151
|
Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 2023; 24:299-312. [PMID: 36973481 DOI: 10.1038/s41583-023-00690-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.
Collapse
Affiliation(s)
- Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Hiroaki Ooboshi
- Section of Internal Medicine, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
152
|
Holloway RK, Zhang L, Molina-Gonzalez I, Ton K, Nicoll JAR, Boardman JP, Liang Y, Williams A, Miron VE. Localized microglia dysregulation impairs central nervous system myelination in development. Acta Neuropathol Commun 2023; 11:49. [PMID: 36949514 PMCID: PMC10035254 DOI: 10.1186/s40478-023-01543-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Myelination of neuronal axons is a critical aspect of central nervous system development and function. However, the fundamental cellular and molecular mechanisms influencing human developmental myelination and its failure are not fully understood. Here, we used digital spatial transcriptomics of a rare bank of human developing white matter to uncover that a localized dysregulated innate immune response is associated with impeded myelination. We identified that poorly myelinating areas have a distinct signature of Type II interferon signalling in microglia/macrophages, relative to adjacent myelinating areas. This is associated with a surprising increase in mature oligodendrocytes, which fail to form myelin processes appropriately. We functionally link these findings by showing that conditioned media from interferon-stimulated microglia is sufficient to dysregulate myelin process formation by oligodendrocytes in culture. We identify the Type II interferon inducer, Osteopontin (SPP1), as being upregulated in poorly myelinating brains, indicating a potential biomarker. Our results reveal the importance of microglia-mature oligodendrocyte interaction and interferon signaling in regulating myelination of the developing human brain.
Collapse
Affiliation(s)
- Rebecca K Holloway
- Keenan Research Centre for Biomedial Science at St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, Scotland, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Liang Zhang
- Nanostring Technologies, Inc., Seattle, WA, USA
| | - Irene Molina-Gonzalez
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, Scotland, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kathy Ton
- Nanostring Technologies, Inc., Seattle, WA, USA
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Yan Liang
- Nanostring Technologies, Inc., Seattle, WA, USA
| | - Anna Williams
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Veronique E Miron
- Keenan Research Centre for Biomedial Science at St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, Scotland, UK.
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
153
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
154
|
Escoubas CC, Dorman LC, Nguyen PT, Lagares-Linares C, Nakajo H, Anderson SR, Cuevas B, Vainchtein ID, Silva NJ, Xiao Y, Lidsky PV, Wang EY, Taloma SE, Nakao-Inoue H, Schwer B, Andino R, Nowakowski TJ, Molofsky AV. Type I interferon responsive microglia shape cortical development and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.04.29.441889. [PMID: 35233577 PMCID: PMC8887080 DOI: 10.1101/2021.04.29.441889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.
Collapse
Affiliation(s)
- Caroline C. Escoubas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Leah C. Dorman
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Phi T. Nguyen
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Christian Lagares-Linares
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Haruna Nakajo
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Sarah R. Anderson
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Beatriz Cuevas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Ilia D. Vainchtein
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Nicholas J. Silva
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Peter V. Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Ellen Y. Wang
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- UCSF SRTP program, University of California, San Francisco, San Francisco, CA
| | - Sunrae E. Taloma
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Bjoern Schwer
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
- Chan-Zuckerberg Biohub, San Francisco, CA
| | - Anna V. Molofsky
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
155
|
Liu R, Li Y, Wang Z, Chen P, Xie Y, Qu W, Wang M, Yu Z, Luo X. Regulatory T cells promote functional recovery after spinal cord injury by alleviating microglia inflammation via STAT3 inhibition. CNS Neurosci Ther 2023. [PMID: 36914969 DOI: 10.1111/cns.14161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Immediately after spinal trauma, immune cells, and proinflammatory cytokines infiltrate the spinal cord and disrupt the focal microenvironment, which impedes axon regeneration and functional recovery. Previous studies have reported that regulatory T cells (Tregs) enter the central nervous system and exert immunosuppressive effects on microglia during multiple sclerosis and stroke. However, whether and how Tregs interact with microglia and modulate injured microenvironments after spinal cord injury (SCI) remains unknown. METHOD Regulatory T cells spatiotemporal characteristics were analyzed in a mouse contusion SCI model. Microglia activation status was evaluated by immunostaining and RNA sequencing. Cytokine production in injured spinal cord was examined using Luminex. The role of STAT3 in Treg-microglia crosstalk was investigated in a transwell system with isolated Tregs and primary microglia. RESULTS Regulatory T cells infiltration of the spinal cord peaked on day 7 after SCI. Treg depletion promoted microglia switch to a proinflammatory phenotype. Inflammation-related genes, such as ApoD, as well as downstream cytokines IL-6 and TNF-α were upregulated in microglia in Treg-depleted mice. STAT3 inhibition was involved in Treg-microglia crosstalk, and STAT3 chemical blockade improved function recovery in Treg-depleted mice. CONCLUSION Our results suggest that Tregs promote functional recovery after SCI by alleviating microglia inflammatory reaction via STAT3.
Collapse
Affiliation(s)
- Rui Liu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyue Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wensheng Qu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
156
|
Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull 2023; 196:20-33. [PMID: 36906042 DOI: 10.1016/j.brainresbull.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Acute ischemic stroke (AIS) is associated with high rates of disability and mortality, exerting a substantial impact on overall survival and health-related quality of life. Treatment of AIS remains challenging given that the underlying pathologic mechanisms remain unclear. However, recent research has demonstrated that the immune system plays a key role in the development of AIS. Numerous studies have reported infiltration of T cells into ischemic brain tissue. While some types of T cells can promote the development of inflammatory responses and aggravate ischemic damage in patients with AIS, other T cells appear to exert neuroprotective effects via immunosuppression and other mechanisms. In this review, we discuss the recent findings regarding the infiltration of T cells into ischemic brain tissue, and the mechanisms governing how T cells can facilitate tissue injury or neuroprotection in AIS. Factors influencing the function of T cells, such as intestinal microflora and sex differences, are also discussed. We also explore the recent research on the effect of non-coding RNA on T cells after stroke, as well as the potential for specifically targeting T cells in the treatment of stroke patients.
Collapse
Affiliation(s)
- Yi-Ran Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Dong Xu
- Experimental Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
157
|
Ziqing Z, Yunpeng L, Yiqi L, Yang W. Friends or foes: The mononuclear phagocyte system in ischemic stroke. Brain Pathol 2023; 33:e13151. [PMID: 36755470 PMCID: PMC10041168 DOI: 10.1111/bpa.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Ischemic stroke (IS) is a major cause of disability and death in adults, and the immune response plays an indispensable role in its pathological process. After the onset of IS, an inflammatory storm, with the infiltration and mobilization of the mononuclear phagocyte system (MPS), is triggered in the brain. Microglia are rapidly activated in situ, followed by waves of circulating monocytes into the ischemic area. Activated microglia and monocytes/macrophages are mainly distributed in the peri-infarct area. These cells have similar morphology and functions, such as secreting cytokines and phagocytosis. Previously, the presence of the MPS was considered a marker of an exacerbated inflammatory response that contributes to brain damage. However, recent studies have suggested a rather complicated role of the MPS in IS. Here, we reviewed articles focusing on various functions of the MPS among different phases of IS, including recruitment, polarization, phagocytosis, angiogenesis, and interaction with other types of cells. Moreover, due to the characteristics of the MPS, we also noted clinical research addressing alterations in the MPS as potential biomarkers for IS patients for the purposes of predicting prognosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhang Ziqing
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yunpeng
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yiqi
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Wang Yang
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
158
|
Jia J, Zheng L, Ye L, Chen J, Shu S, Xu S, Bao X, Xia S, Liu R, Xu Y, Zhang M. CD11c + microglia promote white matter repair after ischemic stroke. Cell Death Dis 2023; 14:156. [PMID: 36828819 PMCID: PMC9958101 DOI: 10.1038/s41419-023-05689-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Ischemic stroke leads to white matter damage and neurological deficits. However, the characteristics of white matter injury and repair after stroke are unclear. Additionally, the precise molecular communications between microglia and white matter repair during the stroke rehabilitation phase remain elusive. In this current study, MRI DTI scan and immunofluorescence staining were performed to trace white matter and microglia in the mouse transient middle cerebral artery occlusion (tMCAO) stroke model. We found that the most serious white matter damage was on Day 7 after the ischemic stroke, then it recovered gradually from Day 7 to Day 30. Parallel to white matter recovery, we observed that microglia centered around the damaged myelin sheath and swallowed myelin debris in the ischemic areas. Then, microglia of the ischemic hemisphere were sorted by flow cytometry for RNA sequencing and subpopulation analysis. We found that CD11c+ microglia increased from Day 7 to Day 30, demonstrating high phagocytotic capabilities, myelin-supportive genes, and lipid metabolism associated genes. CD11c+ microglia population was partly depleted by the stereotactic injecting of rAAV2/6M-taCasp3 (rAAV2/6M-CMV-DIO-taCasp3-TEVp) into CD11c-cre mice. Selective depletion of CD11c+ microglia disrupted white matter repair, oligodendrocyte maturation, and functional recovery after stroke by Rotarod test, Adhesive Removal test, and Morris Water Maze test. These findings suggest that spontaneous white matter repair occurs after ischemic stroke, while CD11c+ microglia play critical roles in this white matter restorative progress.
Collapse
Affiliation(s)
- Junqiu Jia
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Lili Zheng
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
159
|
Wang Y, Sadike D, Huang B, Li P, Wu Q, Jiang N, Fang Y, Song G, Xu L, Wang W, Xie M. Regulatory T cells alleviate myelin loss and cognitive dysfunction by regulating neuroinflammation and microglial pyroptosis via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination. J Neuroinflammation 2023; 20:41. [PMID: 36803990 PMCID: PMC9938996 DOI: 10.1186/s12974-023-02721-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/05/2023] [Indexed: 02/20/2023] Open
Abstract
Demyelination occurs in multiple central nervous system (CNS) disorders and is tightly associated with neuroinflammation. Pyroptosis is a form of pro-inflammatory and lytic cell death which has been observed in CNS diseases recently. Regulatory T cells (Tregs) have exhibited immunoregulatory and protective effects in CNS diseases. However, the roles of Tregs in pyroptosis and their involvement in LPC-induced demyelination have not been explicated. In our study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) or PBS were subjected to two-site lysophosphatidylcholine (LPC) injection. Immunofluorescence, western blot, Luxol fast blue (LFB) staining, quantitative real-time PCR (qRT-PCR) and neurobehavior assessments were performed to evaluate the severity of demyelination, neuroinflammation and pyroptosis. Pyroptosis inhibitor was further used to investigate the role of pyroptosis in LPC-induced demyelination. RNA-sequencing was applied to explore the potential regulatory mechanism underlying the involvement of Tregs in LPC-induced demyelination and pyroptosis. Our results showed that depletion of Tregs aggravated microgliosis, inflammatory responses, immune cells infiltration and led to exacerbated myelin injury as well as cognitive defects in LPC-induced demyelination. Microglial pyroptosis was observed after LPC-induced demyelination, which was aggravated by Tregs depletion. Inhibition of pyroptosis by VX765 reversed myelin injury and cognitive function exacerbated by Tregs depletion. RNA-sequencing showed TLR4/myeloid differentiation marker 88 (MyD88) as the central molecules in Tregs-pyroptosis pathway, and refraining TLR4/MyD88/NF-κB pathway alleviated the aggravated pyroptosis induced by Tregs depletion. In conclusion, our findings for the first time indicate that Tregs alleviate myelin loss and improve cognitive function by inhibiting pyroptosis in microglia via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination.
Collapse
Affiliation(s)
- Yao Wang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Dilinuer Sadike
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Bo Huang
- grid.412793.a0000 0004 1799 5032Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Ping Li
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Qiao Wu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Na Jiang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Yongkang Fang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Guini Song
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Li Xu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
160
|
Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, Singh TG. Emerging Targets for Modulation of Immune Response and Inflammation in Stroke. Neurochem Res 2023; 48:1663-1690. [PMID: 36763312 DOI: 10.1007/s11064-023-03875-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.,School of Pharmacy, Chitkara University, Rajpura, Himachal Pradesh, 174103, India
| | - Kumar Shivam
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
161
|
Tuohy MC, Hillman EMC, Marshall R, Agalliu D. The age-dependent immune response to ischemic stroke. Curr Opin Neurobiol 2023; 78:102670. [PMID: 36586305 PMCID: PMC9845177 DOI: 10.1016/j.conb.2022.102670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022]
Abstract
Stroke is a devastating cause of global morbidity and mortality. Ischemic brain injury triggers a profound local and systemic immune response that participates in stroke pathophysiology. In turn, this immune response has emerged as a potential therapeutic target. In order to maximize its therapeutic potential, it is critical to understand how the immune response to ischemic brain injury is affected by age - the strongest non-modifiable risk factor for stroke. The development of multi-omics and single-cell technologies has provided a more comprehensive characterization of transcriptional and cellular changes that occur during aging. In this review, we summarize recent advances in our understanding of how age-related immune alterations shape differential stroke outcomes in older versus younger organisms, highlighting studies in both experimental mouse models and patient cohorts. Wherever possible, we emphasize outstanding questions that present important avenues for future investigation with therapeutic value for the aging population.
Collapse
Affiliation(s)
- Mary Claire Tuohy
- Doctoral Program in Neurobiology and Behavior, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA. https://twitter.com/HillmanLab
| | - Randolph Marshall
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
162
|
Immunotherapy as a Treatment for Stroke: Utilizing Regulatory T Cells. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
163
|
Glial roles in sterile inflammation after ischemic stroke. Neurosci Res 2023; 187:67-71. [PMID: 36206952 DOI: 10.1016/j.neures.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Stroke is a leading cause of death and disability worldwide, but there are a limited number of therapies that improve patients' functional recovery. The complicated mechanisms of post-stroke neuroinflammation, which is responsible for secondary ischemic neuronal damage, have been clarified by extensive research. Activation of microglia and astrocytes due to ischemic insults is implicated in the production of pro-inflammatory factors, formation of the glial scar, and breakdown of the blood-brain barrier. This leads to the infiltration of leukocytes, which are activated by damage-associated molecular patterns (DAMPs) to produce pro-inflammatory factors and induce additional neuronal damage. In this review, we focus on the glial mechanisms underlying sterile post-ischemic inflammation after stroke.
Collapse
|
164
|
Distinctive role of inflammation in tissue repair and regeneration. Arch Pharm Res 2023; 46:78-89. [PMID: 36719600 DOI: 10.1007/s12272-023-01428-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/07/2023] [Indexed: 02/01/2023]
Abstract
Inflammation is an essential host defense mechanism in response to microbial infection and tissue injury. In addition to its well-established role in infection, inflammation is actively involved in the repair of damaged tissues and restoration of homeostatic conditions after tissue injury. The intensity of the inflammatory response and types of cells involved in inflammation have a significant impact on the quality of tissue repair. Numerous immune cell subtypes participate in tissue repair and regeneration. In particular, immune cell-derived secretants, including cytokines and growth factors, can actively modulate the proliferation of resident stem cells or progenitor cells to facilitate tissue regeneration. These findings highlight the importance of inflammation during tissue repair and regeneration; however, the precise role of immune cells in tissue regeneration remains unclear. In this review, we summarize the current knowledge on the contribution of specific immune cell types to tissue repair and regeneration. We also discuss how inflammation affects the final outcome of tissue regeneration.
Collapse
|
165
|
Suofu Y, Jauhari A, Nirmala ES, Mullins WA, Wang X, Li F, Carlisle DL, Friedlander RM. Neuronal melatonin type 1 receptor overexpression promotes M2 microglia polarization in cerebral ischemia/reperfusion-induced injury. Neurosci Lett 2023; 795:137043. [PMID: 36586530 PMCID: PMC9936831 DOI: 10.1016/j.neulet.2022.137043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Microglial activation is readily detected following cerebral ischemia/reperfusion-induced injury. Activated microglia polarize into either classic pro-inflammatory M1 or protective M2 microglia following ischemia/reperfusion-induced injury. Melatonin is protective immediately after ischemia/reperfusion-induced brain injury. However, the ability of melatonin to affect longer-term recovery from ischemic/reperfusion-induced injury as well as its ability to modulate microglia/macrophage polarization are unknown. The goal of this study is to understand the impact of melatonin on mice 14 days after injury, as well as to understand how melatonin affects microglial polarization of neuronal MT1 activation following cerebral ischemia/reperfusion. We utilized NSEMT1-GFP transgenic mice which overexpress MT1 (melatonin type 1 receptor) in neurons. Melatonin-treated or vehicle treated wild type and NSEMT1-GFP mice underwent middle cerebral artery occlusion (MCAO)/reperfusion and followed for 14 days. Neuronal MT1 overexpression significantly reduced infarct volumes, improved motor function, and ameliorated weight loss. Additionally, melatonin treatment reduced infarct volume in NSEMT1-GFP mice as compared to untreated wild type, melatonin treated wild type, and untreated NSEMT1-GFP mice. Melatonin improved neurological function and prevented weight loss in NSEMT1-GFP mice compared with melatonin treated wild type mice. Finally, melatonin treatment in combination with MT1 overexpression reduced the numbers of Iba1+/CD16+ M1 microglia and increased the numbers of Iba1+/ CD206+ M2 microglia after ischemic injury. In conclusion, neuronal MT1 mediates melatonin-induced long-term recovery after cerebral ischemia, at least in part, by shifting microglial polarization toward the neuroprotective M2 phenotype.
Collapse
Affiliation(s)
- Yalikun Suofu
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abhishek Jauhari
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emilia S Nirmala
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William A Mullins
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaomin Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
166
|
Cheng W, Zhao Q, Li C, Xu Y. Neuroinflammation and brain-peripheral interaction in ischemic stroke: A narrative review. Front Immunol 2023; 13:1080737. [PMID: 36685518 PMCID: PMC9849888 DOI: 10.3389/fimmu.2022.1080737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Excessive immune activation within the lesion site can be observed after stroke onset. Such neuroinflammation within the brain parenchyma represents the innate immune response, as well as the result of the additional interactions between peripheral and resident immune cells. Accumulative studies have illustrated that the pathological process of ischemic stroke is associated with resident and peripheral immunity. The infiltration of peripheral immune cells within the brain parenchyma implicitly contributes to secondary brain injuries. Therefore, better understanding of the roles of resident and peripheral immune reactions toward ischemic insult is necessary. In this review, we summarized the interaction between peripheral and resident immunity on systemic immunity and the clinical outcomes after stroke onset and also discussed various potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Wenjing Cheng
- Department of Laboratory Medicine, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China,*Correspondence: Wenjing Cheng,
| | - Qing Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chengzhen Li
- Department of Laboratory Medicine, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhi Xu
- Department of Laboratory Medicine, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
167
|
Qin X, Yi S, Rong J, Lu H, Ji B, Zhang W, Ding R, Wu L, Chen Z. Identification of anoikis-related genes classification patterns and immune infiltration characterization in ischemic stroke based on machine learning. Front Aging Neurosci 2023; 15:1142163. [PMID: 37032832 PMCID: PMC10076550 DOI: 10.3389/fnagi.2023.1142163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Ischemic stroke (IS) is a type of stroke that leads to high mortality and disability. Anoikis is a form of programmed cell death. When cells detach from the correct extracellular matrix, anoikis disrupts integrin junctions, thus preventing abnormal proliferating cells from growing or attaching to an inappropriate matrix. Although there is growing evidence that anoikis regulates the immune response, which makes a great contribution to the development of IS, the role of anoikis in the pathogenesis of IS is rarely explored. Methods First, we downloaded GSE58294 set and GSE16561 set from the NCBI GEO database. And 35 anoikis-related genes (ARGs) were obtained from GSEA website. The CIBERSORT algorithm was used to estimate the relative proportions of 22 infiltrating immune cell types. Next, consensus clustering method was used to classify ischemic stroke samples. In addition, we used least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF) algorithms to screen the key ARGs in ischemic stroke. Next, we performed receiver operating characteristics (ROC) analysis to assess the accuracy of each diagnostic gene. At the same time, the nomogram was constructed to diagnose IS by integrating trait genes. Then, we analyzed the correlation between gene expression and immune cell infiltration of the diagnostic genes in the combined database. And gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these genes to explore differential signaling pathways and potential functions, as well as the construction and visualization of regulatory networks using NetworkAnalyst and Cytoscape. Finally, we investigated the expression pattern of ARGs in IS patients across age or gender. Results Our study comprehensively analyzed the role of ARGs in IS for the first time. We revealed the expression profile of ARGs in IS and the correlation with infiltrating immune cells. And The results of consensus clustering analysis suggested that we can classify IS patients into two clusters. The machine learning analysis screened five signature genes, including AKT1, BRMS1, PTRH2, TFDP1 and TLE1. We also constructed nomogram models based on the five risk genes and evaluated the immune infiltration correlation, gene-miRNA, gene-TF and drug-gene interaction regulatory networks of these signature genes. The expression of ARGs did not differ by sex or age. Discussion This study may provide a beneficial reference for further elucidating the pathogenesis of IS, and render new ideas for drug screening, individualized therapy and immunotherapy of IS.
Collapse
Affiliation(s)
- Xiaohong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shangfeng Yi
- Department of Neurosurgery, Enshi Center Hospital, Enshi, Hubei, China
| | - Jingtong Rong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoran Lu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baowei Ji
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenfei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Liquan Wu,
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Zhibiao Chen,
| |
Collapse
|
168
|
Cabeza-Fernández S, White JA, McMurran CE, Gómez-Sánchez JA, de la Fuente AG. Immune-stem cell crosstalk in the central nervous system: how oligodendrocyte progenitor cells interact with immune cells. Immunol Cell Biol 2023; 101:25-35. [PMID: 36427276 DOI: 10.1111/imcb.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The interaction between immune and stem cells has proven essential for homeostasis and regeneration in a wide range of tissues. However, because the central nervous system was long considered an immune-privileged organ, its immune-stem cell axis was not deeply investigated until recently. Research has shown that oligodendrocyte progenitor cells (OPCs), a highly abundant population of adult brain stem cells, establish bidirectional interactions with the immune system. Here, we provide an overview of the interactions that OPCs have with tissue-resident and recruited immune cells, paying particular attention to the role they play in myelin regeneration and neuroinflammation. We highlight the described role of OPCs as key active players in neuroinflammation, overriding the previous concept that OPCs are mere recipients of immune signals. Understanding the mechanisms behind this bidirectional interaction holds great potential for the development of novel therapeutic approaches limiting neuroinflammation and promoting myelin repair. A better understanding of the central nervous system's immune-stem cell axis will also be key for tackling two important features shared across neurodegenerative diseases, neuroinflammation and myelin loss.
Collapse
Affiliation(s)
- Sonia Cabeza-Fernández
- Instituto Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Spain
| | - Jessica A White
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - José A Gómez-Sánchez
- Instituto Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Spain
| | - Alerie G de la Fuente
- Instituto Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Spain.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
169
|
Tian D, Pan Y, Zhao Y, Wang H, Tian Y, Yang L, Shi W, Zhang C, Zhu Y, Zhang Y, Wang S, Zhang D. TCRαβ +NK1.1 -CD4 -CD8 - double-negative T cells inhibit central and peripheral inflammation and ameliorate ischemic stroke in mice. Theranostics 2023; 13:896-909. [PMID: 36793857 PMCID: PMC9925325 DOI: 10.7150/thno.80307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Excessive immune activation leads to secondary injury and impedes injured brain recovery after ischemic stroke. However, few effective methods are currently used for equilibrating immune balance. CD3+NK1.1-TCRβ+CD4-CD8- double-negative T (DNT) cells which do not express NK cell surface markers are unique regulatory cells that maintain homeostasis in several immune-related diseases. However, the therapeutic potential and regulatory mechanism of DNT cells in ischemic stroke are still unknown. Methods: Mouse ischemic stroke is induced by occlusion of the distal branches of the middle cerebral artery (dMCAO). DNT cells were adoptively transferred intravenously into ischemic stroke mice. Neural recovery was evaluated by TTC staining and behavioral analysis. Using immunofluorescence, flow cytometry, and RNA sequencing, the immune regulatory function of DNT cells was investigated at different time points post ischemic stroke. Results: Adoptive transfer of DNT cells significantly reduces infarct volume and improves sensorimotor function after ischemic stroke. DNT cells suppress peripheral Trem1+ myeloid cell differentiation during the acute phase. Furthermore, they infiltrate the ischemic tissue via CCR5 and equilibrate the local immune balance during the subacute phase. During the chronic phase, DNT cells enhance Treg cell recruitment through CCL5, eventually developing an immune homeostatic milieu for neuronal recovery. Conclusions: DNT cell treatment renders the comprehensive anti-inflammatory roles in specific phases of ischemic stroke. Our study suggests that the adoptive transfer of regulatory DNT cells may be a potential cell-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Dan Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Yuhualei Pan
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yushang Zhao
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Huan Wang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yue Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Wen Shi
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
170
|
Hey G, Bhutani S, Woolridge M, Patel A, Walls A, Lucke-Wold B. Immunologic Implications for Stroke Recovery: Unveiling the Role of the Immune System in Pathogenesis, Neurorepair, and Rehabilitation. JOURNAL OF CELLULAR IMMUNOLOGY 2023; 5:65-81. [PMID: 37854481 PMCID: PMC10583807 DOI: 10.33696/immunology.5.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Stroke is a debilitating neurologic condition characterized by an interruption or complete blockage of blood flow to certain areas of the brain. While the primary injury occurs at the time of the initial ischemic event or hemorrhage, secondary injury mechanisms contribute to neuroinflammation, disruption of the blood-brain barrier (BBB), excitotoxicity, and cerebral edema in the days and hours after stroke. Of these secondary mechanisms of injury, significant dysregulation of various immune populations within the body plays a crucial role in exacerbating brain damage after stroke. Pathological activity of glial cells, infiltrating leukocytes, and the adaptive immune system promote neuroinflammation, BBB damage, and neuronal death. Chronic immune activation can additionally encourage the development of neurologic deficits, immunosuppression, and dysregulation of the gut microbiome. As such, immunotherapy has emerged as a promising strategy for the clinical management of stroke in a highly patient-specific manner. These strategies include regulatory T cells (Tregs), cell adhesion molecules, cytokines, and monoclonal antibodies. However, the use of immunotherapy for stroke remains largely in the early stages, highlighting the need for continued research efforts before widespread clinical use.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Siya Bhutani
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Maxwell Woolridge
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anna Walls
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
171
|
Hui Y, Xu Z, Li J, Kuang L, Zhong Y, Tang Y, Wei J, Zhou H, Zheng T. Nonenzymatic function of DPP4 promotes diabetes-associated cognitive dysfunction through IGF-2R/PKA/SP1/ERp29/IP3R2 pathway-mediated impairment of Treg function and M1 microglia polarization. Metabolism 2023; 138:155340. [PMID: 36302455 DOI: 10.1016/j.metabol.2022.155340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Impairment of regulatory T (Treg) cells function is implicated in the pathogenesis of immune imbalance-mediated cognitive impairment. A complete understanding of whether and how this imbalance affect cognitive function in type 2 diabetes is lacking, and the driver affecting this imbalance remains unknown. METHODS We examined the impact of enzymatic and non-enzymatic function of DPP4 on Treg cell impairment, microglia polarization and diabetes-associated cognitive defects and identified its underlying mechanism in type 2 diabetic patients with cognitive impairment and in db/db mice. RESULTS We report that DPP4 binds to IGF2-R on Treg cell surface and activates PKA/SP1 signaling, which upregulate ERp29 expression and promote its binding to IP3R2, thereby inhibiting IP3R2 degradation and promoting mitochondria-associated ER membrane formation and mitochondria calcium overload in Tregs. This, in turn, impairs Tregs function and polarizes microglia toward a pro-inflammatory phenotype in the hippocampus and finally leads to neuroinflammation and cognitive impairment in type 2 diabetes. Importantly, inhibiting DPP4 enzymatic activity in type 2 diabetic patients or mutating DPP4 enzymatic active site in db/db mice did not reverse these changes. However, IGF-2R knockdown or blockade ameliorated these effects both in vivo and in vitro. CONCLUSION These findings highlight the nonenzymatic role of DPP4 in impairing Tregs function, which may facilitate the design of novel immunotherapies for diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Zhiqiang Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Jiaxiu Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Yuanmei Zhong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Yunyun Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Junjie Wei
- Lingui Clinical Medical College, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Huimin Zhou
- Department of General Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China.
| |
Collapse
|
172
|
Yu W, Ren C, Ji X. A review of remote ischemic conditioning as a potential strategy for neural repair poststroke. CNS Neurosci Ther 2022; 29:516-524. [PMID: 36550592 PMCID: PMC9873528 DOI: 10.1111/cns.14064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is one of the major disabling health-care problem and multiple different approaches are needed to enhance rehabilitation, in which neural repair is the structural basement. Remote ischemic conditioning (RIC) is a strategy to trigger endogenous protect. RIC has been reported to play neuroprotective role in acute stage of stroke, but the effect of RIC on repair process remaining unclear. Several studies have discovered some overlapped mechanisms RIC and neural repair performs. This review provides a hypothesis that RIC is a potential therapeutic strategy on stroke rehabilitation by evaluating the existing evidence and puts forward some remaining questions to clarify and future researches to be performed in the field.
Collapse
Affiliation(s)
- Wantong Yu
- Department of Neurology and Beijing Key Laboratory of Hypoxia Translational MedicineXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Changhong Ren
- Department of Neurology and Beijing Key Laboratory of Hypoxia Translational MedicineXuanwu Hospital, Capital Medical UniversityBeijingChina,Center of Stroke, Beijing Institute for Brain DisorderCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Department of Neurology and Beijing Key Laboratory of Hypoxia Translational MedicineXuanwu Hospital, Capital Medical UniversityBeijingChina,Center of Stroke, Beijing Institute for Brain DisorderCapital Medical UniversityBeijingChina
| |
Collapse
|
173
|
Xiong W, Li C, Kong G, Zeng Q, Wang S, Yin G, Gu J, Fan J. Treg cell-derived exosomes miR-709 attenuates microglia pyroptosis and promotes motor function recovery after spinal cord injury. J Nanobiotechnology 2022; 20:529. [PMID: 36514078 PMCID: PMC9745961 DOI: 10.1186/s12951-022-01724-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is an important cause of poor prognosis in patients with spinal cord injury. pyroptosis is a new type of inflammatory cell death. Treg cells has been shown to play an anti-inflammatory role in a variety of inflammatory diseases, including inflammatory bowel disease, amyotrophic lateral sclerosis, and arthritis. However, little is known about Treg cells' potential role in pyroptosis following spinal cord injury. The aim of this research was to look into the effect of Treg cells to motor function recovery, pyroptosis and the mechanism behind it after SCI. Here, we found that pyroptosis mainly occurred in microglia on the seventh day after spinal cord injury. Konckout Treg cells resulted in widely pyroptosis and poor motor recovery after SCI. In conversely, over-infiltration of Treg cell in mice by tail vein injection had beneficial effects following SCI.Treg cell-derived exosomes promote functional recovery by inhibiting microglia pyroptosis in vivo. Bioinformatic analysis revealed that miRNA-709 was significantly enriched in Treg cells and Treg cell-secreted exosomes. NKAP has been identified as a miRNA-709 target gene. Moreover, experiments confirmed that Treg cells targeted the NKAP via exosomal miR-709 to reduce microglia pyroptosis and promote motor function recovery after SCI. More importantly, The miR-709 overexpressed exosomes we constructed significantly reduced the inflammatory response and improved motor recovery after spinal cord injury. In brief, our findings indicate a possible mechanism for communication between Treg cells and microglia, which opens up a new perspective for alleviating neuroinflammation after SCI.
Collapse
Affiliation(s)
- Wu Xiong
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Cong Li
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Guang Kong
- grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Qiang Zeng
- grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Siming Wang
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Guoyong Yin
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China
| | - Jun Gu
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, 214000 China
| | - Jin Fan
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| |
Collapse
|
174
|
Benakis C, Simats A, Tritschler S, Heindl S, Besson-Girard S, Llovera G, Pinkham K, Kolz A, Ricci A, Theis FJ, Bittner S, Gökce Ö, Peters A, Liesz A. T cells modulate the microglial response to brain ischemia. eLife 2022; 11:e82031. [PMID: 36512388 PMCID: PMC9747154 DOI: 10.7554/elife.82031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation after stroke is characterized by the activation of resident microglia and the invasion of circulating leukocytes into the brain. Although lymphocytes infiltrate the brain in small number, they have been consistently demonstrated to be the most potent leukocyte subpopulation contributing to secondary inflammatory brain injury. However, the exact mechanism of how this minimal number of lymphocytes can profoundly affect stroke outcome is still largely elusive. Here, using a mouse model for ischemic stroke, we demonstrated that early activation of microglia in response to stroke is differentially regulated by distinct T cell subpopulations - with TH1 cells inducing a type I INF signaling in microglia and regulatory T cells (TREG) cells promoting microglial genes associated with chemotaxis. Acute treatment with engineered T cells overexpressing IL-10 administered into the cisterna magna after stroke induces a switch of microglial gene expression to a profile associated with pro-regenerative functions. Whereas microglia polarization by T cell subsets did not affect the acute development of the infarct volume, these findings substantiate the role of T cells in stroke by polarizing the microglial phenotype. Targeting T cell-microglia interactions can have direct translational relevance for further development of immune-targeted therapies for stroke and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Alba Simats
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Kelsey Pinkham
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Anna Kolz
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Alessio Ricci
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Diabetes and Regeneration Research, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), RhineMain Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Özgün Gökce
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anneli Peters
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
175
|
McClendon LK, Garcia RL, Lazaro T, Robledo A, Vasandani V, Luna ZAE, Rao AS, Srivatsan A, Lonard DM, Dacso CC, Kan P, O’Malley BW. A steroid receptor coactivator small molecule "stimulator" attenuates post-stroke ischemic brain injury. Front Mol Neurosci 2022; 15:1055295. [PMID: 36533127 PMCID: PMC9751323 DOI: 10.3389/fnmol.2022.1055295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023] Open
Abstract
Introduction: Pathologic remodeling of the brain following ischemic stroke results in neuronal loss, increased inflammation, oxidative stress, astrogliosis, and a progressive decrease in brain function. We recently demonstrated that stimulation of steroid receptor coactivator 3 with the small-molecule stimulator MCB-613 improves cardiac function in a mouse model of myocardial ischemia. Since steroid receptor coactivators are ubiquitously expressed in the brain, we reasoned that an MCB-613 derivative (MCB-10-1), could protect the brain following ischemic injury. To test this, we administered MCB-10-1 to rats following middle cerebral artery occlusion and reperfusion. Methods: Neurologic impairment and tissue damage responses were evaluated on day 1 and day 4 following injury in rats treated with control or 10-1. Results: We show that 10-1 attenuates injury post-stroke. 10-1 decreases infarct size and mitigates neurologic impairment. When given within 30 min post middle cerebral artery occlusion and reperfusion, 10-1 induces lasting protection from tissue damage in the ischemic penumbra concomitant with: (1) promotion of reparative microglia; (2) an increase in astrocyte NRF2 and GLT-1 expression; (3) early microglia activation; and (4) attenuation of astrogliosis. Discussion: Steroid receptor coactivator stimulation with MCB-10-1 is a potential therapeutic strategy for reducing inflammation and oxidative damage that cause neurologic impairment following an acute ischemic stroke.
Collapse
Affiliation(s)
- Lisa K. McClendon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Roberto L. Garcia
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Tyler Lazaro
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Viren Vasandani
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Zean Aaron Evan Luna
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Abhijit S. Rao
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Aditya Srivatsan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Clifford C. Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Peter Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
176
|
Gao X, Yang H, Xiao W, Su J, Zhang Y, Wang H, Ni W, Gu Y. Modified exosomal SIRPα variants alleviate white matter injury after intracerebral hemorrhage via microglia/macrophages. Biomater Res 2022; 26:67. [PMID: 36435797 PMCID: PMC9701394 DOI: 10.1186/s40824-022-00311-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Despite limited efficiency, modulation of microglia/macrophages has shown to attenuate neuroinflammation after intracerebral hemorrhage (ICH). In this context, we evaluated the efficacy of modified exosomal signal regulatory protein α (SIRPα) variants (SIRPα-v Exos) in microglia/macrophages and neuroinflammation-associated white matter injury after ICH. METHODS SIRPα-v Exos were engineered to block CD47-SIRPα interactions. After obtaining SIRPα-v Exos from lentivirus-infected mesenchymal stem cells, C57BL/6 mice suffering from ICH underwent consecutive intravenous injections of SIRPα-v Exos (6 mg/kg) for 14 days. Afterwards, the volume of hematoma and neurological dysfunctions were assessed in mice continuously until 35 days after ICH. In addition, demyelination, electrophysiology and neuroinflammation were evaluated. Furthermore, the mechanisms of microglial regulation by SIRPα-v Exos were investigated in vitro under coculture conditions. RESULTS The results demonstrated that the clearance of hematoma in mice suffering from ICH was accelerated after SIRPα-v Exo treatment. SIRPα-v Exos improved long-term neurological dysfunction by ameliorating white matter injury. In addition, SIRPα-v Exos recruited regulatory T cells (Tregs) to promote M2 polarization of microglia/macrophages in the peri-hematoma tissue. In vitro experiments further showed that SIRPα-v Exos regulated primary microglia in a direct and indirect manner in synergy with Tregs. CONCLUSION Our studies revealed that SIRPα-v Exos could accelerate the clearance of hematoma and ameliorate secondary white matter injury after ICH through regulation of microglia/macrophages. SIRPα-v Exos may become a promising treatment for ICH in clinical practice.
Collapse
Affiliation(s)
- Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China
| | - Weiping Xiao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 201107, China.
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 201107, China.
| |
Collapse
|
177
|
Fox HS, Niu M, Morsey BM, Lamberty BG, Emanuel K, Periyasamy P, Callen S, Acharya A, Kubik G, Eudy J, Guda C, Dyavar SR, Fletcher CV, Byrareddy SN, Buch S. Morphine suppresses peripheral responses and transforms brain myeloid gene expression to favor neuropathogenesis in SIV infection. Front Immunol 2022; 13:1012884. [PMID: 36466814 PMCID: PMC9709286 DOI: 10.3389/fimmu.2022.1012884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.
Collapse
Affiliation(s)
- Howard S. Fox
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Howard S. Fox,
| | - Meng Niu
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brenda M. Morsey
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin G. Lamberty
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katy Emanuel
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shannon Callen
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gregory Kubik
- The Genomics Core Facility, University of Nebraska Medical Center, Omaha, NE, United States
| | - James Eudy
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shetty Ravi Dyavar
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Courtney V. Fletcher
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
178
|
Malone K, Shearer JA, Williams JM, Moore AC, Moore T, Waeber C. Recombinant pregnancy-specific glycoprotein-1-Fc reduces functional deficit in a mouse model of permanent brain ischaemia. Brain Behav Immun Health 2022; 25:100497. [PMID: 36120102 PMCID: PMC9475273 DOI: 10.1016/j.bbih.2022.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background The well-characterised role of the immune system in acute ischaemic stroke has prompted the search for immunomodulatory therapies. Pregnancy-specific glycoproteins (PSGs) are a group of proteins synthesised by placental trophoblasts which show immunomodulatory properties. The aim of this study was to determine whether a proposed PSG1-based therapeutic enhanced recovery in a mouse model of brain ischaemia and to explore possible immunomodulatory effects. Methods Mice underwent permanent electrocoagulation of the left middle cerebral artery (pMCAO). They received saline (n = 20) or recombinant pregnancy-specific glycoprotein-1-alpha “fused” to the Fc domain of IgG1 (rPSG1-Fc) (100 μg) (n = 22) at 1 h post-ischaemia. At 3 and 5 days post-ischaemia, neurobehavioural recovery was assessed by the grid-walking test. At 5 days post-ischaemia, lesion size was determined by NeuN staining. Peripheral T cell populations were quantified via flow cytometry. Immunohistochemistry was used to quantify ICAM-1 expression and FoxP3+ cell infiltration in the ischaemic brain. Immunofluorescence was employed to determine microglial activation status via Iba-1 staining. Results: rPSG1-Fc significantly enhanced performance in the grid-walking test at 3 and 5 days post-ischaemia. No effect on infarct size was observed. A significant increase in circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells was noted in rPSG1-Fc-treated mice. Among CD4+ cells, rPSG1-Fc enhanced the expression of IL-10 in spleen, blood, draining lymph nodes, and non-draining lymph nodes, while downregulating IFN-γ and IL-17 in spleen and blood. A similar cytokine expression pattern was observed in CD8+ cells. rPSG1-Fc reduced activated microglia in the infarct core. Conclusion The administration of rPSG1-Fc improved functional recovery in post-ischaemic mice without impacting infarct size. Improved outcome was associated with a modulation of the cytokine-secreting phenotype of CD4+ and CD8+ T cells towards a more regulatory phenotype, as well as reduced activation of microglia. This establishes proof-of-concept of rPSG1-Fc as a potential stroke immunotherapy. rPSG1-Fc enhances functional recovery in a mouse model of permanent brain ischaemia. rPSG1-Fc increases circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells. rPSG1-Fc increases the expression of IL-10 among CD4+ cells in spleen, blood, and lymph nodes.
Collapse
|
179
|
Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in the recovery of neurological function after ischemic stroke. Front Cell Neurosci 2022; 16:1013905. [PMID: 36339825 PMCID: PMC9634819 DOI: 10.3389/fncel.2022.1013905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 10/15/2023] Open
Abstract
Stroke is a leading cause of mortality and long-term disability worldwide, with limited spontaneous repair processes occurring after injury. Immune cells are involved in multiple aspects of ischemic stroke, from early damage processes to late recovery-related events. Compared with the substantial advances that have been made in elucidating how immune cells modulate acute ischemic injury, the understanding of the impact of the immune system on functional recovery is limited. In this review, we summarized the mechanisms of brain repair after ischemic stroke from both the neuronal and non-neuronal perspectives, and we review advances in understanding of the effects on functional recovery after ischemic stroke mediated by infiltrated peripheral innate and adaptive immune cells, immune cell-released cytokines and cell-cell interactions. We also highlight studies that advance our understanding of the mechanisms underlying functional recovery mediated by peripheral immune cells after ischemia. Insights into these processes will shed light on the double-edged role of infiltrated peripheral immune cells in functional recovery after ischemic stroke and provide clues for new therapies for improving neurological function.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
180
|
Song S, Hasan MN, Yu L, Paruchuri SS, Bielanin JP, Metwally S, Oft HCM, Fischer SG, Fiesler VM, Sen T, Gupta RK, Foley LM, Hitchens TK, Dixon CE, Cambi F, Sen N, Sun D. Microglial-oligodendrocyte interactions in myelination and neurological function recovery after traumatic brain injury. J Neuroinflammation 2022; 19:246. [PMID: 36199097 PMCID: PMC9533529 DOI: 10.1186/s12974-022-02608-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Differential microglial inflammatory responses play a role in regulation of differentiation and maturation of oligodendrocytes (OLs) in brain white matter. How microglia-OL crosstalk is altered by traumatic brain injury (TBI) and its impact on axonal myelination and neurological function impairment remain poorly understood. In this study, we investigated roles of a Na+/H+ exchanger (NHE1), an essential microglial pH regulatory protein, in microglial proinflammatory activation and OL survival and differentiation in a murine TBI model induced by controlled cortical impact. Similar TBI-induced contusion volumes were detected in the Cx3cr1-CreERT2 control (Ctrl) mice and selective microglial Nhe1 knockout (Cx3cr1-CreERT2;Nhe1flox/flox, Nhe1 cKO) mice. Compared to the Ctrl mice, the Nhe1 cKO mice displayed increased resistance to initial TBI-induced white matter damage and accelerated chronic phase of OL regeneration at 30 days post-TBI. The cKO brains presented increased anti-inflammatory phenotypes of microglia and infiltrated myeloid cells, with reduced proinflammatory transcriptome profiles. Moreover, the cKO mice exhibited accelerated post-TBI sensorimotor and cognitive functional recovery than the Ctrl mice. These phenotypic outcomes in cKO mice were recapitulated in C57BL6J wild-type TBI mice receiving treatment of a potent NHE1 inhibitor HOE642 for 1-7 days post-TBI. Taken together, these findings collectively demonstrated that blocking NHE1 protein stimulates restorative microglial activation in oligodendrogenesis and neuroprotection, which contributes to accelerated brain repair and neurological function recovery after TBI.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Lauren Yu
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Satya S Paruchuri
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John P Bielanin
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Helena C M Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sydney G Fischer
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victoria M Fiesler
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rajaneesh K Gupta
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - C Edward Dixon
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Franca Cambi
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA. .,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
181
|
Yim A, Smith C, Brown AM. Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol Rev 2022; 311:224-233. [PMID: 35451082 PMCID: PMC9790650 DOI: 10.1111/imr.13081] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) also known by its official gene designation secreted phosphoprotein-1 (SPP1) is a fascinating, multifunctional protein expressed in a number of cell types that functions not only in intercellular communication, but also in the extracellular matrix (ECM). OPN/SPP1 possesses cytokine, chemokine, and signal transduction functions by virtue of modular structural motifs that provide interaction surfaces for integrins and CD44-variant receptors. In humans, there are three experimentally verified splice variants of OPN/SPP1 and CD44's ten exons are also alternatively spiced in a cell/tissue-specific manner, although very little is known about how this is regulated in the central nervous system (CNS). Post-translational modifications of phosphorylation, glycosylation, and localized cleavage by specific proteases in the cells and tissues where OPN/SPP1 functions, provides additional layers of specificity. However, the former make elucidating the exact molecular mechanisms of OPN/SPP1 function more complex. Flexibility in OPN/SPP1 structure and its engagement with integrins having the ability to transmit signals in inside-out and outside-in direction, is likely why OPN/SPP1 can serve as an early detector of inflammation and ongoing tissue damage in response to cancer, stroke, traumatic brain injury, pathogenic infection, and neurodegeneration, processes that impair tissue homeostasis. This review will focus on what is currently known about OPN/SPP1 function in the brain.
Collapse
Affiliation(s)
- Ashley Yim
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Christian Smith
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
182
|
Faridar A, Vasquez M, Thome AD, Yin Z, Xuan H, Wang JH, Wen S, Li X, Thonhoff JR, Zhao W, Zhao H, Beers DR, Wong STC, Masdeu JC, Appel SH. Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer's disease. Acta Neuropathol Commun 2022; 10:144. [PMID: 36180898 PMCID: PMC9524037 DOI: 10.1186/s40478-022-01447-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background Regulatory T cells (Tregs) play a neuroprotective role by suppressing microglia and macrophage-mediated inflammation and modulating adaptive immune reactions. We previously documented that Treg immunomodulatory mechanisms are compromised in Alzheimer’s disease (AD). Ex vivo expansion of Tregs restores and amplifies their immunosuppressive functions in vitro. A key question is whether adoptive transfer of ex vivo expanded human Tregs can suppress neuroinflammation and amyloid pathology in a preclinical mouse model. Methods An immunodeficient mouse model of AD was generated by backcrossing the 5xFAD onto Rag2 knockout mice (5xFAD-Rag2KO). Human Tregs were expanded ex vivo for 24 days and administered to 5xFAD-Rag2KO. Changes in amyloid burden, microglia characteristics and reactive astrocytes were evaluated using ELISA and confocal microscopy. NanoString Mouse AD multiplex gene expression analysis was applied to explore the impact of ex vivo expanded Tregs on the neuroinflammation transcriptome. Results Elimination of mature B and T lymphocytes and natural killer cells in 5xFAD-Rag2KO mice was associated with upregulation of 95 inflammation genes and amplified number of reactive microglia within the dentate gyrus. Administration of ex vivo expanded Tregs reduced amyloid burden and reactive glial cells in the dentate gyrus and frontal cortex of 5xFAD-Rag2KO mice. Interrogation of inflammation gene expression documented down-regulation of pro-inflammatory cytokines (IL1A&B, IL6), complement cascade (C1qa, C1qb, C1qc, C4a/b), toll-like receptors (Tlr3, Tlr4 and Tlr7) and microglial activations markers (CD14, Tyrobp,Trem2) following Treg administration. Conclusions Ex vivo expanded Tregs with amplified immunomodulatory function, suppressed neuroinflammation and alleviated AD pathology in vivo. Our results provide preclinical evidences for Treg cell therapy as a potential treatment strategy in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40478-022-01447-z.
Collapse
Affiliation(s)
- Alireza Faridar
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Matthew Vasquez
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Aaron D Thome
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Zheng Yin
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Hui Xuan
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Jing Hong Wang
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Shixiang Wen
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, USA
| | - Jason R Thonhoff
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Weihua Zhao
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Hong Zhao
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - David R Beers
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA.
| |
Collapse
|
183
|
Wang Z, Wang X, Liao Y, Chen G, Xu K. Immune response treated with bone marrow mesenchymal stromal cells after stroke. Front Neurol 2022; 13:991379. [PMID: 36203971 PMCID: PMC9530191 DOI: 10.3389/fneur.2022.991379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke. However, only a small part of patients could benefit from it. Therefore, finding a new treatment is necessary. Bone marrow mesenchymal stromal cells (BMSCs) provide a novel strategy for stroke patients. Now, many patients take stem cells to treat stroke. However, the researches of the precise inflammatory mechanism of cell replacement treatment are still rare. In this review, we summarize the immune response of BMSCs treated to stroke and may provide a new perspective for stem cell therapy.
Collapse
Affiliation(s)
- Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xudong Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yidong Liao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Kaya Xu
| |
Collapse
|
184
|
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16:980722. [PMID: 36052339 PMCID: PMC9426757 DOI: 10.3389/fncel.2022.980722] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains a major cause of long-term disability and mortality worldwide. The immune system plays an important role in determining the condition of the brain following stroke. As the resident innate immune cells of the central nervous system, microglia are the primary responders in a defense network covering the entire brain parenchyma, and exert various functions depending on dynamic communications with neurons, astrocytes, and other neighboring cells under both physiological or pathological conditions. Microglia activation and polarization is crucial for brain damage and repair following ischemic stroke, and is considered a double-edged sword for neurological recovery. Microglia can exist in pro-inflammatory states and promote secondary brain damage, but they can also secrete anti-inflammatory cytokines and neurotrophic factors and facilitate recovery following stroke. In this review, we focus on the role and mechanisms of microglia-mediated neuroinflammation and neuroplasticity after ischemia and relevant potential microglia-based interventions for stroke therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| | - Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| |
Collapse
|
185
|
Jin Z, Zhang X, Dai X, Huang J, Hu X, Zhang J, Shi L. InterCellDB: A User-Defined Database for Inferring Intercellular Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200045. [PMID: 35652265 PMCID: PMC9353444 DOI: 10.1002/advs.202200045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/09/2022] [Indexed: 05/23/2023]
Abstract
Recent advances in single cell RNA sequencing (scRNA-seq) empower insights into cell-cell crosstalk within specific tissues. However, customizable data analysis tools that decipher intercellular communication from gene expression in association with biological functions are lacking. The authors have developed InterCellDB, a platform that allows a user-defined analysis of intercellular communication using scRNA-seq datasets in combination with protein annotation information, including cellular localization and functional classification, and protein interaction properties. The application of InterCellDB in tumor microenvironment research is exemplified using two independent scRNA-seq datasets from human and mouse and it is demonstrated that InterCellDB-inferred cell-cell interactions and ligand-receptor pairs are experimentally valid.
Collapse
Affiliation(s)
- Ziyang Jin
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaotao Zhang
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xuejiao Dai
- Department of NeurologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Jinyan Huang
- Biomedical Big Data CenterFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPA15213USA
| | - Jianmin Zhang
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Ligen Shi
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
186
|
Cai W, Shi L, Zhao J, Xu F, Dufort C, Ye Q, Yang T, Dai X, Lyu J, Jin C, Pu H, Yu F, Hassan S, Sun Z, Zhang W, Hitchens TK, Shi Y, Thomson AW, Leak RK, Hu X, Chen J. Neuroprotection against ischemic stroke requires a specific class of early responder T cells in mice. J Clin Invest 2022; 132:157678. [PMID: 35912857 PMCID: PMC9337834 DOI: 10.1172/jci157678] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/17/2022] [Indexed: 12/20/2022] Open
Abstract
Immunomodulation holds therapeutic promise against brain injuries, but leveraging this approach requires a precise understanding of mechanisms. We report that CD8+CD122+CD49dlo T regulatory-like cells (CD8+ TRLs) are among the earliest lymphocytes to infiltrate mouse brains after ischemic stroke and temper inflammation; they also confer neuroprotection. TRL depletion worsened stroke outcomes, an effect reversed by CD8+ TRL reconstitution. The CXCR3/CXCL10 axis served as the brain-homing mechanism for CD8+ TRLs. Upon brain entry, CD8+ TRLs were reprogrammed to upregulate leukemia inhibitory factor (LIF) receptor, epidermal growth factor–like transforming growth factor (ETGF), and interleukin 10 (IL-10). LIF/LIF receptor interactions induced ETGF and IL-10 production in CD8+ TRLs. While IL-10 induction was important for the antiinflammatory effects of CD8+ TRLs, ETGF provided direct neuroprotection. Poststroke intravenous transfer of CD8+ TRLs reduced infarction, promoting long-term neurological recovery in young males or aged mice of both sexes. Thus, these unique CD8+ TRLs serve as early responders to rally defenses against stroke, offering fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ligen Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingyan Zhao
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fei Xu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Connor Dufort
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xuejiao Dai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junxuan Lyu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chenghao Jin
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sulaiman Hassan
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Zeyu Sun
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - T Kevin Hitchens
- Animal Imaging Center and Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
187
|
Zhang X, Wang R, Chen H, Jin C, Jin Z, Lu J, Xu L, Lu Y, Zhang J, Shi L. Aged microglia promote peripheral T cell infiltration by reprogramming the microenvironment of neurogenic niches. Immun Ageing 2022; 19:34. [PMID: 35879802 PMCID: PMC9310471 DOI: 10.1186/s12979-022-00289-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 04/18/2023]
Abstract
BACKGROUND The immune cell compartment of the mammalian brain changes dramatically and peripheral T cells infiltrate the brain parenchyma during normal aging. However, the mechanisms underlying age-related T cell infiltration in the central nervous system remain unclear. RESULTS Chronic inflammation and peripheral T cell infiltration were observed in the subventricular zone of aged mice. Cell-cell interaction analysis revealed that aged microglia released CCL3 to recruit peripheral CD8+ memory T cells. Moreover, the aged microglia shifted towards a pro-inflammation state and released TNF-α to upregulate the expression of VCAM1 and ICAM1 in brain venous endothelial cells, which promoted the transendothelial migration of peripheral T cells. In vitro experiment reveals that human microglia would also transit to a chemotactic phenotype when treated with CSF from the elderly. CONCLUSIONS Our research demonstrated that microglia play an important role in the aging process of brain by shifting towards a pro-inflammation and chemotactic state. Aged microglia promote T cell infiltration by releasing chemokines and upregulating adhesion molecules on venous brain endothelial cells.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haoran Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chenghao Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ziyang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Liang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yunrong Lu
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
188
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
189
|
Yamamoto S, Matsui A, Ohyagi M, Kikutake C, Harada Y, Iizuka-Koga M, Suyama M, Yoshimura A, Ito M. In Vitro Generation of Brain Regulatory T Cells by Co-culturing With Astrocytes. Front Immunol 2022; 13:960036. [PMID: 35911740 PMCID: PMC9335882 DOI: 10.3389/fimmu.2022.960036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) are normally born in the thymus and activated in secondary lymphoid tissues to suppress immune responses in the lymph node and at sites of inflammation. Tregs are also resident in various tissues or accumulate in damaged tissues, which are now called tissue Tregs, and contribute to homeostasis and tissue repair by interacting with non-immune cells. We have shown that Tregs accumulate in the brain during the chronic phase in a mouse cerebral infarction model, and these Tregs acquire the characteristic properties of brain Tregs and contribute to the recovery of neurological damage by interacting with astrocytes. However, the mechanism of tissue Treg development is not fully understood. We developed a culture method that confers brain Treg characteristics in vitro. Naive Tregs from the spleen were activated and efficiently amplified by T-cell receptor (TCR) stimulation in the presence of primary astrocytes. Furthermore, adding IL-33 and serotonin could confer part of the properties of brain Tregs, such as ST2, peroxisome proliferator-activated receptor γ (PPARγ), and serotonin receptor 7 (Htr7) expression. Transcriptome analysis revealed that in vitro generated brain Treg-like Tregs (induced brain Tregs; iB-Tregs) showed similar gene expression patterns as those in in vivo brain Tregs, although they were not identical. Furthermore, in Parkinson’s disease models, in which T cells have been shown to be involved in disease progression, iB-Tregs infiltrated into the brain more readily and ameliorated pathological symptoms more effectively than splenic Tregs. These data indicate that iB-Tregs contribute to our understanding of brain Treg development and could also be therapeutic for inflammatory brain diseases.
Collapse
Affiliation(s)
- Shinichi Yamamoto
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ako Matsui
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masaki Ohyagi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Harada
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mana Iizuka-Koga
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- *Correspondence: Minako Ito,
| |
Collapse
|
190
|
Korf JM, Honarpisheh P, Mohan EC, Banerjee A, Blasco-Conesa MP, Honarpisheh P, Guzman GU, Khan R, Ganesh BP, Hazen AL, Lee J, Kumar A, McCullough LD, Chauhan A. CD11b high B Cells Increase after Stroke and Regulate Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:288-300. [PMID: 35732342 PMCID: PMC9446461 DOI: 10.4049/jimmunol.2100884] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/22/2022] [Indexed: 06/02/2023]
Abstract
Recent studies have highlighted the deleterious contributions of B cells to post-stroke recovery and cognitive decline. Different B cell subsets have been proposed on the basis of expression levels of transcription factors (e.g., T-bet) as well as specific surface proteins. CD11b (α-chain of integrin) is expressed by several immune cell types and is involved in regulation of cell motility, phagocytosis, and other essential functions of host immunity. Although B cells express CD11b, the CD11bhigh subset of B cells has not been well characterized, especially in immune dysregulation seen with aging and after stroke. Here, we investigate the role of CD11bhigh B cells in immune responses after stroke in young and aged mice. We evaluated the ability of CD11bhigh B cells to influence pro- and anti-inflammatory phenotypes of young and aged microglia (MG). We hypothesized that CD11bhigh B cells accumulate in the brain and contribute to neuroinflammation in aging and after stroke. We found that CD11bhigh B cells are a heterogeneous subpopulation of B cells predominantly present in naive aged mice. Their frequency increases in the brain after stroke in young and aged mice. Importantly, CD11bhigh B cells regulate MG phenotype and increase MG phagocytosis in both ex vivo and in vivo settings, likely by production of regulatory cytokines (e.g., TNF-α). As both APCs and adaptive immune cells with long-term memory function, B cells are uniquely positioned to regulate acute and chronic phases of the post-stroke immune response, and their influence is subset specific.
Collapse
Affiliation(s)
- Janelle M Korf
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Eric C Mohan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anik Banerjee
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | | | - Parisa Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Gary U Guzman
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Romeesa Khan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Bhanu P Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Amy L Hazen
- University of Texas McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX
| | - Juneyoung Lee
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Aditya Kumar
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX;
| |
Collapse
|
191
|
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. NEUROPHOTONICS 2022; 9:031914. [PMID: 35581998 PMCID: PMC9107322 DOI: 10.1117/1.nph.9.3.031914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.
Collapse
Affiliation(s)
- Anna Barkaway
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - David Attwell
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Nils Korte
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| |
Collapse
|
192
|
Choi J, Kim BR, Akuzum B, Chang L, Lee JY, Kwon HK. TREGking From Gut to Brain: The Control of Regulatory T Cells Along the Gut-Brain Axis. Front Immunol 2022; 13:916066. [PMID: 35844606 PMCID: PMC9279871 DOI: 10.3389/fimmu.2022.916066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract has an enormous and diverse microbial community, termed microbiota, that is necessary for the development of the immune system and tissue homeostasis. In contrast, microbial dysbiosis is associated with various inflammatory and autoimmune diseases as well as neurological disorders in humans by affecting not only the immune system in the gastrointestinal tract but also other distal organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that function as a gatekeeper for immune activation and are essential for peripheral autoimmunity prevention. Tregs are crucial to the maintenance of immunological homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and distinct function. The gut microbiota has an impact on Tregs development, accumulation, and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed towards gut microbes, which supports the host–microbiota symbiotic interaction in the gut. Recent studies have indicated that Tregs interact with a variety of resident cells in central nervous system (CNS) to limit the progression of neurological illnesses such as ischemic stroke, Alzheimer’s disease, and Parkinson’s disease. The gastrointestinal tract and CNS are functionally connected, and current findings provide insights that Tregs function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells. The purpose of this study is to explain our current knowledge of the biological role of tissue-resident Tregs, as well as the interaction along the gut-brain axis.
Collapse
Affiliation(s)
- Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Leechung Chang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| |
Collapse
|
193
|
Cui J, Li H, Chen Z, Dong T, He X, Wei Y, Li Z, Duan J, Cao T, Chen Q, Ma D, Zhou Y, Wang B, Shi M, Zhang Q, Xiong L, Qin D. Thrombo-Inflammation and Immunological Response in Ischemic Stroke: Focusing on Platelet-Tregs Interaction. Front Cell Neurosci 2022; 16:955385. [PMID: 35846566 PMCID: PMC9278516 DOI: 10.3389/fncel.2022.955385] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Strokes are mainly caused by thromboembolic obstruction of a major cerebral artery. Major clinical manifestations include paralysis hemiplegia, aphasia, memory, and learning disorders. In the case of ischemic stroke (IS), hyperactive platelets contribute to advancing an acute thrombotic event progression. Therefore, the principal goal of treatment is to recanalize the occluded vessel and restore cerebral blood flow by thrombolysis or mechanical thrombectomy. However, antiplatelets or thrombolytic therapy may increase the risk of bleeding. Beyond the involvement in thrombosis, platelets also contribute to the inflammatory process induced by cerebral ischemia. Platelet-mediated thrombosis and inflammation in IS lie primarily in the interaction of platelet receptors with endothelial cells and immune cells, including T-cells, monocytes/macrophages, and neutrophils. Following revascularization, intervention with conventional antiplatelet medicines such as aspirin or clopidogrel does not substantially diminish infarct development, most likely due to the limited effects on the thrombo-inflammation process. Emerging evidence has shown that T cells, especially regulatory T cells (Tregs), maintain immune homeostasis and suppress immune responses, playing a critical immunomodulatory role in ischemia-reperfusion injury. Hence, considering the deleterious effects of inflammatory and immune responses, there is an urgent need for more targeted agents to limit the thrombotic-inflammatory activity of platelets and minimize the risk of a cerebral hemorrhage. This review highlights the involvement of platelets in neuroinflammation and the evolving role of Tregs and platelets in IS. In response to all issues, preclinical and clinical strategies should generate more viable therapeutics for preventing and managing IS with immunotherapy targeting platelets and Tregs.
Collapse
Affiliation(s)
- Jieqiong Cui
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zongning Chen
- Department of General Medicine, Lijiang People’s Hospital, Lijiang, China
| | - Ting Dong
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengkun Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinfeng Duan
- School of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Cao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Chen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongmei Ma
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bo Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qin Zhang
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lei Xiong
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
194
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
195
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
196
|
Moschetti G, Vasco C, Clemente F, Galeota E, Carbonara M, Pluderi M, Locatelli M, Stocchetti N, Abrignani S, Zanier ER, Ortolano F, Zoerle T, Geginat J. Deep Phenotyping of T-Cells Derived From the Aneurysm Wall in a Pediatric Case of Subarachnoid Hemorrhage. Front Immunol 2022; 13:866558. [PMID: 35711453 PMCID: PMC9197186 DOI: 10.3389/fimmu.2022.866558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Intracranial aneurysms (IAs) are very rare in children, and the characteristics of the T-cells in the IA wall are largely unknown. A comatose 7-years-old child was admitted to our center because of a subarachnoid hemorrhage due to a ruptured giant aneurysm of the right middle cerebral artery. Two days after the aneurysm clipping the patient was fully awake with left hemiparesis. T-cells from the IA wall and from peripheral blood of this patient were analyzed by multi-dimensional flow cytometry. Unbiased analysis, based on the use of FlowSOM clustering and dimensionality reduction technique UMAP, indicated that there was virtually no overlap between circulating and tissue-infiltrating T-cells. Thus, naïve T-cells and canonical memory T-cells were largely restricted to peripheral blood, while CD4-CD8-T-cells were strongly enriched in the IA wall. The unique CD4+, CD8+ and CD4-CD8-T-cell clusters from the IA wall expressed high levels of CCR5, Granzyme B and CD69, displaying thus characteristics of cytotoxic and tissue-resident effector cells. Low Ki67 expression indicated that they were nevertheless in a resting state. Among regulatory T-cell subsets, Eomes+Tr1-like cells were strongly enriched in the IA wall. Finally, analysis of cytokine producing capacities unveiled that the IA wall contained poly-functional T-cells, which expressed predominantly IFN-γ, TNF and IL-2. CD4+T-cells co-expressed also CD40L, and produced some IL-17, GM-CSF and IL-10. This report provides to our knowledge the first detailed characterization of the human T-cell compartment in the IA wall.
Collapse
Affiliation(s)
| | - Chiara Vasco
- National Institute for Molecular Genetics (INGM), Milan, Italy
| | | | - Eugenia Galeota
- National Institute for Molecular Genetics (INGM), Milan, Italy
| | - Marco Carbonara
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Pluderi
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sergio Abrignani
- National Institute for Molecular Genetics (INGM), Milan, Italy.,Department of Clinical Sciences and Community Health University Milan, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Fabrizio Ortolano
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jens Geginat
- National Institute for Molecular Genetics (INGM), Milan, Italy.,Department of Clinical Sciences and Community Health University Milan, Milan, Italy
| |
Collapse
|
197
|
Liston A, Dooley J, Yshii L. Brain-resident regulatory T cells and their role in health and disease. Immunol Lett 2022; 248:26-30. [PMID: 35697195 DOI: 10.1016/j.imlet.2022.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Regulatory T cells (Tregs) control inflammation and maintain immune homeostasis. The well-characterised circulatory population of CD4+Foxp3+ Tregs is effective at preventing autoimmunity and constraining the immune response, through direct and indirect restraint of conventional T cell activation. Recent advances in Treg cell biology have identified tissue-resident Tregs, with tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. A population of brain-resident Tregs, characterised as CD69+, has recently been identified in the healthy brain of mice and humans, with rapid population expansion observed under a number of neuroinflammatory conditions. During neuroinflammation, brain-resident Tregs have been proposed to control astrogliosis through the production of amphiregulin, polarize microglia into neuroprotective states, and restrain inflammatory responses by releasing IL-10. While protective effects for Tregs have been demonstrated in a number of neuroinflammatory pathologies, a clear demarcation between the role of circulatory and brain-resident Tregs has been difficult to achieve. Here we review the state-of-the-art for brain-resident Treg population, and describe their potential utilization as a therapeutic target across different neuroinflammatory conditions.
Collapse
Affiliation(s)
- Adrian Liston
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT United Kingdom.
| | - James Dooley
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT United Kingdom
| | - Lidia Yshii
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven 3000, Belgium.
| |
Collapse
|
198
|
Zhang Y, Li F, Chen C, Li Y, Xie W, Huang D, Zhai X, Yu W, Wan J, Li P. RAGE-mediated T cell metabolic reprogramming shapes T cell inflammatory response after stroke. J Cereb Blood Flow Metab 2022; 42:952-965. [PMID: 34910890 PMCID: PMC9125488 DOI: 10.1177/0271678x211067133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
The metabolic reprogramming of peripheral CD4+ T cells that occurs after stroke can lead to imbalanced differentiation of CD4+ T cells, including regulation of T cells, and presents a promising target for poststroke immunotherapy. However, the regulatory mechanism underlying the metabolic reprogramming of peripheral CD4+ T cell remains unknown. In this study, using combined transcription and metabolomics analyses, flow cytometry, and conditional knockout mice, we demonstrate that the receptor for advanced glycation end products (RAGE) can relay the ischemic signal to CD4+ T cells, which underwent acetyl coenzyme A carboxylase 1(ACC1)-dependent metabolic reprogramming after stroke. Furthermore, by administering soluble RAGE (sRAGE) after stroke, we demonstrate that neutralization of RAGE reversed the enhanced fatty acid synthesis of CD4+ T cells and the post-stroke imbalance of Treg/Th17. Finally, we found that post-stroke sRAGE treatment protected against infarct volume and ameliorated functional recovery. In conclusion, sRAGE can serve as a novel immunometabolic modulator that ameliorates ischemic stroke recovery by inhibiting fatty acid synthesis and thus favoring CD4+ T cells polarization toward Treg after cerebral ischemia injury. The above findings provide new insights for the treatment of neuroinflammatory responses after ischemia stroke.
Collapse
Affiliation(s)
- Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengshi Li
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqing Wan
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
199
|
Ma Z, Liu CF, Zhang L, Xiang N, Zhang Y, Chu L. The Construction and Analysis of Immune Infiltration and Competing Endogenous RNA Network in Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:806200. [PMID: 35656537 PMCID: PMC9152092 DOI: 10.3389/fnagi.2022.806200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute ischemic stroke (AIS) is a common neurological disease that seriously endangers both the physical and mental health of human. After AIS, activated immune cells are recruited to the stroke site, where inflammatory mediators are released locally, and severe immune inflammatory reactions occur within a short time, which affects the progress and prognosis of IS. Circular RNA (circRNA) is a type of non-coding RNA (ncRNA) with a closed-loop structure and high stability. Studies have found that circRNA can affect the course of IS. However, there is no report on ceRNA’s pathogenesis in AIS that is mediated by circRNA. In this study, the CIBERSORT algorithm was used to analyze the distribution of immune cells in patients with AIS. mRNA dataset was downloaded from the GEO database, and the weighted gene co-expression network analysis (WGCNA) method was used to construct weighted gene co-expression to determine 668 target genes, using GO, KEGG enrichment analysis, construction of protein-protein interaction (PPI) network analysis, and molecular complex detection (MCODE) plug-in analysis. The results showed that the biological function of the target gene was in line with the activation and immune regulation of neutrophils; signal pathways were mostly enriched in immune inflammation-related pathways. A Venn diagram was used to obtain 52 intersection genes between target genes and disease genes. By analyzing the correlation between the intersection genes and immune cells, we found that the top 5 hub genes were TOM1, STAT3, RAB3D, MDM2, and FOS, which were all significantly positively correlated with neutrophils and significantly negatively correlated with eosinophils. A total of 52 intersection genes and the related circRNA and miRNA were used as input for Cytoscape software to construct a circRNA-mediated ceRNA competition endogenous network, where a total of 18 circRNAs were found. Further analysis of the correlation between circRNA and immune cells found that 4 circRNAs are positively correlated with neutrophils. Therefore, we speculate that there may be a regulatory relationship between circRNA-mediated ceRNA and the immune mechanism in AIS. This study has important guiding significance for the progress, outcome of AIS, and the development of new medicine.
Collapse
Affiliation(s)
- ZhaoLei Ma
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chun-Feng Liu
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ning Xiang
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yifan Zhang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Lan Chu,
| |
Collapse
|
200
|
Zhang Y, Lian L, Fu R, Liu J, Shan X, Jin Y, Xu S. Microglia: The Hub of Intercellular Communication in Ischemic Stroke. Front Cell Neurosci 2022; 16:889442. [PMID: 35518646 PMCID: PMC9062186 DOI: 10.3389/fncel.2022.889442] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Communication between microglia and other cells has recently been at the forefront of research in central nervous system (CNS) disease. In this review, we provide an overview of the neuroinflammation mediated by microglia, highlight recent studies of crosstalk between microglia and CNS resident and infiltrating cells in the context of ischemic stroke (IS), and discuss how these interactions affect the course of IS. The in-depth exploration of microglia-intercellular communication will be beneficial for therapeutic tools development and clinical translation for stroke control.
Collapse
Affiliation(s)
- Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jueling Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoqian Shan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|