthermore, FoxP3 expression is increased in CD4+ T cells when co-cultured with DCs and concomitantly treated with resistin. Conclusion Our results suggest that resistin induces expansion of functional Tregs only when co-cultured with DCs.
Collapse
Affiliation(s)
- Young Min Son
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Martin S, Agarwal R, Murugaiyan G, Saha B. CD40 expression levels modulate regulatory T cells in Leishmania donovani infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:551-9. [PMID: 20525887 DOI: 10.4049/jimmunol.0902206] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendritic cell (DC)-expressed CD40 is shown to play crucial roles in eliciting effector T cell responses, primarily the proinflammatory CD4(+) Th subsets and cytotoxic CD8(+) T cells that eliminate various infections and tumors, respectively. In contrast, DCs are also implied in the generation of regulatory T cells (Tregs) that counteract the functions of the proinflammatory Th subsets and exacerbate infections. However, the role of DC-expressed CD40 in the generation of Tregs is unknown. In this study, we generated bone marrow-derived DCs from mice (on a BALB/c background) expressing different levels of CD40 and tested their relative efficiency in generating Tregs. We observed that low levels of CD40 expression were required for efficient Treg generation. DCs expressing low levels of CD40 induced Tregs, whereas DCs expressing high levels of CD40 induced effector T cells, possibly CD8(+)CD40(+) T cells with a contraregulatory activity; the adoptive transfer of the former DC exacerbated whereas the latter significantly reduced Leishmania donovani infection in BALB/c mice. Similarly, priming of mice with leishmanial Ag-pulsed DCs expressing high levels of CD40 induced host protection against L. donovani challenge infection. In contrast, priming with the low CD40-expressing DC resulted in aggravated infection as compared with the control mice. The results establish that CD40 can play differential roles in Treg differentiation and determine the course of infection. We demonstrate that the knowledge can be efficiently used in adoptive cell transfer therapy against an infectious disease.
Collapse
Affiliation(s)
- Sunil Martin
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | |
Collapse
|
161
|
Li W, Tenner-Racz K, Racz P, Janowicz DM, Fortney KR, Katz BP, Spinola SM. Role played by CD4+FOXP3+ regulatory T Cells in suppression of host responses to Haemophilus ducreyi during experimental infection of human volunteers. J Infect Dis 2010; 201:1839-48. [PMID: 20443736 DOI: 10.1086/652781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus ducreyi causes chancroid, a genital ulcer disease. Among human volunteers, the majority of experimentally infected individuals fail to clear the infection and form pustules. Here, we investigated the role played by CD4(+)FOXP3(+) regulatory T (T(reg)) cells in the formation of pustules. In pustules, there was a significant enrichment of CD4(+)FOXP3(+) T cells, compared with that in peripheral blood. The majority of lesional FOXP3(+) T cells were CD4(+), CD25(+), CD127(lo/-), and CTLA-4(+). FOXP3(+) T cells were found throughout pustules but were most abundant at their base. Significantly fewer lesional CD4(+)FOXP3(+) T cells expressed interferon gamma, compared with lesional CD4(+)FOXP3(-) effector T cells. Depletion of CD4(+)CD25(+) T cells from the peripheral blood of infected and uninfected volunteers significantly enhanced proliferation of H. ducreyi-reactive CD4(+) T cells. Our results indicate that the population of CD4(+)CD25(+)CD127(lo/-)FOXP3(+) T(reg) cells are expanded at H. ducreyi-infected sites and that these cells may play a role in suppressing the host immune response to the bacterium.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | | | | | | | |
Collapse
|
162
|
Forrester JV, Xu H, Kuffová L, Dick AD, McMenamin PG. Dendritic cell physiology and function in the eye. Immunol Rev 2010; 234:282-304. [PMID: 20193026 DOI: 10.1111/j.0105-2896.2009.00873.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The eye and the brain are immunologically privileged sites, a property previously attributed to the lack of a lymphatic circulation. However, recent tracking studies confirm that these organs have good communication through classical site-specific lymph nodes, as well as direct connection through the blood circulation with the spleen. In addition, like all tissues, they contain resident myeloid cell populations that play important roles in tissue homeostasis and the response to foreign antigens. Most of the macrophage and dendritic cell (DC) populations in the eye are restricted to the supporting connective tissues, including the cornea, while the neural tissue (the retina) contains almost no DCs, occasional macrophages (perivascularly distributed), and a specialized myeloid cell type, the microglial cell. Resident microglial cells are normally programmed for immunological tolerance. The privileged status of the eye, however, is relative, as it is susceptible to immune-mediated inflammatory disease, both infectious and autoimmune. Intraocular inflammation (uveitis and uveoretinitis) and corneal graft rejection constitute two of the more common inflammatory conditions affecting the eye leading to considerable morbidity (blindness). As corneal graft rejection occurs almost exclusively by indirect allorecognition, host DCs play a major role in this process and are likely to be modified in their behavior by the ocular microenvironment. Ocular surface disease, including allergy and atopy, also comprise a significant group of immune-mediated eye disorders in which DCs participate, while infectious disease such as herpes simplex keratitis is thought to be initiated via corneal DCs. Intriguingly, some more common conditions previously thought to be degenerative (e.g. age-related macular degeneration) may have an autoimmune component in which ocular DCs and macrophages are critically involved. Recently, the possibility of harnessing the tolerizing potential of DCs has been applied to experimental models of autoimmune uveoretinitis with good effect. This approach has considerable potential for use in translational clinical therapy to prevent sight-threatening disease caused by ocular inflammation.
Collapse
Affiliation(s)
- John V Forrester
- Section of Immunology and Infection, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
163
|
Mizuguchi J. A double-edged sword in B-cell-targeted therapy for inflammatory diseases. Expert Rev Clin Immunol 2010; 5:283-90. [PMID: 20477006 DOI: 10.1586/eci.09.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells of the immune system, including B cells, perform inflammatory functions against microbial invasion, accompanied by anti-inflammatory responses to avoid host damage. B-cell-depletion therapy using anti-CD20 monoclonal antibodies against inflammatory diseases has beneficial or adverse effects depending on the timing and/or microenvironment in which they are used. To achieve effective B-cell-targeted therapy, it is necessary to identify and understand the modes of action of pathogenic and regulatory B cells, which include antibody production, formation of immune complexes, cytokine and chemokine production, cytotoxic killing, lymphoid neogenesis and antigen presentation. B cells interact with multiple cells, including dendritic cells, T cells and natural killer T cells, creating a complex regulatory network. Specific targeting of B-cell subsets and/or their interaction partners might lead to clinical benefits with minimal host damage.
Collapse
Affiliation(s)
- Junichiro Mizuguchi
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
164
|
Kratzer R, Mauvais FX, Burgevin A, Barilleau E, van Endert P. Fusion proteins for versatile antigen targeting to cell surface receptors reveal differential capacity to prime immune responses. THE JOURNAL OF IMMUNOLOGY 2010; 184:6855-64. [PMID: 20483719 DOI: 10.4049/jimmunol.0902555] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Targeting of proteins to APCs is an attractive strategy for eliciting adaptive immune responses. However, the relationship between the choice of the targeted receptor and the quality and quantity of responses remains poorly understood. We describe a strategy for expression of Ags including hydrophobic proteins as soluble fusion proteins that are optimized for proteasome-dependent MHC class I-restricted cross-presentation and form stable complexes with a wide variety of targeting Abs. Upon s.c. immunization, these complexes were initially taken up by CD169+ lymph node subcapsular sinus macrophages. In the OVA model system, receptor-targeted antigenic complexes primed specific T and B cell responses in vitro and in vivo at least 100-fold more efficiently than Ag alone. Comparison of 10 targeting receptors allowed us to establish a ranking with respect to priming of CD8+ T cell responses and demonstrated striking differences with respect to the relative efficacy of CD8+ and CD4+ T cell subset and B cell priming. The described fusion proteins should help in developing optimized strategies for targeted delivery of protein Ags in the context of tolerization or vaccination.
Collapse
Affiliation(s)
- Roland Kratzer
- Institut National de la Santé et de la Recherché Médicale, Unité 1013, Paris, France
| | | | | | | | | |
Collapse
|
165
|
Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol 2010; 28:243-73. [PMID: 20192805 DOI: 10.1146/annurev-immunol-030409-101314] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In mammals, the gastrointestinal tract harbors an extraordinarily dense and complex community of microorganisms. The gut microbiota provide strong selective pressure to the host to evolve adaptive immune responses required for the maintenance of local and systemic homeostasis. The continuous antigenic presence in the gut imposes a dynamic remodeling of gut-associated lymphoid tissues (GALT) and the selection of multiple layered strategies for immunoglobulin (Ig) A production. The composite and dynamic gut environment also necessitates heterogeneous, versatile, and convertible T cells, capable of inhibiting (Foxp3(+) T cells) or helping (T(FH) cells) local immune responses. In this review, we describe recent advances in our understanding of dynamic pathways that lead to IgA synthesis, in gut follicular structures and in extrafollicular sites, by T cell-dependent and T cell-independent mechanisms. We discuss the finely tuned regulatory mechanisms for IgA production and emphasize the role of mucosal IgA in the selection and maintenance of the appropriate microbial composition that is necessary for immune homeostasis.
Collapse
|
166
|
Bedoui S, Kupz A, Wijburg OL, Walduck AK, Rescigno M, Strugnell RA. Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition. THE JOURNAL OF IMMUNOLOGY 2010; 184:2237-42. [PMID: 20164434 DOI: 10.4049/jimmunol.0902871] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Given the central role of intestinal dendritic cells (DCs) in the regulation of gut immune responses, it is not surprising that several bacterial pathogens have evolved strategies to prevent or bypass recognition by DCs. In this article, we will review recent findings on the interaction between intestinal DCs and prototypical bacterial pathogens, such as Salmonella, Yersinia, or Helicobacter. We will discuss the different approaches with which these pathogens seek to evade DC recognition and subsequent T cell activation. These diverse strategies span to include mounting irrelevant immune responses, inhibition of Ag presentation by DCs, and stretch as far as to manipulate the Th1/Th2 balance of CD4(+) T cells in the bacteria's favor.
Collapse
Affiliation(s)
- Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne, Gate 11, Royal Parade, Parkville 3010, Victoria, Australia. E-mail address:
| | | | | | | | | | | |
Collapse
|
167
|
Abstract
Adaptive CD4 T-cell responses are important in the pathogenesis of chronic Helicobacter pylori gastritis. However, the gastric antigen-presenting cells that induce these responses have not yet been identified. Here we show that dendritic cells (DCs) are present in the gastric mucosa of healthy subjects and are more prevalent and more activated in the gastric mucosa of H. pylori-infected subjects. H. pylori induced gastric DCs isolated from noninfected subjects to express increased levels of CD11c, CD86 and CD83, and to secrete proinflammatory cytokines, particularly interleukin (IL)-6 and IL-8. Importantly, gastric DCs pulsed with live H. pylori, but not control DCs, mediated T-cell secretion of interferon-gamma. The ability of H. pylori to induce gastric DC maturation and stimulate gastric DC activation of Th1 cells implicates gastric DCs as initiators of the immune response to H. pylori.
Collapse
|
168
|
Zheng X, Suzuki M, Ichim TE, Zhang X, Sun H, Zhu F, Shunnar A, Garcia B, Inman RD, Min W. Treatment of autoimmune arthritis using RNA interference-modulated dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6457-64. [PMID: 20435931 DOI: 10.4049/jimmunol.0901717] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dendritic cells (DCs) have a dual ability to either stimulate or suppress immunity, which is primarily associated with the expression of costimulatory molecules. Ag-loaded DCs have shown encouraging clinical results for treating cancer and infectious diseases; however, the use of these cells as a means of suppressing immune responses is only recently being explored. Here, we describe the induction of RNA interference through administering short interfering RNA (siRNA) as a means of specifically generating tolerogenic DCs. Knockdown of CD40, CD80, and CD86, prior to loading DCs with the arthritogenic Ag collagen II, led to a population of cells that could effectively suppress onset of collagen-induced arthritis. Maximum benefits were observed when all three genes were concurrently silenced. Disease suppression was associated with inhibition of collagen II-specific Ab production and suppression of T cell recall responses. Downregulation of IL-2, IFN-gamma, TNF-alpha, and IL-17 and increased FoxP3(+) cells with regulatory activity were observed in collagen-induced arthritis mice treated with siRNA-transfected DCs. Collectively, these data support the use of ex vivo gene manipulation in DCs using siRNA to generate tailor-made tolerogenic vaccines for treating autoimmunity.
Collapse
Affiliation(s)
- Xiufen Zheng
- Department of Surgery, University of Western Ontario, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res 2010; 107:57-117. [PMID: 20399961 DOI: 10.1016/s0065-230x(10)07003-x] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At the present time, regulatory T cells (Tregs) are an integral part of immunology but the route from discovery of "suppressive" lymphocytes in the 1980s to the current established concept of Tregs almost 20 years later has been a rollercoaster ride. Tregs are essential for maintaining self-tolerance as defects in their compartment lead to severe autoimmune diseases. This vitally important function exists alongside the detrimental effects on tumor immunosurveillance and antitumor immunity. Beginning with the identification of CD4(+)CD25(+) Tregs in 1995, the list of Treg subsets, suppressive mechanisms, and knowledge about their various origins is steadily growing. Increase in Tregs within tumors and circulation of cancer patients, observed in early studies, implied their involvement in pathogenesis and disease progression. Several mechanisms, ranging from proliferation to specific trafficking networks, have been identified to account for their systemic and/or local accumulation. Since various immunotherapeutic approaches are being utilized for cancer therapy, various strategies to overcome the antagonistic effects exerted by Tregs are being currently explored. An overview on the biology of Tregs present in cancer patients, their clinical impact, and methods for modulating them is given in this review. Despite the extensive studies on Tregs in cancer many questions still remain unanswered. Even the paradigm that Tregs generally are disadvantageous for the control of malignancies is now under scrutiny. Insight into the specific role of Tregs in different types of neoplasias is the key for targeting them in a way that is beneficial for the clinical outcome.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Oncology and Pathology, Karolinska University Hospital, Cancer Center Karolinska R8:01, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
170
|
Ochiel DO, Ghosh M, Fahey JV, Guyre PM, Wira CR. Human uterine epithelial cell secretions regulate dendritic cell differentiation and responses to TLR ligands. J Leukoc Biol 2010; 88:435-44. [PMID: 20385795 DOI: 10.1189/jlb.1009700] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The balance between immunity and tolerance in the endometrium is governed by dynamic interactions of UEC and immune cells including DC. In this study, we tested the hypothesis that soluble immune mediators secreted by UEC modulate the differentiation and functions of human DC. We found that DC differentiated with CM from polarized UEC (i.e., CM-DC) expressed significantly lower surface CD86. Upon activation with LPS or PIC, the expression of CD80, CD86, and CD83 was decreased significantly on CM-DC relative to Con-DC. Further, mRNA for TLR3, TLR4, and TLR5 was decreased significantly in CM-DC relative to Con-DC. As a functional read-out of the effect of CM on DC, we determined the following parameters: First, analysis of cytokine production showed that when compared with Con-DC, CM-DC responded to LPS or PIC stimulation with enhanced IL-10 production but undetectable IL-12p70 secretion. Second, RT-PCR analysis showed that CM-DC significantly expressed higher mRNA for IDO, an immune tolerance-promoting enzyme. Lastly, in a MLR assay, CM-DC induced significantly lower allogeneic proliferative responses compared with Con-DC. These findings indicate collectively that epithelial cells confer a tolerogenic phenotype to DC in the endometrium. Our results suggest novel cellular and molecular mechanisms for the regulation of adaptive immunity within the FRT.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
171
|
Abstract
The intestine is subjected to a barrage of insults from food, bacterial flora, and pathogens. Despite this constant antigenic challenge, the mucosal tissues lining the intestinal tract remain largely under control. The mechanisms regulating the homeostatic balance in the gut have been investigated for many years by many groups, but the precise nature of the regulatory control remains elusive. In this review, we provide an overview of pathways proposed to be involved in dampening the inflammatory response and maintaining the homeostatic balance in the intestine, and how these pathways may be disrupted in ulcerative colitis and Crohn's disease.
Collapse
|
172
|
Blanchfield JL, Mannie MD. A GMCSF-neuroantigen fusion protein is a potent tolerogen in experimental autoimmune encephalomyelitis (EAE) that is associated with efficient targeting of neuroantigen to APC. J Leukoc Biol 2010; 87:509-21. [PMID: 20007248 DOI: 10.1189/jlb.0709520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokine-NAg fusion proteins represent an emerging platform for specific targeting of self-antigen to particular APC subsets as a means to achieve antigen-specific immunological tolerance. This study focused on cytokine-NAg fusion proteins that targeted NAg to myeloid APC. Fusion proteins contained GM-CSF or the soluble extracellular domain of M-CSF as the N-terminal domain and the encephalitogenic 69-87 peptide of MBP as the C-terminal domain. GMCSF-NAg and MCSF-NAg fusion proteins were approximately 1000-fold and 32-fold more potent than NAg in stimulating antigenic proliferation of MBP-specific T cells, respectively. The potentiated antigenic responses required cytokine-NAg covalent linkage and receptor-mediated uptake. That is, the respective cytokines did not potentiate antigenic responses when cytokine and NAg were added as separate molecules, and the potentiated responses were inhibited specifically by the respective free cytokine. Cytokine-dependent targeting of NAg was specific for particular subsets of APC. GMCSF-NAg and MCSF-NAg targeted NAg to DC and macrophages; conversely, IL4-NAg and IL2-NAg fusion proteins, respectively, induced an 1000-fold enhancement in NAg reactivity in the presence of B cell and T cell APC. GMCSF-NAg significantly attenuated severity of EAE when treatment was completed before encephalitogenic challenge or alternatively, when treatment was initiated after onset of EAE. MCSF-NAg also had significant tolerogenic activity, but GMCSF-NAg was substantially more efficacious as a tolerogen. Covalent GMCSF-NAg linkage was required for prevention and treatment of EAE. In conclusion, GMCSF-NAg was highly effective for targeting NAg to myeloid APC and was a potent, antigen-specific tolerogen in EAE.
Collapse
Affiliation(s)
- J Lori Blanchfield
- The Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | | |
Collapse
|
173
|
Mortimer L, Chadee K. The immunopathogenesis of Entamoeba histolytica. Exp Parasitol 2010; 126:366-80. [PMID: 20303955 DOI: 10.1016/j.exppara.2010.03.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/08/2010] [Accepted: 03/12/2010] [Indexed: 12/17/2022]
Abstract
Amebiasis is the disease caused by the enteric dwelling protozoan parasite Entamoeba histolytica. The WHO considers amebiasis as one of the major health problems in developing countries; it is surpassed by only malaria and schistosomiasis for death caused by parasitic infection. E. histolytica primarily lives in the colon as a harmless commensal, but is capable of causing devastating dysentery, colitis and liver abscess. What triggers the switch to a pathogenic phenotype and the onset of disease is unknown. We are becoming increasingly aware of the complexity of the host-parasite interaction. During chronic stages of amebiasis, the host develops an immune response that is incapable of eliminating tissue resident parasites, while the parasite actively immunosuppresses the host. However, most individuals with symptomatic infections succumb only to an episode of dysentery. Why most halt invasion and a minority progress to chronic disease remains poorly understood. This review presents a current understanding of the immune processes that shape the outcome of E. histolytica infections during its different stages.
Collapse
Affiliation(s)
- Leanne Mortimer
- Faculty of Medicine, Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada
| | | |
Collapse
|
174
|
Abstract
Using 'knockin' mice to track and ablate dendritic cells (DCs) expressing notably the langerin (Cd207) gene, it has been possible to identify five DC subsets within the skin and to assess whether functional specialization exists among them. The present review summarizes recent information concerning the phenotype and the function of these five DC subsets before and after their migration to cutaneous draining lymph nodes. Moreover, it integrates this information into a unifying model that emphasizes the similarities that exist among the mouse DC subsets that are found in both lymphoid and nonlymphoid tissues.
Collapse
|
175
|
|
176
|
Doherty TM, Wallis RS, Zumla A. Biomarkers of disease activity, cure, and relapse in tuberculosis. Clin Chest Med 2010; 30:783-96, x. [PMID: 19925967 DOI: 10.1016/j.ccm.2009.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The changing face of tuberculosis, with epidemics fueled by HIV and urbanization in much of the world and a relative increase in the importance of latent tuberculosis as a source of cases in the more economically developed countries, has led to a demand for more robust, clinically applicable diagnostic tools. As a result, research aiming to identify biomarkers of Mycobacterium tuberculosis infection and disease has flourished. This article discusses the most recent findings of that work.
Collapse
Affiliation(s)
- T Mark Doherty
- Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, 2300 København S, Denmark.
| | | | | |
Collapse
|
177
|
Abstract
PURPOSE OF REVIEW Food allergy is a serious and growing problem. Although the current standard of care for patients with food allergies is based on avoidance of the trigger, increased understanding of the mechanisms involved in oral tolerance has shifted focus of treatment and prevention toward inducing tolerance. Here we discuss the relationship of food allergy to oral tolerance and review recent oral tolerance studies, focusing on the mechanistic role of antigen presenting cells and the generation of regulatory T cells in mice and humans. RECENT FINDINGS Specialized intestinal antigen presenting cells are conditioned by spatial and soluble microenvironmental factors to promote tolerance to dietary antigen primarily via the induction of regulatory T cells. Retinoic acid, a vitamin A metabolite, has been recently identified as a key environmental factor in this process. SUMMARY Future clinical trials for food allergy immunotherapy will benefit from approaches, which target the oral tolerance pathways currently being elucidated.
Collapse
|
178
|
Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood 2010; 115:1958-68. [PMID: 20068222 DOI: 10.1182/blood-2009-09-245274] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Small intestinal CD103(+) dendritic cells (DCs) have the selective ability to promote de novo generation of regulatory T cells via the production of retinoic acid (RA). Considering that aldehyde dehydrogenase (ALDH) activity controls the production of RA, we used a flow cytometry-based assay to measure ALDH activity at the single-cell level and to perform a comprehensive analysis of the RA-producing DC populations present in lymphoid and nonlymphoid mouse tissues. RA-producing DCs were primarily of the tissue-derived, migratory DC subtype and can be readily found in the skin and in the lungs as well as in their corresponding draining lymph nodes. The RA-producing skin-derived DCs were capable of triggering the generation of regulatory T cells, a finding demonstrating that the presence of RA-producing, tolerogenic DCs is not restricted to the intestinal tract as previously thought. Unexpectedly, the production of RA by skin DCs was restricted to CD103(-) DCs, indicating that CD103 expression does not constitute a "universal" marker for RA-producing mouse DCs. Finally, Toll-like receptor (TLR) triggering or the presence of a commensal microflora was not essential for the induction of ALDH activity in the discrete ALDH(+) DC subsets that characterize tissues constituting environmental interfaces.
Collapse
|
179
|
Abstract
Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing, and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurrence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self- and nonself-antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immunosuppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs.
Collapse
|
180
|
Miloud T, Hämmerling GJ, Garbi N. Review of murine dendritic cells: types, location, and development. Methods Mol Biol 2010; 595:21-42. [PMID: 19941103 DOI: 10.1007/978-1-60761-421-0_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dendritic cells (DCs) are key coordinators of the immune response, governing the choice between tolerance and immunity. DCs are professional antigen-presenting cells capable of presenting antigen on MHC molecules and priming CD4 and CD8 T-cell responses. They form a heterogeneous group of cells based on phenotype, location, and function. In this review, murine DCs will be discussed regarding their function with special emphasis on their tissue distribution. Recent findings on DC homeostasis during cancer progression will be presented. Finally, the developmental pathways leading to DC differentiation from their precursors will be summarized.
Collapse
Affiliation(s)
- Tewfik Miloud
- Division of Molecular Immunology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | | | |
Collapse
|
181
|
Larmonier N, Fraszczak J, Lakomy D, Bonnotte B, Katsanis E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol Immunother 2010; 59:1-11. [PMID: 19618185 PMCID: PMC11031008 DOI: 10.1007/s00262-009-0736-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
Abstract
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4(+) or CD8(+) effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.
Collapse
Affiliation(s)
- Nicolas Larmonier
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | | | - Daniela Lakomy
- Faculty of Medicine, INSERM UMR 866, IFR 100, Dijon, France
| | | | - Emmanuel Katsanis
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
182
|
Wang Q, Liu C, Zhu F, Liu F, Zhang P, Guo C, Wang X, Li H, Ma C, Sun W, Zhang Y, Chen W, Zhang L. Reoxygenation of hypoxia-differentiated dentritic cells induces Th1 and Th17 cell differentiation. Mol Immunol 2009; 47:922-31. [PMID: 19910049 DOI: 10.1016/j.molimm.2009.09.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/24/2009] [Accepted: 09/30/2009] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are often exposed to various oxygen tensions under physiological and pathological conditions. However, the effects of various oxygen tensions on DC functions remain unclear. In this study, we showed that hypoxia-differentiated DCs expressed lower levels of MHC-II molecule, co-stimulatory molecules (CD80, CD86) and proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha), but higher levels of immunoregulatory cytokine transforming growth factor-beta (TGF-beta) than normoxia-differentiated DCs. Unexpectedly, re-exposure of hypoxia-differentiated DCs to saturated oxygen (reoxygenation) completely restored their mature phenotype and function. Specifically, the reoxygenated DCs induced naïve CD4(+) T cells to differentiate into Th1 and Th17 effector cells, but deceased the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). The data indicate that hypoxic microenvironment suppresses the maturation and function of murine DCs. Reoxygenation of hypoxia-differentiated DCs however results in complete recovery of their mature phenotype and function, and has strong ability to drive immune response toward a proinflammatory direction, suggesting reoxygenated DCs may contribute to inflammation of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qun Wang
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan 250012, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Oshiro TM, de Almeida A, da Silva Duarte AJ. Dendritic cell immunotherapy for HIV infection: from theory to reality. Immunotherapy 2009; 1:1039-51. [DOI: 10.2217/imt.09.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Knowledge concerning the immunology of dendritic cells (DCs) accumulated over the last few decades and the development of methodologies to generate and manipulate these cells in vitro has made their therapeutic application a reality. Currently, clinical protocols for DC-based therapeutic vaccine in HIV-infected individuals show that it is a safe and promising approach. Concomitantly, important advances continue to be made in the development of methodologies to optimize DC acquisition, as well as the selection of safe, immunogenic HIV antigens and the evaluation of immune response in treated individuals.
Collapse
Affiliation(s)
- Telma Miyuki Oshiro
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alexandre de Almeida
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| |
Collapse
|
184
|
Hirata N, Yanagawa Y, Satoh M, Ogura H, Ebihara T, Noguchi M, Matsumoto M, Togashi H, Seya T, Onoé K, Iwabuchi K. Dendritic cell-derived TNF-alpha is responsible for development of IL-10-producing CD4+ T cells. Cell Immunol 2009; 261:37-41. [PMID: 19931858 DOI: 10.1016/j.cellimm.2009.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 10/21/2009] [Indexed: 11/26/2022]
Abstract
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4(+) T cells. We examined the role of TNF-alpha in generation of the IL-10-producing CD4(+) T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-alpha(-/-) mice were cocultured with CD4(+) T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA(323-339) peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4(+) T cells, while the ability of the TNF-alpha(-/-) DCs to induce these CD4(+) T cells was considerably depressed. Addition of exogenous TNF-alpha recovered the impaired ability of the TNF-alpha(-/-) DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-alpha(-/-) and WT DCs after their maturation by LPS. Thus, TNF-alpha appears to be critical for the generation of IL-10-producing CD4(+) T cells during the antigen presentation by immature DCs.
Collapse
Affiliation(s)
- Noriyuki Hirata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Ménétrier-Caux C, Gobert M, Caux C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res 2009; 69:7895-8. [PMID: 19808962 DOI: 10.1158/0008-5472.can-09-1642] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The presence of regulatory T cells (Treg) has been described in a large panel of solid tumors. However, their impact on tumor progression differs according to the tumor type analyzed. We recently obtained evidence in breast carcinoma that Treg localized within lymphoid aggregates, but not in the tumor bed, have a negative impact on patients' survival. Moreover, we showed selective Treg recruitment through CCR4/CCL22 in the lymphoid aggregates upon contact with dendritic cells (DC), where they became strongly and selectively activated (ICOS(high)) and block conventional T-cell response. Here, we discuss the meaning and potential implication of these novel findings.
Collapse
Affiliation(s)
- Christine Ménétrier-Caux
- Inserm, U590, Centre Léon Bérard, Equipe Cytokines et Cancers, Université Lyon 1, ISPB, and IFR62, Lyon, France.
| | | | | |
Collapse
|
186
|
Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S, Yamamoto K. CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A 2009; 106:13974-9. [PMID: 19666526 PMCID: PMC2729005 DOI: 10.1073/pnas.0906872106] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Indexed: 12/15/2022] Open
Abstract
Regulatory T cells (Tregs) are engaged in the maintenance of immunological self-tolerance and immune homeostasis. IL-10 has an important role in maintaining the normal immune state. Here, we show that IL-10-secreting Tregs can be delineated in normal mice as CD4(+)CD25(-)Foxp3(-) T cells that express lymphocyte activation gene 3 (LAG-3), an MHC-class-II-binding CD4 homolog. Although approximately 2% of the CD4(+)CD25(-) T cell population consisted of CD4(+)CD25(-)LAG3(+) T cells in the spleen, CD4(+)CD25(-)LAG3(+) T cells are enriched to approximately 8% in the Peyer's patch. They are hypoproliferative upon in vitro antigenic stimulation and suppress in vivo development of colitis. Gene expression analysis reveals that CD4(+)CD25(-)LAG3(+) Tregs characteristically express early growth response gene 2 (Egr-2), a key molecule for anergy induction. Retroviral gene transfer of Egr-2 converts naïve CD4(+) T cells into the IL-10-secreting and LAG-3-expressing phenotype, and Egr-2-transduced CD4(+) T cells exhibit antigen-specific immunosuppressive capacity in vivo. Unlike Foxp3(+) natural Tregs, high-affinity interactions with selecting peptide/MHC ligands expressed in the thymus do not induce the development of CD4(+)CD25(-)LAG3(+) Tregs. In contrast, the number of CD4(+)CD25(-)LAG3(+) Tregs is influenced by the presence of environmental microbiota. Thus, IL-10-secreting Egr-2(+)LAG3(+)CD4(+) Tregs can be exploited for the control of peripheral immunity.
Collapse
Affiliation(s)
- Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Mihoko Shibuya
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Shimon Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| |
Collapse
|
187
|
Nguyen KD, Vanichsarn C, Nadeau KC. Impaired IL-10-dependent induction of tolerogenic dendritic cells by CD4+CD25hiCD127lo/- natural regulatory T cells in human allergic asthma. Am J Respir Crit Care Med 2009; 180:823-33. [PMID: 19679691 DOI: 10.1164/rccm.200905-0761oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Tolerogenic dendritic cells and natural regulatory T cells have been implicated in the process of infectious tolerance in human allergic asthma. However, the significance of the influence of natural regulatory T cells on tolerogenic dendritic cells in the disease has not been investigated. OBJECTIVES We aimed to characterize the mechanism of induction of the tolerogenic phenotype in circulating blood dendritic cells by allergic asthmatic natural regulatory T cells. METHODS The study was performed in a cohort of 21 subjects with allergic asthma, 21 healthy control subjects, and 21 subjects with nonallergic asthma. We cultured blood dendritic cells with natural regulatory T cells to study the induction of tolerogenic dendritic cells. Flow cytometry and proliferation assays were employed to analyze phenotype and function of dendritic cells as well as IL-10 production from natural regulatory T cells. MEASUREMENTS AND MAIN RESULTS Dendritic cells cultured with natural regulatory T cells up-regulated IL-10, down-regulated costimulatory molecules, and stimulated the proliferation of CD4(+)CD25(-) effector T cells less potently. Allergic asthmatic natural regulatory T cells were significantly less efficient in inducing this tolerogenic phenotype of dendritic cells compared with healthy control and nonallergic asthmatic counterparts. Furthermore, this defective function of natural regulatory T cells was associated with their decreased IL-10 expression, disease severity, and could be reversed by oral corticosteroid therapy. CONCLUSIONS These results provided the first evidences of impaired induction of tolerogenic dendritic cells mediated by natural regulatory T cells in human allergic asthma.
Collapse
Affiliation(s)
- Khoa D Nguyen
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
188
|
McNeilly TN, Devaney E, Matthews JB. Teladorsagia circumcincta in the sheep abomasum: defining the role of dendritic cells in T cell regulation and protective immunity. Parasite Immunol 2009; 31:347-56. [PMID: 19527450 DOI: 10.1111/j.1365-3024.2009.01110.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parasitic nematodes of the small-ruminant gastrointestinal tract pose a problem worldwide. The impact of these pathogens is worsened by the emergence of anthelmintic resistance to all three available classes of drugs. In addition to causing considerable economic loss, these parasites are detrimental to the health and welfare of sheep and goats. Vaccination offers an alternative approach to drug-based control and a great deal of investment has gone into the investigation of protective antigens for some of these nematode species. However, attempts at vaccination are hindered by a lack of understanding of how best to promote protective immunity to nematode species, such as Teladorsagia circumcincta, which inhabits the abomasum of sheep. This situation contrasts with that in murine models of gastrointestinal nematode infection, where the basis of protective immunity is increasingly well understood. In this review, we discuss the current knowledge of the immune effector mechanisms elicited by T. circumcincta and consider the probable role of dendritic cells in the initiation of both effector and regulatory responses in the abomasum.
Collapse
Affiliation(s)
- T N McNeilly
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | | | | |
Collapse
|
189
|
Current World Literature. Curr Opin Allergy Clin Immunol 2009; 9:386-90. [DOI: 10.1097/aci.0b013e32832eb836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
190
|
Chen W, Konkel JE. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells. J Mol Cell Biol 2009; 2:30-6. [PMID: 19648226 DOI: 10.1093/jmcb/mjp004] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.
Collapse
Affiliation(s)
- Wanjun Chen
- Mucosal Immunology Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
191
|
Perruche S, Zhang P, Maruyama T, Bluestone JA, Saas P, Chen W. Lethal effect of CD3-specific antibody in mice deficient in TGF-beta1 by uncontrolled flu-like syndrome. THE JOURNAL OF IMMUNOLOGY 2009; 183:953-61. [PMID: 19561097 DOI: 10.4049/jimmunol.0804076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD3-specific Ab therapy results in a transient, self-limiting, cytokine-associated, flu-like syndrome in experimental animals and in patients, but the underlying mechanism for this spontaneous resolution remains elusive. By using an in vivo model of CD3-specific Ab-induced flu-like syndrome, we show in this paper that a single injection of sublethal dose of the Ab killed all TGF-beta1(-/-) mice. The death of TGF-beta1(-/-) mice was associated with occurrence of this uncontrolled flu-like syndrome, as demonstrated by a sustained storm of systemic inflammatory TNF and IFN-gamma cytokines. We present evidence that deficiency of professional phagocytes to produce TGF-beta1 after apoptotic T cell clearance may be responsible, together with hypersensitivity of T cells to both activation and apoptosis, for the uncontrolled inflammation. These findings indicate a key role for TGF-beta1 and phagocytes in protecting the recipients from lethal inflammation and resolving the flu-like syndrome after CD3-specific Ab treatment. The study may also provide a novel molecular mechanism explaining the early death in TGF-beta1(-/-) mice.
Collapse
Affiliation(s)
- Sylvain Perruche
- Mucosal Immunology Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
PURPOSE OF REVIEW Every year, over 8 million people develop tuberculosis and nearly 1.8 million die from it, despite extensive vaccination and drug treatment programmes. It is increasingly recognized that the diagnosis of tuberculosis, which relies heavily on century-old techniques, is one of the weakest links in the chain of tuberculosis control, hampering not just treatment but also the development of new drugs and vaccines. As a result, recent years have seen the initiation of large-scale studies aiming to identify biomarkers of Mycobacterium tuberculosis infection and disease. This review discusses initial results and future prospects for that work. RECENT FINDINGS The key finding from recent work has been that no one factor seems able to explain the complex course of Mycobacterium tuberculosis infection. Multifactorial analyses have identified a variety of genes and proteins, mostly involved in bacterial persistence or host responses, that offer promise as biomarkers for different disease stages. SUMMARY The challenge now is to validate the suggested biomarkers being described and then reduce them to clinical practice. If this can be done, it offers the possibility of greatly improved clinical management of tuberculosis, allowing segregation of patients and contacts into appropriate treatment regimens.
Collapse
|
193
|
Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum Immunol 2009; 70:345-52. [PMID: 19405173 DOI: 10.1016/j.humimm.2009.01.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DC) induce or tolerize T cells, and tolerogenic DCs can promote the development of regulatory T cells (Treg) with suppressive activity. Thus, the possibility of manipulating DCs and enhancing their tolerogenic properties using different pharmacologic or biologic agents could be exploited to control a variety of chronic immuno-mediated inflammatory conditions. Among agents able to promote induction of tolerogenic DCs, vitamin D receptor (VDR) agonists have attracted considerable attention, also because of their potential in clinical translation. DCs are key targets for the immunomodulatory effects of VDR agonists, which shape DC phenotype and function, enhancing their tolerogenicity in adaptive immune responses. Tolerogenic DCs induced by a short treatment with VDR agonists promote CD4+CD25+Foxp3+ Treg cells that are able to mediate transplantation tolerance and to arrest the development of autoimmune diseases. VDR agonists not only favor induction of CD4+CD25+ Treg cells, but can also enhance their recruitment at inflammatory sites. The tolerogenic properties induced by VDR agonists in DCs, leading to enhanced Treg cell development, likely contribute to the beneficial activity of these hormone-like molecules in autoimmune disease and graft rejection models, highlighting their applicability to the treatment of chronic inflammatory conditions sustained by autoreactive or alloreactive immune responses.
Collapse
|
194
|
Abstract
Induction of antigen-specific tolerance is critical to prevent autoimmunity, to maintain immune homeostasis, and to achieve transplant tolerance. In addition to their classic role as sentinels of the immune response, dendritic cells (DCs) play important roles in maintaining peripheral tolerance through the induction/activation of regulatory T (Treg) cells. The possibility of generating tolerogenic DCs opens new therapeutic perspectives in autoimmune and inflammatory diseases. Characterizing endogenous factors that contribute to the development of tolerogenic DCs is highly relevant. Some neuropeptides that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance. Here, we examine the latest research findings indicating that the role of these neuropeptides in immune tolerance is partially mediated through differential effects on DC functions, which depend on the differentiation and activation states. Importantly, neuropeptides such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and melanocyte-stimulating hormone have demonstrated an ability to induce tolerogenic DCs with the capacity to generate CD4 and CD8 Treg cells. The possibility of generating or expanding ex vivo tolerogenic DCs with neuropeptides indicates the therapeutic potential for autoimmune diseases and graft-versus-host disease after allogeneic transplantation in humans.
Collapse
Affiliation(s)
- Mario Delgado
- Instituto de Parasitologia y Biomedicina, Consejo Superior de Investigaciones Cientificas, Granada 18100, Spain.
| |
Collapse
|
195
|
Abstract
Foxp3-expressing regulatory T (Treg) cells suppress pathology mediated by immune responses against self and foreign antigens and commensal microorganisms. Sustained expression of the transcription factor Foxp3, a key distinguishing feature of Treg cells, is required for their differentiation and suppressor function. In addition, Foxp3 expression prevents deviation of Treg cells into effector T cell lineages and confers dependence of Treg cell survival and expansion on growth factors, foremost interleukin-2, provided by activated effector T cells. In this review we discuss Treg cell differentiation and maintenance with a particular emphasis on molecular regulation of Foxp3 expression, arguably a key to mechanistic understanding of biology of regulatory T cells.
Collapse
Affiliation(s)
- Steven Z Josefowicz
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
196
|
Tran DQ, Shevach EM. Therapeutic potential of FOXP3(+) regulatory T cells and their interactions with dendritic cells. Hum Immunol 2009; 70:294-9. [PMID: 19236900 PMCID: PMC11007672 DOI: 10.1016/j.humimm.2009.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 12/17/2022]
Abstract
FOXP3(+) regulatory T cells, a unique subset of T cells, are critical for orchestrating an immune response and preventing self-reactivity. With the increasing prevalence and unsatisfactory treatment of autoimmunity, allergic diseases, cancer and chronic infections, much attention has been focused on understanding their mechanisms of action in order to manipulate their function. One goal is to develop drugs or biologics that can enhance or abrogate their functions. Another approach is to utilize Tregs in adoptive cell-based therapy to treat autoimmune diseases or transplant-related complications. This review will focus on their therapeutic potential and mechanisms of action, particularly their interaction with dendritic cells.
Collapse
Affiliation(s)
- Dat Q. Tran
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ethan M. Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
197
|
Sellin CI, Jégou JF, Renneson J, Druelle J, Wild TF, Marie JC, Horvat B. Interplay between virus-specific effector response and Foxp3 regulatory T cells in measles virus immunopathogenesis. PLoS One 2009; 4:e4948. [PMID: 19319188 PMCID: PMC2655717 DOI: 10.1371/journal.pone.0004948] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/24/2009] [Indexed: 12/21/2022] Open
Abstract
Measles is a highly contagious childhood disease associated with an immunological paradox: although a strong virus-specific immune response results in virus clearance and the establishment of a life-long immunity, measles infection is followed by an acute and profound immunosuppression leading to an increased susceptibility to secondary infections and high infant mortality. In certain cases, measles is followed by fatal neurological complications. To elucidate measles immunopathology, we have analyzed the immune response to measles virus in mice transgenic for the measles virus receptor, human CD150. These animals are highly susceptible to intranasal infection with wild-type measles strains. Similarly to what has been observed in children with measles, infection of suckling transgenic mice leads to a robust activation of both T and B lymphocytes, generation of virus-specific cytotoxic T cells and antibody responses. Interestingly, Foxp3(+)CD25(+)CD4(+) regulatory T cells are highly enriched following infection, both in the periphery and in the brain, where the virus intensively replicates. Although specific anti-viral responses develop in spite of increased frequency of regulatory T cells, the capability of T lymphocytes to respond to virus-unrelated antigens was strongly suppressed. Infected adult CD150 transgenic mice crossed in an interferon receptor type I-deficient background develop generalized immunosuppression with an increased frequency of CD4(+)CD25(+)Foxp3(+) T cells and strong reduction of the hypersensitivity response. These results show that measles virus affects regulatory T-cell homeostasis and suggest that an interplay between virus-specific effector responses and regulatory T cells plays an important role in measles immunopathogenesis. A better understanding of the balance between measles-induced effector and regulatory T cells, both in the periphery and in the brain, may be of critical importance in the design of novel approaches for the prevention and treatment of measles pathology.
Collapse
Affiliation(s)
- Caroline I. Sellin
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Jean-François Jégou
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Joëlle Renneson
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Johan Druelle
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - T. Fabian Wild
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Julien C. Marie
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Branka Horvat
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
198
|
Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J Dermatol Sci 2009; 54:69-75. [PMID: 19286352 DOI: 10.1016/j.jdermsci.2009.02.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 01/28/2023]
Abstract
Regulatory T cells (Treg) are a subpopulation of CD4(+) lymphocytes that maintain immunological self-tolerance in the periphery. Treg also regulate or suppress other classes of immune response such as allograft rejection, allergy, tumor immunity, and responses to microbes. Treg express the Foxp3 transcription factor and CD25, the high affinity interleukin-2 receptor (IL-2R). Treg are divided into two types: naturally occurring Treg derived from thymus (natural Treg) and Treg induced from Foxp3(-) CD4(+) T cells in the periphery (induced Treg). It would be valuable to understand how to control the generation of antigen-specific Treg, which could also provide a new approach to treat autoimmunity, allergy or allograft rejection without suppressing immune responses to tumor and microbes. In this review, we will discuss the role of dendritic cells (DCs) in controlling antigen-specific natural Treg and induced Treg. Natural Treg are anergic upon T cell receptor stimulation generally, however, we found that the antigen-specific natural Treg can be expanded by antigen-presenting mature bone marrow-derived dendritic cells (BM-DCs). Furthermore, recent studies showed that antigen-specific Treg can be induced from Foxp3(-) CD25(-) CD4(+) T cells by antigen-presenting DCs, particularly select subsets of DCs in the periphery. These findings need to be pursued to develop novel immune suppressive therapies using antigen-specific Treg educated by DCs.
Collapse
|
199
|
|
200
|
Abstract
SUMMARYInfection with parasitic helminths takes a heavy toll on the health and well-being of humans and their domestic livestock, concomitantly resulting in major economic losses. Analyses have consistently revealed bioactive molecules in extracts of helminths or in their excretory/secretory products that modulate the immune response of the host. It is our view that parasitic helminths are an untapped source of immunomodulatory substances that, in pure form, could become new drugs (or models for drug design) to treat disease. Here, we illustrate the range of immunomodulatory molecules in selected parasitic trematodes, cestodes and nematodes, their impact on the immune cells in the host and how the host may recognize these molecules. There are many examples of the partial characterization of helminth-derived immunomodulatory molecules, but these have not yet translated into new drugs, reflecting the difficulty of isolating and fully characterizing proteins, glycoproteins and lipid-based molecules from small amounts of parasite material. However, this should not deter the investigator, since analytical techniques are now being used to accrue considerable structural information on parasite-derived molecules, even when only minute quantities of tissue are available. With the introduction of methodologies to purify and structurally-characterize molecules from small amounts of tissue and the application of high throughput immunological assays, one would predict that an assessment of parasitic helminths will yield a variety of novel drug candidates in the coming years.
Collapse
|