151
|
Andres SN, Schellenberg MJ, Wallace BD, Tumbale P, Williams RS. Recognition and repair of chemically heterogeneous structures at DNA ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:1-21. [PMID: 25111769 PMCID: PMC4303525 DOI: 10.1002/em.21892] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/28/2014] [Indexed: 05/13/2023]
Abstract
Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.
Collapse
Affiliation(s)
- Sara N Andres
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, North Carolina
| | | | | | | | | |
Collapse
|
152
|
Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A, Mandal SM, Neves-Carvalho A, Liu Y, Pandita RK, Hegde ML, Hegde PM, Boldogh I, Ashizawa T, Koeppen AH, Pandita TK, Maciel P, Sarkar PS, Hazra TK. The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3'-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet 2015; 11:e1004749. [PMID: 25633985 PMCID: PMC4310589 DOI: 10.1371/journal.pgen.1004749] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023] Open
Abstract
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Saikat Saha
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anabela Silva-Fernandes
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Santi M. Mandal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andreia Neves-Carvalho
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yongping Liu
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Raj K. Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pavana M. Hegde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Istvan Boldogh
- Department of Microbiology & Immunology; University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Arnulf H. Koeppen
- Department of Neurology, Albany Stratton VA Medical Center, Albany, New York, United States of America
| | - Tej K. Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Patricia Maciel
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Partha S. Sarkar
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
153
|
Chohan M, Mackedenski S, Li WM, Lee CH. Human apurinic/apyrimidinic endonuclease 1 (APE1) has 3' RNA phosphatase and 3' exoribonuclease activities. J Mol Biol 2014; 427:298-311. [PMID: 25498387 DOI: 10.1016/j.jmb.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant mammalian enzyme in DNA base excision repair pathway that cleaves the DNA backbone immediately 5' to abasic sites. In addition to its abasic endonuclease activity, APE1 has 3' phosphatase and 3'-5' exonuclease activities against DNA. We recently identified APE1 as an endoribonuclease that preferentially cleaves at UA, UG, and CA sites in single-stranded regions of RNAs and can regulate c-myc mRNA level and half-life in cells. APE1 can also endonucleolytically cleave abasic single-stranded RNA. Here, we show for the first time that the human APE1 has 3' RNA phosphatase and 3' exoribonuclease activities. Using three distinct RNA substrates, we show that APE1, but not RNase A, can remove the phosphoryl group from the 3' end of RNA decay products. Studies using various site-directed APE1 mutant proteins (H309N, H309S, D283N, N68A, D210N, Y171F, D308A, F266A, and D70A) suggest that the 3' RNA phosphatase activity shares the same active center as its other known nuclease activities. A number of APE1 variants previously identified in the human population, including the most common D148E variant, have greater than 80% reduction in the 3' RNA phosphatase activity. APE1 can remove a ribonucleotide from the 3' overhang of RNA decay product, but its 3'-5' exoribonuclease activity against unstructured poly(A), poly(C), and poly(U) RNAs is relatively weak. This study further underscores the significance of understanding the role of APE1 in RNA metabolism in vivo.
Collapse
Affiliation(s)
- Manbir Chohan
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Sebastian Mackedenski
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Wai-Ming Li
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Chow H Lee
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada.
| |
Collapse
|
154
|
Brenerman BM, Illuzzi JL, Wilson DM. Base excision repair capacity in informing healthspan. Carcinogenesis 2014; 35:2643-52. [PMID: 25355293 PMCID: PMC4247524 DOI: 10.1093/carcin/bgu225] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022] Open
Abstract
Base excision repair (BER) is a frontline defense mechanism for dealing with many common forms of endogenous DNA damage, several of which can drive mutagenic or cell death outcomes. The pathway engages proteins such as glycosylases, abasic endonucleases, polymerases and ligases to remove substrate modifications from DNA and restore the genome back to its original state. Inherited mutations in genes related to BER can give rise to disorders involving cancer, immunodeficiency and neurodegeneration. Studies employing genetically defined heterozygous (haploinsufficient) mouse models indicate that partial reduction in BER capacity can increase vulnerability to both spontaneous and exposure-dependent pathologies. In humans, measurement of BER variation has been imperfect to this point, yet tools to assess BER in epidemiological surveys are steadily evolving. We provide herein an overview of the BER pathway and discuss the current efforts toward defining the relationship of BER defects with disease susceptibility.
Collapse
Affiliation(s)
- Boris M Brenerman
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Illuzzi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
155
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
156
|
Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during Helicobacter pylori infection. Oncogenesis 2014; 3:e128. [PMID: 25417725 PMCID: PMC4259965 DOI: 10.1038/oncsis.2014.42] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori infection of the human stomach is associated with inflammation that leads to the release of reactive oxygen and nitrogen species (RONs), eliciting DNA damage in host cells. Unrepaired DNA damage leads to genomic instability that is associated with cancer. Base excision repair (BER) is critical to maintain genomic stability during RONs-induced DNA damage, but little is known about its role in processing DNA damage associated with H. pylori infection of normal gastric epithelial cells. Here, we show that upon H. pylori infection, abasic (AP) sites accumulate and lead to increased levels of double-stranded DNA breaks (DSBs). In contrast, downregulation of the OGG1 DNA glycosylase decreases the levels of both AP sites and DSBs during H. pylori infection. Processing of AP sites during different phases of the cell cycle leads to an elevation in the levels of DSBs. Therefore, the induction of oxidative DNA damage by H. pylori and subsequent processing by BER in normal gastric epithelial cells has the potential to lead to genomic instability that may have a role in the development of gastric cancer. Our results are consistent with the interpretation that precise coordination of BER processing of DNA damage is critical for the maintenance of genomic stability.
Collapse
|
157
|
Edmonds MJ, Parsons JL. Regulation of base excision repair proteins by ubiquitylation. Exp Cell Res 2014; 329:132-8. [DOI: 10.1016/j.yexcr.2014.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 11/26/2022]
|
158
|
Lee J, Jang H, Shin H, Choi WL, Mok YG, Huh JH. AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis. Nucleic Acids Res 2014; 42:11408-18. [PMID: 25228464 PMCID: PMC4191409 DOI: 10.1093/nar/gku834] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a primary epigenetic modification regulating gene expression and chromatin structure in many eukaryotes. Plants have a unique DNA demethylation system in that 5-methylcytosine (5mC) is directly removed by DNA demethylases, such as DME/ROS1 family proteins, but little is known about the downstream events. During 5mC excision, DME produces 3′-phosphor-α, β-unsaturated aldehyde and 3′-phosphate by successive β- and δ-eliminations, respectively. The kinetic studies revealed that these 3′-blocking lesions persist for a significant amount of time and at least two different enzyme activities are required to immediately process them. We demonstrate that Arabidopsis AP endonucleases APE1L, APE2 and ARP have distinct functions to process such harmful lesions to allow nucleotide extension. DME expression is toxic to E. coli due to excessive 5mC excision, but expression of APE1L or ARP significantly reduces DME-induced cytotoxicity. Finally, we propose a model of base excision repair and DNA demethylation pathway unique to plants.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Hosung Jang
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Hosub Shin
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Woo Lee Choi
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Young Geun Mok
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Jin Hoe Huh
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
159
|
Córdoba-Cañero D, Roldán-Arjona T, Ariza RR. Arabidopsis ZDP DNA 3'-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:824-34. [PMID: 24934622 DOI: 10.1111/tpj.12588] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 05/21/2023]
Abstract
Oxidation of guanine in DNA generates 7,8-dihydro-8-oxoguanine (8-oxoG), an ubiquitous lesion with mutagenic properties. 8-oxoG is primarily removed by DNA glycosylases distributed in two families, typified by bacterial Fpg proteins and eukaryotic Ogg1 proteins. Interestingly, plants possess both Fpg and Ogg1 homologs but their relative contributions to 8-oxoG repair remain uncertain. In this work we used Arabidopsis cell-free extracts to monitor 8-oxoG repair in wild-type and mutant plants. We found that both FPG and OGG1 catalyze excision of 8-oxoG in Arabidopsis cell extracts by a DNA glycosylase/lyase mechanism, and generate repair intermediates with blocked 3'-termini. An increase in oxidative damage is detected in both nuclear and mitochondrial DNA from double fpg ogg1 mutants, but not in single mutants, which suggests that a single deficiency in one of these DNA glycosylases may be compensated by the other. We also found that the DNA 3'-phosphatase ZDP (zinc finger DNA 3'-phosphoesterase) and the AP(apurinic/apyirmidinic) endonuclease ARP(apurinic endonuclease redox protein) are required in the 8-oxoG repair pathway to process the 3'-blocking ends generated by FPG and OGG1. Furthermore, deficiencies in ZDP and/or ARP decrease germination ability after seed deteriorating conditions. Altogether, our results suggest that Arabidopsis cells use both FPG and OGG1 to repair 8-oxoG in a pathway that requires ZDP and ARP in downstream steps.
Collapse
Affiliation(s)
- Dolores Córdoba-Cañero
- Department of Genetics, University of Córdoba/Maimónides Institute for Research in Biomedicine of Córdoba (IMIBIC)/Reina Sofía University Hospital, 14071, Córdoba, Spain
| | | | | |
Collapse
|
160
|
Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:730301. [PMID: 25243052 PMCID: PMC4158471 DOI: 10.1155/2014/730301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual's genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.
Collapse
|
161
|
|
162
|
Rahmanian S, Taleei R, Nikjoo H. Radiation induced base excision repair (BER): a mechanistic mathematical approach. DNA Repair (Amst) 2014; 22:89-103. [PMID: 25117268 DOI: 10.1016/j.dnarep.2014.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023]
Abstract
This paper presents a mechanistic model of base excision repair (BER) pathway for the repair of single-stand breaks (SSBs) and oxidized base lesions produced by ionizing radiation (IR). The model is based on law of mass action kinetics to translate the biochemical processes involved, step-by-step, in the BER pathway to translate into mathematical equations. The BER is divided into two subpathways, short-patch repair (SPR) and long-patch repair (LPR). SPR involves in replacement of single nucleotide via Pol β and ligation of the ends via XRCC1 and Ligase III, while LPR involves in replacement of multiple nucleotides via PCNA, Pol δ/ɛ and FEN 1, and ligation via Ligase I. A hallmark of IR is the production of closely spaced lesions within a turn of DNA helix (named complex lesions), which have been attributed to a slower repair process. The model presented considers fast and slow component of BER kinetics by assigning SPR for simple lesions and LPR for complex lesions. In the absence of in vivo reaction rate constants for the BER proteins, we have deduced a set of rate constants based on different published experimental measurements including accumulation kinetics obtained from UVA irradiation, overall SSB repair kinetic experiments, and overall BER kinetics from live-cell imaging experiments. The model was further used to calculate the repair kinetics of complex base lesions via the LPR subpathway and compared to foci kinetic experiments for cells irradiated with γ rays, Si, and Fe ions. The model calculation show good agreement with experimental measurements for both overall repair and repair of complex lesions. Furthermore, using the model we explored different mechanisms responsible for inhibition of repair when higher LET and HZE particles are used and concluded that increasing the damage complexity can inhibit initiation of LPR after the AP site removal step in BER.
Collapse
Affiliation(s)
- Shirin Rahmanian
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 P9-02, Stockholm 17176, Sweden
| | - Reza Taleei
- Radiation Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 94, Houston, TX 77030-4409, USA
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 P9-02, Stockholm 17176, Sweden.
| |
Collapse
|
163
|
Theruvathu JA, Darwanto A, Hsu CW, Sowers LC. The effect of Pot1 binding on the repair of thymine analogs in a telomeric DNA sequence. Nucleic Acids Res 2014; 42:9063-73. [PMID: 25053838 PMCID: PMC4132724 DOI: 10.1093/nar/gku602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/05/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022] Open
Abstract
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA-protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.
Collapse
Affiliation(s)
- Jacob A Theruvathu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Agus Darwanto
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| |
Collapse
|
164
|
Du J, Xu Q, Lu X, Zhang CY. A label-free bioluminescent sensor for real-time monitoring polynucleotide kinase activity. Anal Chem 2014; 86:8481-8. [PMID: 25048013 DOI: 10.1021/ac502240c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polynucleotide kinase (PNK) plays a crucial role in maintaining the genomic stability of cells and is becoming a potential target in the radio-therapeutic treatment of cancers. The fluorescent method is usually used to measure the PNK activity, but it is impossible to obtain the real-time monitoring without the employment of the labeled DNA probes. Here, we report a label-free bioluminescent sensor for PNK activity assay through real-time monitoring of the phosphorylation-dependent DNA ligation reaction. In this bioluminescent sensor, two hairpin DNA probes with 5'-protruding terminal are designed as the phosphate acceptor, and the widely used phosphate donor of ATP is substituted by dCTP. In the absence of PNK, the ligation reaction cannot be triggered due to the lack of 5'-phosphoryl groups in the probes, and the background signal is negligible. With the addition of PNK, the phosphorylation-ligation reaction of the probes is initiated with the release of AMP, and the subsequent conversion of AMP to ATP leads to the generation of distinct bioluminescence signal. The PNK activity assay can be performed in real time by continuously monitoring the bioluminescence signal. This bioluminescent sensor is much simpler, label-free, cost-effective, and free from the autofluorescence interference of biological matrix, and can be further used for quantitative, kinetic, and inhibition assay.
Collapse
Affiliation(s)
- Jiao Du
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | | | | | | |
Collapse
|
165
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
166
|
New perspectives on oxidized genome damage and repair inhibition by pro-oxidant metals in neurological diseases. Biomolecules 2014; 4:678-703. [PMID: 25036887 PMCID: PMC4192668 DOI: 10.3390/biom4030678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022] Open
Abstract
The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases.
Collapse
|
167
|
Nickson CM, Parsons JL. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay. Front Genet 2014; 5:232. [PMID: 25076968 PMCID: PMC4100063 DOI: 10.3389/fgene.2014.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 01/10/2023] Open
Abstract
Base excision repair (BER) is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss, and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionizing radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation) in the regulation of cellular levels of BER proteins, and that subtle changes (∼20-50%) in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumor suppressor protein ARF, and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase β, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A-DDB1-STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA repair capacity.
Collapse
Affiliation(s)
- Catherine M Nickson
- Department of Molecular and Clinical Cancer Medicine, North West Cancer Research Centre, University of Liverpool Liverpool, UK
| | - Jason L Parsons
- Department of Molecular and Clinical Cancer Medicine, North West Cancer Research Centre, University of Liverpool Liverpool, UK
| |
Collapse
|
168
|
Krokan HE, Sætrom P, Aas PA, Pettersen HS, Kavli B, Slupphaug G. Error-free versus mutagenic processing of genomic uracil—Relevance to cancer. DNA Repair (Amst) 2014; 19:38-47. [DOI: 10.1016/j.dnarep.2014.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
169
|
Yamamoto R, Ohshiro Y, Shimotani T, Yamamoto M, Matsuyama S, Ide H, Kubo K. Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase. JOURNAL OF RADIATION RESEARCH 2014; 55:707-712. [PMID: 24706997 PMCID: PMC4100011 DOI: 10.1093/jrr/rru021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Oxidative base damage occurs spontaneously due to reactive oxygen species generated as byproducts of respiration and other pathological processes in mammalian cells. Many oxidized bases are mutagenic and/or toxic, and most are repaired through the base excision repair pathway. Human endonuclease VIII-like protein 1 (hNEIL1) is thought to play an important role during the S phase of the cell cycle by removing oxidized bases in DNA replication fork-like (bubble) structures, and the protein level of hNEIL1 is increased in S phase. Compared with hNEIL1, there is relatively little information on the properties of the mouse ortholog mNEIL1. Since mouse cell nuclei lack endonuclease III-like protein (NTH) activity, in contrast to human cell nuclei, mNEIL1 is a major DNA glycosylase for repair of oxidized pyrimidines in mouse nuclei. In this study, we made mNEIL1-knockdown cells using an shRNA expression vector and examined the cell cycle-related variation in hydrogen peroxide (H2O2) sensitivity. Hypersensitivity to H2O2 caused by mNEIL1 knockdown was more significant in S phase than in G1 phase, suggesting that mNEIL1 has an important role during S phase, similarly to hNEIL1.
Collapse
Affiliation(s)
- Ryohei Yamamoto
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Yukari Ohshiro
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Tatsuhiko Shimotani
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Mizuki Yamamoto
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Satoshi Matsuyama
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kihei Kubo
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
170
|
Human DNA Glycosylase NEIL1's Interactions with Downstream Repair Proteins Is Critical for Efficient Repair of Oxidized DNA Base Damage and Enhanced Cell Survival. Biomolecules 2014; 2:564-78. [PMID: 23926464 PMCID: PMC3733129 DOI: 10.3390/biom2040564] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NEIL1 is unique among the oxidatively damaged base repair-initiating DNA glycosylases in the human genome due to its S phase-specific activation and ability to excise substrate base lesions from single-stranded DNA. We recently characterized NEIL1’s specific binding to downstream canonical repair and non-canonical accessory proteins, all of which involve NEIL1’s disordered C-terminal segment as the common interaction domain (CID). This domain is dispensable for NEIL1’s base excision and abasic (AP) lyase activities, but is required for its interactions with other repair proteins. Here, we show that truncated NEIL1 lacking the CID is markedly deficient in initiating in vitro repair of 5-hydroxyuracil (an oxidative deamination product of C) in a plasmid substrate compared to the wild-type NEIL1, thus suggesting a critical role of CID in the coordination of overall repair. Furthermore, while NEIL1 downregulation significantly sensitized human embryonic kidney (HEK) 293 cells to reactive oxygen species (ROS), ectopic wild-type NEIL1, but not the truncated mutant, restored resistance to ROS. These results demonstrate that cell survival and NEIL1-dependent repair of oxidative DNA base damage require interactions among repair proteins, which could be explored as a cancer therapeutic target in order to increase the efficiency of chemo/radiation treatment.
Collapse
|
171
|
Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. J Biol Chem 2014; 289:16541-50. [PMID: 24764311 DOI: 10.1074/jbc.m114.561878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Christal D Sohl
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Sylvie Doublié
- the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Karen S Anderson
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | | |
Collapse
|
172
|
Muftuoglu M, Mori MP, de Souza-Pinto NC. Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion 2014; 17:164-81. [PMID: 24704805 DOI: 10.1016/j.mito.2014.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, components of 4 of the 5 oxidative phosphorylation complexes. But despite this apparently small numeric contribution, all 13 subunits are essential for the proper functioning of the oxidative phosphorylation circuit. Thus, accumulation of lesions, mutations and deletions/insertions in the mtDNA could have severe functional consequences, including mitochondrial diseases, aging and age-related diseases. The DNA is a chemically unstable molecule, which can be easily oxidized, alkylated, deaminated and suffer other types of chemical modifications, throughout evolution the organisms that survived were those who developed efficient DNA repair processes. In the last two decades, it has become clear that mitochondria have DNA repair pathways, which operate, at least for some types of lesions, as efficiently as the nuclear DNA repair pathways. The mtDNA is localized in a particularly oxidizing environment, making it prone to accumulate oxidatively generated DNA modifications (ODMs). In this article, we: i) review the major types of ODMs formed in mtDNA and the known repair pathways that remove them; ii) discuss the possible involvement of other repair pathways, just recently characterized in mitochondria, in the repair of these modifications; and iii) address the role of DNA repair in mitochondrial function and a possible cross-talk with other pathways that may potentially participate in mitochondrial genomic stability, such as mitochondrial dynamics and nuclear-mitochondrial signaling. Oxidative stress and ODMs have been increasingly implicated in disease and aging, and thus we discuss how variations in DNA repair efficiency may contribute to the etiology of such conditions or even modulate their clinical outcomes.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Department of Molecular Biology and Genetics, Acibadem University, Atasehir, 34752 Istanbul, Turkey
| | - Mateus P Mori
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil
| | - Nadja C de Souza-Pinto
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil.
| |
Collapse
|
173
|
Jin J, Hwang BJ, Chang PW, Toth EA, Lu AL. Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast. DNA Repair (Amst) 2014; 15:1-10. [PMID: 24559510 PMCID: PMC3967872 DOI: 10.1016/j.dnarep.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9-Rad1-Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I(261) of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E(262) of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3'-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Po-Wen Chang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eric A Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD 20850, USA
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
174
|
Scott TL, Rangaswamy S, Wicker CA, Izumi T. Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 2014; 20:708-26. [PMID: 23901781 PMCID: PMC3960848 DOI: 10.1089/ars.2013.5529] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. RECENT ADVANCES In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. CRITICAL ISSUES The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. FUTURE DIRECTIONS Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation.
Collapse
Affiliation(s)
- Timothy L Scott
- Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
175
|
Wallace SS. DNA glycosylases search for and remove oxidized DNA bases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:691-704. [PMID: 24123395 PMCID: PMC3997179 DOI: 10.1002/em.21820] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 05/19/2023]
Abstract
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage.
Collapse
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics The Markey Center for Molecular Genetics The University of Vermont Stafford Hall, 95 Carrigan Drive Burlington, VT 05405-0068, USA Tel: (802) 656-2164; Fax: (802) 656-8749
| |
Collapse
|
176
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
177
|
Redrejo-Rodríguez M, Salas ML. Repair of base damage and genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus Res 2013; 179:12-25. [PMID: 24184318 DOI: 10.1016/j.virusres.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
Abstract
Among the DNA viruses, the so-called nucleo-cytoplasmic large DNA viruses (NCLDV) constitute a monophyletic group that currently consists of seven families of viruses infecting a very broad variety of eukaryotes, from unicellular marine protists to humans. Many recent papers have analyzed the sequence and structure of NCLDV genomes and their phylogeny, providing detailed analysis about their genomic structure and evolutionary history and proposing their inclusion in a new viral order named Megavirales that, according to some authors, should be considered as a fourth domain of life, aside from Bacteria, Archaea and Eukarya. The maintenance of genetic information protected from environmental attacks and mutations is essential not only for the survival of cellular organisms but also viruses. In cellular organisms, damaged DNA bases are removed in two major repair pathways: base excision repair (BER) and nucleotide incision repair (NIR) that constitute the major pathways responsible for repairing most endogenous base lesions and abnormal bases in the genome by precise repair procedures. Like cells, many NCLDV encode proteins that might constitute viral DNA repair pathways that would remove damages through BER/NIR pathways. However, the molecular mechanisms and, specially, the biological roles of those viral repair pathways have not been deeply addressed in the literature so far. In this paper, we review viral-encoded BER proteins and the genetic and biochemical data available about them. We propose and discuss probable viral-encoded DNA repair mechanisms and pathways, as compared with the functional and molecular features of known homologs proteins.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - María L Salas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
178
|
Tomkinson AE, Sallmyr A. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene. Gene 2013; 531:150-7. [PMID: 24013086 DOI: 10.1016/j.gene.2013.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022]
Abstract
Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
179
|
Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc Natl Acad Sci U S A 2013; 110:14314-9. [PMID: 23940330 DOI: 10.1073/pnas.1306752110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Base excision repair (BER) removes at least 20,000 DNA lesions per human cell per day and is critical for the maintenance of genomic stability. We hypothesize that aberrant BER, resulting from mutations in BER genes, can lead to genomic instability and cancer. The first step in BER is catalyzed by DNA N-glycosylases. One of these, n(th) endonuclease III-like (NTH1), removes oxidized pyrimidines from DNA, including thymine glycol. The rs3087468 single nucleotide polymorphism of the NTH1 gene is a G-to-T base substitution that results in the NTH1 D239Y variant protein that occurs in ∼6.2% of the global population and is found in Europeans, Asians, and sub-Saharan Africans. In this study, we functionally characterize the effect of the D239Y variant expressed in immortal but nontransformed human and mouse mammary epithelial cells. We demonstrate that expression of the D239Y variant in cells also expressing wild-type NTH1 leads to genomic instability and cellular transformation as assessed by anchorage-independent growth, focus formation, invasion, and chromosomal aberrations. We also show that cells expressing the D239Y variant are sensitive to ionizing radiation and hydrogen peroxide and accumulate double strand breaks after treatment with these agents. The DNA damage response is also activated in D239Y-expressing cells. In combination, our data suggest that individuals possessing the D239Y variant are at risk for genomic instability and cancer.
Collapse
|
180
|
Barzilai A. The interrelations between malfunctioning DNA damage response (DDR) and the functionality of the neuro-glio-vascular unit. DNA Repair (Amst) 2013; 12:543-57. [DOI: 10.1016/j.dnarep.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
181
|
Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc Natl Acad Sci U S A 2013; 110:E3090-9. [PMID: 23898192 DOI: 10.1073/pnas.1304231110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a "cowcatcher" and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function.
Collapse
|
182
|
Li J, Braganza A, Sobol RW. Base excision repair facilitates a functional relationship between Guanine oxidation and histone demethylation. Antioxid Redox Signal 2013; 18:2429-43. [PMID: 23311711 PMCID: PMC3671628 DOI: 10.1089/ars.2012.5107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. RECENT ADVANCES The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. CRITICAL ISSUES One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. FUTURE DIRECTIONS To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
183
|
Illuzzi JL, Harris NA, Manvilla BA, Kim D, Li M, Drohat AC, Wilson DM. Functional assessment of population and tumor-associated APE1 protein variants. PLoS One 2013; 8:e65922. [PMID: 23776569 PMCID: PMC3679070 DOI: 10.1371/journal.pone.0065922] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/29/2013] [Indexed: 01/15/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant AP site repair enzyme in mammals. APE1 also maintains 3'-5' exonuclease and 3'-repair activities, and regulates transcription factor DNA binding through its REF-1 function. Since complete or severe APE1 deficiency leads to embryonic lethality and cell death, it has been hypothesized that APE1 protein variants with slightly impaired function will contribute to disease etiology. Our data indicate that except for the endometrial cancer-associated APE1 variant R237C, the polymorphic variants Q51H, I64V and D148E, the rare population variants G241R, P311S and A317V, and the tumor-associated variant P112L exhibit normal thermodynamic stability of protein folding; abasic endonuclease, 3'-5' exonuclease and REF-1 activities; coordination during the early steps of base excision repair; and intracellular distribution when expressed exogenously in HeLa cells. The R237C mutant displayed reduced AP-DNA complex stability, 3'-5' exonuclease activity and 3'-damage processing. Re-sequencing of the exonic regions of APE1 uncovered no novel amino acid substitutions in the 60 cancer cell lines of the NCI-60 panel, or in HeLa or T98G cancer cell lines; only the common D148E and Q51H variants were observed. Our results indicate that APE1 missense mutations are seemingly rare and that the cancer-associated R237C variant may represent a reduced-function susceptibility allele.
Collapse
Affiliation(s)
- Jennifer L. Illuzzi
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nicole A. Harris
- Department of Cardiopathology, Sanford Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Brittney A. Manvilla
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Daemyung Kim
- Department of Genetic Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Mengxia Li
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Alexander C. Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
184
|
Krokeide SZ, Laerdahl JK, Salah M, Luna L, Cederkvist FH, Fleming AM, Burrows CJ, Dalhus B, Bjørås M. Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst) 2013; 12:1159-64. [PMID: 23755964 DOI: 10.1016/j.dnarep.2013.04.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Base excision repair is the major pathway for removal of oxidative DNA base damage. This pathway is initiated by DNA glycosylases, which recognize and excise damaged bases from DNA. In this work, we have purified the glycosylase domain (GD) of human DNA glycosylase NEIL3. The substrate specificity has been characterized and we have elucidated the catalytic mechanisms. GD NEIL3 excised the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in single-stranded (ss) and double-stranded (ds) DNA efficiently. NEIL3 also removed 5-hydroxy-2'-deoxycytidine (5OHC) and 5-hydroxy-2'-deoxyuridine (5OHU) in ssDNA, but less efficiently than hydantoins. Unlike NEIL1 and NEIL2, which possess a β,δ-elimination activity, NEIL3 mainly incised damaged DNA by β-elimination. Further, the base excision and strand incision activities of NEIL3 exhibited a non-concerted action, indicating that NEIL3 mainly operate as a monofunctional DNA glycosylase. The site-specific NEIL3 mutant V2P, however, showed a concerted action, suggesting that the N-terminal amino group in Val2 is critical for the monofunctional modus. Finally, we demonstrated that residue Lys81 is essential for catalysis.
Collapse
Affiliation(s)
- Silje Z Krokeide
- Department of Microbiology, University of Oslo, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, NO-0424 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
186
|
Noren Hooten N, Fitzpatrick M, Kompaniez K, Jacob KD, Moore BR, Nagle J, Barnes J, Lohani A, Evans MK. Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging (Albany NY) 2013; 4:674-85. [PMID: 23104860 PMCID: PMC3517938 DOI: 10.18632/aging.100492] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog ofEscherichia coli endonuclease VIII, have overlapping yet distinct substrate specificity. Recently, we reported that OGG1 binds to the Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein that poly(ADP-ribosyl)ates nuclear proteins in response to DNA damage and other cellular signals. Here, we show that NEIL1 and PARP-1 bind both in vitro and in vivo. PARP-1 binds to the C-terminal-100 amino acids of NEIL1 and NEIL1 binds to the BRCT domain of PARP-1. NEIL1 stimulates the poly(ADP-ribosyl)ation activity of PARP-1. Furthermore, NEIL-deficient fibroblasts have impaired poly(ADP-ribosyl)ation of cellular proteins after DNA damage, which can be rescued by NEIL1 expression. Additionally, PARP-1 inhibits NEIL1 incision activity in a concentration-dependent manner. Consistent with the idea of impaired DNA repair during aging, we observed differential binding of PARP-1 to recombinant NEIL1 in older mice compared to younger mice. These data further support the idea that dynamic interplay between different base excision repair proteins is important for efficient BER.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Hegde ML, Tsutakawa SE, Hegde PM, Holthauzen LMF, Li J, Oezguen N, Hilser VJ, Tainer JA, Mitra S. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions. J Mol Biol 2013; 425:2359-71. [PMID: 23542007 DOI: 10.1016/j.jmb.2013.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Parsons JL, Dianov GL. Co-ordination of base excision repair and genome stability. DNA Repair (Amst) 2013; 12:326-33. [PMID: 23473643 DOI: 10.1016/j.dnarep.2013.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
Base excision repair (BER) is a major DNA repair pathway employed in mammalian cells that is required to maintain genome stability, thus preventing several human diseases, such as ageing, neurodegenerative diseases and cancer. This is achieved through the repair of damaged DNA bases, sites of base loss and single strand breaks of varying complexity that are continuously induced endogenously or via exogenous mutagens. Whilst the enzymes involved in BER are now well known and characterised, the role of the co-ordination of BER enzymatic activities in the cellular response to DNA damage and the mechanisms regulating this process are only now being revealed. Post-translational modifications of BER proteins, including ubiquitylation and phosphorylation, are increasingly being identified as key processes that regulate BER. In this review we will summarise recent evidence discovering novel mechanisms that are involved in maintaining genome stability by regulation of the key BER proteins in response to DNA damage.
Collapse
Affiliation(s)
- Jason L Parsons
- Department of Molecular and Clinical Cancer Medicine, Cancer Research Centre, University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK
| | | |
Collapse
|
189
|
Abstract
Base excision repair (BER) is a frontline repair system that is responsible for maintaining genome integrity and thus preventing premature aging, cancer and many other human diseases by repairing thousands of DNA lesions and strand breaks continuously caused by endogenous and exogenous mutagens. This fundamental and essential function of BER not only necessitates tight control of the continuous availability of basic components for fast and accurate repair, but also requires temporal and spatial coordination of BER and cell cycle progression to prevent replication of damaged DNA. The major goal of this review is to critically examine controversial and newly emerging questions about mammalian BER pathways, mechanisms regulating BER capacity, BER responses to DNA damage and their links to checkpoint control of DNA replication.
Collapse
Affiliation(s)
- Grigory L Dianov
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
190
|
Martínez-Macías MI, Córdoba-Cañero D, Ariza RR, Roldán-Arjona T. The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation (5-meC) excision, gap tailoring, and DNA ligation. J Biol Chem 2013; 288:5496-505. [PMID: 23316050 DOI: 10.1074/jbc.m112.427617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA methylation patterns are the dynamic outcome of antagonist methylation and demethylation mechanisms, but the latter are still poorly understood. Active DNA demethylation in plants is mediated by a family of DNA glycosylases typified by Arabidopsis ROS1 (repressor of silencing 1). ROS1 and its homologs remove 5-methylcytosine and incise the sugar backbone at the abasic site, thus initiating a base excision repair pathway that finally inserts an unmethylated cytosine. The DNA 3'-phosphatase ZDP processes some of the incision products generated by ROS1, allowing subsequent DNA polymerization and ligation steps. In this work, we examined the possible role of plant XRCC1 (x-ray cross-complementing group protein 1) in DNA demethylation. We found that XRCC1 interacts in vitro with ROS1 and ZDP and stimulates the enzymatic activity of both proteins. Furthermore, extracts from xrcc1 mutant plants exhibit a reduced capacity to complete DNA demethylation initiated by ROS1. An anti-XRCC1 antibody inhibits removal of the blocking 3'-phosphate in the single-nucleotide gap generated during demethylation and reduces the capacity of Arabidopsis cell extracts to ligate a nicked DNA intermediate. Our results suggest that XRCC1 is a component of plant base excision repair and functions at several stages during active DNA demethylation in Arabidopsis.
Collapse
Affiliation(s)
- María Isabel Martínez-Macías
- Department of Genetics, University of Córdoba/Maimónides Institute of Biomedical Research (IMIBIC), 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
191
|
Córdoba-Cañero D, Roldán-Arjona T, Ariza RR. Using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. Methods Mol Biol 2013; 920:263-77. [PMID: 22941609 DOI: 10.1007/978-1-61779-998-3_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Base excision repair (BER) is a major pathway for the removal of endogenous and exogenous DNA damage. This repair mechanism is initiated by DNA glycosylases that excise the altered base, and continues through alternative routes that culminate in DNA resynthesis and ligation. In contrast to the information available for microbes and animals, our knowledge about this important DNA repair pathway in plants is very limited, partially due to a lack of biochemical approaches. Here we describe an in vitro assay to monitor BER in cell-free extracts from the model plant Arabidopsis thaliana. The assay uses labeled DNA substrates containing a single damaged base within a restriction site, and allows detection of fully repaired molecules as well as DNA repair intermediates. The method is easily applied to measure the repair activity of purified proteins and can be successfully used in combination with the extensive array of biological resources available for Arabidopsis.
Collapse
Affiliation(s)
- Dolores Córdoba-Cañero
- Department of Genetics, University of Córdoba and Maimónides Institute of Biomedical Research, Córdoba, Spain
| | | | | |
Collapse
|
192
|
Liu M, Doublié S, Wallace SS. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutat Res 2012; 743-744:4-11. [PMID: 23274422 DOI: 10.1016/j.mrfmmm.2012.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
DNA glycosylases are the enzymes that initiate the Base Excision Repair (BER) process that protects all organisms from the mutagenic and/or cytotoxic effects of DNA base lesions. Endonuclease VIII like proteins (Neil1, Neil2 and Neil3) are found in vertebrate genomes and are homologous to the well-characterized bacterial DNA glycosylases, Formamidopyrimidine DNA glycosylase (Fpg) and Endonuclease VIII (Nei). Since the initial discovery of the Neil proteins, much progress has been made on characterizing Neil1 and Neil2. It was not until recently, however, that Neil3 was shown to be a functional DNA glycosylase having a different substrate specificity and unusual structural features compared with other Fpg/Nei homologs. Although the biological functions of Neil3 still remain an enigma, this review highlights recent biochemical and structural data that may ultimately shed light on its biological role.
Collapse
Affiliation(s)
- Minmin Liu
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States.
| |
Collapse
|
193
|
Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:247-71. [PMID: 23076011 DOI: 10.1016/j.bbapap.2012.10.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.
Collapse
Affiliation(s)
- Sonja C Brooks
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
194
|
Prasad R, Williams JG, Hou EW, Wilson SH. Pol β associated complex and base excision repair factors in mouse fibroblasts. Nucleic Acids Res 2012; 40:11571-82. [PMID: 23042675 PMCID: PMC3526277 DOI: 10.1093/nar/gks898] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an ‘affinity-capture’ procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3′-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3′-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3′-blocked intermediate.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
195
|
Parsons JL, Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Datta PK, Dianov GL. Phosphorylation of PNKP by ATM prevents its proteasomal degradation and enhances resistance to oxidative stress. Nucleic Acids Res 2012; 40:11404-15. [PMID: 23042680 PMCID: PMC3526271 DOI: 10.1093/nar/gks909] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We examined the mechanism regulating the cellular levels of PNKP, the major kinase/phosphatase involved in the repair of oxidative DNA damage, and find that it is controlled by ATM phosphorylation and ubiquitylation-dependent proteasomal degradation. We discovered that ATM-dependent phosphorylation of PNKP at serines 114 and 126 in response to oxidative DNA damage inhibits ubiquitylation-dependent proteasomal degradation of PNKP, and consequently increases PNKP stability that is required for DNA repair. We have also purified a novel Cul4A-DDB1 ubiquitin ligase complex responsible for PNKP ubiquitylation and identify serine–threonine kinase receptor associated protein (STRAP) as the adaptor protein that provides specificity of the complex to PNKP. Strap−/− mouse embryonic fibroblasts subsequently contain elevated cellular levels of PNKP, and show elevated resistance to oxidative DNA damage. These data demonstrate an important role for ATM and the Cul4A-DDB1-STRAP ubiquitin ligase in the regulation of the cellular levels of PNKP, and consequently in the repair of oxidative DNA damage.
Collapse
Affiliation(s)
- Jason L Parsons
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | | | | | | | | | | | |
Collapse
|
196
|
Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 2012; 13:659-71. [PMID: 22992591 DOI: 10.1038/nrm3439] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) faces the universal challenges of genome maintenance: the accurate replication, transmission and preservation of its integrity throughout the life of the organism. Although mtDNA was originally thought to lack DNA repair activity, four decades of research on mitochondria have revealed multiple mtDNA repair pathways, including base excision repair, single-strand break repair, mismatch repair and possibly homologous recombination. These mtDNA repair pathways are mediated by enzymes that are similar in activity to those operating in the nucleus, and in all cases identified so far in mammals, they are encoded by nuclear genes.
Collapse
|
197
|
Della-Maria J, Hegde ML, McNeill DR, Matsumoto Y, Tsai MS, Ellenberger T, Wilson DM, Mitra S, Tomkinson AE. The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites. J Biol Chem 2012; 287:39233-44. [PMID: 22992732 DOI: 10.1074/jbc.m112.369975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.
Collapse
Affiliation(s)
- Julie Della-Maria
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Hegde ML, Banerjee S, Hegde PM, Bellot LJ, Hazra TK, Boldogh I, Mitra S. Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J Biol Chem 2012; 287:34202-11. [PMID: 22902625 DOI: 10.1074/jbc.m112.384032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of oxidized base lesions in the human genome, initiated by DNA glycosylases, occurs via the base excision repair pathway using conserved repair and some non-repair proteins. However, the functions of the latter noncanonical proteins in base excision repair are unclear. Here we elucidated the role of heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), identified in the immunoprecipitate of human NEIL1, a major DNA glycosylase responsible for oxidized base repair. hnRNP-U directly interacts with NEIL1 in vitro via the NEIL1 common interacting C-terminal domain, which is dispensable for its enzymatic activity. Their in-cell association increases after oxidative stress. hnRNP-U stimulates the NEIL1 in vitro base excision activity for 5-hydroxyuracil in duplex, bubble, forked, or single-stranded DNA substrate, primarily by enhancing product release. Using eluates from FLAG-NEIL1 immunoprecipitates from human cells, we observed 3-fold enhancement in complete repair activity after oxidant treatment. The lack of such enhancement in hnRNP-U-depleted cells suggests its involvement in repairing enhanced base damage after oxidative stress. The NEIL1 disordered C-terminal region binds to hnRNP-U at equimolar ratio with high affinity (K(d) = ∼54 nm). The interacting regions in hnRNP-U, mapped to both termini, suggest their proximity in the native protein; these are also disordered, based on PONDR (Predictor of Naturally Disordered Regions) prediction and circular dichroism spectra. Finally, depletion of hnRNP-U and NEIL1 epistatically sensitized human cells at low oxidative genome damage, suggesting that the hnRNP-U protection of cells after oxidative stress is largely due to enhancement of NEIL1-mediated repair.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555-1079, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Simonelli V, Mazzei F, D'Errico M, Dogliotti E. Reprint of: gene susceptibility to oxidative damage: from single nucleotide polymorphisms to function. Mutat Res 2012; 736:104-16. [PMID: 22732424 DOI: 10.1016/j.mrfmmm.2012.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 09/27/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022]
Abstract
Oxidative damage to DNA can cause mutations, and mutations can lead to cancer. DNA repair of oxidative damage should therefore play a pivotal role in defending humans against cancer. This is exemplified by the increased risk of colorectal cancer of patients with germ-line mutations of the oxidative damage DNA glycosylase MUTYH. In contrast to germ-line mutations in DNA repair genes, which cause a strong deficiency in DNA repair activity in all cell types, the role of single nucleotide polymorphisms (SNPs) in sporadic cancer is unclear also because deficiencies in DNA repair, if any, are expected to be much milder. Further slowing down progress are the paucity of accurate and reproducible functional assays and poor epidemiological design of many studies. This review will focus on the most common and widely studied SNPs of oxidative DNA damage repair proteins trying to bridge the information available on biochemical and structural features of the repair proteins with the functional effects of these variants and their potential impact on the pathogenesis of disease.
Collapse
Affiliation(s)
- Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
200
|
Kim YJ, Wilson DM. Overview of base excision repair biochemistry. Curr Mol Pharmacol 2012; 5:3-13. [PMID: 22122461 DOI: 10.2174/1874467211205010003] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/25/2010] [Indexed: 02/06/2023]
Abstract
Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|