151
|
Nguyen TT, Glaser SJ. An optimal control approach to design entire relaxation dispersion experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:142-153. [PMID: 28822305 DOI: 10.1016/j.jmr.2017.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
A general approach is introduced to optimize experiments for the analysis of spin systems in the presence of chemical exchange. Rather than optimizing individual pulse sequence elements, such as refocusing pulses, entire relaxation dispersion sequences are optimized in the form of a single shaped pulse. This is achieved by defining a performance index that is only based on the remaining signal after the relaxation dispersion sequence for a range of exchange, relaxation, offset, and rf inhomogeneity parameters. The approach is demonstrated by optimizing energy-limited broadband relaxation dispersion sequences that closely approach the overall effect of ideal CPMG sequences. As illustrated both theoretically and experimentally, significant improvements are found compared to standard amplitude or energy-limited CPMG sequences.
Collapse
Affiliation(s)
- Thoa T Nguyen
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Steffen J Glaser
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
152
|
An excited state underlies gene regulation of a transcriptional riboswitch. Nat Chem Biol 2017; 13:968-974. [PMID: 28719589 PMCID: PMC5562522 DOI: 10.1038/nchembio.2427] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022]
Abstract
Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical-exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (∼1%) and short-lived (∼3 ms) excited conformational state that unravels a conserved 'linchpin' base pair to signal transcription termination. Upon fluoride binding, this highly localized, fleeting process is allosterically suppressed, which activates transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity responses across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation.
Collapse
|
153
|
Hung I, Wu G, Gan Z. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:14-19. [PMID: 28027834 DOI: 10.1016/j.ssnmr.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 05/11/2023]
Abstract
NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17O NMR of solid NaNO3 in which the NO3- ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO3- ion jumps span eight orders of magnitude (102-1010s-1) covering both transitions of the dynamic 17O line shape.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
154
|
Ban D, Smith CA, de Groot BL, Griesinger C, Lee D. Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Arch Biochem Biophys 2017; 628:81-91. [PMID: 28576576 DOI: 10.1016/j.abb.2017.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022]
Abstract
Protein function can be modulated or dictated by the amplitude and timescale of biomolecular motion, therefore it is imperative to study protein dynamics. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique capable of studying timescales of motion that range from those faster than molecular reorientation on the picosecond timescale to those that occur in real-time. Across this entire regime, NMR observables can report on the amplitude of atomic motion, and the kinetics of atomic motion can be ascertained with a wide variety of experimental techniques from real-time to milliseconds and several nanoseconds to picoseconds. Still a four orders of magnitude window between several nanoseconds and tens of microseconds has remained elusive. Here, we highlight new relaxation dispersion NMR techniques that serve to cover this "hidden-time" window up to hundreds of nanoseconds that achieve atomic resolution while studying the molecule under physiological conditions.
Collapse
Affiliation(s)
- David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Colin A Smith
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany; Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Bert L de Groot
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Christian Griesinger
- Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
155
|
Yanaka S, Sugase K. Exploration of the Conformational Dynamics of Major Histocompatibility Complex Molecules. Front Immunol 2017; 8:632. [PMID: 28611781 PMCID: PMC5446982 DOI: 10.3389/fimmu.2017.00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/12/2017] [Indexed: 12/02/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are loaded with a wide variety of self- and non-self-peptides in their binding grooves and present these to T cell receptors (TCRs) in order to activate the adaptive immune system. A large number of crystal structures of different MHC alleles with different bound peptides have been determined, and they have been found to be quite similar to one another regardless of the bound peptide sequence. The structures do not change markedly even when forming complexes with TCRs. Nonetheless, the degree of TCR activation does differ markedly depending on the peptide presented by the MHC. Recent structural studies in solution rather than as crystals have suggested that the conformational dynamics of MHC molecules may be responsible for the MHC stability differences. Furthermore, it was shown that the conformational dynamics of MHC molecules is important for peptide loading and presentation to TCR. Here, we describe the static and dynamic structures of MHC molecules and appropriate methods to analyze them. We focus particularly on nuclear magnetic resonance (NMR), one of the most powerful tools to study dynamic properties of proteins. The number of such studies in the literature is limited, but in this review, we show that NMR is valuable for elucidating the structural dynamics of MHC molecules.
Collapse
Affiliation(s)
- Saeko Yanaka
- Department of Life and Coordination-Complex Molecular Science, Biomolecular Functions, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
156
|
Sathyamoorthy B, Shi H, Zhou H, Xue Y, Rangadurai A, Merriman DK, Al-Hashimi HM. Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A. Nucleic Acids Res 2017; 45:5586-5601. [PMID: 28369571 PMCID: PMC5435913 DOI: 10.1093/nar/gkx186] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair.
Collapse
Affiliation(s)
- Bharathwaj Sathyamoorthy
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Huiqing Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi Xue
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| |
Collapse
|
157
|
Kukic P, Pustovalova Y, Camilloni C, Gianni S, Korzhnev DM, Vendruscolo M. Structural Characterization of the Early Events in the Nucleation–Condensation Mechanism in a Protein Folding Process. J Am Chem Soc 2017; 139:6899-6910. [DOI: 10.1021/jacs.7b01540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Predrag Kukic
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Yulia Pustovalova
- Department
of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Carlo Camilloni
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Technische Universität Mun̈chen Institute for Advanced Study & Department of Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Stefano Gianni
- Istituto
Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia
Molecolari del CNR, Dipartimento di Scienze Biochimiche “A.
Rossi Fanelli”, Sapienza Università di Roma, Rome 00185, Italy
| | - Dmitry M. Korzhnev
- Department
of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | | |
Collapse
|
158
|
Narayanan C, Bafna K, Roux LD, Agarwal PK, Doucet N. Applications of NMR and computational methodologies to study protein dynamics. Arch Biochem Biophys 2017; 628:71-80. [PMID: 28483383 DOI: 10.1016/j.abb.2017.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural motions occurring on multiple time frames over the course of a protein life span. The present review article aims to illustrate to the broader community how this technique continues to shape many areas of protein science and engineering, in addition to being an indispensable tool for studying atomic-scale motions and functional characterization. Continuing developments in underlying NMR technology alongside software and hardware developments for complementary computational approaches now enable methodologies to routinely provide spatial directionality and structural representations traditionally harder to achieve solely using NMR spectroscopy. In addition to its well-established role in structural elucidation, we present recent examples that illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, chemical shift analyses, and computational approaches for the characterization of conformational sub-states in proteins and enzymes.
Collapse
Affiliation(s)
- Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Khushboo Bafna
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Louise D Roux
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Pratul K Agarwal
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, The Quebec Network for Research on Protein Function, Structure, and Engineering, 1045 Avenue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada; GRASP, The Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
159
|
Zhuravleva A, Korzhnev DM. Protein folding by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:52-77. [PMID: 28552172 DOI: 10.1016/j.pnmrs.2016.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Abstract
Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease.
Collapse
Affiliation(s)
- Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
160
|
Grimm LL, Weissbach S, Flügge F, Begemann N, Palcic MM, Peters T. Protein NMR Studies of Substrate Binding to Human Blood Group A and B Glycosyltransferases. Chembiochem 2017; 18:1260-1269. [PMID: 28256109 DOI: 10.1002/cbic.201700025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 12/31/2022]
Abstract
Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies had shown these enzymes to adopt an open conformation in the absence of substrates. Binding either of the donor substrate UDP-Gal or of UDP induces a semiclosed conformation. In the presence of both donor and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical-shift titrations of uniformly 2 H,15 N-labeled GTA or GTB with UDP affected about 20 % of all crosspeaks in 1 H,15 N TROSY-HSQC spectra, reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical-shift-perturbation experiments with δ1-[13 C]methyl-Ile-labeled samples revealed two Ile residues-Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop-that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY-based relaxation dispersion experiments do not reveal micro- to millisecond timescale motions. Although this study reveals substantial conformational plasticity of GTA and GTB, the matter of how binding of substrates shifts the enzymes into catalytically competent states remains enigmatic.
Collapse
Affiliation(s)
- Lena Lisbeth Grimm
- Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sophie Weissbach
- Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Friedemann Flügge
- Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Nora Begemann
- Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Monica M Palcic
- Department of Biochemistry and Microbiology, University of Victoria, P. O. Box 3800, STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Thomas Peters
- Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| |
Collapse
|
161
|
Harden BJ, Frueh DP. Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions. Chembiochem 2017; 18:629-632. [PMID: 28120469 PMCID: PMC5380562 DOI: 10.1002/cbic.201700030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 11/08/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) employ multiple domains separated by linker regions to incorporate substrates into natural products. During synthesis, substrates are covalently tethered to carrier proteins that translocate between catalytic partner domains. The molecular parameters that govern translocation and associated linker remodeling remain unknown. Here, we used NMR to characterize the structure, dynamics, and invisible states of a peptidyl carrier protein flanked by its linkers. We showed that the N-terminal linker stabilizes and interacts with the protein core while modulating dynamics at specific sites involved in post-translational modifications and/or domain interactions. The results detail the molecular communication between peptidyl carrier proteins and their linkers and could guide efforts in engineering NRPSs to obtain new pharmaceuticals.
Collapse
Affiliation(s)
- Bradley J. Harden
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205
| | - Dominique P. Frueh
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205
| |
Collapse
|
162
|
Vallurupalli P, Sekhar A, Yuwen T, Kay LE. Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. JOURNAL OF BIOMOLECULAR NMR 2017; 67:243-271. [PMID: 28317074 DOI: 10.1007/s10858-017-0099-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/20/2017] [Indexed: 05/25/2023]
Abstract
Although Chemical Exchange Saturation Transfer (CEST) type NMR experiments have been used to study chemical exchange processes in molecules since the early 1960s, there has been renewed interest in the past several years in using this approach to study biomolecular conformational dynamics. The methodology is particularly powerful for the study of sparsely populated, transiently formed conformers that are recalcitrant to investigation using traditional biophysical tools, and it is complementary to relaxation dispersion and magnetization transfer experiments that have traditionally been used to study chemical exchange processes. Here we discuss the concepts behind the CEST experiment, focusing on practical aspects as well, we review some of the pulse sequences that have been developed to characterize protein and RNA conformational dynamics, and we discuss a number of examples where the CEST methodology has provided important insights into the role of dynamics in biomolecular function.
Collapse
Affiliation(s)
| | - Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada.
- Hospital for Sick Children, Program in Molecular Structure and Function, Toronto, ON, Canada.
| |
Collapse
|
163
|
Libich DS, Tugarinov V, Ghirlando R, Clore GM. Confinement and Stabilization of Fyn SH3 Folding Intermediate Mimetics within the Cavity of the Chaperonin GroEL Demonstrated by Relaxation-Based NMR. Biochemistry 2017; 56:903-906. [PMID: 28156097 DOI: 10.1021/acs.biochem.6b01237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of two folding intermediate mimetics of the model protein substrate Fyn SH3 with the chaperonin GroEL, a supramolecular foldase/unfoldase machine, has been investigated by 15N relaxation-based nuclear magnetic resonance spectroscopy (lifetime line broadening, dark state exchange saturation transfer, and relaxation dispersion). The two mimetics comprise C-terminal truncations of wild-type and triple-mutant (A39V/N53P/V55L) Fyn SH3 in which the C-terminal strand of the SH3 domain is unfolded, while preserving the remaining domain structure. Quantitative analysis of the data reveals that a mobile state of the SH3 domain confined and tethered within the cavity of GroEL, possibly through interactions with the disordered, methionine-rich C-terminal tail(s), can be detected, and that the native state of the folding intermediate mimetics is stabilized by both confinement within and binding to apo GroEL. These data provide a basis for understanding the passive activity of GroEL as a foldase/unfoldase: the unfolded state, in the absence of hydrophobic GroEL-binding consensus sequences, is destabilized within the cavity because of its larger radius of gyration compared to that of the folding intermediate, while the folding intermediate is stabilized relative to the native state because of exposure of a hydrophobic patch that favors GroEL binding.
Collapse
Affiliation(s)
- David S Libich
- Laboratory of Chemical Physics and ‡Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Vitali Tugarinov
- Laboratory of Chemical Physics and ‡Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Rodolfo Ghirlando
- Laboratory of Chemical Physics and ‡Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics and ‡Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
164
|
Gao Y, Zhang C, Zhang JZH, Mei Y. Evaluation of the Coupled Two-Dimensional Main Chain Torsional Potential in Modeling Intrinsically Disordered Proteins. J Chem Inf Model 2017; 57:267-274. [PMID: 28095698 DOI: 10.1021/acs.jcim.6b00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intrinsically disordered proteins (IDPs) carry out crucial biological functions in essential biological processes of life. Because of the highly dynamic and conformationally heterogeneous nature of the disordered states of IDPs, molecular dynamics simulations are becoming an indispensable tool for the investigation of the conformational ensembles and dynamic properties of IDPs. Nevertheless, there is still no consensus on the most reliable force field in molecular dynamics simulations for IDPs hitherto. In this work, the recently proposed AMBER99SB2D force field is evaluated in modeling some disordered polypeptides and proteins by checking its ability to reproduce experimental NMR data. The results highlight that when the ildn side-chain corrections are included, AMBER99SB2D-ildn exhibits reliable results that agree with experiments compared with its predecessors, the AMBER14SB, AMBER99SB, AMBER99SB-ildn, and AMBER99SB2D force fields, and that decreasing the overall magnitude of protein-protein interactions in favor of protein-water interactions is a key ingredient behind the improvement.
Collapse
Affiliation(s)
- Ya Gao
- College of Fundamental Studies, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Chaomin Zhang
- College of Fundamental Studies, Shanghai University of Engineering Science , Shanghai 201620, China
| | - John Z H Zhang
- College of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China
| | - Ye Mei
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China.,State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University , Shanghai 200062, China
| |
Collapse
|
165
|
Koss H, Rance M, Palmer AG. General expressions for R 1ρ relaxation for N-site chemical exchange and the special case of linear chains. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 274:36-45. [PMID: 27866072 PMCID: PMC5199238 DOI: 10.1016/j.jmr.2016.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 05/07/2023]
Abstract
Exploration of dynamic processes in proteins and nucleic acids by spin-locking NMR experiments has been facilitated by the development of theoretical expressions for the R1ρ relaxation rate constant covering a variety of kinetic situations. Herein, we present a generalized approximation to the chemical exchange, Rex, component of R1ρ for arbitrary kinetic schemes, assuming the presence of a dominant major site population, derived from the negative reciprocal trace of the inverse Bloch-McConnell evolution matrix. This approximation is equivalent to first-order truncation of the characteristic polynomial derived from the Bloch-McConnell evolution matrix. For three- and four-site chemical exchange, the first-order approximations are sufficient to distinguish different kinetic schemes. We also introduce an approach to calculate R1ρ for linear N-site schemes, using the matrix determinant lemma to reduce the corresponding 3N×3N Bloch-McConnell evolution matrix to a 3×3 matrix. The first- and second order-expansions of the determinant of this 3×3 matrix are closely related to previously derived equations for two-site exchange. The second-order approximations for linear N-site schemes can be used to obtain more accurate approximations for non-linear N-site schemes, such as triangular three-site or star four-site topologies. The expressions presented herein provide powerful means for the estimation of Rex contributions for both low (CEST-limit) and high (R1ρ-limit) radiofrequency field strengths, provided that the population of one state is dominant. The general nature of the new expressions allows for consideration of complex kinetic situations in the analysis of NMR spin relaxation data.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States.
| |
Collapse
|
166
|
Han SS, Kyeong HH, Choi JM, Sohn YK, Lee JH, Kim HS. Engineering of the Conformational Dynamics of an Enzyme for Relieving the Product Inhibition. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02793] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sang-Soo Han
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ho Kyeong
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jung Min Choi
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Yoo-Kyoung Sohn
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jin-Ho Lee
- Department
of Food Science and Biotechnology, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Korea
| | - Hak-Sung Kim
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
167
|
Juen MA, Wunderlich CH, Nußbaumer F, Tollinger M, Kontaxis G, Konrat R, Hansen DF, Kreutz C. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:12008-12. [PMID: 27533469 PMCID: PMC5082494 DOI: 10.1002/anie.201605870] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 11/16/2022]
Abstract
In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear (13) C and (1) H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific (2) H and (13) C labeling, spin topologies are introduced into DNA and RNA that make (1) H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for (1) H RD experiments of nucleic acids.
Collapse
Affiliation(s)
- Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | | | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Georg Kontaxis
- Computational Biology and Biomolecular NMR, Max F. Perutz Laboratories (MFPL), University of Vienna, Dr. Bohr Gasse 9 (VBC 5), 1030, Vienna, Austria
| | - Robert Konrat
- Computational Biology and Biomolecular NMR, Max F. Perutz Laboratories (MFPL), University of Vienna, Dr. Bohr Gasse 9 (VBC 5), 1030, Vienna, Austria
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Room 612, Gower Street, London, WC1E 6BT, UK.
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
168
|
Juen MA, Wunderlich CH, Nußbaumer F, Tollinger M, Kontaxis G, Konrat R, Hansen DF, Kreutz C. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| | | | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| | - Georg Kontaxis
- Computational Biology and Biomolecular NMR; Max F. Perutz Laboratories (MFPL); University of Vienna; Dr. Bohr Gasse 9 (VBC 5) 1030 Vienna Austria
| | - Robert Konrat
- Computational Biology and Biomolecular NMR; Max F. Perutz Laboratories (MFPL); University of Vienna; Dr. Bohr Gasse 9 (VBC 5) 1030 Vienna Austria
| | - D. Flemming Hansen
- Institute of Structural and Molecular Biology; Division of Biosciences; University College London; Darwin Building, Room 612, Gower Street London WC1E 6BT UK
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| |
Collapse
|
169
|
The Dynamic Basis for Signal Propagation in Human Pin1-WW. Structure 2016; 24:1464-75. [PMID: 27499442 DOI: 10.1016/j.str.2016.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Allostery is the structural manifestation of information transduction in biomolecules. Its hallmark is conformational change induced by perturbations at a distal site. An increasing body of evidence demonstrates the presence of allostery in very flexible and even disordered proteins, encouraging a thermodynamic description of this phenomenon. Still, resolving such processes at atomic resolution is difficult. Here we establish a protocol to determine atomistic thermodynamic models of such systems using high-resolution solution state nuclear magnetic resonance data and extensive molecular simulations. Using this methodology, we study information transduction in the WW domain of a key cell-cycle regulator Pin1. Pin1 binds promiscuously to phospho-Ser/Thr-Pro motifs, however, disparate structural and dynamic responses have been reported upon binding different ligands. Our model consists of two topologically distinct states whose relative population may be specifically skewed by an incoming ligand. This model provides a canonical basis for the understanding of multi-functionality in Pin1.
Collapse
|
170
|
Schanda P, Ernst M. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:1-46. [PMID: 27110043 PMCID: PMC4836562 DOI: 10.1016/j.pnmrs.2016.02.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution.
Collapse
Affiliation(s)
- Paul Schanda
- CEA, Institut de Biologie Structurale (IBS), 38027 Grenoble, France ; CNRS, Institut de Biologie Structurale (IBS), 38027 Grenoble, France ; Université Grenoble Alpes, IBS, 38027 Grenoble, France
| | - Matthias Ernst
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
171
|
Chakrabarti KS, Ban D, Pratihar S, Reddy JG, Becker S, Griesinger C, Lee D. High-power (1)H composite pulse decoupling provides artifact free exchange-mediated saturation transfer (EST) experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:65-69. [PMID: 27240144 DOI: 10.1016/j.jmr.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 05/25/2023]
Abstract
Exchange-mediated saturation transfer (EST) provides critical information regarding dynamics of molecules. In typical applications EST is studied by either scanning a wide range of (15)N chemical shift offsets where the applied (15)N irradiation field strength is on the order of hundreds of Hertz or, scanning a narrow range of (15)N chemical shift offsets where the applied (15)N irradiation field-strength is on the order of tens of Hertz during the EST period. The (1)H decoupling during the EST delay is critical as incomplete decoupling causes broadening of the EST profile, which could possibly result in inaccuracies of the extracted kinetic parameters and transverse relaxation rates. Currently two different (1)H decoupling schemes have been employed, intermittently applied 180° pulses and composite-pulse-decoupling (CPD), for situations where a wide range, or narrow range of (15)N chemical shift offsets are scanned, respectively. We show that high-power CPD provides artifact free EST experiments, which can be universally implemented regardless of the offset range or irradiation field-strengths.
Collapse
Affiliation(s)
- Kalyan S Chakrabarti
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - David Ban
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Supriya Pratihar
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jithender G Reddy
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Donghan Lee
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; James Graham Brown Cancer Center, Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
172
|
Yuwen T, Sekhar A, Kay LE. Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST. JOURNAL OF BIOMOLECULAR NMR 2016; 65:143-156. [PMID: 27473413 DOI: 10.1007/s10858-016-0045-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Transient excursions of native protein states to functionally relevant higher energy conformations often occur on the μs-ms timescale. NMR spectroscopy has emerged as an important tool to probe such processes using techniques such as Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion and Chemical Exchange Saturation Transfer (CEST). The extraction of kinetic and structural parameters from these measurements is predicated upon mathematical modeling of the resulting relaxation profiles, which in turn relies on knowledge of the initial magnetization conditions at the start of the CPMG/CEST relaxation elements in these experiments. Most fitting programs simply assume initial magnetization conditions that are given by equilibrium populations, which may be incorrect in certain implementations of experiments. In this study we have quantified the systematic errors in extracted parameters that are generated from analyses of CPMG and CEST experiments using incorrect initial boundary conditions. We find that the errors in exchange rates (k ex ) and populations (p E ) are typically small (<10 %) and thus can be safely ignored in most cases. However, errors become larger and cannot be fully neglected (20-40 %) as k ex falls near the lower limit of each method or when short CPMG/CEST relaxation elements are used in these experiments. The source of the errors can be rationalized and their magnitude given by a simple functional form. Despite the fact that errors tend to be small, it is recommended that the correct boundary conditions be implemented in fitting programs so as to obtain as robust estimates of exchange parameters as possible.
Collapse
Affiliation(s)
- Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
173
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
174
|
STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism. Sci Rep 2016; 6:28486. [PMID: 27340016 PMCID: PMC4919784 DOI: 10.1038/srep28486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.
Collapse
|
175
|
O'Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J 2016; 14:245-51. [PMID: 27441044 PMCID: PMC4939391 DOI: 10.1016/j.csbj.2016.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
176
|
Xue Y, Gracia B, Herschlag D, Russell R, Al-Hashimi HM. Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch. Nat Commun 2016; 7:ncomms11768. [PMID: 27292179 PMCID: PMC4909931 DOI: 10.1038/ncomms11768] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediates play important roles in RNA folding but can be difficult to characterize when short-lived or not significantly populated. By combining (15)N relaxation dispersion NMR with chemical probing, we visualized a fast (kex=k1+k-1≈423 s(-1)) secondary structural switch directed towards a low-populated (∼3%) partially folded intermediate in tertiary folding of the P5abc subdomain of the 'Tetrahymena' group I intron ribozyme. The secondary structure switch changes the base-pairing register across the P5c hairpin, creating a native-like structure, and occurs at rates of more than two orders of magnitude faster than tertiary folding. The switch occurs robustly in the absence of tertiary interactions, Mg(2+) or even when the hairpin is excised from the three-way junction. Fast, highly modular secondary structural switches may be quite common during RNA tertiary folding where they may help smoothen the folding landscape by allowing folding to proceed efficiently via additional pathways.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brant Gracia
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Herschlag
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305, USA.,Department of Chemistry, Stanford University, Stanford, California 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.,Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, California 94305, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Chemistry, Duke University, Durham, Stanford, North Carolina 27710, USA
| |
Collapse
|
177
|
Khan SN, Charlier C, Augustyniak R, Salvi N, Déjean V, Bodenhausen G, Lequin O, Pelupessy P, Ferrage F. Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation. Biophys J 2016; 109:988-99. [PMID: 26331256 PMCID: PMC4564687 DOI: 10.1016/j.bpj.2015.06.069] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/15/2015] [Accepted: 06/23/2015] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered proteins and intrinsically disordered regions (IDRs) are ubiquitous in the eukaryotic proteome. The description and understanding of their conformational properties require the development of new experimental, computational, and theoretical approaches. Here, we use nuclear spin relaxation to investigate the distribution of timescales of motions in an IDR from picoseconds to nanoseconds. Nitrogen-15 relaxation rates have been measured at five magnetic fields, ranging from 9.4 to 23.5 T (400-1000 MHz for protons). This exceptional wealth of data allowed us to map the spectral density function for the motions of backbone NH pairs in the partially disordered transcription factor Engrailed at 11 different frequencies. We introduce an approach called interpretation of motions by a projection onto an array of correlation times (IMPACT), which focuses on an array of six correlation times with intervals that are equidistant on a logarithmic scale between 21 ps and 21 ns. The distribution of motions in Engrailed varies smoothly along the protein sequence and is multimodal for most residues, with a prevalence of motions around 1 ns in the IDR. We show that IMPACT often provides better quantitative agreement with experimental data than conventional model-free or extended model-free analyses with two or three correlation times. We introduce a graphical representation that offers a convenient platform for a qualitative discussion of dynamics. Even when relaxation data are only acquired at three magnetic fields that are readily accessible, the IMPACT analysis gives a satisfactory characterization of spectral density functions, thus opening the way to a broad use of this approach.
Collapse
Affiliation(s)
- Shahid N Khan
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France
| | - Cyril Charlier
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France
| | - Rafal Augustyniak
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France
| | - Nicola Salvi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, BCH, Lausanne, Switzerland
| | - Victoire Déjean
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France
| | - Geoffrey Bodenhausen
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France; Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, BCH, Lausanne, Switzerland
| | - Olivier Lequin
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France
| | - Philippe Pelupessy
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France
| | - Fabien Ferrage
- Département de Chimie, École Normale Supérieure-PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, Paris, France; Centre National de la Recherche Scientifique, UMR 7203 LBM, Paris, France.
| |
Collapse
|
178
|
Abstract
It is now common knowledge that enzymes are mobile entities relying on complex atomic-scale dynamics and coordinated conformational events for proper ligand recognition and catalysis. However, the exact role of protein dynamics in enzyme function remains either poorly understood or difficult to interpret. This mini-review intends to reconcile biophysical observations and biological significance by first describing a number of common experimental and computational methodologies employed to characterize atomic-scale residue motions on various timescales in enzymes, and second by illustrating how the knowledge of these motions can be used to describe the functional behavior of enzymes and even act upon it. Two biologically relevant examples will be highlighted, namely the HIV-1 protease and DNA polymerase β enzyme systems.
Collapse
|
179
|
Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM. The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy. Angew Chem Int Ed Engl 2016; 54:11157-61. [PMID: 26352026 DOI: 10.1002/anie.201505416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/11/2022]
Abstract
The energetic and volumetric properties of a three-state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been investigated using pressure-dependent (15) N-relaxation dispersion NMR from 1 to 2500 bar. Changes in partial molar volumes (ΔV) and isothermal compressibilities (ΔκT ) between all the states along the folding pathway have been determined to reasonable accuracy. The partial volume and isothermal compressibility of the folded state are 100 mL mol(-1) and 40 μL mol(-1) bar(-1) , respectively, higher than those of the unfolded ensemble. Of particular interest are the findings related to the energetic and volumetric properties of the on-pathway folding intermediate. While the latter is energetically close to the unfolded state, its volumetric properties are similar to those of the folded protein. The compressibility of the intermediate is larger than that of the folded state reflecting the less rigid nature of the former relative to the latter.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA).
| | - David S Libich
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - Virginia Meyer
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - Julien Roche
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - G Marius Clore
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA).
| |
Collapse
|
180
|
Lee JS, Regatte RR, Jerschow A. Bloch Equations for Proton Exchange Reactions in an Aqueous Solution. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2016; 45A:e21397. [PMID: 29270098 PMCID: PMC5736163 DOI: 10.1002/cmr.a.21397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The extension of the Bloch equations for acid-base reactions in an aqueous solution is revisited. The acid-base reactions are second-order, and several reactions catalyzed by distinct catalysts may happen simultaneously. By constructing pseudo first-order reactions and assuming fast dissemination of protons from catalysts to solvent water, this extension converges to the well-known Bloch-McConnell equations for a two-site first-order exchange. Thus, explicit relationships between the parameters appearing in the reactions and the Bloch-McConnell equations are established. The dependencies of exchange rates and chemical exchange saturation transfer effects on pH were numerically and experimentally investigated for representative examples.
Collapse
Affiliation(s)
- Jae-Seung Lee
- Department of Radiology, New York University, New York, NY 10016, USA
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | - Alexej Jerschow
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
181
|
Palmer AG. A dynamic look backward and forward. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 266:73-80. [PMID: 26899226 PMCID: PMC4856014 DOI: 10.1016/j.jmr.2016.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 05/22/2023]
Abstract
The 2015 Gunther Laukien Prize recognized solution NMR studies of protein dynamics and thermodynamics. This Perspective surveys aspects of the development and application of NMR spin relaxation for investigations of protein flexibility and function over multiple time scales in solution. Methods highlighted include analysis of overall rotational diffusion, theoretical descriptions of R1ρ relaxation, and molecular dynamics simulations to interpret NMR spin relaxation. Applications are illustrated for the zinc-finger domain Xfin-31, the calcium-binding proteins calbindin D9k and calmodulin, and the bZip transcription factor of GCN4.
Collapse
Affiliation(s)
- Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| |
Collapse
|
182
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach.
Collapse
Affiliation(s)
- Sarina Grutsch
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Sven Brüschweiler
- Department of Computational & Structural Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter 5, Vienna, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
183
|
Zandarashvili L, Esadze A, Kemme CA, Chattopadhyay A, Nguyen D, Iwahara J. Residence Times of Molecular Complexes in Solution from NMR Data of Intermolecular Hydrogen-Bond Scalar Coupling. J Phys Chem Lett 2016; 7:820-4. [PMID: 26881297 PMCID: PMC4850060 DOI: 10.1021/acs.jpclett.6b00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The residence times of molecular complexes in solution are important for understanding biomolecular functions and drug actions. We show that NMR data of intermolecular hydrogen-bond scalar couplings can yield information on the residence times of molecular complexes in solution. The molecular exchange of binding partners via the breakage and reformation of a complex causes self-decoupling of intermolecular hydrogen-bond scalar couplings, and this self-decoupling effect depends on the residence time of the complex. For protein-DNA complexes, we investigated the salt concentration dependence of intermolecular hydrogen-bond scalar couplings between the protein side-chain (15)N and DNA phosphate (31)P nuclei, from which the residence times were analyzed. The results were consistent with those obtained by (15)Nz-exchange spectroscopy. This self-decoupling-based kinetic analysis is unique in that it does not require any different signatures for the states involved in the exchange, whereas such conditions are crucial for kinetic analyses by typical NMR and other methods.
Collapse
|
184
|
Wang H, Hosoda K, Ishii T, Arai R, Kohno T, Terawaki SI, Wakamatsu K. Protein stabilizer, NDSB-195, enhances the dynamics of the β4 -α2 loop of ubiquitin. J Pept Sci 2016; 22:174-80. [PMID: 26856691 DOI: 10.1002/psc.2855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a β4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuo Hosoda
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Takeshi Ishii
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryo Arai
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Toshiyuki Kohno
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shin-Ichi Terawaki
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kaori Wakamatsu
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
185
|
Chakrabarti KS, Agafonov RV, Pontiggia F, Otten R, Higgins MK, Schertler GFX, Oprian DD, Kern D. Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis. Cell Rep 2015; 14:32-42. [PMID: 26725117 DOI: 10.1016/j.celrep.2015.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/17/2015] [Accepted: 11/20/2015] [Indexed: 11/28/2022] Open
Abstract
Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here, we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using nuclear magnetic resonance (NMR) spectroscopy, stopped-flow kinetics, and isothermal titration calorimetry, we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding.
Collapse
Affiliation(s)
- Kalyan S Chakrabarti
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454; Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454
| | - Roman V Agafonov
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454; Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454
| | - Francesco Pontiggia
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454; Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454
| | - Renee Otten
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454; Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454.
| | - Dorothee Kern
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454; Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454.
| |
Collapse
|
186
|
Carneiro MG, Reddy JG, Griesinger C, Lee D. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform. JOURNAL OF BIOMOLECULAR NMR 2015; 63:237-244. [PMID: 26350257 DOI: 10.1007/s10858-015-9985-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R1ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states.
Collapse
Affiliation(s)
- Marta G Carneiro
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical chemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | - Jithender G Reddy
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical chemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical chemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | - Donghan Lee
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical chemistry, Am Fassberg 11, 37077, Goettingen, Germany.
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 529 South Jackson Street, Louisville, KY, 40202, USA.
| |
Collapse
|
187
|
Salmon L, Giambaşu GM, Nikolova EN, Petzold K, Bhattacharya A, Case DA, Al-Hashimi HM. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings. J Am Chem Soc 2015; 137:12954-65. [PMID: 26306428 PMCID: PMC4748170 DOI: 10.1021/jacs.5b07229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - George M. Giambaşu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Evgenia N. Nikolova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
188
|
Progress in studying intrinsically disordered proteins with atomistic simulations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:47-52. [DOI: 10.1016/j.pbiomolbio.2015.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 01/09/2023]
|
189
|
Iwahara J, Esadze A, Zandarashvili L. Physicochemical Properties of Ion Pairs of Biological Macromolecules. Biomolecules 2015; 5:2435-63. [PMID: 26437440 PMCID: PMC4693242 DOI: 10.3390/biom5042435] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alexandre Esadze
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Levani Zandarashvili
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
190
|
Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM. The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
191
|
Salvi N. Theoretical tools for the design of NMR relaxation dispersion pulse sequences. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:105-115. [PMID: 26282198 DOI: 10.1016/j.pnmrs.2015.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Recent decades have witnessed tremendous progress in the development of new experimental methods for studying biomolecules, particularly in the field of NMR relaxation dispersion. Here we review the theoretical frameworks that provided the insights necessary for such progress. The effect of radio-frequency manipulations on spin systems is discussed using Average Hamiltonian Theory (AHT), Average Liouvillian Theory (ALT), and Bloch-Wangsness-Redfield (BWR) relaxation theory. We illustrate these concepts using the case of Heteronuclear Double Resonance (HDR) methods.
Collapse
Affiliation(s)
- Nicola Salvi
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
192
|
Oyen D, Fenwick RB, Stanfield RL, Dyson HJ, Wright PE. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. J Am Chem Soc 2015; 137:9459-68. [PMID: 26147643 PMCID: PMC4521799 DOI: 10.1021/jacs.5b05707] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/29/2022]
Abstract
The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP(+)). This study focuses on the quantitative description of the relationship between protein fluctuations and product release, the rate-limiting step of DHFR catalysis. NMR relaxation dispersion measurements of millisecond time scale motions for the E:THF:NADP(+) and E:THF:NADPH complexes of wild-type and the Leu28Phe (L28F) point mutant reveal conformational exchange between an occluded ground state and a low population of a closed state. The backbone structures of the occluded ground states of the wild-type and mutant proteins are very similar, but the rates of exchange with the closed excited states are very different. Integrated analysis of relaxation dispersion data and THF dissociation rates measured by stopped-flow spectroscopy shows that product release can occur by two pathways. The intrinsic pathway consists of spontaneous product dissociation and occurs for all THF-bound complexes of DHFR. The allosteric pathway features cofactor-assisted product release from the closed excited state and is utilized only in the E:THF:NADPH complexes. The L28F mutation alters the partitioning between the pathways and results in increased flux through the intrinsic pathway relative to the wild-type enzyme. This repartitioning could represent a general mechanism to explain changes in product release rates in other E. coli DHFR mutants.
Collapse
Affiliation(s)
- David Oyen
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - R. Bryn Fenwick
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Robyn L. Stanfield
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H. Jane Dyson
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E. Wright
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
193
|
Pustovalova Y, Kukic P, Vendruscolo M, Korzhnev DM. Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2015; 54:4611-22. [DOI: 10.1021/acs.biochem.5b00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yulia Pustovalova
- Department
of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Predrag Kukic
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dmitry M. Korzhnev
- Department
of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
194
|
Chen C, Esadze A, Zandarashvili L, Nguyen D, Pettitt BM, Iwahara J. Dynamic Equilibria of Short-Range Electrostatic Interactions at Molecular Interfaces of Protein-DNA Complexes. J Phys Chem Lett 2015; 6:2733-2737. [PMID: 26207171 PMCID: PMC4507475 DOI: 10.1021/acs.jpclett.5b01134] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 05/21/2023]
Abstract
Intermolecular ion pairs (salt bridges) are crucial for protein-DNA association. For two protein-DNA complexes, we demonstrate that the ion pairs of protein side-chain NH3+ and DNA phosphate groups undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. While the crystal structures of the complexes show only the solvent-separated ion pair (SIP) state for some interfacial lysine side chains, our NMR hydrogen-bond scalar coupling data clearly indicate the presence of the contact ion pair (CIP) state for the same residues. The 0.6-μs molecular dynamics (MD) simulations confirm dynamic transitions between the CIP and SIP states. This behavior is consistent with our NMR order parameters and scalar coupling data for the lysine side chains. Using the MD trajectories, we also analyze the free energies of the CIP-SIP equilibria. This work illustrates the dynamic nature of short-range electrostatic interactions in DNA recognition by proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Junji Iwahara
- J.I.: [Phone] 409-747-1403; [E-mail] ; [Fax] 409-772-6334
| |
Collapse
|
195
|
Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR. Proc Natl Acad Sci U S A 2015; 112:8817-23. [PMID: 26124125 DOI: 10.1073/pnas.1510083112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prototypical chaperonin GroEL assists protein folding through an ATP-dependent encapsulation mechanism. The details of how GroEL folds proteins remain elusive, particularly because encapsulation is not an absolute requirement for successful re/folding. Here we make use of a metastable model protein substrate, comprising a triple mutant of Fyn SH3, to directly demonstrate, by simultaneous analysis of three complementary NMR-based relaxation experiments (lifetime line broadening, dark state exchange saturation transfer, and Carr-Purcell-Meinboom-Gill relaxation dispersion), that apo GroEL accelerates the overall interconversion rate between the native state and a well-defined folding intermediate by about 20-fold, under conditions where the "invisible" GroEL-bound states have occupancies below 1%. This is largely achieved through a 500-fold acceleration in the folded-to-intermediate transition of the protein substrate. Catalysis is modulated by a kinetic deuterium isotope effect that reduces the overall interconversion rate between the GroEL-bound species by about 3-fold, indicative of a significant hydrophobic contribution. The location of the GroEL binding site on the folding intermediate, mapped from (15)N, (1)HN, and (13)Cmethyl relaxation dispersion experiments, is composed of a prominent, surface-exposed hydrophobic patch.
Collapse
|
196
|
LeMaster DM, Mustafi SM, Brecher M, Zhang J, Héroux A, Li H, Hernández G. Coupling of Conformational Transitions in the N-terminal Domain of the 51-kDa FK506-binding Protein (FKBP51) Near Its Site of Interaction with the Steroid Receptor Proteins. J Biol Chem 2015; 290:15746-15757. [PMID: 25953903 DOI: 10.1074/jbc.m115.650655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 11/06/2022] Open
Abstract
Interchanging Leu-119 for Pro-119 at the tip of the β4-β5 loop in the first FK506 binding domain (FK1) of the FKBP51 and FKBP52 proteins, respectively, has been reported to largely reverse the inhibitory (FKBP51) or stimulatory (FKBP52) effects of these co-chaperones on the transcriptional activity of glucocorticoid and androgen receptor-protein complexes. Previous NMR relaxation studies have identified exchange line broadening, indicative of submillisecond conformational motion, throughout the β4-β5 loop in the FK1 domain of FKBP51, which are suppressed by the FKBP52-like L119P substitution. This substitution also attenuates exchange line broadening in the underlying β2 and β3a strands that is centered near a bifurcated main chain hydrogen bond interaction between these two strands. The present study demonstrates that these exchange line broadening effects arise from two distinct coupled conformational transitions, and the transition within the β2 and β3a strands samples a transient conformation that resembles the crystal structures of the selectively inhibited FK1 domain of FKBP51 recently reported. Although the crystal structures for their series of inhibitors were interpreted as evidence for an induced fit mechanism of association, the presence of a similar conformation being significantly populated in the unliganded FKBP51 domain is more consistent with a conformational selection binding process. The contrastingly reduced conformational plasticity of the corresponding FK1 domain of FKBP52 is consistent with the current model in which FKBP51 binds to both the apo- and hormone-bound forms of the steroid receptor to modulate its affinity for ligand, whereas FKBP52 binds selectively to the latter state.
Collapse
Affiliation(s)
- David M LeMaster
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201
| | - Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Matthew Brecher
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Annie Héroux
- Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201.
| |
Collapse
|
197
|
Zhou H, Hintze BJ, Kimsey IJ, Sathyamoorthy B, Yang S, Richardson JS, Al-Hashimi HM. New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey. Nucleic Acids Res 2015; 43:3420-33. [PMID: 25813047 PMCID: PMC4402545 DOI: 10.1093/nar/gkv241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/01/2015] [Indexed: 11/14/2022] Open
Abstract
Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson-Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1'-C1' distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1'-C1' distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5'-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.
Collapse
Affiliation(s)
- Huiqing Zhou
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Bradley J Hintze
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | - Shan Yang
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University, Durham, NC 27710, USA Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
198
|
Xue Y, Kellogg D, Kimsey IJ, Sathyamoorthy B, Stein ZW, McBrairty M, Al-Hashimi HM. Characterizing RNA Excited States Using NMR Relaxation Dispersion. Methods Enzymol 2015; 558:39-73. [PMID: 26068737 DOI: 10.1016/bs.mie.2015.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of noncoding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as "excited states." Compared to larger scale changes in RNA secondary structure, transitions toward excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around noncanonical motifs. Here, we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25-3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data are then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited states. Application is illustrated with a focus on the transactivation response element from the human immune deficiency virus type 1, which exists in dynamic equilibrium with at least two distinct excited states.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dawn Kellogg
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Zachary W Stein
- Biophysics Enhanced Program, University of Michigan Ann Arbor, Michigan, USA
| | - Mitchell McBrairty
- Biophysics Enhanced Program, University of Michigan Ann Arbor, Michigan, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA; Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
199
|
Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Nature 2015; 519:315-20. [PMID: 25762137 DOI: 10.1038/nature14227] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
Rare tautomeric and anionic nucleobases are believed to have fundamental biological roles, but their prevalence and functional importance has remained elusive because they exist transiently, in low abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show here that wobble dG•dT and rG•rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson-Crick-like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson-Crick fidelity checkpoints and form with probabilities (10(-3) to 10(-5)) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases.
Collapse
|
200
|
Zhao B, Zhang Q. Characterizing excited conformational states of RNA by NMR spectroscopy. Curr Opin Struct Biol 2015; 30:134-146. [PMID: 25765780 DOI: 10.1016/j.sbi.2015.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/25/2022]
Abstract
Conformational dynamics is a hallmark of diverse non-coding RNA functions. During these functional processes, RNA molecules almost ubiquitously undergo conformational transitions that are tuned to meet distinct structural and kinetic requirements for proper function. A complete mechanistic understanding of RNA function requires comprehensive structural and dynamic knowledge of these complex transitions, which often involve alternative higher-energy conformational states that pose a major challenge for high-resolution structural study by conventional methods. In this review, we describe recent progress in RNA NMR that has started to unveil detailed structural, thermodynamic and kinetic insights into some of these excited conformational states of RNA and their functional roles in biology.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|