151
|
An ion for an iron: streptococcal metal homeostasis under oxidative stress. Biochem J 2019; 476:699-703. [PMID: 30819932 DOI: 10.1042/bcj20190017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
Abstract
The ability of opportunistic pathogens such as Group A Streptococcus (GAS) to transition between mucosal colonisation and invasive disease requires complex systems for adapting to markedly different host environments. The battle to acquire essential trace metals such as manganese and iron from the host is central to pathogenesis. Using a molecular genetic approach, Turner et al. [Biochem. J. (2019) 476, 595-611] show that it is not just individual metal concentrations that are important, but the ratio of iron to manganese within cells. Increasing this ratio by knocking out pmtA, encoding the Fe(II) exporter PmtA, or by disrupting mtsA, encoding an MtsABC Mn(II)-import system component, led to reductions in superoxide dismutase (SodA) activity and increased sensitivity to oxidative stress. The authors show that SodA is at least 4-fold more active with Mn bound than with Fe and speculate that high intracellular Fe:Mn ratios reduce superoxide dismutase activity through the mismetalation of SodA. Challenging wild-type GAS with 1 mM H2O2 led to a decrease in Fe:Mn ratio and a 3-fold increase in SodA activity, indicating that modulation of the balance between intracellular Fe and Mn may play an important role in adaptation to oxidative stress. This work unravels some of the key mechanisms for maintaining appropriate Mn and Fe concentrations within bacterial cells and underscores the need for future studies that take an holistic view to metal ion homeostasis in bacteria. Strategies aimed at interfering with the balance of intracellular metal ions represent a promising approach for the control of invasive microbial infections.
Collapse
|
152
|
Lee SH, Youn H, Kang SG, Lee HS. Oxygen-mediated growth enhancement of an obligate anaerobic archaeon Thermococcus onnurineus NA1. J Microbiol 2019; 57:138-142. [PMID: 30706342 DOI: 10.1007/s12275-019-8592-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 11/27/2022]
Abstract
Thermococcus onnurineus NA1, an obligate anaerobic hyperthermophilic archaeon, showed variable oxygen (O2) sensitivity depending on the types of substrate employed as an energy source. Unexpectedly, the culture with yeast extract as a sole energy source showed enhanced growth by 2-fold in the presence of O2. Genome-wide transcriptome analysis revealed the upregulation of several antioxidant-related genes encoding thioredoxin peroxidase (TON_0862), rubrerythrin (TON_0864), rubrerythrin-related protein (TON_0873), NAD(P)H rubredoxin oxidoreductase (TON_0865), or thioredoxin reductase (TON_1603), which can couple the detoxification of reactive oxygen species with the regeneration of NAD(P)+ from NAD(P)H. We present a plausible mechanism by which O2 serves to maintain the intracellular redox balance. This study demonstrates an unusual strategy of an obligate anaerobe underlying O2-mediated growth enhancement despite not having heme-based or cytochrome-type proteins.
Collapse
Affiliation(s)
- Seong Hyuk Lee
- Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Hwan Youn
- Department of Biology, California State University, Fresno, CA, 93740-8034, USA
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
- Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
- Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
153
|
Cyclo-(l-Phe-l-Pro), a Quorum-Sensing Signal of Vibrio vulnificus, Induces Expression of Hydroperoxidase through a ToxR-LeuO-HU-RpoS Signaling Pathway To Confer Resistance against Oxidative Stress. Infect Immun 2018; 86:IAI.00932-17. [PMID: 29914931 PMCID: PMC6105893 DOI: 10.1128/iai.00932-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus, an opportunistic human pathogen, produces cyclo-(l-Phe-l-Pro) (cFP), which serves as a signaling molecule controlling the ToxR-dependent expression of innate bacterial genes, and also as a virulence factor eliciting pathogenic effects on human cells by enhancing intracellular reactive oxygen species levels. We found that cFP facilitated the protection of V. vulnificus against hydrogen peroxide. At a concentration of 1 mM, cFP enhanced the level of the transcriptional regulator RpoS, which in turn induced expression of katG, encoding hydroperoxidase I, an enzyme that detoxifies H2O2 to overcome oxidative stress. We found that cFP upregulated the transcription of the histone-like proteins vHUα and vHUβ through the cFP-dependent regulator LeuO. LeuO binds directly to upstream regions of vhuA and vhuB to enhance transcription. vHUα and vHUβ then enhance the level of RpoS posttranscriptionally by stabilizing the mRNA. This cFP-mediated ToxR-LeuO-vHUαβ-RpoS pathway also upregulates genes known to be members of the RpoS regulon, suggesting that cFP acts as a cue for the signaling pathway responsible for both the RpoS and the LeuO regulons. Taken together, this study shows that cFP plays an important role as a virulence factor, as well as a signal for the protection of the cognate pathogen.
Collapse
|
154
|
Romsang A, Duang-Nkern J, Khemsom K, Wongsaroj L, Saninjuk K, Fuangthong M, Vattanaviboon P, Mongkolsuk S. Pseudomonas aeruginosa ttcA encoding tRNA-thiolating protein requires an iron-sulfur cluster to participate in hydrogen peroxide-mediated stress protection and pathogenicity. Sci Rep 2018; 8:11882. [PMID: 30089777 PMCID: PMC6082896 DOI: 10.1038/s41598-018-30368-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023] Open
Abstract
During the translation process, transfer RNA (tRNA) carries amino acids to ribosomes for protein synthesis. Each codon of mRNA is recognized by a specific tRNA, and enzyme-catalysed modifications to tRNA regulate translation. TtcA is a unique tRNA-thiolating enzyme that requires an iron-sulfur ([Fe-S]) cluster to catalyse thiolation of tRNA. In this study, the physiological functions of a putative ttcA in Pseudomonas aeruginosa, an opportunistic human pathogen that causes serious problems in hospitals, were characterized. A P. aeruginosa ttcA-deleted mutant was constructed, and mutant cells were rendered hypersensitive to oxidative stress, such as hydrogen peroxide (H2O2) treatment. Catalase activity was lower in the ttcA mutant, suggesting that this gene plays a role in protecting against oxidative stress. Moreover, the ttcA mutant demonstrated attenuated virulence in a Drosophila melanogaster host model. Site-directed mutagenesis analysis revealed that the conserved cysteine motifs involved in [Fe-S] cluster ligation were required for TtcA function. Furthermore, ttcA expression increased upon H2O2 exposure, implying that enzyme levels are induced under stress conditions. Overall, the data suggest that P. aeruginosa ttcA plays a critical role in protecting against oxidative stress via catalase activity and is required for successful bacterial infection of the host.
Collapse
Affiliation(s)
- Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Khwannarin Khemsom
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Lampet Wongsaroj
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kritsakorn Saninjuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Mayuree Fuangthong
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
155
|
Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients. Sci Rep 2018; 8:11047. [PMID: 30038321 PMCID: PMC6056421 DOI: 10.1038/s41598-018-29443-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022] Open
Abstract
We previously profiled duodenal microbiome in active (a-), gluten-free diet (GFD) celiac disease (CD) patients and controls finding higher levels of the Proteobacterium Neisseria flavescens in a-CD patients than in the other two groups. Here, we investigate the oropharyngeal microbiome in CD patients and controls to evaluate whether this niche share microbial composition with the duodenum. We characterized by 16S rRNA gene sequencing the oropharyngeal microbiome in 14 a-CD, 22 GFD patients and 20 controls. Bacteroidetes, Proteobacteria and Firmicutes differed significantly between the three groups. In particular, Proteobacteria abounded in a-CD and Neisseria species mostly accounted for this abundance (p < 0.001), whereas Bacteroidetes were more present in control and GFD microbiomes. Culture-based oropharyngeal microbiota analysis confirmed the greater abundance of Proteobacteria and of Neisseria species in a-CD. Microbial functions prediction indicated a greater metabolic potential for degradation of aminoacids, lipids and ketone bodies in a-CD microbiome than in control and GFD microbiomes, in which polysaccharide metabolism predominated. Our results suggest a continuum of a-CD microbial composition from mouth to duodenum. We may speculate that microbiome characterization in the oropharynx, which is a less invasive sampling than the duodenum, could contribute to investigate the role of dysbiosis in CD pathogenesis.
Collapse
|
156
|
Abstract
Stress is an inextricable aspect of life, and stress biology has been a field of intensive study over the last 200-300 years. In human psychology, we consider a stress-free condition to be one of relaxation or happiness, yet with respect to microbial cells we do not have a concept that describes being non-stressed. Stresses within, and stress tolerance of, microbial systems lie at the crux of critical global challenges, such as optimising soil- and plant-health and crop yields; reducing food spoilage; bioremediation of polluted environments; effective biological control and biofuel production; gaining insight into aging processes in humans; and understanding astrobiology. There is no consensus on how to measure cellular stress, or even how we define it. 'Stress' implies that physical forces act on the microbial system in such a way that impairs its ability to function. Ironically, however, a cell that exhibits optimal growth also has reduced energy generation, is less resilient to change, and can have poor competitive ability. Furthermore, rapid growth is associated with a high level of oxidative damage and compromised vitality of the system. Stresses induced by temperature, pH, water activity, chaotropicity, reactive oxygen species, dehydration-rehydration cycles, ionizing radiation, and changes in turgor or other mechanical forces are well-known. Our knowledge of cellular stress responses, such as signal-transduction pathways, compatible-solute metabolism, protein-stabilization proteins, and plasma-membrane adaptations, is also considerable. However, we have limited understanding of the complex and dynamic stresses that typically occur in microbial habitats or industrial systems, and how these impact the biophysics, cellular biology and evolutionary trajectories of microbes. There is also a paucity of information on why the cellular system ultimately fails under extremes of stress, and it is even debatable whether any microbe can ever be completely stress-free. However, cells that exhibit optimal rates of biotic activity are likely to exhibit low ecological fitness compared with those that are moderately stressed; in other words, stress can enhance microbial vitality, vigour and resilience. 'Stress' is sometimes applied mistakenly to describe the effects of toxic substances that have target site-specific modes-of-action (e.g. antibiotics) rather than and do not inhibit the cell via any type of stress-mediated mechanism. Whereas terms such as 'rapid-growth stress', 'nutrient stress' and 'biotic stress' span a range of logical categories, their modes-of-action do usually involve a biophysical component. Stress can impact all levels of biology (from biomacromolecules to ecosystems), is a potent driver for evolutionary processes and - it could be argued - is an inherent property of life itself. The published articles that follow include a number of unprecedented findings and were compiled for this special issue Biology of Fungal Systems under Stress. Collectively, they are testament to the breadth and importance of the stress-biology field.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
157
|
Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T. Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol 2018; 44:571-589. [PMID: 29749263 DOI: 10.1080/1040841x.2018.1467876] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considering increasing number of pathogens resistant towards commonly used antibiotics as well as antiseptics, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances. In this regard, an alternative approach is the antimicrobial photodynamic therapy (aPDT). The antimicrobial effect of aPDT is based on the principle that visible light activates a per se non-toxic molecule, the so-called photosensitizer (PS), resulting in generation of reactive oxygen species that kill bacteria unselectively via an oxidative burst. During the last 10-20 years, there has been extensive in vitro research on novel PS as well as light sources, which is now to be translated into clinics. In this review, we aim to provide an overview about the history of aPDT, its fundamental photochemical and photophysical mechanisms as well as photosensitizers and light sources that are currently applied for aPDT in vitro. Furthermore, the potential of resistances towards aPDT is extensively discussed and implications for proper comparison of in vitro studies regarding aPDT as well as for potential application fields in clinical practice are given. Overall, this review shall provide an outlook on future research directions needed for successful translation of promising in vitro results in aPDT towards clinical practice.
Collapse
Affiliation(s)
- Fabian Cieplik
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany.,b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Dongmei Deng
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wolfgang Buchalla
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany
| | - Elmar Hellwig
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Ali Al-Ahmad
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Tim Maisch
- d Department of Dermatology , University Medical Center Regensburg , Regensburg , Germany
| |
Collapse
|
158
|
Joyce A, Ijaz UZ, Nzeteu C, Vaughan A, Shirran SL, Botting CH, Quince C, O’Flaherty V, Abram F. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass. Front Microbiol 2018; 9:540. [PMID: 29619022 PMCID: PMC5871674 DOI: 10.3389/fmicb.2018.00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the bioreactor leachates. Numerous glycolytic enzymes and carbohydrate transporters were detected throughout the bioreactors in addition to proteins involved in butanol and lactate production. Finally, evidence of the prevalence of stressful conditions within the bioreactors and particularly impacting Clostridia was observed in the metaproteomes. Taken together, this study highlights the functional importance of Clostridia during the anaerobic digestion of grass and thus research avenues allowing members of this taxon to thrive should be explored.
Collapse
Affiliation(s)
- Aoife Joyce
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Umer Z. Ijaz
- Environmental Omics Laboratory, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Corine Nzeteu
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Vaughan
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Catherine H. Botting
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Christopher Quince
- Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
159
|
Jiang L, Situ J, Deng YZ, Wan L, Xu D, Chen Y, Xi P, Jiang Z. PlMAPK10, a Mitogen-Activated Protein Kinase (MAPK) in Peronophythora litchii, Is Required for Mycelial Growth, Sporulation, Laccase Activity, and Plant Infection. Front Microbiol 2018; 9:426. [PMID: 29568294 PMCID: PMC5852060 DOI: 10.3389/fmicb.2018.00426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are ubiquitous and evolutionarily conserved signal transduction modules directing cellular respond to a diverse array of stimuli, in the eukaryotic organisms. In this study, PlMAPK10 was identified to encode a MAPK in Peronophythora litchii, the oomycete pathogen causing litchi downy blight disease. PlMAPK10, containing a specific and highly conserved dual phosphorylation lip sequence SEY (Serine-Glutamic-Tyrosine), represents a novel group of MAPKs as previously reported. Transcriptional profiling showed that PlMAPK10 expression was up-regulated in zoospore and cyst stages. To elucidate its function, the PlMAPK10 gene was silenced by stable transformation. PlMAPK10 silence did not impair oospore production, sporangium germination, zoospore encyst, or cyst germination but hindered hyphal growth, sporulation, pathogenicity, likely due to altering laccase activity. Over all, our results indicated that a MAPK encoded by PlMAPK10 gene in P. litchii is important for pathogenic development.
Collapse
Affiliation(s)
- Liqun Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lang Wan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Dandan Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yubin Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
160
|
Kosman DJ. The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking. Metallomics 2018; 10:370-377. [PMID: 29484341 DOI: 10.1039/c8mt00015h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eukaryotic cells, whether free-living or organismal, rely on metallo-reductases to process environmental ferric iron and cupric copper prior to uptake. In addition, some free-living eukaryotes (e.g. fungi and algae) couple ferri-reduction to ferro-oxidation, a process catalyzed by a small cohort of multi-copper oxidases; in these organisms, the ferric iron product is a ligand for cell iron uptake via a ferric iron permease. In addition to their support of iron uptake in lower eukaryotes, ferroxidases support ferrous iron efflux in Chordata; in this process the release of the ferrous iron from the efflux transporter is catalyzed by its ferroxidation. Last, ferroxidases also catalyze the oxidation of cuprous copper and, as metallo-oxidases, mirror the dual activity of the metallo-reductases. This Perspective examines the teleos of the yin-yang of this redox cycling of iron and copper in their metabolism.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Farber Hall Room 140, 3435 Main St., Buffalo, NY 14214-3000, USA.
| |
Collapse
|
161
|
Staerck C, Godon C, Bouchara JP, Fleury MJJ. Varying susceptibility of clinical and environmental Scedosporium isolates to chemical oxidative stress in conidial germination. Arch Microbiol 2018; 200:517-523. [PMID: 29464281 DOI: 10.1007/s00203-018-1491-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/10/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Scedosporium species are opportunistic pathogens causing a great variety of infections in both immunocompetent and immunocompromised individuals. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus, and most species are capable to chronically colonize the respiratory tract of these patients. Nevertheless, few data are available regarding evasion of the inhaled conidia to the host immune response. Upon microbial infection, macrophages and neutrophils release reactive oxygen species (ROS). To colonize the respiratory tract, the conidia need to germinate despite the oxidative stress generated by phagocytic cells. Germination of spores from different clinical or environmental isolates of the major Scedosporium species was investigated in oxidative stress conditions. All tested species showed susceptibility to oxidative stress. However, when comparing clinical and environmental isolates, differences in germination capabilities under oxidative stress conditions were seen between species as well as within each species. Among environmental isolates, Scedosporium aurantiacum isolates were the most resistant to oxidative stress whereas Scedosporium dehoogii were the most susceptible. Overall, the differences observed between Scedosporium species in the capacity to germinate under oxidative stress conditions could explain their varying prevalence and pathogenicity.
Collapse
Affiliation(s)
- Cindy Staerck
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Institut de Biologie en Santé-IRIS, CHU, UNIV Angers, UNIV Brest, Université Bretagne-Loire, 4 rue Larrey, 49933, Angers, France
| | - Charlotte Godon
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Institut de Biologie en Santé-IRIS, CHU, UNIV Angers, UNIV Brest, Université Bretagne-Loire, 4 rue Larrey, 49933, Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Institut de Biologie en Santé-IRIS, CHU, UNIV Angers, UNIV Brest, Université Bretagne-Loire, 4 rue Larrey, 49933, Angers, France.,Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Maxime J J Fleury
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Institut de Biologie en Santé-IRIS, CHU, UNIV Angers, UNIV Brest, Université Bretagne-Loire, 4 rue Larrey, 49933, Angers, France.
| |
Collapse
|